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Abstract

We propose a new semiparametric estimator of the degree of persistence in volatility for
long memory stochastic volatility (LMSV) models. The estimator uses the periodogram of
the log squared returns in a local Whittle criterion which explicitly accounts for the noise
term in the LMSV model. Finite-sample and asymptotic standard errors for the estimator
are provided. An extensive simulation study reveals that the local Whittle estimator is
much less biased and yields more accurate con�dence intervals than the widely-used GPH
estimator. In an empirical analysis of the daily Deutschemark/Dollar exchange rate, the new
estimator indicates stronger persistence in volatility than the GPH estimator, provided that
a large number of frequencies is used.
Key Words: long-range dependence; nonlinearity; semiparametric estimation

1. INTRODUCTION

Long memory in volatility of �nancial returns has received considerable attention in recent
years. See, e.g. Ding, Granger and Engle (1993), de Lima and Crato (1993), Baillie, Bollerslev
and Mikkelsen (1996), Andersen and Bollerslev (1997a,b), Lobato and Savin (1998), Lobato and
Robinson (1998), Ray and Tsay (2000), Lobato and Velasco (2000), Wright (2000), Andersen,
Bollerslev, Diebold and Labys (2001), and Robinson (2001). A widely-used methodology for
determining the degree of persistence in volatility, parameterized by d, is to estimate d semi-
parametrically using log periodogram regression based on squared or absolute returns. The log
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periodogram regression estimator, bdGPH , was originally proposed by Geweke and Porter-Hudak
(1983), in a non-volatility context. Properties of this estimator for stationary Gaussian pro-
cesses, which are linear and hence free of volatility clustering, were derived by Robinson (1995a)
and Hurvich, Deo and Brodsky (1998). In this case, bdGPH is consistent and asymptotically
normal under certain regularity conditions. The GPH method is practically appealing, as it is
may be computed using simple linear regression.
To model observed persistence in volatility of �nancial returns, the long memory stochastic

volatility (LMSV) model was introduced independently by Breidt, Crato and de Lima (1998)
and Harvey (1998). The series of logarithms of squared values of an LMSV process is modeled
as a long-range dependent process plus added noise (See Section 2). However, Deo and Hurvich
(2001) show that bdGPH based on log squared returns in the LMSV model su�ers from a poten-
tially severe negative bias which does not arise in the Gaussian case, and which depends on d,
becoming worse as d goes to zero. Deo and Hurvich (2001) is, to the best of our knowledge,
the �rst paper which derives theoretical properties for any semiparametric estimator of d in the
context of volatility.
In this paper, we propose a new semiparametric estimator of d in the LMSV context, designed

with a view towards bias reduction in comparison with bdGPH . The new estimator, bdLWN , is
a local Whittle estimator which explicitly accounts for the noise term in the LMSV model.
This noise term introduces a certain degree of roughness, which is determined by d, in the
short memory component of the spectral density in a neighborhood of zero frequency. The
estimator bdLWN is implicitly de�ned, and may be computed using a two-dimensional nonlinear
optimization algorithm.

1.1 Analysis of transformed returns

We focus in this paper on estimators of d for series of log squared returns. This choice of
transformation seems to be justi�ed empirically; Ding, Granger and Engle (1993) observed that
autocorrelations of absolute returns raised to the power c were typically maximized by taking
c close to 1. Deo and Hurvich (2001) have proposed an explanation in terms of leverage e�ects
for the fact that absolute and squared returns typically have smaller sample autocorrelations
than log squared returns. An analogous phenomenon presumably holds for the degree of persis-
tence implied by periodograms. Indeed, Wright (2000) has shown using simulations under both
LMSV and ARCH-type models that periodogram-based semiparametric estimators of d are less
negatively biased if log squared returns are used, instead of absolute or squared returns.

1.2 Using GPH to assess persistence in volatility

Even using log squared returns for analysis, however, the GPH estimator of persistence in
volatility in LMSV models still su�ers from a potentially severe negative bias. This bias, which
is given explicitly in Theorem 1 of Deo and Hurvich (2001), implies a slow rate of convergence
for bdGPH . In general, in order to guarantee that

p
m(bdGPH � d) will be asymptotically normal

with zero mean, m must grow more slowly than n4d=(4d+1), where n is the sample size and m is
the number of frequencies used in the regression. For example, if d = :25, then m must grow
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more slowly than n1=2, while if d = :1, m must grow more slowly than n2=7. In no situation with
0 < d < 1=2 can m grow faster than n2=3.
Now, when d = 0 in the LMSVmodel, Hurvich and Soulier (2000) have shown that

p
m(bdGPH�

d) is asymptotically normal with mean zero and variance �2=24, as long as m grows more slowly
than n4=5. Thus, an asymptotically valid test for long memory in volatility is to reject the null
hypothesis of d = 0 in favor of d > 0 if the test statistic bdGPH=p�2=(24m) is greater than the
1 � � quantile of the standard normal distribution, where � is the desired signi�cance level.
This would seem to suggest that bdGPH is satisfactory for assessing the existence of persistence
in volatility.
Nevertheless, the fact that the bias in bdGPH depends on d makes statistical inference based onbdGPH diÆcult, if not impossible, in general. Indeed, even if we knew that d > 0, we could not

construct an asymptotically valid con�dence interval for d based on bdGPH without an a priori,
strictly positive lower bound for d. Such a bound, which would seldom if ever be available in
practice, would be needed to prevent the practitioner from selecting too large a value of m,
and thereby invalidating the con�dence interval by introducing excessive bias in bdGPH . Thus, a
better estimator of long memory in volatility is desirable.

1.3 Outline of paper

Here, we investigate the properties of the local Whittle estimator, bdLWN compared to bdGPH
in practice. We also compare the proposed method to the local polynomial GPH estimator,bdLP�GPH of Andrews and Guggenberger (2000), which reduces the bias of GPH for suÆciently
regular linear processes. We present extensive simulation studies comparing the performance ofbdGPH , bdLP�GPH and bdLWN . The simulations reinforce the fact that bdGPH can be extremely neg-
atively biased. This is of considerable practical relevance, since it suggests, in conjunction with
our data analysis, that many of the published data analyses may be understating the strength
of the true persistence in volatility. The local polynomial GPH estimator is slightly less biased,
but at the cost of increased variability. We �nd that bdLWN has much less bias than bdGPH , and
its variance ination compared with bdGPH is not unreasonably large. Thus, bdLWN seems to hold
great promise for estimating persistence in volatility. The theoretical properties of d̂LWN have
been studied by Hurvich, Moulines and Soulier (2002). We summarize here the most relevant
aspects of that theory, including an expression for the asymptotic variance of d̂LWN , which de-
pends on d. We also provide a feasible, �nite-sample expression for the variance of d̂LWN . The
accuracy of these approximations, as well as resulting con�dence intervals, is assessed in our
simulation study. Finally, we present an empirical analysis of the daily Dollar/Deutschemark
exchange rate, and �nd a higher degree of persistence in volatility than suggested by the GPH
estimator when a large number of frequencies is used.

2. ESTIMATION OF d IN THE LMSV MODEL

The LMSV model for returns frtg takes form rt = � exp(Yt=2)et where � > 0 is a scale
parameter, fetg are independent identically distributed (i:i:d:) shocks with zero mean, and fYtg
is a zero-mean stationary Gaussian process, independent of fetg; with spectral density

fY (x) = x�2df�Y (x); (1)
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where f�Y is an even, positive, continuous function on [��; �] and d is the memory parameter,
0 � d < 1=2. We assume hereafter that d > 0. Under the LMSV model, the logarithms of the
squared returns, Xt = log(r2t ), may be expressed as

Xt = Yt + Zt; (2)

where fZtg = flog e2t g is i:i:d: with variance �2Z <1.
The assumptions given above for the LMSV model imply that the spectral density of Xt may

be written as
fX(x) = fY (x) + �2Z=(2�): (3)

The LMSV model described above can be generalized in various ways. The fYtg series can be
non-Gaussian, subject to the regularity conditions described below. Additionally, the log squared
returns can be nonstationary, with memory parameter d 2 (1=2; 1]. In this nonstationary case,
we de�ne the model by rt = � exp(Ut=2)et where Ut =

Pt
s=1 Ys and fY (x) = x�2(d�1)f�Y (x), so

that here fYtg has memory paremeter dY 2 (�1=2; 0]. Since fUtg is nonstationary, it does not
have a spectral density, but it does have a pseudo spectral density given by j1 � eixj�2fY (x).
This pseudo spectral density plays a similar role to that of the ordinary spectral density in
determining the properties of the periodogram when d > 1=2. See, e.g., Solo (1992), Hurvich
and Ray (1995), Velasco (1999).
Overall, then, our generalized model is

rt =

�
� exp(Yt=2)et ; d 2 (0; 1=2)

� exp(
Pt

s=1 Ys=2)et ; d 2 (1=2; 1)

such that fYtg is independent of the i:i:d: process fetg, where fYtg is stationary and invertible
with spectral density fY (x) = x�2dY f�Y (x), dY 2 (�1=2; 1=2), and

dY =

�
d if d 2 (0; 1=2)

d� 1 if d 2 (1=2; 1)
:

The log squared return series flog r2t g is given by

Xt =

�
Yt + Zt if d 2 (0; 1=2)Pt
s=1 Ys + Zt if d 2 (1=2; 1)

:

In both cases, fZtg = flog e2t g is an i:i:d: process with �nite variance, independent of fYtg.

2.1 The GPH Estimator

De�ne the periodogram of the observations X1; � � � ; Xn at the k
th Fourier frequency xk = 2�k=n

by

IXn;k =
1

2�n

�����
nX
t=1

Xte
itxk

�����
2

:
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The GPH estimator of d using the �rst m Fourier frequencies may be written as

bdGPH = � 1

2Sww

mX
k=1

ak log I
X
n;k;

where ak = Wk �W , Wk = log j2 sin(xk=2)j, W = m�1
mP
k=1

Wk and Sww =
mP
k=1

a2k. Note that

the intuition behind the GPH estimator in the standard Gaussian case is the linear relation at
low frequencies between the logarithm of the spectral density of a long memory process and the
logarithm of the corresponding frequencies, as can be seen from (1). The fZtg process in (2)
may be viewed as an additive noise term which corrupts this linear relationship and impairs our
ability to estimate the memory parameter in the signal process fYtg.

2.2 The Local Polynomial GPH Estimator, bdLP�GPH

Andrews and Guggenberger (2000) proposed a local polynomial GPH estimator of long memory.
We will consider the simplest version here, in which the estimator d̂LP�GPH is de�ned as the
coeÆcient of �2 log xk in an ordinary least squares regression of log IXn;k on a constant, �2 log xk
and x2k, for k = 1; : : : ;m. For a Gaussian (and therefore linear) process such that the spectral
density of the short memory component is suÆciently smooth, speci�cally, smooth of order s � 1
at zero frequency, the optimal rate of convergence of mean squared error (MSE) of d̂LP�GPH is
proportional to n�2�=(2�+1) where � = minfs; 4g. Unfortunately, in the context of the LMSV
model, we have s = 2d (see Equation (4) below), presumably leading to an optimal mean
squared error proportional to n�4d=(4d+1). This rate is identical to the rate attained by GPH in
the LMSV context as given by Deo and Hurvich (2001), and is inferior to the optimal rate of
n�4=5+� attained by the MSE of d̂LWN , as will be shown in Section 3 below. Nevertheless, for
completeness we include d̂LP�GPH in our comparative Monte Carlo study in Section 4.

2.3 The Local Whittle with Noise Estimator, bdLWN

We assume in this section that

f�Y (x) = f�Y (0) + Cx2 +R(x);

where R(x) = o(x2) as x! 0. This assumption holds for most short-memory models in current
use, including all stationary invertible ARMA models, and exponential models (see Bloom�eld,
1973). To avoid a conict of notation, in this and the next section we denote the true value of
the memory parameter by d0. Then from Equations (1) and (3) we can write

fX(x) =
�2Z
2�

�
1 +

2�f�Y (0)

�2Z
x�2d0

�
+O(x2�2d0) : (4)

Stationarity is implicitly assumed in writing (4), but an argument based on pseudo-spectral
densities shows that (4) holds even in the nonstationary case.
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Since the �nal O(x2�2d0) term is negligible with respect to the other terms in (4) for x close
to 0, it seems reasonable to try locally �tting a model of form

g�(x) = b0(1 + b1x
�2d) (5)

in a neighborhood of zero frequency, where � = (b0; b1; d)
0 is the vector of parameters. Model

(5) explicitly accounts for the noise term in (2).
For local �tting of model (5), we propose to minimize the local Whittle criterion

L(�) =
mX
j=1

"
log g�(xj) +

IXn;j
g�(xj)

#
; (6)

where the minimization is carried out in a compact set � � R
+ � R

+ � (0; 0:75), and m is a
positive integer such that 1=m+m=n! 0 as n!1. We assume that �0 is an interior point of
�, where �0 = [�2Z=(2�) ; 2�f

�

Y (0)=�
2
Z ; d0]

0 is the vector of true parameters.
The parameter b0 can be concentrated out of (6), so minimizing L(�) is equivalent to �nding

(b1; d) to minimize

~L(b1; d) =

mX
j=1

"
log ~g~�(xj) +

IXn;j
~g~�(xj)

#
; (7)

where ~� = (b1; d)
0,

~g~�(xj) = b
~�
0(1 + b1x

�2d
j ) ; (8)

and

b
~�
0 =

1

m

mX
j=1

IXn;j

1 + b1x
�2d
j

: (9)

The vector of estimated parameters is b� = (bb0 ; bb1 ; bdLWN )
0, where bb1; bdLWN minimize ~L, andbb0 = b

(bb1;bdLWN )0

0 . Here, the minimization is carried out in a compact set � � R
+ � (0; 0:75).

In the discussion above, it was implicitly assumed that the minimizer of ~L occurs at an interior
point of �. In this case, the estimators b̂1 and d̂LWN satisfy the so-called �rst order conditions
(FOC), that is, the partial derivatives of ~L are zero at (b1; d) = (b̂1; d̂LWN ). In fact, we need to
slightly modify the de�nition of bdLWN to account for possible solutions to (7) on the boundary.
If the global minimizer of ~L occurs at a boundary point of �, then, although there may be

several interior points which satisfy the FOC, none of these local optima corresponds to a global
optimum, and we de�ne our estimator as follows. (1) If there are no solutions to the FOC, we
use the global optimum (boundary point) as our estimator. (2) If there are any solutions to the
FOC, then our estimator is de�ned to be that solution which is closest in the sense of ordinary
Euclidean distance to the global optimum (boundary point).
It should be noted that the above algorithm implies that a local optimum will be chosen

over the global optimum when the latter is a boundary point. The reason for this choice is to
facilitate the development of theory, as suggested by Andrews and Sun (2001). The context for
the suggestion of Andrews and Sun (2001) was a local polynomial Whittle estimator of long
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memory, in a non-volatity context. There, as here, the estimator involves minimization of a
multidimensional criterion function, and the individual components of the estimator converge
at di�erent rates.

3 PROPERTIES OF bdLWN

The asymptotic properties of d̂LWN and other related estimators are derived in Hurvich,
Moulines and Soulier (2002). We present here the result for d̂LWN under simpli�ed assumptions.
We assume that fYtg has an in�nite order moving average representation

Yt =

1X
j=0

aj�t�j ; (10)

where f�tg is a zero-mean white noise process with V ar[�t] = �2� , and
P
1

j=0 a
2
j <1. Note that

f�tg is independent of fZtg. We lose no generality in assuming that fYtg has zero mean, since
the estimators considered in this paper are all functions of the periodogram at nonzero Fourier
frequencies. In the nonstationary case, the assumption that fYtg has mean zero ensures that
fXtg is free of linear trends.
De�ne a(x) =

P
1

j=0 aje
ijx. The spectral density of the process fYtg is then fY (x) = ja(x)j2�2� =(2�),

and we assume that it can be expressed as

fY (x) = x�2dY f�Y (x); (11)

with dY 2 (�1=2; 1=2).
To present our theoretical results, we require the following de�nition.

De�nition 1. For � 2 (0; �], � > 0 and 0 < � <1, F0(�; �; �) is the set of functions g de�ned

on [��; �] satisfying R �
�� jg(x)jdx � � and for all x 2 [��; �],

jg(x)j � �jxj� : (12)

We also require the following assumption, which was made in Robinson (1995b) as well.

(A1) f�tg is a martingale di�erence sequence such that for all t, E [�4t ] := �4 <1 and
E [�2t j �s; s < t] = 1 almost surely.

Theorem 1. Let fYtg have a moving average representation representation (10) with respect to

a white noise f�tg which satis�es (A1) and such that the function a(x) =
P
1

j=0 aje
ijx can be

expressed as a(x) = x�dY a�(x), where (a�(0)�1a�(x)� 1) 2 F0(�; �; �) for some � > 2d0, � > 0
and � > 0. Assume that d0 2 (0; :75). If m is a non decreasing sequence of integers such that

lim
n!1

(m�4d0�1n4d0 + n�2�m2�+1 log2(m)) = 0; (13)

thenm1=2(d̂LWN�d0) is asymptotically Gaussian with zero mean and variance (1+2d0)
2=(16d0

2).
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Thus, if � = 2 (as is most commonly assumed) and we use m = n4=5�2� for some small �, then
d̂LWN is n2=5��-consistent, i.e., the same rate of convergence enjoyed by Robinson's (1995b)
Gaussian semiparametric estimator in the linear case. The �rst term in (13) imposes a lower
bound on the allowable value of m, requiring that m tend to 1 faster than n4d0=(4d0+1). Thus,
for example, if d0 = :4 then m must tend to 1 faster than n8=13 � n:62 in order for Theorem 1
to be valid.
Note that the asymptotic variance of d̂LWN in Theorem 1 depends only on d0, and is a

decreasing function of d0. Unfortunately, unless the noise to signal ratio (nsr) is quite small,
this asymptotic variance may not accurately reect the actual variance, even in the relatively
large sample sizes considered in this paper. An alternative approach is to construct a �nite-
sample approximation to the variance. Examination of the proofs in Hurvich, Moulines and
Soulier (2002) suggests that we may approximate V ar(d̂LWN ) by M�1

11 , that is, the (1; 1) entry
of the inverse of the matrix M , where M is the 2� 2 matrix with entries given by

M11 = 4

mX
k=1

 
log xk x

�2d0
k

x�2d0k + b�11;0

!2

� 4

m

 
mX
k=1

log xk x
�2d0
k

x�2d0k + b�11;0

!2

M12 = �2
mX
k=1

log xk x
�2d0
k

(x�2d0k + b�11;0)
2
+

 
2

m

mX
k=1

log xk x
�2d0
k

x�2d0k + b�11;0

! 0@ mX
j=1

1

x�2d0j + b�11;0

1A
M21 = M12

M22 =

mX
k=1

1

(x�2d0k + b�11;0)
2
� 1

m

 
mX
k=1

1

x�2d0k + b�11;0

!2

; (14)

where b1;0 is the signal to noise ratio, b1;0 = 2�f�Y (0)=�
2
Z . The use of M�1

11 is not feasible in

practice, since d0 and b1;0 are not known. We can, however, use the feasible version M̂�1
11 where

d0 and b1;0 are replaced by d̂LWN and b̂1 in the formulas above.

In the next section, we compare the performance of bdLWN relative to that of bdGPH andbdLP�GPH and assess the accuracy of the asymptotic and �nite-sample expressions for V ar(bdLWN )
using simulation.

4 SIMULATION RESULTS

4.1 Assessment of Empirical Bias and Variance for bdLWN

We simulated logarithms of squared LMSV processes by �rst simulating Gaussian ARFIMA(p; d; q)
data. The PACF method of Hosking (1984) was used to generate data from a Gaussian
ARFIMA(0; d; 0) process. An ARMA(p; q) �lter was then applied to give ARFIMA(p; d; q) data.
An independent sequence of logarithms of squared standard normal random variates was added
to the ARFIMA data to produce a series of logarithms of a squared LMSV-ARFIMA(p; d; q)
process. One thousand realizations were generated for each value of n = (1000; 5000; 10000),
and for each of two values of the noise to signal ratio, nsr = b�11;0. Since we take the fetg to be

standard normal, we have �2Z = �2=2. The values nsr = 5 and nsr = 10 were chosen to cor-
respond to the large nsr values observed in other empirical studies of LMSV models in �nance
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(e.g., Breidt, Crato, and de Lima, 1998) and to see how the estimates of d are inuenced by nsr
in practice. For each realization, the bdGPH , bdLP�GPH and bdLWN estimators were evaluated for
m = ([n:4]; [n:5]; [n:6]; [n:7]; [n:8]). We investigated the LMSV-ARFIMA(0; d; 0) model for values
of d = 0:3; 0:4; 0:45; 0:49. These values were chosen based on previous �ndings of relatively strong
persistence in �nancial time series (e.g. Lobato and Savin, 1999; Ray and Tsay, 2000). We also
investigated the inuence of ARMA components on the estimates by considering three LMSV-
ARFIMA models having nonzero ARMA terms, that of an LMSV-ARFIMA(1; d; 0) model with
d = 0:4 and � = 0:5; 0:8 where � is the autoregressive parameter in the ARFIMA(1; d; 0) model,
that is, (1 � B)d(1 � �B)yt = �t with f�tg i:i:d normal random variates having standard de-
viation such that the speci�ed nsr is obtained, and that of an LMSV-ARFIMA(0; d; 1) model
with d = 0:4 and � = �0:8, where � is the moving-average parameter in the ARFIMA(0; d; 1)
model, that is, (1 � B)dyt = (1 � �B)�t. The bdLWN estimator was obtained by numerical op-
timization of (7) as a function of d and b1. The value of d was constrained to lie in the range
[0:01; :75], while log(b1) was constrained to the region [�8; 20]. The IMSL function DBCONF
with default control parameters was used for optimization. The initial value used in computingbdLWN for a given m was the bdGPH estimator based on the same value of m. To �nd solutions
to the FOC when the global optimum was obtained at a boundary point, we divided � into 16
equal-sized, non-overlapping rectangular regions. For each of these regions, (7) was optimized
using DBCONF with starting value given by the midpoint of the region. Any interior solutions
obtained by DBCONF were assumed to be solutions to the FOC.
Tables 1 and 2 provide representative results for the LMSV-ARFIMA(0; d; 0) model for the

cases d = 0:3 and d = 0:4, while Table 3 presents results for the LMSV-ARFIMA(1; 0:4; 0)
model with � = 0:8. Figures 1-3 present these results graphically in the form of box-plots, for
the nsr = 5 case. Complete simulation results are available from the authors upon request.
We start by discussing the results for the LMSV-ARFIMA(0; d; 0) processes. Overall, in most

situations studied, bdLWN has a smaller root mean squared error (RMSE) than either bdGPH orbdLP�GPH . As m increases for given values of n, nsr and d, the RMSE for bdLWN typically
decreases, while the RMSE for bdGPH and bdLP�GPH is typically a convex function of m. The
minimum RMSE with respect to m for a given situation is typically smaller for bdLWN than forbdGPH or bdLP�GPH .
The bias of bdLWN is uniformly small, while the biases of bdGPH and bdLP�GPH become in-

creasingly negative as either m or nsr is increased. This is in agreement with the theoretical
results of Deo and Hurvich (2001). Even for samples of size n = 10000, the bias of bdGPH
may be quite severe. For example, for the LMSV-ARFIMA(0; 0:49; 0) process with n = 10000,
m = [n:8], nsr = 10, the bias in bdGPH is �0:287, rendering the estimate nearly useless. The
bias in bdLP�GPH , although smaller, is still �0:169.
The standard errors of both bdGPH and bdLWN decrease as m or n is increased, holding every-

thing else �xed. Consistent with theory, the standard error of bdGPH is often smaller than that of
the corresponding bdLWN . For a given n, m, d, the standard error for bdGPH is insensitive to nsr
while the standard error for bdLWN increases as nsr increases. Thus, for large nsr, the standard
error for bdLWN can become dramatically larger than the standard error for bdGPH (except when
m is small). However, this ination in standard error for bdLWN is usually not enough to o�set
the ination in bias for bdGPH , so that bdLWN typically has the smaller RMSE. The box-plots
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illustrate very nicely the trade-o� between bias and variance, clearly showing the superiority ofbdLWN when m is large.
As d is increased, holding everything else �xed, the standard error for bdLWN goes down,

while that for bdGPH remains stable. Furthermore, as d is increased, the bias for bdLWN remains
stable, while negative bias for bdGPH becomes more severe. These �ndings are consistent with
the theoretical results of Theorem 1 for bdLWN and those of Deo and Hurvich (2001) for bdGPH ,
showing strong superiority of bdLWN to bdGPH in terms of RMSE when d is large.
For the LMSV-ARFIMA(1; d; 0) model (Table 3), bdGPH appears less biased than it was when

the autoregressive parameter was absent. This can be explained by noting that the presence of
the autoregressive parameter tends to increase the expected value of bdGPH , and thereby results
in a less negatively biased estimator. Nevertheless, in almost all situations considered in Table
3, bdLWN has a smaller RMSE than bdGPH . This is true despite the strong positive short-range
correlation induced by the autoregressive parameter � = 0:8. Similar results were found for the
other ARMA component models considered.
Overall, our simulation results suggest that bdLWN is preferable to bdGPH since the latter

estimator may su�er from a very strong negative bias due to the noise term in the LMSV model,
while the former estimator su�ers from no such bias.

4.2 Assessment of Approximate Variance Expression for bdLWN

According to the asymptotic theory given in Theorem 1, the variance of bdLWN does not depend
on nsr. Our simulations appear to be at least somewhat at odds with that theory, as seen from
the above discussion. The �rst two rows of each table in Tables 4-6 give the average and median
standard errors across replications obtained using the asymptotic expression (1 + 2d)=(4dm1=2)
evaluated using d̂LWN , while the third row gives the value computed using the true value of
d. The mean values are much larger than the values obtained using the asymptotic expression
with the true value of d, especially when n = 1000 and m is small. We attribute this to a few
outlying values of bdLWN , as can be seen from the box-plots. Although the median value for
the standard errors based on estimated d values is close to that based on the true value of d,
the values typically do not match closely the standard errors observed in the simulations, which
increase as nsr increases (see row seven of each table in Tables 4-6). Thus, for the sample sizes
typically encountered in practice, the asymptotic expression does not seem to provide a reliable
approximation to the actual standard error of bdLWN .
We also explored whether M�1

1;1 provides a better approximation, where the entries of M are

given by (14). Note that M�1
1;1 depends not only on d, but also on b1. A feasible version can be

computed by substituting estimates of the unknown parameters in the expression for M�1
1;1 . The

fourth and �fth rows of each of the tables shown in Tables 4-6 give the mean and median values
of the standard errors computing using (14) with estimated parameter values, while the sixth
row gives the value obtained when the true parameter values are used. Again we see that the
mean value of the standard errors computed using estimated parameter values can be extremely
large, in particular when n = 1000 and also when n is larger but m is small. This is due to large
variations in the estimated nsr values used in the computation of (14). Large sample sizes and
large values of m, i.e. m = [n:7]; [n:8] are needed to accurately estimate nsr. When this is the
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case, both the mean and median values are very close to the values observed in the simulations
(shown in row seven of each table).
We also compared the empirical 90% and 95% coverage obtained for Gaussian-based con�dence

intervals on d constructed using the estimated standard errors based on the asymptotic formula,
the formula of (14) with estimated parameters, and the formula of (14) with known parameters.
For completeness, these coverages were compared to those obtained from the GPH estimator
with variance �2=(24Sww). Tables 7-9 show the results of these comparisons. The values in
parentheses denote the median lengths of the constructed intervals. The LWN-based con�dence
intervals provide close to nominal coverage when d is estimated using a large number of Fourier
frequencies and the interval is constructed using the �nite-sample variance approximation based
on (14) with estimated parameters. The GPH-based con�dence intervals, in contrast, provide
very poor coverage. These results indicate that reliable determination of the degree of persistence
in an LMSV-ARFIMA model can be made using the Local Whittle method.

5 ANALYSIS OF CURRENCY EXCHANGE RATES

We consider a data set previously analyzed in Li, Deo and Hurvich (2001) consisting of daily
returns on the Deutsche Mark / US Dollar exchange rate, from Jan 2 1985 to May 12 1998,
n = 3485. Several of the returns rt were zero. Adjusted log squared returns were constructed,
using the method of Fuller (1996), computing

Xt = log(r2t + �)� �

r2t + �
;

where � = �(n�1
P

r2t ) and � = 0:02. Time series plots of the returns series and volatility
series are shown in Figure 4, while Figure 5 shows the sample autocorrelation function for the
volatility series. The volatilities of DM/$ exchange rates exhibit the apparently changing mean
levels characteristic of long-range dependent processes. The sample ACF values, although small,
are positive even at large lags.
Table 10 presents the bdGPH and bdLWN estimators for various values of m. The bdGPH values

decrease as m increases, a pattern which is consistent with the theoretical fact that the bias inbdGPH becomes strongly negative for large values of m. On the other hand, the bdLWN values
increase with m, reaching 0:556 for m = [n0:8]. For each given value of m, except for m = [n0:5],bdLWN exceeds the corresponding value of bdGPH .
To gain some insight on the proper choice of m for bdLWN in this exchange rate dataset, we

carried out some additional simulations, using a fully parametric LMSV-ARFIMA(1; d; 0) model
�tted to the periodogram of fXtg at all Fourier frequencies using the Whittle likelihood. This
model was found to �t well according to diagnostic tests performed in Li, Deo and Hurvich
(2000). The �tted model has spectral density

fX(x) = fY (x) + fZ(x) =
j2 sin(x=2)j�2bd b�2�

2�j1 � b� exp(�ix)j2
+ b�2Z=(2�) ;

with bd = 0:4086, b� = �0:1556, b�� = 0:8452, and b�Z = 2:4652. The simulations were done by
generating data from this model, using a Gaussian fYtg process and a noise process given by
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Zt = log e2t where et are i:i:d. with a t(3) distribution. The value of the degrees of freedom for
et was chosen so that the standard error for Zt nearly matches the estimated value, b�Z = 2:4652.
Note that the asymptotic results of Theorem 1 are not dependent on a Gaussian assumption for
the multiplicative noise in the LMSV-ARFIMA model.
Table 11 gives the bias and RMSE of bdLWN based on one hundred simulated realizations. It

is seen that the bias is stable with respect to m, and is quite small, while the RMSE decreases
uniformly in m. Overall, m = [n0:8] would appear to be the best choice for this data set, leading
to bdLWN = 0:556. It is notable that this value is so large that it lies outside the range of d
values corresponding to a weakly stationary process. The estimated nsr for this series is 23:89.
Using (14) with d̂ = 0:556 and b̂1 = 1=23:89, we obtain an estimated standard error of 0.095. A
corresponding con�dence interval for d includes values in both the stationary and non-stationary
range.

6 SUMMARY

We have investigated the eÆcacy of a modi�ed Local Whittle method for semiparametrically
estimating the degree of long memory in an LMSV process. Our simulation study has focused
on the weakly stationary case, d < 0:5. The LWN estimator clearly dominates existing methods,
such as GPH and the local polynomial GPH method of Andrews and Guggenberger (2000), in
the presence of noisy observations. Reliable estimates of standard errors can be obtained using a
�nite-sample approximation to the asymptotic variance of the modi�ed Local Whittle estimator.
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Table 1: Bias, standard error (SE), and root-mean-squared error (RMSE) for semi-parametric
estimators of d in the LMSV-ARFIMA(0,0.30,0) model

n = 1000

m = [n:4] m = [n:5] m = [n:6] m = [n
GPH LP �GPH LWN GPH LP �GPH LWN GPH LP �GPH LWN GPH LP �GP

Bias -0.112 -0.069 0.028 -0.131 -0.094 0.033 -0.156 -0.109 0.042 -0.177 -0.134
nsr = 5 SE 0.213 0.598 0.285 0.137 0.320 0.265 0.088 0.194 0.246 0.063 0.126

RMSE 0.241 0.602 0.286 0.190 0.334 0.267 0.179 0.222 0.249 0.188 0.184
Bias -0.165 -0.122 -0.018 -0.183 -0.145 -0.016 -0.205 -0.163 0.018 -0.221 -0.187

nsr = 10 SE 0.214 0.620 0.283 0.137 0.323 0.277 0.088 0.194 0.273 0.064 0.126
RMSE 0.270 0.632 0.284 0.229 0.354 0.278 0.223 0.254 0.274 0.230 0.225

n = 5000

m = [n:4] m = [n:5] m = [n:6] m = [n
GPH LP �GPH LWN GPH LP �GPH LWN GPH LP �GPH LWN GPH LP �GP

Bias -0.067 -0.030 0.050 -0.095 -0.054 0.054 -0.122 -0.080 0.019 -0.154 -0.107
nsr = 5 SE 0.139 0.344 0.235 0.084 0.181 0.199 0.053 0.105 0.151 0.033 0.065

RMSE 0.154 0.345 0.240 0.127 0.189 0.206 0.133 0.132 0.152 0.158 0.125
Bias -0.109 -0.066 0.030 -0.142 -0.093 0.042 -0.170 -0.126 0.018 -0.199 -0.156

nsr = 10 SE 0.140 0.338 0.255 0.084 0.183 0.232 0.052 0.106 0.196 0.033 0.065
RMSE 0.177 0.344 0.257 0.165 0.205 0.236 0.178 0.165 0.197 0.202 0.169

n = 10000

m = [n:4] m = [n:5] m = [n:6] m = [n
GPH LP �GPH LWN GPH LP �GPH LWN GPH LP �GPH LWN GPH LP �GP

Bias -0.050 -0.029 0.066 -0.078 -0.042 0.044 -0.110 -0.066 0.012 -0.145 -0.097
nsr = 5 SE 0.120 0.278 0.204 0.070 0.147 0.163 0.042 0.085 0.117 0.027 0.050

RMSE 0.130 0.279 0.215 0.105 0.153 0.169 0.118 0.108 0.118 0.147 0.109
Bias -0.091 -0.060 0.041 -0.123 -0.081 0.035 -0.158 -0.110 0.013 -0.191 -0.144

nsr = 10 SE 0.121 0.274 0.222 0.071 0.147 0.190 0.043 0.086 0.149 0.027 0.051
RMSE 0.151 0.281 0.226 0.142 0.168 0.193 0.164 0.139 0.150 0.193 0.153



Table 2: Bias, standard error (SE), and root-mean-squared error (RMSE) for semi-parametric
estimators of d in the LMSV-ARFIMA(0,0.40,0) model

n = 1000

m = [n:4] m = [n:5] m = [n:6] m = [n
GPH LP �GPH LWN GPH LP �GPH LWN GPH LP �GPH LWN GPH LP �GP

Bias -0.091 -0.040 0.039 -0.120 -0.068 0.032 -0.160 -0.088 0.023 -0.200 -0.123
nsr = 5 SE 0.218 0.616 0.257 0.140 0.329 0.227 0.090 0.199 0.204 0.064 0.128

RMSE 0.236 0.617 0.260 0.184 0.336 0.229 0.184 0.218 0.205 0.210 0.177
Bias -0.146 -0.078 -0.006 -0.183 -0.114 0.004 -0.225 -0.146 0.006 -0.260 -0.189

nsr = 10 SE 0.220 0.615 0.274 0.140 0.329 0.254 0.089 0.198 0.241 0.064 0.128
RMSE 0.264 0.620 0.274 0.230 0.348 0.254 0.242 0.247 0.241 0.268 0.228

n = 5000

m = [n:4] m = [n:5] m = [n:6] m = [n
GPH LP �GPH LWN GPH LP �GPH LWN GPH LP �GPH LWN GPH LP �GP

Bias -0.041 -0.009 0.051 -0.071 -0.029 0.038 -0.111 -0.052 0.006 -0.163 -0.088
nsr = 5 SE 0.142 0.354 0.187 0.084 0.187 0.149 0.053 0.106 0.111 0.033 0.065

RMSE 0.148 0.354 0.193 0.110 0.190 0.154 0.123 0.118 0.112 0.167 0.109
Bias -0.076 -0.029 0.036 -0.120 -0.058 0.030 -0.169 -0.096 0.004 -0.223 -0.143

nsr = 10 SE 0.141 0.354 0.204 0.083 0.186 0.175 0.053 0.105 0.142 0.033 0.066
RMSE 0.160 0.355 0.207 0.146 0.194 0.177 0.177 0.142 0.142 0.225 0.157

n = 10000

m = [n:4] m = [n:5] m = [n:6] m = [n
GPH LP �GPH LWN GPH LP �GPH LWN GPH LP �GPH LWN GPH LP �GP

Bias -0.021 -0.001 0.057 -0.052 -0.012 0.035 -0.093 -0.037 0.009 -0.148 -0.074
nsr = 5 SE 0.117 0.283 0.155 0.069 0.145 0.123 0.042 0.083 0.088 0.027 0.049

RMSE 0.119 0.283 0.165 0.086 0.145 0.127 0.102 0.091 0.088 0.150 0.089
Bias -0.049 -0.018 0.049 -0.093 -0.037 0.028 -0.147 -0.073 0.008 -0.207 -0.124

nsr = 10 SE 0.119 0.282 0.168 0.070 0.146 0.141 0.042 0.086 0.107 0.027 0.050
RMSE 0.128 0.283 0.175 0.117 0.151 0.144 0.153 0.113 0.107 0.209 0.134



Table 3: Bias, standard error (SE), and root-mean-squared error (RMSE) for semi-parametric
estimators of d in the LMSV-ARFIMA(1,0.40,0) model with � = 0:8

n = 1000

m = [n:4] m = [n:5] m = [n:6] m = [n
GPH LP �GPH LWN GPH LP �GPH LWN GPH LP �GPH LWN GPH LP �GP

Bias -0.068 -0.049 0.043 -0.085 -0.057 0.036 -0.114 -0.071 0.023 -0.173 -0.076
nsr = 5 SE 0.228 0.640 0.251 0.143 0.334 0.208 0.097 0.210 0.177 0.066 0.135

RMSE 0.238 0.642 0.255 0.166 0.339 0.211 0.149 0.222 0.179 0.185 0.155
Bias -0.132 -0.087 0.004 -0.159 -0.111 0.009 -0.195 -0.135 -0.003 -0.241 -0.158

nsr = 10 SE 0.227 0.623 0.267 0.143 0.345 0.240 0.093 0.200 0.221 0.065 0.132
RMSE 0.263 0.629 0.267 0.213 0.362 0.240 0.216 0.241 0.221 0.249 0.206

n = 5000

m = [n:4] m = [n:5] m = [n:6] m = [n
GPH LP �GPH LWN GPH LP �GPH LWN GPH LP �GPH LWN GPH LP �GP

Bias -0.040 0.001 0.059 -0.060 -0.025 0.039 -0.079 -0.049 -0.007 -0.122 -0.064
nsr = 5 SE 0.141 0.351 0.192 0.086 0.188 0.146 0.053 0.107 0.098 0.037 0.068

RMSE 0.147 0.351 0.201 0.105 0.190 0.151 0.095 0.118 0.098 0.127 0.093
Bias -0.066 -0.025 0.040 -0.107 -0.042 0.029 -0.148 -0.085 -0.008 -0.200 -0.124

nsr = 10 SE 0.141 0.322 0.202 0.085 0.186 0.168 0.054 0.108 0.128 0.036 0.067
RMSE 0.156 0.323 0.206 0.137 0.191 0.171 0.158 0.138 0.128 0.203 0.141

n = 10000

m = [n:4] m = [n:5] m = [n:6] m = [n
GPH LP �GPH LWN GPH LP �GPH LWN GPH LP �GPH LWN GPH LP �GP

Bias -0.027 0.001 0.056 -0.052 -0.020 0.030 -0.071 -0.044 -0.009 -0.106 -0.061
nsr = 5 SE 0.119 0.279 0.159 0.069 0.149 0.118 0.042 0.082 0.076 0.027 0.052

RMSE 0.122 0.279 0.169 0.086 0.150 0.122 0.083 0.093 0.076 0.109 0.080
Bias -0.049 -0.005 0.042 -0.088 -0.034 0.023 -0.133 -0.073 -0.007 -0.184 -0.115

nsr = 10 SE 0.122 0.271 0.172 0.071 0.147 0.134 0.043 0.086 0.102 0.029 0.051
RMSE 0.131 0.271 0.177 0.113 0.150 0.136 0.140 0.113 0.103 0.186 0.126



Table 4: Comparison of simulation standard errors for LWN estimator of LMSV-
ARFIMA(0,0.30,0) to standard errors obtained using the simple asymptotic formula and the
Hessian formula with both estimated and true parameter values�

n = 1000

m = [n:4] m = [n:5] m = [n:6] m = [n:7] m = [n:8]
mean 1.897 0.828 0.341 0.200 0.125

Asymptotic med 0.368 0.264 0.188 0.128 0.089
true 0.344 0.239 0.168 0.119 0.084

nsr = 5 mean 614.705 87.342 99.937 31.131 10.413
Hessian med 0.963 0.563 0.389 0.296 0.227

true 1.169 0.666 0.427 0.298 0.219
Simulation 0.285 0.265 0.246 0.219 0.191

mean 2.363 1.289 0.595 0.338 0.218
Asymptotic med 0.469 0.340 0.220 0.142 0.094

true 0.344 0.239 0.168 0.119 0.084
nsr = 10 mean 1003.785 251.093 318.519 140.068 76.771

Hessian med 1.223 0.744 0.484 0.377 0.305
true 1.553 0.905 0.593 0.423 0.316

Simulation 0.283 0.277 0.273 0.259 0.238

n = 5000

m = [n:4] m = [n:5] m = [n:6] m = [n:7] m = [n:8]
mean 0.966 0.353 0.196 0.134 0.091

Asymptotic med 0.337 0.238 0.171 0.119 0.084
true 0.344 0.239 0.168 0.119 0.084

nsr = 5 mean 22.634 0.534 0.190 0.131 0.093
Hessian med 0.459 0.274 0.184 0.128 0.091

true 0.521 0.295 0.185 0.124 0.089
Simulation 0.235 0.199 0.151 0.116 0.091

mean 1.259 0.490 0.249 0.152 0.101
Asymptotic med 0.372 0.257 0.175 0.121 0.085

true 0.344 0.239 0.168 0.119 0.084
nsr = 10 mean 143.806 10.770 6.108 0.168 0.128

Hessian med 0.519 0.312 0.219 0.165 0.124
true 0.621 0.362 0.233 0.162 0.119

Simulation 0.255 0.232 0.196 0.161 0.125

n = 10000

m = [n:4] m = [n:5] m = [n:6] m = [n:7] m = [n:8]
mean 0.621 0.267 0.182 0.127 0.087

Asymptotic med 0.324 0.239 0.169 0.119 0.084
true 0.344 0.239 0.168 0.119 0.084

nsr = 5 mean 9.447 0.207 0.137 0.092 0.064
Hessian med 0.345 0.210 0.135 0.090 0.064

true 0.400 0.219 0.135 0.089 0.063
Simulation 0.204 0.163 0.117 0.085 0.062

mean 0.856 0.332 0.200 0.135 0.090
Asymptotic med 0.345 0.248 0.168 0.120 0.084

true 0.344 0.239 0.168 0.119 0.084
nsr = 10 mean 17.546 0.405 0.161 0.118 0.086

Hessian med 0.378 0.239 0.163 0.115 0.084
true 0.460 0.260 0.165 0.113 0.083

Simulation 0.222 0.190 0.149 0.113 0.083

�Asymptotic: standard errors computed using the asymptotic formula of Theorem 1.
Hessian: Standard errors computed using the �nite-sample approximation to the variance-covariance matrix of d̂ and b̂1.
Simulation: Standard errors obtained from simulations.



Table 5: Comparison of simulation standard errors for LWN estimator of LMSV-
ARFIMA(0,0.40,0) to standard errors obtained using the simple asymptotic formula and the
Hessian formula with both estimated and true parameter values�

n = 1000

m = [n:4] m = [n:5] m = [n:6] m = [n:7] m = [n:8]
mean 0.920 0.378 0.178 0.117 0.080

Asymptotic med 0.275 0.201 0.146 0.102 0.072
true 0.290 0.202 0.142 0.101 0.071

nsr = 5 mean 151.019 5.493 0.433 0.223 0.169
Hessian med 0.619 0.414 0.288 0.212 0.162

true 0.757 0.439 0.288 0.207 0.157
Simulation 0.257 0.227 0.204 0.179 0.153

mean 1.312 0.529 0.248 0.142 0.098
Asymptotic med 0.302 0.215 0.151 0.103 0.072

true 0.290 0.202 0.142 0.101 0.071
nsr = 10 mean 65.478 11.211 1.912 0.367 0.253

Hessian med 0.721 0.459 0.334 0.267 0.218
true 0.905 0.541 0.366 0.271 0.210

Simulation 0.274 0.254 0.241 0.216 0.197

n = 5000

m = [n:4] m = [n:5] m = [n:6] m = [n:7] m = [n:8]
mean 0.406 0.210 0.147 0.104 0.072

Asymptotic med 0.276 0.199 0.143 0.100 0.070
true 0.290 0.202 0.142 0.101 0.071

nsr = 5 mean 1.073 0.197 0.134 0.092 0.067
Hessian med 0.333 0.204 0.132 0.091 0.066

true 0.365 0.208 0.131 0.090 0.066
Simulation 0.187 0.149 0.111 0.091 0.068

mean 0.489 0.229 0.153 0.107 0.073
Asymptotic med 0.283 0.203 0.143 0.101 0.070

true 0.290 0.202 0.142 0.101 0.071
nsr = 10 mean 1.498 0.213 0.151 0.113 0.085

Hessian med 0.350 0.220 0.153 0.112 0.084
true 0.398 0.234 0.153 0.109 0.083

Simulation 0.204 0.175 0.142 0.113 0.087

n = 10000

m = [n:4] m = [n:5] m = [n:6] m = [n:7] m = [n:8]
mean 0.321 0.201 0.144 0.102 0.071

Asymptotic med 0.276 0.197 0.141 0.100 0.070
true 0.290 0.202 0.142 0.101 0.071

nsr = 5 mean 0.258 0.148 0.099 0.066 0.047
Hessian med 0.266 0.156 0.098 0.066 0.047

true 0.289 0.158 0.098 0.065 0.047
Simulation 0.155 0.123 0.088 0.065 0.047

mean 0.327 0.207 0.146 0.103 0.071
Asymptotic med 0.280 0.202 0.141 0.100 0.070

true 0.290 0.202 0.142 0.101 0.071
nsr = 10 mean 0.273 0.156 0.111 0.079 0.059

Hessian med 0.274 0.169 0.112 0.078 0.059
true 0.307 0.174 0.111 0.078 0.058

Simulation 0.168 0.141 0.107 0.079 0.059

�Asymptotic: standard errors computed using the asymptotic formula of Theorem 1.
Hessian: Standard errors computed using the �nite-sample approximation to the variance-covariance matrix of d̂ and b̂1.
Simulation: Standard errors obtained from simulations.



Table 6: Comparison of simulation standard errors for LWN estimator of LMSV-
ARFIMA(1,0.40,0) with � = 0:8 to standard errors obtained using the asymptotic formula
and the Hessian formula with both estimated and true parameter values�

n = 1000

m = [n:4] m = [n:5] m = [n:6] m = [n:7] m = [n:8]
mean 0.906 0.322 0.162 0.107 0.069

Asymptotic med 0.275 0.199 0.142 0.097 0.064
true 0.290 0.202 0.142 0.101 0.071

nsr = 5 mean 141.677 19.484 10.622 0.202 0.165
Hessian med 0.605 0.384 0.257 0.192 0.156

true 0.757 0.439 0.288 0.207 0.157
Simulation 0.251 0.208 0.177 0.166 0.148

mean 1.171 0.483 0.213 0.131 0.084
Asymptotic med 0.295 0.211 0.153 0.102 0.067

true 0.290 0.202 0.142 0.101 0.071
nsr = 10 mean 358.211 29.378 11.557 14.687 0.231

Hessian med 0.684 0.440 0.316 0.248 0.212
true 0.905 0.541 0.366 0.271 0.210

Simulation 0.267 0.240 0.221 0.206 0.190

n = 5000

m = [n:4] m = [n:5] m = [n:6] m = [n:7] m = [n:8]
mean 0.451 0.205 0.148 0.104 0.067

Asymptotic med 0.274 0.198 0.147 0.101 0.067
true 0.290 0.202 0.142 0.101 0.071

nsr = 5 mean 0.601 0.193 0.123 0.081 0.063
Hessian med 0.323 0.200 0.122 0.081 0.062

true 0.365 0.208 0.131 0.090 0.066
Simulation 0.192 0.146 0.098 0.078 0.062

mean 0.509 0.227 0.153 0.107 0.070
Asymptotic med 0.282 0.202 0.146 0.102 0.068

true 0.290 0.202 0.142 0.101 0.071
nsr = 10 mean 0.949 0.209 0.147 0.103 0.082

Hessian med 0.342 0.216 0.145 0.102 0.080
true 0.398 0.234 0.153 0.109 0.083

Simulation 0.202 0.168 0.128 0.103 0.079

n = 10000

m = [n:4] m = [n:5] m = [n:6] m = [n:7] m = [n:8]
mean 0.339 0.202 0.147 0.105 0.068

Asymptotic med 0.279 0.200 0.145 0.103 0.068
true 0.290 0.202 0.142 0.101 0.071

nsr = 5 mean 2.026 0.149 0.094 0.059 0.044
Hessian med 0.265 0.155 0.093 0.059 0.044

true 0.289 0.158 0.098 0.065 0.047
Simulation 0.159 0.118 0.076 0.059 0.044

mean 0.419 0.212 0.149 0.105 0.070
Asymptotic med 0.279 0.201 0.144 0.103 0.069

true 0.290 0.202 0.142 0.101 0.071
nsr = 10 mean 0.557 0.158 0.108 0.073 0.056

Hessian med 0.272 0.166 0.107 0.072 0.056
true 0.307 0.174 0.111 0.078 0.058

Simulation 0.172 0.134 0.102 0.074 0.056

�Asymptotic: standard errors computed using the asymptotic formula of Theorem 1.
Hessian: Standard errors computed using the �nite-sample approximation to the variance-covariance matrix of d̂ and b̂1.
Simulation: Standard errors obtained from simulations.



Table 7: Coverage results for GPH and LWN estimators of LMSV-ARFIMA(0,0.30,0) model
based on di�erent standard error calculation methods. Values in parentheses denote median
lengths of the computed con�dence intervals.�

n = 1000

m = [n:4] m = [n:5] m = [n:6] m = [n:7] m = [n:8]
GPH 90% 52.700 (0.721) 58.100 (0.452) 54.100 (0.297) 45.200 (0.203) 36.200 (0.142)

95% 58.200 (0.863) 65.000 (0.540) 63.600 (0.355) 54.800 (0.243) 45.200 (0.170)
LWN-A 90% 76.100 (1.211) 75.100 (0.867) 71.500 (0.618) 73.300 (0.421) 73.600 (0.292)

95% 77.300 (1.443) 76.600 (1.034) 74.000 (0.737) 76.400 (0.502) 77.000 (0.348)
nsr = 5 LWN-H 90% 78.100 (3.169) 78.100 (1.853) 82.300 (1.279) 89.900 (0.974) 94.400 (0.747)

95% 79.000 (3.776) 79.500 (2.207) 82.500 (1.524) 90.100 (1.161) 95.000 (0.891)
LWN-IH 90% 00.000 (3.845) 100.000 (2.190) 100.000 (1.404) 100.000 (0.981) 93.300 (0.719)

95% 00.000 (4.581) 100.000 (2.609) 100.000 (1.673) 100.000 (1.169) 94.300 (0.857)

GPH 90% 46.200 (0.297) 48.200 (0.297) 38.400 (0.297) 32.900 (0.297) 27.800 (0.297)
95% 51.300 (0.354) 55.100 (0.354) 47.000 (0.354) 41.400 (0.354) 36.200 (0.354)

LWN-A 90% 79.500 (1.542) 77.100 (1.118) 70.600 (0.725) 69.900 (0.466) 69.500 (0.311)
95% 80.800 (1.838) 77.900 (1.332) 72.900 (0.864) 71.900 (0.555) 71.800 (0.370)

nsr = 10 LWN-H 90% 80.800 (4.022) 78.500 (2.448) 77.400 (1.591) 82.800 (1.241) 86.700 (1.003)
95% 82.300 (4.792) 80.300 (2.917) 78.200 (1.895) 83.300 (1.478) 87.100 (1.195)

LWN-IH 90% 00.000 (5.111) 100.000 (2.978) 100.000 (1.951) 100.000 (1.390) 100.000 (1.038)
95% 00.000 (6.089) 100.000 (3.548) 100.000 (2.325) 100.000 (1.657) 100.000 (1.237)

n = 5000

m = [n:4] m = [n:5] m = [n:6] m = [n:7] m = [n:8]
GPH 90% 68.900 (0.721) 73.000 (0.452) 63.800 (0.297) 49.500 (0.203) 41.500 (0.142)

95% 74.400 (0.859) 78.400 (0.538) 71.700 (0.354) 58.500 (0.242) 47.700 (0.170)
LWN-A 90% 83.300 (1.109) 81.900 (0.784) 87.800 (0.563) 91.000 (0.391) 91.600 (0.275)

95% 86.600 (1.322) 85.600 (0.935) 90.100 (0.671) 93.900 (0.466) 94.300 (0.328)
nsr = 5 LWN-H 90% 73.400 (1.509) 77.900 (0.900) 92.100 (0.607) 96.300 (0.421) 91.200 (0.299)

95% 73.800 (1.798) 78.000 (1.072) 92.400 (0.723) 98.300 (0.501) 98.700 (0.357)
LWN-IH 90% 100.000 (1.714) 100.000 (0.972) 94.900 (0.607) 94.800 (0.409) 88.400 (0.293)

95% 100.000 (2.043) 100.000 (1.158) 97.000 (0.723) 97.100 (0.488) 93.700 (0.349)

GPH 90% 62.300 (0.297) 58.900 (0.297) 46.700 (0.297) 37.200 (0.297) 30.400 (0.297)
95% 68.500 (0.354) 65.800 (0.354) 54.900 (0.354) 45.300 (0.354) 39.800 (0.354)

LWN-A 90% 80.900 (1.223) 78.900 (0.845) 81.300 (0.575) 83.300 (0.397) 83.400 (0.278)
95% 82.700 (1.457) 80.800 (1.006) 84.800 (0.685) 85.700 (0.473) 86.800 (0.331)

nsr = 10 LWN-H 90% 72.500 (1.709) 72.700 (1.026) 81.900 (0.721) 91.100 (0.542) 93.900 (0.409)
95% 72.900 (2.036) 73.500 (1.222) 82.300 (0.859) 91.500 (0.646) 97.100 (0.488)

LWN-IH 90% 100.000 (2.042) 100.000 (1.192) 92.700 (0.768) 93.300 (0.534) 86.600 (0.393)
95% 100.000 (2.433) 100.000 (1.421) 100.000 (0.915) 95.800 (0.636) 95.000 (0.468)

n = 10000

m = [n:4] m = [n:5] m = [n:6] m = [n:7] m = [n:8]
GPH 90% 74.800 (0.721) 79.000 (0.452) 68.400 (0.297) 53.500 (0.203) 40.400 (0.142)

95% 80.000 (0.863) 84.000 (0.540) 77.200 (0.355) 62.200 (0.243) 49.000 (0.170)
LWN-A 90% 87.100 (1.065) 88.700 (0.788) 94.400 (0.557) 96.400 (0.391) 97.300 (0.275)

95% 89.800 (1.268) 91.800 (0.939) 95.900 (0.664) 98.200 (0.465) 98.900 (0.328)
nsr = 5 LWN-H 90% 73.600 (1.134) 82.400 (0.691) 95.200 (0.445) 96.200 (0.297) 91.400 (0.209)

95% 73.900 (1.351) 82.500 (0.824) 96.300 (0.530) 98.700 (0.354) 95.800 (0.249)
LWN-IH 90% 100.000 (1.317) 93.700 (0.720) 95.100 (0.443) 90.500 (0.294) 90.400 (0.207)

95% 100.000 (1.570) 96.500 (0.858) 96.900 (0.528) 96.600 (0.350) 94.800 (0.246)

GPH 90% 67.200 (0.297) 64.500 (0.297) 49.900 (0.297) 39.200 (0.297) 32.900 (0.297)
95% 73.300 (0.354) 71.700 (0.354) 59.800 (0.354) 46.000 (0.354) 40.000 (0.354)

LWN-A 90% 86.400 (1.136) 85.300 (0.817) 89.300 (0.553) 91.600 (0.395) 91.400 (0.277)
95% 88.800 (1.354) 88.500 (0.974) 92.500 (0.659) 93.800 (0.471) 94.800 (0.330)

nsr = 10 LWN-H 90% 71.800 (1.244) 76.600 (0.787) 87.300 (0.535) 95.400 (0.379) 92.800 (0.278)
95% 72.500 (1.482) 76.800 (0.938) 87.500 (0.638) 96.900 (0.452) 96.800 (0.331)

LWN-IH 90% 100.000 (1.513) 93.800 (0.854) 94.100 (0.543) 88.900 (0.373) 89.900 (0.271)
95% 100.000 (1.802) 100.000 (1.017) 96.500 (0.647) 96.200 (0.445) 94.300 (0.323)

� GPH denotes empirical coverage percentages based on GPH estimates of d with standard errors computed using the �nite-
sample approximation to the theoretical GPH standard error. LWN-H denotes empirical coverage percentages based on
LWN estimates of d with standard errors computed using the �nite-sample Hessian-based approximation to the theoretical
standard errors with estimated parameters. LWN-IH denotes empirical coverage percentages based on LWN estimates of d
with standard errors computed using the �nite-sample Hessian-based approximation to the theoretical standard errors with
known values of the parameters.



Table 8: Coverage results for GPH and LWN estimators of LMSV-ARFIMA(0,0.40,0) model
based on di�erent standard error calculation methods. Values in parentheses denote median
lengths of the computed con�dence intervals.�

n = 1000

m = [n:4] m = [n:5] m = [n:6] m = [n:7] m = [n:8]
GPH 90% 53.600(0.721) 58.800 (0.452) 53.300 (0.297) 37.700 (0.203) 27.300 (0.142)

95% 59.700(0.863) 66.400 (0.540) 61.200 (0.355) 46.500 (0.243) 35.000 (0.170)
LWN-A 90% 100.000(0.906) 74.600 (0.662) 74.800 (0.480) 75.800 (0.336) 60.500 (0.236)

95% 100.000(1.080) 77.500 (0.789) 77.600 (0.571) 79.200 (0.401) 79.600 (0.281)
nsr = 5 LWN-H 90% 77.500(2.037) 83.900 (1.360) 91.600 (0.946) 96.500 (0.697) 97.800 (0.532)

95% 78.500(2.427) 84.400 (1.621) 91.600 (1.127) 97.300 (0.831) 99.000 (0.634)
LWN-IH 90% 100.000(2.490) 100.000 (1.444) 100.000 (0.948) 93.200 (0.681) 90.000 (0.516)

95% 100.000(2.966) 100.000 (1.721) 100.000 (1.129) 100.000 (0.811) 95.400 (0.615)

GPH 90% 50.900(0.297) 48.000 (0.297) 34.100 (0.297) 24.600 (0.297) 19.800 (0.297)
95% 55.700(0.354) 55.500 (0.354) 41.400 (0.354) 32.100 (0.354) 25.400 (0.354)

LWN-A 90% 100.000(0.994) 72.900 (0.706) 70.300 (0.496) 72.000 (0.340) 54.700 (0.237)
95% 100.000(1.184) 75.500 (0.841) 72.800 (0.591) 74.000 (0.405) 73.700 (0.283)

nsr = 10 LWN-H 90% 76.800(2.373) 78.100 (1.509) 80.400 (1.099) 89.600 (0.878) 94.400 (0.718)
95% 78.500(2.828) 79.100 (1.797) 80.600 (1.309) 90.000 (1.046) 94.600 (0.856)

LWN-IH 90% 100.000(2.977) 100.000 (1.781) 100.000 (1.205) 100.000 (0.890) 89.500 (0.692)
95% 100.000(3.547) 100.000 (2.123) 100.000 (1.436) 100.000 (1.061) 100.000 (0.825)

n = 5000

m = [n:4] m = [n:5] m = [n:6] m = [n:7] m = [n:8]
GPH 90% 71.000 (0.721) 79.200 (0.452) 67.500 (0.297) 46.400 (0.203) 32.000 (0.142)

95% 75.600 (0.859) 84.800 (0.538) 76.400 (0.354) 53.900 (0.242) 41.300 (0.170)
LWN-A 90% 100.000 (0.908) 88.800 (0.656) 94.400 (0.470) 94.700 (0.330) 93.700 (0.232)

95% 100.000 (1.082) 91.500 (0.781) 96.700 (0.560) 96.500 (0.394) 96.200 (0.276)
nsr = 5 LWN-H 90% 76.800 (1.096) 86.700 (0.672) 96.900 (0.434) 90.300 (0.299) 89.000 (0.218)

95% 77.200 (1.306) 86.800 (0.800) 98.200 (0.517) 97.400 (0.356) 94.600 (0.260)
LWN-IH 90% 100.000 (1.201) 93.900 (0.685) 95.900 (0.431) 88.600 (0.296) 88.900 (0.217)

95% 100.000 (1.431) 100.000 (0.816) 97.800 (0.514) 94.000 (0.352) 93.300 (0.258)

GPH 90% 67.100 (0.297) 65.300 (0.297) 46.700 (0.297) 30.000 (0.297) 20.300 (0.297)
95% 73.000 (0.354) 72.500 (0.354) 55.000 (0.354) 41.200 (0.354) 28.900 (0.354)

LWN-A 90% 100.000 (0.930) 85.300 (0.669) 88.600 (0.470) 90.700 (0.331) 85.500 (0.232)
95% 100.000 (1.109) 87.800 (0.797) 92.400 (0.560) 93.500 (0.394) 92.500 (0.276)

nsr = 10 LWN-H 90% 72.900 (1.150) 78.500 (0.725) 92.700 (0.504) 90.600 (0.368) 90.400 (0.278)
95% 73.600 (1.370) 78.600 (0.864) 92.800 (0.601) 96.300 (0.438) 95.300 (0.331)

LWN-IH 90% 100.000 (1.310) 99.700 (0.771) 93.900 (0.504) 88.300 (0.359) 88.800 (0.273)
95% 100.000 (1.561) 100.000 (0.919) 96.900 (0.601) 93.100 (0.428) 93.100 (0.325)

n = 10000

m = [n:4] m = [n:5] m = [n:6] m = [n:7] m = [n:8]
GPH 90% 76.700 (0.721) 85.500 (0.452) 76.600 (0.297) 52.000 (0.203) 36.900 (0.142)

95% 81.300 (0.863) 89.600 (0.540) 83.500 (0.355) 60.500 (0.243) 40.600 (0.170)
LWN-A 90% 100.000 (0.909) 94.100 (0.649) 97.300 (0.464) 98.600 (0.328) 98.900 (0.232)

95% 100.000 (1.083) 96.400 (0.774) 98.800 (0.553) 99.100 (0.391) 99.400 (0.276)
nsr = 5 LWN-H 90% 75.900 (0.877) 88.800 (0.514) 95.900 (0.322) 90.000 (0.216) 89.500 (0.155)

95% 76.200 (1.044) 89.000 (0.613) 97.600 (0.384) 95.500 (0.257) 95.800 (0.184)
LWN-IH 90% 100.000 (0.950) 94.200 (0.521) 94.700 (0.321) 89.600 (0.215) 89.700 (0.154)

95% 100.000 (1.132) 96.600 (0.620) 97.300 (0.382) 94.900 (0.256) 94.700 (0.184)

GPH 90% 74.700 (0.297) 75.600 (0.297) 53.000 (0.297) 35.400 (0.297) 20.200 (0.297)
95% 80.400 (0.354) 81.300 (0.354) 63.100 (0.354) 42.000 (0.354) 33.300 (0.354)

LWN-A 90% 100.000 (0.922) 91.600 (0.664) 95.100 (0.463) 96.000 (0.329) 96.000 (0.232)
95% 100.000 (1.099) 94.200 (0.791) 96.800 (0.552) 98.100 (0.393) 98.100 (0.276)

nsr = 10 LWN-H 90% 73.600 (0.903) 83.900 (0.555) 94.800 (0.367) 90.400 (0.257) 91.400 (0.193)
95% 73.800 (1.076) 83.900 (0.661) 95.900 (0.437) 95.800 (0.306) 94.700 (0.230)

LWN-IH 90% 100.000 (1.012) 93.500 (0.571) 92.300 (0.366) 89.200 (0.256) 90.200 (0.191)
95% 100.000 (1.205) 95.900 (0.681) 95.800 (0.436) 94.700 (0.305) 94.600 (0.228)

� GPH denotes empirical coverage percentages based on GPH estimates of d with standard errors computed using the �nite-
sample approximation to the theoretical GPH standard error. LWN-H denotes empirical coverage percentages based on
LWN estimates of d with standard errors computed using the �nite-sample Hessian-based approximation to the theoretical
standard errors with estimated parameters. LWN-IH denotes empirical coverage percentages based on LWN estimates of d
with standard errors computed using the �nite-sample Hessian-based approximation to the theoretical standard errors with
known values of the parameters.



Table 9: Coverage results for GPH and LWN estimators of LMSV-ARFIMA(1,0.40,0) model
with � = 0:8 based on di�erent standard error calculation methods. Values in parentheses
denote median lengths of the computed con�dence intervals.�

n = 1000

m = [n:4] m = [n:5] m = [n:6] m = [n:7] m = [n:8]
GPH 90% 55.200 (0.721) 66.200 (0.452) 66.100 (0.297) 46.700 (0.203) 28.800 (0.142)

95% 60.900 (0.863) 73.000 (0.540) 73.000 (0.355) 55.100 (0.243) 37.800 (0.170)
LWN-A 90% 100.000 (0.904) 78.200 (0.656) 79.600 (0.466) 72.700 (0.318) 50.700 (0.212)

95% 100.000 (1.077) 80.900 (0.781) 82.800 (0.556) 76.500 (0.379) 62.000 (0.252)
nsr = 5 LWN-H 90% 79.400 (1.989) 89.600 (1.264) 97.500 (0.845) 98.300 (0.632) 93.400 (0.515)

95% 79.900 (2.370) 90.000 (1.506) 97.500 (1.007) 99.300 (0.753) 97.800 (0.613)
LWN-IH 90% 100.000 (2.490) 100.000 (1.444) 100.000 (0.948) 94.100 (0.681) 86.900 (0.516)

95% 100.000 (2.966) 100.000 (1.721) 100.000 (1.129) 100.000 (0.811) 91.600 (0.615)

GPH 90% 50.700 (0.297) 54.200 (0.297) 41.800 (0.297) 29.100 (0.297) 21.100 (0.297)
95% 57.000 (0.354) 60.300 (0.354) 50.400 (0.354) 37.100 (0.354) 25.400 (0.354)

LWN-A 90% 100.000 (0.969) 74.900 (0.695) 75.700 (0.503) 71.600 (0.334) 51.400 (0.220)
95% 100.000 (1.155) 77.300 (0.828) 78.000 (0.600) 73.800 (0.398) 64.000 (0.263)

nsr = 10 LWN-H 90% 77.200 (2.252) 80.800 (1.449) 87.500 (1.040) 93.300 (0.815) 95.100 (0.698)
95% 78.000 (2.683) 81.600 (1.726) 87.800 (1.239) 93.400 (0.971) 95.700 (0.832)

LWN-IH 90% 100.000 (2.977) 100.000 (1.781) 100.000 (1.205) 100.000 (0.890) 89.100 (0.692)
95% 100.000 (3.547) 100.000 (2.123) 100.000 (1.436) 100.000 (1.061) 100.000 (0.825)

n = 5000

m = [n:4] m = [n:5] m = [n:6] m = [n:7] m = [n:8]
GPH 90% 68.600 (0.721) 79.600 (0.452) 80.500 (0.297) 62.700 (0.203) 37.900 (0.142)

95% 76.800 (0.859) 85.100 (0.538) 86.400 (0.354) 72.000 (0.242) 43.500 (0.170)
LWN-A 90% 100.000 (0.903) 88.800 (0.651) 95.700 (0.484) 96.900 (0.333) 82.200 (0.219)

95% 100.000 (1.076) 92.300 (0.775) 97.500 (0.577) 98.400 (0.397) 89.700 (0.261)
nsr = 5 LWN-H 90% 75.200 (1.061) 87.400 (0.658) 97.000 (0.402) 92.400 (0.265) 81.500 (0.205)

95% 75.600 (1.264) 87.700 (0.784) 98.600 (0.478) 98.500 (0.316) 89.700 (0.245)
LWN-IH 90% 100.000 (1.201) 94.500 (0.685) 96.800 (0.431) 94.100 (0.296) 83.500 (0.217)

95% 100.000 (1.431) 100.000 (0.816) 98.700 (0.514) 97.900 (0.352) 90.700 (0.258)

GPH 90% 68.000 (0.297) 67.500 (0.297) 53.700 (0.297) 37.400 (0.297) 20.900 (0.297)
95% 73.100 (0.354) 73.800 (0.354) 61.200 (0.354) 43.800 (0.354) 31.500 (0.354)

LWN-A 90% 100.000 (0.928) 87.800 (0.665) 92.200 (0.479) 92.700 (0.335) 80.300 (0.224)
95% 100.000 (1.106) 90.600 (0.793) 95.200 (0.571) 95.300 (0.399) 87.100 (0.267)

nsr = 10 LWN-H 90% 74.000 (1.125) 81.000 (0.710) 96.100 (0.478) 89.600 (0.335) 90.300 (0.265)
95% 74.200 (1.340) 81.000 (0.846) 96.900 (0.570) 96.600 (0.399) 96.500 (0.316)

LWN-IH 90% 100.000 (1.310) 99.700 (0.771) 96.900 (0.504) 89.800 (0.359) 89.200 (0.273)
95% 100.000 (1.561) 100.000 (0.919) 98.700 (0.601) 96.400 (0.428) 95.700 (0.325)

n = 10000

m = [n:4] m = [n:5] m = [n:6] m = [n:7] m = [n:8]
GPH 90% 74.600 (0.721) 85.600 (0.452) 85.600 (0.297) 70.200 (0.203) 40.100 (0.142)

95% 80.000 (0.863) 89.600 (0.540) 92.000 (0.355) 79.300 (0.243) 47.900 (0.170)
LWN-A 90% 100.000 (0.918) 95.900 (0.657) 99.000 (0.478) 99.700 (0.339) 94.700 (0.222)

95% 100.000 (1.093) 97.100 (0.783) 99.500 (0.570) 99.900 (0.404) 97.900 (0.265)
nsr = 5 LWN-H 90% 74.900 (0.872) 89.800 (0.509) 97.500 (0.305) 87.500 (0.194) 79.700 (0.144)

95% 75.000 (1.038) 90.400 (0.606) 98.900 (0.364) 95.100 (0.231) 87.300 (0.172)
LWN-IH 90% 100.000 (0.950) 95.900 (0.521) 97.400 (0.321) 91.600 (0.215) 82.700 (0.154)

95% 100.000 (1.132) 97.400 (0.620) 99.000 (0.382) 97.200 (0.256) 89.500 (0.184)

GPH 90% 74.100 (0.297) 74.700 (0.297) 57.300 (0.297) 40.600 (0.297) 21.300 (0.297)
95% 79.900 (0.354) 80.400 (0.354) 67.300 (0.354) 48.000 (0.354) 36.600 (0.354)

LWN-A 90% 100.000 (0.919) 93.300 (0.662) 96.700 (0.475) 98.900 (0.339) 93.500 (0.226)
95% 100.000 (1.095) 96.300 (0.789) 98.500 (0.566) 99.600 (0.403) 96.700 (0.270)

nsr = 10 LWN-H 90% 73.900 (0.896) 86.200 (0.545) 96.200 (0.352) 89.400 (0.237) 89.000 (0.183)
95% 74.800 (1.068) 86.300 (0.649) 98.100 (0.419) 94.700 (0.283) 94.800 (0.218)

LWN-IH 90% 100.000 (1.012) 95.000 (0.571) 94.200 (0.366) 91.200 (0.256) 89.700 (0.191)
95% 100.000 (1.205) 97.400 (0.681) 98.100 (0.436) 95.400 (0.305) 95.200 (0.228)

� GPH denotes empirical coverage percentages based on GPH estimates of d with standard errors computed using the �nite-
sample approximation to the theoretical GPH standard error. LWN-H denotes empirical coverage percentages based on
LWN estimates of d with standard errors computed using the �nite-sample Hessian-based approximation to the theoretical
standard errors with estimated parameters. LWN-IH denotes empirical coverage percentages based on LWN estimates of d
with standard errors computed using the �nite-sample Hessian-based approximation to the theoretical standard errors with
known values of the parameters.



Table 10: GPH and LWN estimators for Deutschemark/Dollar exchange rate, n = 3485.

m = [n0:5] m = [n0:6] m = [n0:7] m = [n0:8]bdLWN 0.365 0.378 0.387 0.556bdGPH 0.370 0.355 0.274 0.135

Table 11: Bias and RMSE of d̂LWN in 100 simulated replications of LMSV-ARFIMA(1; d; 0)
process �tted to Deutschemark/Dollar exchange rate

m = [n0:5] m = [n0:6] m = [n0:7] m = [n0:8]

Bias 0.012 0.019 0.011 0.011

RMSE 0.144 0.145 0.134 0.100

m=[n .4] m=[n .5] m=[n .6] m=[n .7] m=[n .8]
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Figure 1: Box-plots of d̂GPH , d̂LP�GPH , and d̂LWN for the LMSV-ARFIMA(0; 0:3; 0) model
with nsr = 5. Estimates were obtained using m = [nx] Fourier frequencies, where x =
0:4; 0:5; 0:6; 0:7; 0:8. The solid line indicates the true value of d = 0:3.
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Figure 2: Box-plots of d̂GPH , d̂LP�GPH , and d̂LWN for the LMSV-ARFIMA(0; 0:4; 0) model
with nsr = 5. Estimates were obtained using m = [nx] Fourier frequencies, where x =
0:4; 0:5; 0:6; 0:7; 0:8. The solid line indicates the true value of d = 0:4.
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Figure 3: Box-plots of d̂GPH , d̂LP�GPH , and d̂LWN for the LMSV-ARFIMA(1; 0:4; 0) model
with � = 0:8 and nsr = 5. Estimates were obtained using m = [nx] Fourier frequencies, where
x = 0:4; 0:5; 0:6; 0:7; 0:8. The solid line indicates the true value of d = 0:4.
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Figure 4: Top plot: Deutsche Mark/ US Dollar exchange rate from Jan 2, 1985 to May 12, 1998.
Bottom plot: Volatility series for Deutsche Mark/ US Dollar exchange rate constructed using
adjusted log squared returns.
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Figure 5: Sample ACF for volatility series of Deutsche Mark/ US Dollar exchange rates


