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Abstract: 
 

We introduce a new analysis of transaction costs that explicitly recognizes the importance 
of the timing of execution in assessing transaction costs.  Time induces a risk/cost 
tradeoff.  The price of immediacy results in higher costs for quickly executed orders 
while more gradual trading results in higher risk since the value of the asset can vary 
more over longer periods of time.  We use a novel data set that allows a sequence of 
transactions to be associated with individual orders and measure and model the expected 
cost and risk associated with different order execution approaches.  The model yields a 
risk/cost tradeoff that depends upon the state of the market and characteristics of the 
order.  We show how to assess liquidation risk using the notion of liquidation value at 
risk (LVAR).   
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1.  Introduction 

 
Understanding execution costs has important implications for both practitioners and 

regulators and has attracted substantial attention from the academic literature.   

Traditional analysis of transaction costs focus on the average distance between observed 

transaction prices and an “efficient” or fair market price.  These types of analysis, 

however, are disconnected from transaction costs faced in practice since they neglect any 

notion of risk.  Specifically, a buy order could be filled by submitting a market order and 

paying a price near the ask.  Alternatively, the order could be submitted as a limit order 

and either execute at a better price, or not execute at all.  Similarly, a single order is often 

broken up into a sequence of smaller ones spread out over time.  This temporal dimension 

to the problem yields a natural cost/risk tradeoff.  Orders executed over a short period of 

time will have a high expected cost associated with immediate execution but the risk will 

be low since the price is (nearly) known immediately.  Orders executed over a long 

period of time may have a smaller price impact and therefore smaller expected cost but 

may be more risky since the asset price can vary more over longer periods of time than 

shorter periods of time.  Using a novel data set that allows transactions to be associated 

with individual orders we measure and model the expected cost and risk associated with 

different order execution strategies.   

 

Our empirical work builds directly on the recent research of Almgren and Chriss (1999, 

2000), Almgren (2003), Grinold and Kahn (1999), Obizhaeva and Wang (2005), and 

Engle and Ferstenberg (2006).  These papers examine execution quality involving not 

just the expected cost but also the risk dimension.  Order execution strategies that are 

guaranteed to execute quickly offer a different risk/reward tradeoff than transaction 
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strategies that can take a longer time to be filled.  The result is a frontier of risk/reward 

tradeoffs that is familiar in finance and analogous to classic mean variance analysis of 

portfolios.  In fact, the work of Engle and Ferstenberg (2006) show that this analogy is 

deeper than might appear at first glace.  Namely, they show how to integrate the portfolio 

decision and execution decision into a single problem and how to optimize these choices 

jointly.  

 

Our work differs in important ways from most traditional approaches to the analysis of 

transaction costs.  The classic measures of transaction costs such as Roll’s measure, 

(realized) effective spreads, or the half spread measure average (positive) deviations of 

transaction prices from a notional efficient price2.  The midquote is often taken as the 

efficient price.  As such, these measures focus purely on expected cost and are not well 

suited to analyze the cost of limit order strategies or the splitting up of orders into smaller 

components.  Part of the limitations of the traditional analysis of transaction costs is 

driven by data availability.  Standard available data does not generally include 

information about how long it took before a limit order executed.  Even more rare is 

information providing a link between individual trades and the larger orders.   

 

Using a unique data set consisting of 233,913 orders executed by Morgan Stanley in 

2004, we are able to construct measures of both the execution risk and cost3. Our data 

includes information about when the order was submitted and the times, prices, and 

quantities traded in filling the order.  This data allows to take a novel view of the costs 

and risks associated with order execution.  

 

The expected cost and variance tradeoffs that the trader faces will depend upon the 

liquidity conditions in the market and the characteristics regarding the order.   We model 

both the expected cost and the risk as a function of a series of conditioning variables.  In 

this way, we are able to generate a time varying menu of expected cost and risk tradeoffs 

given the state of the market and order characteristics.  The result is a conditional frontier 

                                                 
2 For a survey of the literature see the special issue on transaction costs in the Journal of Financial Markets. 
3 We do not know the identities of the traders and the data never left the confines of Morgan Stanley. 
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of different cost/risk tradeoffs.  This frontier represents a menu of expected cost and 

variance tradeoffs faced by the trader. 

 

The paper is organized as follows.  Section 2 discusses measuring the order execution 

cost and risk.  Section 3 presents the data used in our analysis and some preliminary 

analysis.  Section 4 presents a model for conditional cost and risk with estimates.  Section 

5 presents an application of the model to liquidity risk and finally, section 6 concludes.   

 

2.  Measuring order execution cost and risk. 

 

Our measure of trading costs captures both the expected cost and risk of execution.  A 

key element of the measure takes the price available at the time of order submission as 

the benchmark price.  The order may be executed using a larger number of small trades.  

Each transaction price and quantity traded might be different.  The cost of the trade is 

always measured relative to a benchmark price which is taken to be the price available at 

the time of order submission.  The transaction cost measure is then a weighted sum of the 

difference between the transaction price and the benchmark arrival price where the 

weights are simply the quantities traded.  See Chan and Lakonishok (1995), Grinold and 

Kahn (1999), Almgren and Chriss (1999, 2000), Bertismas and Lo (1998) among others.  

In this paper the term order refers to the total volume that the agent desires to transact.  

We will use the term transaction to refer to a single trade.  An order may be filled using 

multiple transactions.   

 

More formally, let the position measured in shares at the end of time period t be xt so that 

the number of shares transacted in period t is simply the change in xt.  Let  denote the 

fair market value of the asset at the time of the order arrival.  This can be taken to be the 

midquote at the time of the order arrival for this price in practice.  Let 

0p

tp~ denote the 

transaction price of the asset in period t.  The transaction cost for a given order is then 

given by: 

(1)      ( )∑
=

−∆=
T

t
tt ppxTC

1
0

~
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If the order is purchasing shares then the change in the number of shares will be non-

negative.  Transactions that occur above the reference price will therefore contribute 

positively toward transaction costs.  Alternatively, when liquidating shares, the change in 

shares will be non-positive.  Transaction prices that occur below the reference price will 

therefore contribute positively to transaction costs.  For a given order, the transaction 

costs can be either negative or positive depending upon whether the price moved with or 

against the direction of the order.  However, because each trade has a price impact that 

tends to move the price up for buys and down for sells we would expect the transaction 

cost to be positive on average.   Given transaction cost, both a mean and variance of the 

transaction cost can be constructed.   

 

Of course, a measure of the transaction cost per dollar traded is obtained by dividing the 

transaction cost by the arrival value: 

(2)     ( ) 00

%
Pxx

TCTC
T −

=  

This measure allows for more meaningful comparison of costs across different orders and 

it used in our analysis. 

 

The transaction cost can be decomposed into two components that provide some insight.  

Specifically, the transaction cost can be written as 

(3)    ( ) ( )∑∑
=

−
=

∆−+−∆=
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The first term represents the deviation of the transaction price from the local arrival price 

.  The former is closely related to traditional measures of transaction costs capturing 

local effects.  The second term captures an additional cost due to the price impact.  Each 

trade has the potential to move the value of the asset. This change in the asset price has 

an effect on all subsequent trades executed.  Since the price impact typically moves the 

price to a less desirable price for the trader, this term will generally increase the cost of 

executing an order that would be missed by traditional measures that lack this temporal 

component.   

tp

 

 5



3. The data 

 

In order to analyze our transaction cost measure we need detailed order execution data 

that includes the arrival price, trade sizes and transaction prices that associated with all 

the transactions that were used to fill a given order.  We obtained such data from Morgan 

Stanley.  We do not know the identity of the traders that placed these orders and more 

importantly we do not know their motives.  The orders could have been initiated by 

Morgan Stanley traders on behalf of their clients or by a buy side trader on behalf of a 

portfolio manager.  Regardless, we do not know the identity of the Morgan Stanley trader 

or the client.  We use the word “trader” to refer to either one.  The order data never left 

the confines of Morgan Stanley and will not be made available outside of the confines of 

Morgan Stanley.   

 

The orders were executed by Morgan Stanley’s Benchmark Execution Strategies™ 

(BXS) strategies during 2004.  BXS is a order execution strategy that minimizes the 

expected cost of the trade for a given level of risk relative to a benchmark.  The trades are 

“optimally” chosen relying on an automated trading procedure that specifies when and 

how much to trade.  The algorithm changes the trading trajectory as the current trading 

conditions in the market vary4.   

 

We consider two types of orders.  The arrival price (AP) strategy and the volume 

weighted average price (VWAP).  The AP strategy attempts to minimize the cost for a 

given level of risk around the arrival price p0.  The trader can specify a level of urgency 

given by high, medium, and low urgency.  The level of urgency is inversely related to the  

level of risk that the trader is willing to tolerate.  High urgency orders have relatively low 

risk, but execute at a higher average cost.  The medium and low urgency trades execute 

with progressively higher risk but at a lower average cost.  The trader chooses the 

urgency and the algorithm derives the time to complete the trade given the state of the 

market and the trader’s constraints.  For a given order size and market conditions, lower 

                                                 
4 The trading algorithm is a variant of Almgren and Chriss (2000) and the interested reader is referred to 
this paper for more details.  
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urgency orders tend to take longer to complete than higher urgency trades.  However, 

since the duration to completion depends upon the market conditions and other factors 

there is not perfect correspondence between the urgency level and the time to complete 

the order.  All orders in our sample, regardless of urgency, are filled within a single day.   

 

We also consider VWAP orders.  For these orders, the trader selects a time horizon and 

the algorithm attempts to execute the entire order by trading proportional to the market 

volume over this time interval.  We only consider VWAP orders where the trader 

directed that the order be filled over the course of the entire trading day or that the overall 

volume traded was a very small fraction of the market volume over that period.  This can 

be interpreted as a strategy to minimize cost regardless of risk.  As such, we consider this 

a risk neutral trading VWAP strategy.  Generally, these orders take longer to fill than the 

low urgency orders and should provide the highest risk and the lowest cost.   

 

We consider orders for both NYSE and NASDAQ stocks.  In order to ensure that orders 

of a given urgency reflect the cost/risk tradeoff optimized by the algorithm we apply 

several filters to the orders. Only completed orders are considered.  Hence orders that 

begin to execute and are then cancelled midstream are not included in order to ensure 

homogeneity of orders of a given type.  We excluded short sales because the uptick rule 

prevents the economic model from being used "freely".  We do not consider orders 

executed prior to 9:36 since the market conditions surrounding the open are quite 

different than non-opening conditions.  Only stocks that have an arrival price greater than 

$5 are included.  Orders that execute in less than 5 minutes tend to be very small orders 

that may be traded in a single trade.  As such, they are not representative of the cost/risk 

tradeoff optimized by the algorithm.  For similar reasons, orders smaller than 1000 shares 

are also not included.  Finally, orders that are constrained to execute more quickly than 

the algorithm would dictate due to the approaching end of the trading day are also 

excluded.  In the end, we are left with 233,913 orders.    

 

For each order we construct the following statistics.  The percent transaction cost are 

constructed using equation (2).  The 5 day lagged bid ask spread weighted by time as a 
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percent of the midquote.  The annualized 21 day lagged close to close volatility.  The 

order shares divided by the lagged 21 day median daily volume.  Table 1 presents 

summary statistics of our data.  The statistics weight each order by its fraction of dollar 

volume.   The transaction cost standard deviation is large relative to the average cost.  

Hence the risk component appears to be substantial.   

 

The rows labeled B and S break down the orders into buyer and seller orders respectively.  

62% of the dollars traded were buys and 38% sells.  Buy orders tend to be slightly more 

expensive on average in this sample.  The risk is similar.  We see that 75% of the dollar 

volume was for NYSE stocks and 25% for Nasdaq.  We see that NYSE orders tend to 

cost less than NASDAQ by an average of about 5 basis points.  It is important to note that  

these statistics are unconditional and do not control for differences in characteristics of 

the stocks traded on the two exchanges which might be driving some of the variation in 

the observed costs.  For example, we see that the average volatility of NASDAQ stocks is 

substantially higher than that of NYSE.   

 

The last four rows separate the orders by urgency.  H, M, and L, correspond to high, 

medium and low urgencies and V is the VWAP strategy.  Hence as we move down the 

rows we move from high cost, low risk strategies to low cost, high risk strategies.  

Almost half of the orders are the risk neutral VWAP strategy (46%).  Only 10% of the 

order volume is high urgency, 24% is medium urgency and 20% is high urgency.  This is 

reflected in the sample statistics.  The average cost decreases from 11.69 basis points to 

8.99 basis points as we move from high to low urgency orders.  At the same time, the risk 

moves from 12.19 basis points up to 40.89 basis points for the same change in urgency.  

Contrary to the intent, the VWAP strategy does not exhibit the lowest cost at 9.69 basis 

points. It is the most risky however.  Of course, the order submission may depend on the 

state of the market and characteristics of the order.  These unconditional statistics will not 

reflect the market state and may blur the tradeoffs faced by the traders.    

 

Table 2 presents the same summary statistics conditional on the size of the order relative 

to the 21 day median daily volume.  The first bin is for orders less than a quarter of a 
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percent of the 21 day median daily volume and the largest bin considered is for orders 

that exceed 1%.  For each bin the statistics are presented for each type of order.  The top 

of the table is for NYSE and the bottom half of the table is for NASDAQ stocks.  Not 

surprisingly, for each order type, larger order sizes tend to be associated with higher 

average cost and higher risk indicating that larger orders are more difficult to execute 

along both the cost and risk dimensions.   

 

This tradeoff can be seen clearly by plotting the cost/risk tradeoffs for each of the percent 

order size bins.  Figure 1 presents the average cost/risk tradeoff for the NYSE stocks.  

Each contour indicates the expected cost/risk tradeoff faced for a given order size.  Each 

contour is constructed using 4 points, the three urgencies and the VWAP. For a given 

contour, as we move from left to right we move from the high urgency orders to the 

VWAP.  Generally speaking, the expected cost falls as the risk increases.  This is not true 

for every contour, however.  Increasing the percent order size shifts the entire frontier 

toward the north east indicating a less favorable average cost / risk tradeoff.   Figure 2 

presents the same plot but for NASDAQ stocks.   

 

Contrary to what might be expected, some order size bins exhibit a cost increase as we 

move to less urgent strategies.  These plots, however, do not consider the state of the 

market at the time the order is executed.  It is entirely possible that the traders consider 

the state of the market when considering what type of urgency to associate with their 

order.  If this is the case, a more accurate picture of the tradeoff faced by the trader can be 

obtained by considering the conditional frontier.  This requires building a model for the 

expected cost and the standard deviation of the cost conditional on the state of the market.  

This is precisely the task considered in the next section of the paper.   

 

 

4.  Modeling the expected cost and risk of order execution. 

 

Both the transaction cost and risk associated with trading a given order will vary 

depending on the state of the market.  In this section we propose a modeling strategy for 
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both the expected cost and risk of trading an order.  The model is estimated using the 

Morgan Stanley execution data described in the previous section.  In estimating this 

model for the expected cost and risk we are also estimating a conditional expected 

cost/risk frontier.  This frontier depicts the expected cost/risk tradeoff faced by the agent 

given the current state of the market.  This frontier will be a function of both the state of 

the market as well as the size of the order.   

 

Both the mean and the variance of transaction costs are assumed to be an exponential 

function of the market variables and the order size.  Specifically the transaction costs for 

the ith order are given by:  

(4)   ( ) iiii XXTC εγβ ⎟
⎠
⎞

⎜
⎝
⎛+=

2
1expexp%  

where )1,0( ~ Niidiε .  The conditional mean is an exponential function of a linear 

combination of the Xi with parameter vector β.  The conditional standard deviation is also 

an exponential function of a linear combination of the Xi with parameter vector γ.  Xi is a 

vector of conditioning information.  In our empirical work we find that the same vector Xi 

explains both the mean and the variance but this restriction is obviously not required.   

 

The exponential specification for both the mean and the variance restricts both to be 

positive numbers.  This is a natural restriction for both the mean and the variance.  While 

the realized transaction cost for any given trade can be either positive or negative (and 

empirically we do find both signs), the expected transaction cost is positive.   

 

We consider several factors that market microstructure theory predicts should contribute 

to the ease of executing a given order.  The lagged 5 day time weighted average spread as 

a percent of the midquote.  The log volatility constructed from the average close to close 

returns over the last 21 days. The log of the average historical 21 day median daily dollar 

volumes.  In addition to these market variables we also condition on the log of the dollar 

value of the order and the urgency associated with the order.  The urgency is captured by 

3 dummy variables for high, medium, and low urgencies.  The constant term in the mean 

and variance models therefore corresponds to the VWAP strategy.    
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The exponential specification for the mean is not commonly used in econometrics 

analysis.  It is particularly useful here since it is natural to restrict the mean to be positive.  

The often used method of modeling the logarithm of the left hand side variable won’t 

work here because the transaction cost often take negative values.  Also, notice that 

( )[ ] βii XTCE =%ln .  Hence the coefficients can be interpreted as the percent change in 

TC% for a one unit change in X.  Right hand side variables that are expressed as the 

logarithm of a variable (such as ln(value)) can be interpreted as an elasticity with respect 

to the non-logged variable (such as value).     

 

The exponential model also allows for interesting nonlinear interactions that we might 

suspect should be present.  Consider the expected transaction cost and the logged value 

and volatility variables. We have ( ) ( ) 21ablesother variexp% ββ volatilityvalueTCE = .  If 1β is 

larger than 1 then the cost increases more than proportionally to the value.  If 1β  is 

smaller than 1 then the expected cost increases less than proportionally to the value.  If 

1β and 2β  are both positive, then increases in the volatility result in larger increases in 

the expected cost for larger value trades.  Alternatively, as the value of the trade goes to 

zero, so does the expected cost.  It is entirely possible that the marginal impact of 

volatility might be different for different order sizes.  The exponential model allows for 

this possibility in a very parsimonious fashion.  Hence, what appears as a very simple 

nonlinear transformation allows for fairly rich nonlinear interactions.  Obviously, using 

the exponential function for the variance has the same interpretation.  

 

We estimate the model by maximum likelihood under the normality assumption forε .  It 

is well known that the normality assumption is a quasi maximum likelihood estimator.  

As long as the conditional mean and variance are correctly specified, we still obtain 

consistent estimates of the parameters even if the normality assumption is not correct.  

The standard errors, however, will not be correct in the event that the errors are not 

normal.  Robust standard errors that are consistent in the event of non-normal errors can 

be constructed following White (1982) and are constructed for our parameter estimates.  
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The estimation is performed separately for NYSE and NASDAQ stocks.  The two 

markets operate in a very different fashion and it is unlikely a single model would be 

appropriate for both trading venues.  We have 166,508 NYSE orders and 67,405 Nasdaq 

orders.  The parameter estimates for the variance equation for the NYSE stocks is given 

in table 3.   

 

The coefficient on the spread is positive indicating that wider spreads are associated with 

more risk for any given order type and order size.  The coefficient on the log volatility is 

1.2.  A simple model where a given order type is always executed over the same time 

interval with roughly constant quantities traded implies that the variance of the 

transaction cost should be proportional to the variance of the traded asset.  To see this, 

consider the variance of the transaction cost when the local effects are fixed so that the 

( ) 0~var =− tt pp .  If equal quantities are traded in each time interval so that 

( ) Txx
x

T

t 1

0

=
−

∆ , and the variance of the asset is constant and given by σ2 then the variance 

of the transaction cost: 

 (7)    ( )
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For large T this is approximately 
2

2σ  but the variance of the transaction costs should be 

proportional to the variance of the asset even for small T.  Recall that 

 so that it is therefore interesting to compare 

the estimated coefficient to the value 1.  Squaring the volatility to convert the standard 

deviations to the variance 

( ) ( ) 21ablesother variexp% ββ volatiltiyvalueTCVar =

( ) 22
2β

volatility yields a coefficient on the variance that is half 

the coefficient on the standard deviation which is .6 for the NYSE data.  The variance of 

the transaction cost therefore increases less than proportionally to the variance of the 

asset.  Thus, the Morgan Stanley BXS algorithm reduces the risk of the order relative to 

the simple constant volume, constant time interval strategy.  This could happen for a 
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number of reasons including front loading the trades, or more rapid execution in higher 

volatility markets.  

 

The coefficient on the log of the average 21 day median volume is -.51.  Every 1% 

increase in the volume translates into a half a percent decrease in the trading cost.  The 

order size has a coefficient of .53 indicating larger orders have a higher risk. A 1% 

increase in the order size translates into about a half of a percent increase in the variance.  

It is interesting to notice that the coefficient on the order size is roughly the negative of 

the coefficient on the volume.  This indicates that logarithm of the order size as a fraction 

of the daily volume that predicts the variance.  Not surprisingly, the variance of the 

transaction cost is decreasing as the urgency increases.  This is consistent with the high 

urgency orders executing more quickly than the low urgency orders.   

 

Next we turn to the mean cost parameter estimates.   The spread is positively related to 

the transaction cost.  A 1% increase in the spread translates into about a 1% increase in 

the transaction cost.  Recall that the transaction costs are already expressed as a percent 

so this is a percent increase in the percent transaction cost.  Wider spreads are consistent 

with markets that are less liquid.  The volatility has a coefficient of .50.  Every 1% 

increase in the 21 day volatility translates into a half of a percent increase in the expected 

trading cost.  High volatility is often thought to be associated more uncertainty and less 

liquid markets as we find here.  The coefficient on the average 21 day median volume is -

.47.  Every 1% increase in the daily volume translates into about a half of a percent 

decease in the expected trading costs.  The greater the volume the more liquid is the 

market.   

 

The value has a coefficient of .43 indicating that a 1% increase in the value of the order 

translates into a little less than a half of a percent increase in the trading cost.  It is again 

interesting to note that the coefficient on the value is roughly the same magnitude, but 

opposite sign as the coefficient on the volume.  It appears that the size of the trade 

relative to the daily volume that predicts the cost.  Finally, the cost is strictly increasing 

as the urgency increases.   
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The variance and mean model estimates for NASDAQ are presented in tables 5 and 6 

respectively.  While the magnitude of some of the estimates differs across the two 

exchanges the results are qualitatively very similar.  We test the null hypothesis that the 

mean and variance models for the NYSE and NASDAQ are not different.  This null 

hypothesis can be tested by an likelihood ratio test based on the difference between the 

sum of the likelihoods for the two unrestricted NYSE and NASDAQ models and the  

restricted model using the pooled data.  Twice the difference in these two likelihoods will 

have a chi-squared distribution with degrees of freedom given by the number of restricted 

parameters, or 16.  Twice the difference in the two likelihoods is 1954.76.  The critical 

value is 26.29 so we overwhelmingly reject the null with a p-value near 0.  Hence, while 

the models are qualitatively similar, there are statistically meaningful quantitative 

differences.  

 

The parameter estimates provide intuitive interpretations regarding the transaction costs.  

It is nevertheless interesting to evaluate the statistical fit of the assumed exponential 

form.  Toward this end we consider a variety of lagrange multiplier tests.  The test can be 

performed for both omitted terms in the mean and the variance equations.  Our null is that 

the exponential specification is sufficient while under the alternative we consider omitted 

linear and squared terms ( ) ( ) θβ iii ZXTCE += exp%  where Z will be taken to be X and 

X2 or a combination of linear and squared terms.  The test for the mean is performed by 

regressing the standardized error term on potential omitted terms.  The standardized error 

term is given by ( )
( )i

ii
i TCsd

TCETC
%

%%ˆ −
=ε .  We regress  ( ) 10

ˆexpˆ θθβε iiii ZXX +=  where 

is taken to mean the element by element square of each variable (ie no cross products 

are included).   The 

2
iX

1θ  and 2θ  are conforming parameter vectors.  Similarly, the test for 

the variance is performed by regressing ( ) 10
2 ˆexpˆ φφβε iiii ZXX +=  where the 0φ  and 1φ  

are again conforming parameter vectors.  The results of these test and the special cases of 

omitted linear terms only and omitted squared terms only are presented in table 7.  

(TABLE 7 IS NOT READY YET). 
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Generally speaking, larger orders are cost more to execute than smaller orders.  We next 

look more closely at how the expected cost and risk vary as the order size increases.  

Figures 3 and 4 plot the expected cost and the standard deviation as a function of the 

order size relative to the 21 day average median volume.  The plots consider orders 

ranging from near 0 percent up to 2% of the daily volume.  The plots are done for an 

average stock on an average day.  Figures 5 and 6 present the same plots, but for the 

NASDAQ stocks.  In the expected cost plots, the higher curves correspond to the more 

urgent orders.  The opposite is true for the standard deviation plots.   

 

We can also look at the conditional risk/cost trade off by plotting the mean and volatility 

conditional upon the state of the market for each order type.  We again consider the 

risk/cost tradeoff for an average stock under average conditions.  These contours are 

plotted in figures 7 and 8.  The ellipses represent 95% confidence intervals for the true 

mean and true variance for each order submission strategy.  As we move from left to 

right we move from high urgency to medium, to low and finally VWAP or the risk 

neutral strategy.  Perhaps the most interesting conclusion is that this analysis suggests 

that there is not much benefit to moving from low urgency to VWAP for either NYSE or 

NASDAQ stocks.  The change in the expected cost is nearly zero while the increase in 

risk is substantial.  If the agent cares at all about risk, the VWAP strategy does not appear 

viable.   

 

Given the model, we can evaluate the cost/risk tradeoff under any stock.  To get an idea 

of how this tradeoff varies as we examine how the frontier changes as we vary the order 

size for a typical stock on a typical day. Again, it is natural to express the order size 

relative to the average median 21 day volume.  These plots are presented in figures 9 and 

10 for typical NYSE and NASDAQ stocks respectively.  The larger orders shift the 

cost/risk tradeoff to less desirable north east region.  We again see that the order size 

effects on the cost/risk tradeoff are substantial.   
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5.  Liquidation Value at Risk (LVAR) 

 

Liquidation risk is the uncertainty about how much it costs to liquidate a position in a 

timely manner if the need should arise.  Liquidation risk is important from both an asset 

management/risk perspective, as well as a more recent literature on asset pricing and 

liquidity (see for example Easley and O’Hara (2003), Pastor and Stambaugh (2003), 

Pedersen and Acharya (2005)).  The conditional distribution of transaction costs is 

fundamentally related to liquidation risk.  We show how the losses associated with 

liquidating an asset can be bounded with some probability.  We call this measure 

liquidation value at risk or LVAR.  Like the traditional value at risk (VaR), LVAR tells 

us the minimum number of dollars that will be lost with some probability α, when 

liquidating an asset.   

 

For a given liquidation order the conditional mean and variance can be constructed.  

Under a normality assumption one can construct an α% LVAR given by: 

(8)    ( ) ( ) αγβα −⎟
⎠
⎞

⎜
⎝
⎛+= 1ˆ

2
1expˆexp zXXLVAR  

where  is the 1-α % quantile.   α−1z

 

More generally, we might not wish to impose the normality assumption and instead use a 

more non-parametric approach.  In the first stage, consistent estimates or the parameters 

can be estimated by QMLE.  In the second stage, the standardized residuals can be used 

to construct a non-parametric estimate of the density function of the errors ε.  The 

standardized residuals are given by: 

( )
⎟
⎠
⎞

⎜
⎝
⎛
−

=
γ

βε
ˆ

2
1exp

ˆexp%ˆ

i

ii
i

X

XTC 

(9) 

 

 

A non-parametric estimate of the density or perhaps just the quantiles themselves can 

then be used to construct a semi-parametric LVAR.    Specifically, let        denote a non-

parametric estimate of the α% quantile of the density function of the error term ε.  Then 

αε −1̂
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the semi-parametric α% LVAR is obtained by replacing z1-α with the non-parametric 

quantile αε −1̂ :   

 

(10)   ( ) ( ) αεγβα ˆˆ
2
1expˆexp ⎟

⎠
⎞

⎜
⎝
⎛+= XXLVAR  

 

Figures 11 and 12 present the standardized residuals for the NYSE and NASDAQ 

models.  The residuals are clearly non-normal.  We use the empirical quantiles of the data 

to construct the LVAR.  Figures 13 and 14 present the 1% LVAR associated with the 

high, medium and low urgency orders as well as the VWAP.  The LVAR estimates are 

constructed for typical stocks on a typical day.  The vertical axis is the transaction cost in 

basis points.  As we move from left to right we move from LVAR to low urgency to the 

high urgency orders.  The LVAR is given by the upper bar for each order type.  The 

expected cost for each order type is given by the smaller bar in near the origin.  The 

differences in the mean are small relative to the changes in the risk across the different 

order types.  Since the risk dominates, the minimum LVAR order type here is given by 

the most aggressive strategy, the high urgency order.  The 1% LVAR for this order type 

is just under around half a percent for NYSE and 1% for NASDAQ.  For each order type 

the lower dashed line completes a 98% prediction interval.   

 

 

 

6.  Conclusion 

 

This paper demonstrates that expected cost and risk components of transaction costs can 

be estimated from detailed transaction data.  We show that we can construct a cost/risk 

tradeoff in the spirit of classical portfolio analysis.  We find that the expected cost and 

risk components can be successfully modeled using an exponential specification for the 

mean and variance.  Characteristics of the order and state of the market play a major role 

in determining the cost/risk tradeoff faced by the trader.   
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We provide an example of how this approach can be used to asses liquidation risk using 

the notion of liquidation value at risk (LVAR).  This is, of course, only one approach that 

could be taken in assessing liquidation risk.  More generally, we have the entire 

conditional distribution of transaction costs so there are potentially many approaches that 

one could take in assessing liquidation risk.   

 

Finally, our data here consists of the transaction costs.  Another direction to go would be 

to directly consider the raw transaction data set.  In this way, we could better asses the 

dynamics of the price impact functions.  For example, how large are the local vs. price 

impact effects?   
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Exchange Side Benchmark Urgency Weight Count Price Spread Volatility Volume
Capitalization 

(000)
Order 
Value

Order 
Shares

Cost 
(BP)

StDev 
(BP)

100% 233,913   45.07$   0.09% 26% 1.59% 59,609,060$    310,472$  9,154     10.09   47.24
B 62% 147,649   45.06$   0.09% 26% 1.57% 58,137,900$    302,812$  8,946     10.77   47.17
S 38% 86,264     45.09$   0.08% 26% 1.62% 61,965,453$    323,583$  9,512     8.99    47.31

NYSE 75% 166,508   48.01$   0.09% 23% 1.68% 66,717,110$    326,031$  8,701     8.82    43.28
NASDAQ 25% 67,405     36.38$   0.08% 36% 1.33% 38,565,201$    272,037$  10,273   13.84   57.19

A H 10% 15,616     47.81$   0.08% 26% 1.18% 60,838,460$    475,462$  12,845   11.69   23.19
A M 24% 54,095     44.73$   0.09% 27% 1.47% 48,482,781$    320,909$  9,688     11.09   32.20
A L 20% 51,588     46.44$   0.08% 26% 1.13% 68,894,693$    285,018$  8,106     8.99    40.89
V 46% 112,614   44.04$   0.09% 26% 1.95% 61,042,206$    294,240$  8,867     9.69    59.01

 
 
 
 
Table 1. Summary statistics for Morgan Stanley trades.  B and S are buy and sell orders respectively.  A denotes arrival price strategy 
and V denotes VWAP strategy.  H, M, and L denote high medium and low urgency trades. 
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Exchange Benchmark Urgency
Volume 
Range Weight Count Price Spread Volatility Volume

Capitalization 
(000) Order Value

Cost 
(BP)

StDev 
(BP)

NYSE A H ≤ 0.25% 0.69% 2,630     47.77$   0.08% 22% 0.19% 94,061,545$     190,107$       4.22 10.97
NYSE A M 3.10% 13,664   48.06$   0.08% 22% 0.16% 95,714,257$     164,767$       3.69 11.64
NYSE A L 4.17% 19,379   50.15$   0.08% 22% 0.14% 98,487,506$     156,371$       2.71 12.74
NYSE V 6.54% 38,116   47.46$   0.08% 22% 0.13% 90,733,082$     124,606$       1.97 34.56
NYSE A H ≤ 0.5% 1.69% 3,559     51.00$   0.08% 22% 0.37% 81,476,811$     345,605$       6.16 11.95
NYSE A M 3.30% 9,557     49.09$   0.08% 23% 0.36% 68,991,562$     250,562$       5.68 15.53
NYSE A L 2.99% 8,027     50.18$   0.08% 21% 0.36% 92,105,328$     270,537$       4.15 19.65
NYSE V 5.00% 14,890   48.23$   0.08% 23% 0.37% 65,205,449$     244,088$       3.06 42.27
NYSE A H ≤ 1.0% 2.39% 2,979     52.69$   0.08% 22% 0.73% 72,154,182$     582,738$       8.93 15.98
NYSE A M 3.64% 6,907     48.85$   0.08% 24% 0.72% 54,822,342$     383,195$       7.54 20.67
NYSE A L 3.17% 6,035     50.22$   0.08% 22% 0.72% 82,177,737$     381,487$       6.76 28.64
NYSE V 6.40% 11,822   46.88$   0.09% 23% 0.73% 71,181,217$     393,015$       5.17 47.42
NYSE A H > 1.0% 2.67% 2,549     51.53$   0.09% 23% 2.31% 48,375,509$     760,186$       14.36 25.12
NYSE A M 7.34% 7,052     47.41$   0.10% 24% 3.02% 36,941,147$     755,825$       15.55 38.97
NYSE A L 4.77% 5,632     47.78$   0.10% 23% 2.55% 52,146,046$     615,387$       12.64 52.73
NYSE V 16.88% 13,710   45.67$   0.09% 23% 3.95% 54,313,103$     894,247$       14.66 65.61
NASDAQ A H ≤ 0.25% 0.28% 715        36.70$   0.06% 33% 0.18% 76,072,230$     288,664$       6.58 12.91
NASDAQ A M 1.59% 5,771     37.81$   0.06% 34% 0.15% 52,884,846$     200,367$       6.05 17.13
NASDAQ A L 1.36% 5,065     37.49$   0.06% 33% 0.14% 77,185,322$     195,338$       5.29 17.93
NASDAQ V 3.73% 16,227   39.02$   0.06% 34% 0.11% 71,786,694$     167,134$       3.96 42.05
NASDAQ A H ≤ 0.5% 0.82% 1,131     39.07$   0.06% 32% 0.37% 63,042,552$     527,242$       10.76 18.02
NASDAQ A M 1.35% 4,455     36.72$   0.08% 36% 0.36% 30,091,409$     220,816$       9.15 21.53
NASDAQ A L 0.89% 2,578     38.02$   0.07% 36% 0.37% 37,310,972$     251,330$       8.33 31.04
NASDAQ V 1.64% 5,597     35.82$   0.07% 36% 0.36% 45,881,902$     213,288$       6.07 59.83
NASDAQ A H ≤ 1.0% 0.85% 992        38.30$   0.07% 35% 0.70% 42,108,883$     623,028$       15.81 21.17
NASDAQ A M 1.31% 3,453     36.58$   0.09% 38% 0.71% 15,709,279$     275,812$       14.78 30.01
NASDAQ A L 0.97% 2,003     39.11$   0.07% 37% 0.72% 32,386,856$     352,916$       12.36 45.50
NASDAQ V 1.80% 5,310     34.08$   0.08% 36% 0.73% 36,671,191$     246,208$       10.62 66.66
NASDAQ A H > 1.0% 0.83% 1,061     37.41$   0.10% 36% 2.91% 10,249,188$     565,871$       26.99 47.16
NASDAQ A M 2.26% 3,236     32.85$   0.11% 39% 3.10% 8,045,030$       508,137$       22.96 58.51
NASDAQ A L 1.91% 2,869     36.91$   0.10% 38% 2.85% 15,236,379$     484,223$       26.02 79.01
NASDAQ V 3.62% 6,942     33.30$   0.11% 37% 3.46% 23,073,584$     379,150$       24.65 94.67

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2. Summary statistics for Morgan Stanley trades.  Volume is the order size as a percent of the average daily volume.  A denotes 
arrival price strategy and V denotes VWAP strategy.  H, M, and L denote high medium and low urgency trades. 
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 VARIABLE COEFFICIENT ROBUST T-STAT 
 Const 11.80559 90.86393 
 Spread 1.815802 14.39896 
 Log volatility 1.207152 64.98954 
 Log volume -0.51614 -55.6044 
 Log value 0.536306 46.08766 
 Low urg -1.45436 -83.2275 
 Med urg -1.92541 -61.058 
 High urg -2.33731 -88.2665 
 
Table 3.  Variance parameter estimates for NYSE stocks.  
 
 
    
 VARIABLE COEFFICIENT ROBUST T-STAT 
 Const 5.173827 30.0342 
 Spread 0.969804 8.395586 
 Log volatility 0.503987 21.14475 
 Log volume -0.47084 -43.4163 
 Log value 0.43783 40.27979 
 Low urg 0.094929 2.41284 
 Med urg 0.305623 8.796438 
 High urg 0.41034 11.28093 
 
Table 4.  Mean parameter estimates for NYSE stocks.  
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 VARIABLE COEFFICIENT ROBUST T-STAT 
 Const 11.40519 71.44173 
 Spread 2.016026 17.00666 
 Log volatility 1.078963 40.27656 
 Log volume -0.44182 -46.7497 
 Log value 0.453704 42.64865 
 Low urg -1.04398 -42.1013 
 Med urg -1.70511 -65.0131 
 High urg -2.10623 -48.7398 
 
Table 5.  Variance parameter estimates for NASDAQ stocks.  
 
 
    
 VARIABLE COEFFICIENT ROBUST T-STAT 
 Const 5.354067 26.04098 
 Spread 1.014023 8.734035 
 Log volatility 0.513628 16.96502 
 Log volume -0.41447 -29.9304 
 Log value 0.376208 24.99588 
 Low urg 0.025356 0.243943 
 Med urg 0.230764 5.716912 
 High urg 0.282479 6.156517 
 
Table 6.  Mean parameter estimates for NASDAQ stocks. 
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Figure 1:  NYSE average cost/risk tradeoff given the order size.  The order size is 
expressed as a fraction of the median 21 day daily volume.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2:  NASDAQ average cost/risk tradeoff given the order size.  The order size is 
expressed as a fraction of the median 21 day daily volume.   
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Figure 3:  Expected Cost as a function of the order size expressed as a fraction of average 
daily volume for NYSE stocks. 
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Figure 4:  Standard deviation of transaction cost as a function of the order size expressed 
as a fraction of average daily volume for NYSE stocks. 
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Figure 5. Expected Cost as a function of the order size expressed as a fraction of average 
daily volume for NASDAQ stocks. 
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Figure 6. Standard deviation of transaction cost as a function of the order size expressed 
as a fraction of average daily volume for NASDAQ stocks. 
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Figure 7.  Expected cost and risk frontier for a typical NYSE stock on a typical day. 
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Figure 8.  Expected cost and risk frontier for a typical NASDAQ stock on a typical day. 
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Figure 9.  Expected cost/risk frontier for a typical NYSE stock on a typical day.  Each 
contour represents the frontier for a different quantile of order size expressed as a fraction 
of average daily volume. 
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Figure 10. Expected cost/risk frontier for a typical NASDAQ stock on a typical day.  
Each contour represents the frontier for a different quantile of order size expressed as a 
fraction of average daily volume. 
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Figure 11.  Standardized residuals for NYSE stocks. 
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Figure 12.  Standardized residuals for NASDAQ stocks. 
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Figure 13.  This plot shows the 98% predictive interval for the transaction cost for a 
typical NYSE stock on a typical day.  0 corresponds to VWAP, 1 to low urgency, 2 to 
medium urgency and 3 to high urgency.  For each trade type, the upper bar denotes the 
1% LVAR. 
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Figure 14. This plot shows the 98% predictive interval for the transaction cost for a 
typical NASDAQ stock on a typical day.  0 corresponds to VWAP, 1 to low urgency, 2 to 
medium urgency and 3 to high urgency.  For each trade type, the upper bar denotes the 
1% LVAR. 
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