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“Indivisibilities, fixed costs, and irreversibility are not the only frictions to cap-

ital adjustments. Financial frictions — which are in many ways leveraged by the

above frictions — are central to the investment literature.” Ricardo J. Caballero.1

We study the optimal timing and financing of large, irreversible investments in the

presence of moral hazard. These two issues, timing and financing, have typically been

studied separately. The real option literature, well summarized in Dixit and Pindyck (1994),

focuses on the timing of irreversible investments. The corporate finance literature analyzes

financing issues when the lender and the borrower do not the share the same information

set, ex-ante or ex-post. These two literatures, however, are largely disjoint. We argue that

it is both possible and fruitful to bring them together.

We develop a dynamic agency model in which the firm can be scaled up by paying a

fixed cost. We formulate the problem in continuous time and we obtain explicit compar-

ative statics regarding the probability of failure and the timing of investment. We show

theoretically that, when financial markets improve — with better property rights, disclosure

and enforcement — firms are less likely to fail and more likely to exercise the growth op-

tion. We then use our model to study quantitatively the evolutions of firms’ dynamics over

the past 50 years, in particular the decline of failure rates (Davis, Haltiwanger, Jarmin,

and Miranda (2006)), and the decrease in the age at which firms go public (Jovanovic and

Rousseau (2001)).

The real option and agency literatures have remained separate mainly because of tech-

nical difficulties. For instance, real options are best understood in a continuous time frame-

work (Dixit and Pindyck (1994), Caballero and Engle (1999)), while agency problems have

traditionally been studied in discrete time. Discrete-time agency problems include papers

on optimal Venture Capital contracts such as Admati and Pfleiderer (1994), Chemmanur

and Fulghieri (1999), Casamatta (2003) and Schmidt (2003). This literature helps us un-

derstand the theoretical underpinnings of observed contracts, and in particular the role of

asymmetric information and moral hazard between the entrepreneur and the VC, as well as

between the VC and the outside investors. These models, however, use very stylized frame-

works, typically with two or three periods, that do not encompass the standard models of

1Aggregate Investment: Lessons from the Previous Millenium, AEA Session. In Memoriam: Robert
Eisner. January 8, 2000.
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investment used elsewhere in economics. Two notable exceptions are DeMarzo and Fishman

(2007) and DeMarzo, Fishman, He, and Wang (2007), who combine investment and agency

issues. These models, however, do not capture lumpy investments and real options.

There is, on the other hand, a literature that looks at IPOs from the perspective of

classical investment theory, like Jovanovic and Rousseau (2001) and Pastor and Veronesi

(2005). These papers bring insights on IPO waves and valuations, but they do not deal

with incentives contracts. Yet, it is widely acknowledged that incentives and information

issues are of first order practical importance. Ideally, one would like to include an option

to invest into the multi-period agency models of DeMarzo and Fishman (2004), Clementi

and Hopenhayn (2006) or Albuquerque and Hopenhayn (2004), but discrete-time agency

models are already quite complex.2

This paper makes two contributions to the literature: it provides a methodology and it

suggests an interpretation for a set of stylized facts. We are able to study lumpy investment

in a dynamic agency model thanks to the continuous-time formulation of DeMarzo and

Sannikov (2006).3 With this methodology, we obtain analytical comparative statics despite

the complexity of the problem. Technically, we derive our results from a system of scaled

differential equations. These tools turn out to be quite powerful and could be fruitfully

applied to other economic problems.

The main difference between our model and the classic real option model comes from

the value of the option to wait. In the classic model, the value of the firm varies over time

because of persistent shocks to its profit rate, and once the value crosses a given threshold,

it becomes optimal to scale up. In our model, by contrast, cash flows are i.i.d. so that,

without moral hazard, the firm would either upgrade immediately, or it would never do so.

The option value comes entirely from the history dependence of the optimal contract. That

is, the upgrade option becomes valuable only when the agent’s future expected payoff is

sufficiently high and the threat of liquidation sufficiently remote.

We then use our model to study firm dynamics. In doing so, we interpret the first large

investment in the life cycle of the firm as its IPO, which is consistent with the empirical

2See also Quadrini (2004), who studies the case where contracts are renegotiation-proof and Cooley, Mari-
mon, and Quadrini (2004) for a general equilibrium model with dynamic contracts and limited enforcement.

3Biais, Mariotti, Plantin, and Rochet (2007) show that the optimal contract of DeMarzo and Sannikov
(2006) arises in the limit of discrete-time models that converge to continuous time.
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evidence and is also the interpretation in Pastor and Veronesi (2005). We perform a complete

calibration of the model using information on investment dynamics, assets prices and actual

VC contracts. The model allows us to quantify — for the first time to the best of our

knowledge — the consequences of moral hazard, in particular for business failures and the

timing of IPOs. Our quantitative model also sheds light on a set of recent stylized facts.

Using the Longitudinal Business Database, Davis, Haltiwanger, Jarmin, and Miranda (2006)

document a decline in the failure rate, especially among private businesses, while Fink,

Fink, Grullon, and Weston (2005) document a decline in the age at which firms go public.

In our model, both facts can be explained by improvement in financial contracts. Our

model can also account for the increase in volatility among public firms (Campbell, Lettau,

Malkiel, and Xu (2001), Comin and Philippon (2005)) because most of the observed trend

in idiosyncratic risk is due to the fact that recent cohorts are made of younger and more

volatile firms (Fink, Fink, Grullon, and Weston (2005)).4

The rest of the paper is organized as follows. In section 1, we present our model and

we discuss in more details how it relates to the literature. In section 2, we characterize

the optimal contract. In section 3, we derive the predictions of the model regarding the

age-profile of firm volatility and we show how financial development affects IPO age, exit

rates, and volatilities. In section 4, we present a calibration of the model.

1 The Model

To achieve the goals presented in the introduction, the model must be dynamic, include

asymmetric information, allow for endogenous exit, and capture at least some of the key

features of IPOs. The challenge is therefore to keep the analysis tractable and transparent.

For this reason, we choose to work in a continuous time framework. Continuous time models

are more difficult, and less well-known to many economists, than discrete time models, but

we hope that the ability to obtain clean, analytical results justifies our approach.

4Using the idiosyncratic component of stock returns, Campbell, Lettau, Malkiel, and Xu (2001) document
a rise in volatility among publicly traded companies. Comin and Philippon (2005) show that the rise in
idiosyncratic risk is also apparent in the growth rates of assets, employment, cash flows and sales. This result
does not extend to privately held companies, however. Using the Longitudinal Business Database, Davis,
Haltiwanger, Jarmin, and Miranda (2006) show that volatility has decreased substantially among private
businesses, mostly because of a decline in the failure rate.
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1.1 Technology and Preferences

A firm is run by an entrepreneur/manager and financed by an outside investor. The manager

and the investor are both risk neutral. The investor discounts future cash flows at the market

rate r, and the manager discounts her future consumption at rate γ > r. Setting up the

firm requires a fixed initial investment of I at time 0. The manager has limited wealth and

she contracts with the outside investor, who can pay the initial investment, cover the firm’s

losses and provide funding to upgrade the firm’s capital.

Let Xt denote the cumulative cash flows produced by the firm up to time t. The

incremental cash flows dXt expected between t and t + dt depend on the scale of the firm

μ̃t and the action of the manager, αt:

E [dXt] = (μ̃t − αt)dt (1)

The scale of the firm can take two values. After the initial investment, the scale is μ̃t = μ.

At any point in time, the firm has the option to upgrade its capital stock for a cost K > 0.

The upgrade increases the scale of the firm to μ̃t = μ̄. We assume that μ̄− μ > rK so that

the capital upgrade is potentially profitable from the point of view of investors. We shall

later explain how we can interpret the capital upgrade as an initial public offering (IPO).

The manager gets a benefit at the rate of λαt by taking a hidden action αt ∈ [0,∞), where
λ ∈ (0, 1). We can interpret αt as a reduction in effort, or as diversion of cash flows for
private benefits.

Note that, conditional on scale and managerial effort, the expected cash flows are con-

stant. The usual real option trade-off therefore does not arise in our model. Without

asymmetric information, it would be optimal to upgrade immediately.

1.2 Information

Information is asymmetric, because the investor does not observe the action αt of the

manager. Rather, the investor observes a signal Ωt that evolves according to:

dΩt = −αtdt+ σdZt. (2)

The signal Ωt summarizes all the information of the investor regarding the action of the

manager. In particular, we assume that Ωt is a sufficient statistic for αt givenXt. Therefore,
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without loss of generality, the optimal contract depends only on the process Ω. A particular

case of our setup is when Ω andX contain the same information, i.e., when the principal only

observes the cash flows. This is the case that is most often studied in the literature. This

is only a particular case, however, and while it make sense for mature companies, it does

not make sense for young firms that do not even produce cash flows. Venture Capitalists

certainly observe more than the current profits of the firm in which they invest.

In our model, the degree of moral hazard depends on two parameters: σ and λ. In

fact, we will later show that only the product λσ matters: when it goes to zero, the model

converges to the case of full information. More generally, we can think of improvements in

financial contracts as a decrease in σ or in λ. A decrease in σ captures better disclosure of

information, while a decrease in λ captures better protection of property rights.

1.3 Contracting

To finance the firm, investors can write fully contingent dynamic contracts that specify

how the agent’s cumulative compensation Ct, the upgrade time τK and the time when the

agent is fired τL depend on the path of {Ωt}. If the manager is fired, the firm is worth

L < μ/r before the upgrade, and L̄ < μ̄/r after the upgrade. L and L̄ could capture either

liquidations values, or values under a new management, net of the replacement cost, without

loss of generality. The outside value of the manager upon liquidation is denoted WL.

A contract (τL, τK , {Ct, t ≤ τL}) is optimal if it maximizes the principal’s profit

E

" Rmin(τL,τK)
0 e−rt (μ dt− dCt) + 1τL<τKLe

−rτL+
1τL>τK

³R τL
τK

e−rt(μ̄ dt− dCt) + e−rτLL̄− e−rτKK
´ # (3)

subject to delivering to the agent a payoff of W0, determined by the relative bargaining

powers of the agent and the principal, i.e.

W0 = E

∙Z τL

0
e−γtdCt +WLe

−γτL
¸
, given actions {αt = 0}, (4)

and providing the agent with incentives to take action αt = 0,

W0 ≥ E

∙Z τL

0
e−γt(dCt + λαtdt) +WLe

−γτL
¸
, given any actions {αt ≥ 0}. (5)

In the optimal contract the agent’s action is αt = 0 at all times. Indeed, because λ < 1, it

is always cheaper to pay the agent cash directly rather than let him get utility indirectly

by reducing the firm’s cash flows.
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1.4 Discussion and relation to the literature

The optimal contracting approach abstracts from the details of contractual implementation.

Those details can be different depending on the institutional environment, the level of

financial development, and standards within an industry. Our approach is based on the

premise that the contracting parties have the interest to put together the best possible

contract given the tools available to them, to approximate the optimal contract. Thus,

the optimal contracting theory should deliver reasonable predictions about the timing of

investment and the growth of value across contractual environments. DeMarzo and Sannikov

(2006), Sannikov (2007a), Biais, Mariotti, Plantin, and Rochet (2007) and Piskorski and

Tchistyi (2006) give examples how optimal contracts can be implemented using standard

securities in various institutional environments. DeMarzo and Fishman (2004) focus on

how the optimal contract can be implemented using simple financial instruments, such as

a credit line and long term debt. In Clementi and Hopenhayn (2006), the output of the

firm can be adjusted every period and production is typically below the first best while

the entrepreneur repays all the cash flows and incentives are provided through continuation

values. DeMarzo and Fishman (2007) study investment in dynamic agency models. They

show that a positive correlation between cash flows and investment, with higher sensitivity

for small firms, as well as serial correlation in investment follow from simple properties

satisfied by a large class of agency problems.

Besides real options, IPOs and dynamic agency contracts, our paper is also related to the

literature on financial development. In our model, financial development is synonymous with

better monitoring, better property rights, better enforcement or better financial information.

Stulz (2005) argues that this view is consistent with much recent evidence.

1.5 Interpretation of the Upgrade as an IPO

We want to interpret the upgrade as an IPO, but we must acknowledge that the model

does not capture some financial features of IPOs. In reality, IPOs allow (partial) exit by

the initial investors and result in more dispersion of ownership. Chemmanur and Fulghieri

(1999) model the costs and benefits of ownership dispersion. We cannot address this issue

because it does not matter in our model whether the capital upgrade is financed by the initial

investor (the principal) or by new outside investors. To capture these features, we would
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need to introduce different classes of investors and another layer of moral hazard to justify

the initial concentration of ownership. We abstract from these issues in order to keep the

model as tractable and transparent as possible. One way to gauge the relative importance

of exit as a motivation for IPOs is to look at the relative issuances of primary and secondary

shares. Primary shares are newly created shares while secondary shares are existing shares

held by pre-IPO shareholders. One cannot exit by selling primary shares; anyone exiting

would have to sell secondary shares. Kim and Weisbach (2007) show that roughly 80% of

the proceeds from IPOs come from primary shares. They also show that over a three year

period following the IPO, 61% of the proceeds are used to increase R&D spending, and

22% are used to increase capital expenditures. Raising capital for productive investment

therefore seems to be an important aspect of IPOs, and, given the focus of our paper, we

believe that it is reasonable to focus on the investment aspect of IPOs rather than on the

change in the ownership structure. Other theories and important facts, most notably the

issues of underpricing and market timing, are reviewed in Jenkinson and Ljungqvist (2001)

and Ritter and Welch (2002).

It may also appear objectionable that our contract specifies all contingencies, both be-

fore and after the IPO, whereas in practice VC contracts before the IPO are separate from

the contracts with equity-holders after the IPO. This objection is resolved by observing

that the optimal contract can be implemented simply by specifying the agent’s compensa-

tion {Ct, t ≤ min(τL, τK)} before the IPO and the agent’s payoff WτK at the time of the

IPO.5 Then at time τK , the manager and new equity-holders have incentives to write the

optimal continuation contract. This recontracting at time τK implements the optimal fully

contingent contract ex-ante. In this argument it is important that, although our optimal

contract is not fully renegotiation-proof, the contracting parties do not have incentives to

renegotiate at time τK (see Lemma 2 in the appendix)

In Section 2 we proceed to characterize the optimal contract. In Section 3, we study

how the optimal contract and the resulting equilibrium dynamics depend on the efficiency of

financial contract, captured by σ. In Section 4, we show that the model can be quantitatively

consistent with the observed changes in the failure rate, the volatility of private and public

firms, and the age of IPO.

5 In practice, Wτ̂ can be implemented by specifying the agent’s stake in the firm.
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2 The Optimal Fully Contingent Contract

In this section we derive the optimal contract in two steps. First, we present and explain

the optimal contract after the upgrade, i.e., assuming that investment K has already been

made. Next, given the post-upgrade value function, we derive the optimal contract before

the upgrade, as well as the optimal timing of the IPO/upgrade.

2.1 The Optimal Contract after the Upgrade

Consider the firm after the upgrade. We would like to characterize contracts that maximize

the investors’ profit for any payoff W0 to the agent. That is, the investors’ problem is to

find a contract (τL, {Ct, t ≤ τL}) that maximizes

E

∙Z τL

0
e−rt(μ̄ : dt− dCt) + e−rτLL̄

¸
, (6)

subject to

W0 = E

∙Z τL

0
e−γtdCt + e−γτLWL

¸
, given actions {αt = 0}, (7)

and

W0 ≥ E

∙Z τL

0
e−γt(dCt + λαtdt) + e−γτ lWL

¸
, given any actions {αt ≥ 0}. (8)

The theory of dynamic contracts shows that the optimal contract for this problem can

be written recursively with the agent’s continuation payoff Wt as the unique state variable

(e.g. see Spear and Srivastava (1987) or Sannikov (2007b)). The agent’s continuation value

Wt is his future expected payoff at time t when he plans to take actions αs = 0 at all times

until termination, i.e.

Wt = Et

∙Z τL

t
e−γ(s−t)dCs + e−γ(τL−t)WL

¸
, given actions {αs = 0}. (9)

DeMarzo and Sannikov (2006) derive the optimal contract for a firm without an upgrade

option. Here we summarize their characterization:

Proposition 1 (DeMarzo and Sannikov (2006)) In the optimal contract the agent’s con-

tinuation value Wt evolves according to

dWt = γWtdt+ λdΩt − dCt (10)
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starting with valueW0.WhenWt ∈ [WL,WC), dCt = 0, and whenWt reachesWC , payments

dCt cause Wt to reflect at WC . If W0 > WC , the agent receives an immediate payment of

W0 −WC at time 0, and his continuation value drops to WC .

The point where the agent consumes WC as well as the principal’s profit b̄(W ) are

determined by the solution of the HJB equation

rb̄(W ) = μ̄+ γWb̄0(W ) +
1

2
λ2σ2b̄00(W ) (11)

on the interval [WL,WC ] with boundary conditions

b̄(WL) = L̄, b̄0 (WC) = −1, and b̄00 (WC) = 0. (12)

The contract is terminated at time τL when Wt reaches WL.

Let us discuss the optimal contract. The law of motion of the agent’s continuation

value, Wt, contains two terms related to promise keeping and the agent’s incentives. Since

Wt measures the value that the principal owes to the agent, it must grow at the rate γ and

decrease with the payments dCt. The term λdΩt is responsible for the agent’s incentives.

If the agent reduces effort by αt, he benefits immediately at rate λαt. At the same time,

the signal about the agent’s performance Ωt gets lower at rate αt, leading to a reduction in

the agent’s continuation value at rate λαt. We see that in the optimal contract, the agent’s

incentive constraint is just binding: the agent is indifferent between putting full effort and

reducing effort by any amount αt. This property of the optimal contract makes sense, since

it is costly to give the agent incentives that are too strong.

Second, if b̄(Wt) reflects the principal’s profit when the agent’s continuation value isWt,

then

Gt =

Z t

0
e−rs(μ̄ds− dCs) + e−rtb̄(Wt) = Et

∙Z τL

0
e−rs(μ̄ds− dCs) + e−rτLL̄

¸
,

is a martingale. When Wt < WC , we have dCt = 0. Then (10) together with Ito’s lemma

imply that the drift of Gt is e−rt times

μ̄− rb̄(Wt) + γWtb̄
0(Wt) +

1

2
λ2σ2b̄00(Wt).

Thus, equation (11) follows from the condition that the drift of Gt must be 0.
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Regarding the boundary conditions (12), the first one, b̄(WL) = L̄, follows from the fact

that the principal’s profit is L̄ when the contract is terminated. Next, we have b̄0 (WC) = −1
because the principal’s profit translates into the agent’s value at one-to-one ratio at the point

where the principal pays the agent. Finally, the supercontact condition b̄00 (WC) = 0 comes

from the optimal choice of WC .

2.2 The Optimal Contract before the Upgrade

The optimal contract before the upgrade is also based on the state variable Wt, the agent’s

continuation payoff. In the optimal contract this variable follows

dWt = γWtdt+ λdΩt.

The principal’s profit before the upgrade is a concave function that satisfies equation

rb(W ) = μ+ γWb0(W ) +
1

2
λ2σ2b00(W ), (13)

with boundary conditions

b(WL) = L, b(WK) = b̄(WK)−K, and b0 (WK) = b̄0 (WK) , (14)

whereK is the investment required for the upgrade andWK is the agent’s value that triggers

the upgrade. The smooth pasting condition b0 (WK) = b̄0 (WK) determines the optimal

upgrade point WK to maximize the principal’s profit b(WK). The agent does not receive

any compensation before the upgrade because b0(W ) ≥ b0 (WK) > −1 for allW ∈ [WL,WK ].

Paying a dollar to the agent would result in a gain of value of −b0(W ) < 1. A typical form

of the principal’s profit before and after upgrade is illustrated in Figure 1.

We summarize the principal’s profit in the optimal contract for a private firm by the

following proposition.

Proposition 2 In the optimal contract for a firm before the upgrade the agent’s value

follows

dWt = γWtdt+ λdΩt (15)

until liquidation at the time τL when Wt reaches WL or a capital upgrade at the time τK

when Wt reaches WK, whichever happens sooner. The agent does not receive any compen-

sation until the upgrade. After the upgrade the continuation contract is given by Proposition

1 for the starting value WK .
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Proof. See Appendix.

Why is investment of capital K delayed in the optimal contract? Without moral hazard,

capitalK would be invested immediately to generate a net present value of (μ̄−μ)/r−K > 0.

However, due to the agency problem, there is a risk of losing value in case the project is

terminated or the manager fired. If L̄− L < K, it is inefficient to invest when Wt is close

to WL. Determining the optimal investment time is a real option problem (see Dixit and

Pindyck (1994)). It is optimal to invest only when the manager accumulates sufficient

promised utility, so that the risk of losing value upon termination is sufficiently small.

Unlike in a standard real option setting, however, where the decision to invest is driven by

investment opportunities, in our model the optimal investment time is driven by the agency

problem.

3 Theoretical properties

In this section we show that our model can deliver a number of stylized facts about the age

at which firms upgrade and go public (Jovanovic and Rousseau (2001), Fink, Fink, Grullon,

and Weston (2005)) and the rate at which private and public firms go out of business (Davis,

Haltiwanger, Jarmin, and Miranda (2006)). We focus on the following set of facts:

1. The exit rate of private firms is higher than the exit rate of public firms.

2. Over the past 50 years,

(a) firms have been going public at an earlier age and

(b) the exit rate of private firms has decreased.

Stylized fact 1 is a property of the cross section of firm level risk at any point in time.

Stylized facts 2a and 2b reflect the evolution of the US economy over the post-war period.

3.1 Failure Rates before and after IPOs

The first lemma shows that the average lifetime of a firm is increasing in the agent’s value

W0.

12



Lemma 1 In the model, the value of E[τL|W0] does not depend on the current size of the

firm (before or after the upgrade) and it is increasing in W0.

Proof. Equations (10) and (15) imply that the agent’s continuation payoff Wt follows

the same law

dWt = γWtdt+ λσdZt

with reflection at WC and absorption at 0 both before and after the upgrade. As a result

the value of E[τL|W0] does not depend on the current size of the firm. Now, consider two

values W0 and W 0
0 < W0. Denote by τL the time when the process Wt hits value W 0

0 for the

first time. Then

E[τL|W0] = E[τL|W0] +E[τL|W 0
0] > E[τL|W 0

0].

QED.

Since the starting value for a private firm W0 is always lower than the value WK at

which the firm’s capital is upgraded, it follows immediately that private firms on average

exit more quickly than public firms. This conclusion delivers stylized fact 1 above.

Proposition 3 Private firms on average exit more quickly than public firms.

3.2 Ex-ante probabilities of IPO and failure

We now study the trends in failure rates and IPOs, and how they relate to financial devel-

opment.6 We capture the development of financial markets by reductions in λ and/or σ,

which capture the severity of the agency problem in our model. Note that the consequences

of financial development are not obvious because the optimal contract depends on λ and σ,

and we need to understand how the thresholds for failure and for IPO change with these

parameters.

Several properties of the model allow us to compare firms’ dynamics for different values

of λ and σ. One important property is that we can define a normalized continuation value

to the agent wt =Wt/(σλ), whose law of motion does not depend on σ or λ:

dwt = γwtdt+ dZt.

6Multiple factors certainly explain the historical experience. For instance, IPO firms are younger when
market valuations are high (see for example Baker and Wurgler (2006) and the papers discussed there). Here
we focus on the long run trend.
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The firm goes public and investment K is made when wt reaches wK =WK/(σλ). The firm

exits when wt reaches wL =WL/(σλ).

The following proposition states that wK is uniquely determined by wL, independently

of σ and λ. Thus, firm dynamics for different values of σ and λ are fully determined by w0

and wL.

Proposition 4 For a given value of wL, the upgrade point wK does not depend on λ or

σ, it increases with K, and decreases with L̄ − L and μ̄ − μ. Moreover, as wL changes,

dwk/dwl ∈ (0, 1).

Proof. The proof of the second part is in the appendix. We include here the proof

of the first part because it is simple and informative. The optimal contract is defined by

two value functions b and b̄ and the endogenous thresholds WC and WK , that solve the two

differential equations (11) and (13) subject to the two sets of boundary conditions (12) and

(14). Define a new function ∆(w) by

∆ (w) = b̄ (λσw)− b (λσw)

Then, ∆ is the solution to

r∆ (w) = (μ̄− μ) + γw∆0 (w) +
1

2
∆00 (w) (16)

subject to

∆ (wL) = L̄− L, ∆ (wK) = K, and ∆0 (wK) = 0. (17)

Therefore neither ∆ nor wK depend directly on λ or σ. We show in the appendix that

dwk/dwl ∈ (0, 1). QED.

The following proposition shows that firms are more likely to reach an IPO as financial

markets improve.

Proposition 5 Keeping the outside option WL and the starting value W0 constant, a de-

crease in λσ leads to:

• a higher ex-ante probability of IPO,
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• a lower ex-ante probability of exit.

Proof. Denote by w0L, w
0
t and w0K the values of wL = WL/(σλ), wt = Wt/(σλ) and

wK =WK/(σλ) after a decrease in σλ. Then wL < w0L, w0−wL < w00−w0L and the interval
[wL, wK ] is longer than [w0L, w

0
K ] by Proposition 4. These changes are illustrated in Figure

2.

Since

dwt = γwt + dZt and dw0t = γw0t + dZt,

it follows that

w0t − wt = ert(w00 − w0) ≥ w00 − w0 > w0L − wL

for any path of Z. Therefore, it is possible that w0t reaches the IPO before exiting while wt

exits before reaching the IPO, but not the other way around. That is, any realization of

the Brownian motion that leads to an IPO when λσ is high also leads to an IPO when λσ

is low. It is therefore clear that the probability of an IPO increases. QED.

As we see from the proof, a decrease in σλ causes these effects in firm dynamics: the

starting point w0 moves away from the point of exiting wL and closer to the point of IPO

wK , and the drift towards the point of IPO increases.

3.3 Ex-post exit rate and average IPO age

It is important to distinguish the ex-ante probability of failure from the ex-post exit rate,

and the ex-ante probability of IPO from the average age of realized IPOs. While it seems

intuitive that financial development should lead to a decrease of the average IPO age and

a decrease in the exit rate of existing firms, it is not necessarily true.

Consider a decrease in λσ. All firms that previously reached the IPO threshold now

reach it sooner, but some firms that previously exited now also reach the IPO stage. For

this latter category of firms, IPOs happen quite late, increasing the average IPO age. For

the exit rate, of the firms that exited before the improvement in financial markets, some

exit more slowly, while others now reach an IPO. The confounding effect here is that firms

that become successful with improved financial markets are the ones that took longer time

to exit previously.
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We are able to demonstrate analytically that the exit rate and the average IPO age

decrease in the special case where the agent’s outside option is WL = 0. In Section 4, we

calibrate the model and we study quantitatively the case where WL > 0.

When WL = 0 it follows that wL = 0 and wK takes the same value both before and

after the IPO. As a result, the exit rate and average IPO age depend on the initial value

w0 = W0/(λσ) at which the contract starts. As w0 increases, both the IPO age and the

exit rate increase, as shown by the following proposition.

Proposition 6 Suppose that wL = 0, wK is fixed, and w0 < w00. Then, starting from w00,

the exit rate and average IPO age are lower than starting from w0.

Proof. The average IPO age starting with w0 equals the average age or reaching w00
starting from w0 plus the average IPO age starting from w00. Therefore, firms that reach

IPO starting from w00 are younger. Denote by Pr[w0|w00] the probability of reaching starting
from w00 before reaching the IPO, etc., and by T [w0, wK |w00] the expected time it takes to
reach w0 or wK starting from w00, etc. The exit rate starting from w00 is

Pr[0|w00]
T [0, wK |w00]

=
Pr[w0|w00]Pr[0|w0]

T [w0, wK |w00] + Pr[w0|w00]T [0, wK |w0] <
Pr[w0|w00]Pr[0|w0]

Pr[w0|w00]T [0, wK |w0] =
Pr[0|w0]

T [0, wK |w0] ,

where Pr[0|w0]/T [0, wK |w0] is the exit rate starting from w0. Therefore, the exit rate start-

ing from w00 is lower. QED.

Of course, w0 depends on the division of bargaining powers between the principal and

the agent. Proposition 7 shows that w0 increases as σλ decreases for two extreme cases

when the principal has all the bargaining power, and when the agent has all the bargaining

power.

Proposition 7 If investors act competitively, then w0 =W0/(λσ) increases as σ decreases.

If the investor acts as a monopolist and chooses W0 to maximize his profit, then also w0 =

W0/(λσ) increases as σ or λ decreases.

Proof. See Appendix.

The intuition behind the first part of Proposition 7 is straightforward. The firm becomes

more valuable as the agency problem decreases. Since the agent captures all the surplus
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when investors act competitively, it follows that W0 increases when σ decreases, and a

fortiori, so does w0. We feel that the assumption of competitive investors is the more one

natural in practice, but the second part of the proposition shows that, in any case, our

result does not hinge on this assumption.

The intuition behind the second part of Proposition 7 is more subtle. If the investor

has all the bargaining power, he does not extract all the value from the agent by setting

w0 = wL in order to be able to reward and punish the agent. As σ decreases, the firm

becomes more profitable. As a result, it is in the principal’s interest to set w0 higher in

order to allow the firm to survive for a longer period of time.

4 Quantitative properties

In this section, we propose a calibration and we investigate the quantitative properties of the

model. We have argued in the introduction that a better understanding of firms’ dynamics

requires a model that captures agency conflicts as well as large, irreversible investments. The

lack of such a model means that the theoretical corporate finance literature has tended to

remain qualitative. We do not know, for instance, whether moral hazard causes significant

delays in investment and significant increases in business failures, or whether the sensitivity

to performance of actual contracts can be explained with plausible amounts of private

information. An important advantage of our model is that we can draw on information

for many different sources in order to calibrate the structural parameters, and that we can

investigate the predictions of the model along many dimensions.

4.1 Calibration of the parameters

In our model, the principal and the agent are risk neutral. For the principal, this is without

loss of generality. It simply means that the model is written under the risk neutral measure:

all cash flows are risk adjusted and discounted at the real risk-free rate, which we set at

r = 2%.

For the agent, the issue is more complicated. In reality, entrepreneurs care about idio-

syncratic risk. Hall and Woodward (2007) report that this risk is substantial. The expected

value of entrepreneurship is $60,000 per month, but for an individual with a risk aversion

of 1, the certainty equivalent is around $13,000. Entrepreneurs are certainly much less risk
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averse that the median individual. We take the benchmark value to be around $30,000

which is half of the expected value. To be consistent, we set γ = 2r = 4%. We calibrate the

outside option of the manager by looking at the wages of skilled individuals. Philippon and

Resheff (2007), for instance, report that engineers with post-graduate degrees earn around

$6,600 dollar per month in 2001, while financiers with post-graduate degrees earn about

$10,000 a month. We set the outside option such that

WL

W0
=
1

3
.

Regarding the starting values, W0 and b (W0), Kaplan and Strömberg (2003) report that

founders typically hold 30% of the cash flow rights in VC contracts. So we set

W0

W0 + b (W0)
= 0.3.

The technological parameters are the profit rates μ and μ̄, the initial setup cost I and

the upgrade cost K. We identify I and K with the book values of assets in place before

and after the IPO. We could identify K/I either as the growth of the firm around its

IPO, or as the difference between the average size of pre-IPO firms and post-IPO firms.

For the first measure, Jain and Kini (1994) report industry-adjusted increases of 111% for

capital expenditures around IPOs, which we would translate as K/I = 1.11. For the second

measure, Jain and Kini (1994) report that, in their sample of firms between 1978 and 1988,

the median book value of assets pre-IPO is $14.7 million. Over the same period, the median

book value for Compustat firms in the first 15 years post-IPO is $38.52 million, which we

would translate as K/I = 1.62. These two ways to calibrate are not widely different, and

we take the average as our benchmark:

K

I
= 1.36.

Regarding μ and μ̄, it is important to realize that we should not calibrate using the

average historical profit rates, because this would be inconsistent with our assumption that

cash flows are discounted at the risk free rate. Instead, we use Tobin’s Q. Jain and Kini

(1994) report that a value of Q around 1.5 for firms within 3 years of their IPO. The median

Q in Compustat for firms that have been listed for less than 3 years is 1.37 in the 1980s

and 1.44 between 1990 and 1998. We take 1.4 to be a representative value. The book value
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post-IPO is I +K. The total value of the firm is W + b̄ (W ). We calibrate Tobin’s Q after

the IPO as

QK =
WK + b̄ (WK)

I +K
= 1.4.

For the relative value of μ̄/μ, we can use the observed average profit rates, under the

plausible assumption that systematic risk is scale-invariant.7 Jain and Kini (1994) report

that the profit rate drops by roughly 30% when firms go public. We therefore calibrate

μ̄

I +K
= 0.7

μ

I
.

Next, we must calibrate the liquidation values. Kim and Weisbach (2007) report that

only 20% of the investment made by VC-backed companies is made of capital expenditures.

If we assume that tangible assets and half of non-tangible assets can be recovered, we get a

liquidation value of 0.2+0.5*0.8=0.6. We therefore set

L

I
=

L̄

I +K
= 0.6.

Note that the recovery rate is with respect to the book value of assets. It is substantially

smaller with respect to the value of the project, since Q is larger than one.

We normalize I = 1. There are 8 free parameters: K, μ, μ̄, WL, W0, L, L̄ and λσ.

We have 7 calibrating equations above. Given a value for λσ we can therefore solve the

model. What is the range of plausible values for λσ? This depends on our interpretation

of the signal Ω. For young ventures, when revenues are either non-existent or very volatile,

VCs obtain information about the actions of the entrepreneurs through various means. In

our model, we have assumed that the signal to noise ratio does not depend on the scale of

the firm. On the one hand, when the firm is young, the VC is very involved and observes

a lot of extra information. On the other hand, young firms are intrinsically more volatile.

Therefore, it seems to us that the correct starting place is to assume a constant signal to

noise ratio. Post-IPO, we use accounting information to calibrate the precision of the signal.

We use firms in Compustat that have traded for less than 5 years and we compute firm

specific volatilities. The median volatility of revenues (sales) over assets in the post 1980

sample is 13%.8 We set σ = 13%. The parameter λ is less than one. As a benchmark,
7This would not hold for investments that affect the diversification of firms, but this does not seem to be

relevant for IPOs.
8The average is 20% but given the skewness, it seems more sensible to use the median. It is also more

conservative because it decreases the importance of moral hazard.
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we set the product λσ = 10%. We show below that this implies a plausible sensitivity of

entrepreneur’s wealth to performance, when we compare our optimal contract with actual

VC contracts.

Here is finally the complete set of structural parameters that defines our benchmark

calibration:

K μ μ̄ WL W0 L L̄ λσ

1.36 0.0532 0.0879 0.19 0.574 0.6 1.416 0.1

With these parameters the model matches the moments described above.

4.2 Quantitative implications

In this section, we interpret the predictions of the calibrated model and, when possible, we

compare the predictions to their empirical counterparts.

Return to VC

The setup cost of the project is I. The value of the project is b (W0) +W0, and the

return to the principal is b (W0) /I. The model predicts a return to the principal of 1.28.

We argue that this is a sensible value. The principal in our calibration can be seen as a

Venture Capital fund. VC funds have general partners, who choose projects and work with

entrepreneurs, and limited partners who provide the money needed for the investments.

Hall and Woodward (2007) find that limited partners earn approximately the risk adjusted

returns. We can therefore assume that I is paid by outside investors at fair value. Our

model therefore predicts that the general partners of the VC funds obtain a return of 28%

on invested capital, which is a payment for the monitoring and advising services provided

to the project. This is quantitatively consistent with the available evidence: Hall and

Woodward (2007) report VC compensation of 26%, 3% from fees and 23% from carry.

Gompers and Lerner (1999) report a carry of 20.7%.

Sensitivity to performance

A key prediction of dynamic incentive theory is that the entrepreneur’s share should

increase when the firm performs well. Kaplan and Strömberg (2003) show that this is

also the case in actual contracts. They find that managerial ownership is 6.8 percentage

points higher if the management meets all performance and time vesting milestones than

if it does not meet any milestone. One way to understand this number is to look at the
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entrepreneur’s share just before the firm reaches the IPO threshold relative to its starting

value: WK/ (WK + b (WK))−W0/ (W0 + b (W0)) = 6.4%. Thus, the model seems to predict

a reasonable sensitivity to performance. This can be seen as a check that the parameter λσ

is correctly calibrated.

IPOs

What is the quantitative impact of moral hazard on IPOs? We show in the appendix

that one can obtain explicit formulas for various observable quantities: probability that a

firm will eventually do an IPO, failure rate of pre-IPO firms, age at which firms go public,

etc. For instance, the probability that a firm with a current promised value w will eventually

go public is:

p (w) =

µZ w

wL

e−γs
2
ds

¶
/

µZ wK

wL

e−γs
2
ds

¶
The consequences of moral hazard can therefore be seen in several dimensions.

Pr(No IPO) Annual failure rate pre-IPO Median and Mean Age of IPO
12% 2.7% 2.94 and 3.97 years

Recall that in the model without moral hazard, it is never optimal to liquidate and IPOs

occur immediately with probability one. Because of moral hazard, 12% of the firms do not

do an IPO. If we consider the population of private firms, the annual failure rate due to

moral hazard is 2.7%. This is economically significant since the average annual failure rate

of private firms between 1990 and 2001 is 6.78% in the data of Davis, Haltiwanger, Jarmin,

and Miranda (2006).

In the calibrated model, the median age of IPO is 3 years. Empirically, during the last

25 years, the median IPO age is 7 years (Loughran and Ritter (2004)).9 Therefore, our

model suggests that moral hazard has a significant impact of business failures, as well as

the probability and age of IPOs.

4.3 Financial development and firm dynamics

Our final task is to study the consequences of financial development on observed firm dynam-

ics. We have calibrated the model using data from recent decades, and we have compared

9The average is around 15 years, because the extreme skewness of the distribution: many firms go public
quickly, while some take a very long time. The distribution implied by the model is also skewed, but not as
much as in the data, because we do not include ex-ante heterogeneity.
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the predictions of the model for the exit rate and the age of IPO to recent data as well. In

earlier decades, however, the exit rate was higher and IPOs took place later in the life cycle

of the firm. Jovanovic and Rousseau (2001) and Fink, Fink, Grullon, and Weston (2005)

show that the median age of IPO was more than 20 years before 1980, compared to 7 years

in the post 1980 sample.

It is more difficult to obtain consistent estimates of the failure rates. The data in Davis,

Haltiwanger, Jarmin, and Miranda (2006) cover the whole economy, but are only available

from 1977 onward. The average failure rate of privately held firms between 1977 and 1989 is

10%, compared to 6.8% in recent years. Moskowitz and Vissing-Jorgensen (2002) report a

10-year survival rate around 34%, which corresponds to a failure rate of 10%. Prior to this

date, we could only find data for the manufacturing sector. For instance, Dunne, Roberts,

and Samuelson (1989) report (annual) failure rates around 10% for young manufacturing

plants in the 1970s, but the exit rate is lower in manufacturing that in other sectors.

We argue that financial development can account for part of these changes. To show

this, we simulate our model for different values of the parameter λσ

1-Pr(IPO) Median Age of IPO Failure Rate
λσ = 0.10 12% 3 years 2.7%
λσ = 0.15 36% 6.3 years 5.25%
λσ = 0.20 71% 8.6 years 14.9%

Financial development can therefore have significant effects on the failure rate and the age

of IPO.

To conclude this section, we would like to discuss briefly the issue of firm level volatility.

In the model, we did not need to specify the volatility of cash flows because the optimal

contract depends only on the sufficient statistic Ω. To be more concrete, assume that the

cash flows evolve according to the process

dXt = (μ̃t − αt)dt+ dMt, (18)

where M is a martingale. The process Mt cannot be independent of Zt. For instance, we

could assume that Mt = Zt + M̃t where M̃ is independent of Z. Note that M does not

need to be a Brownian motion: it can include discrete jumps. Note also that the volatility

of M can vary with the age of the firm. The process M does not appear in the solution
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of the model, since the optimal contract depends only on the sufficient statistic Ωt. We

can therefore freely choose the age profile of volatility in order to fit the data. Table 4 in

Davis, Haltiwanger, Jarmin, and Miranda (2006) shows that volatility decreases with age,

and also that the age-profile of volatility is fairly stable over time: volatility decreases with

age roughly in the same way in the 1990s as it did in the 1970s. Moreover, since Fink, Fink,

Grullon, and Weston (2005) have shown that the drop in IPO age can account for most of

the change in the volatility of public firms, it follows that if we match the trend in IPO

age, we can automatically match the trend in volatility, provided that we use the correct

empirical age profile of volatility. This is why we focus on the age of IPO and the failure

rates, and not directly on the volatilities of cash flows among publicly traded companies.

5 Concluding Remarks

We view this paper as making two contributions to the literature. First, we have shown

how one can use differential equations to obtain analytical comparative statics in a dynamic

moral hazard model with optimal contracting, endogenous exit and investment growth op-

tions. Second, we have proposed a complete calibration of the model and we have investi-

gated the quantitative consequences of agency issues. Our results suggest that improvement

in financial contracts can explain some of the observed changes in firm dynamics over the

past fifty years, in particular the decrease in the rate at which firms go out of business and

the decrease in the age at which firms go public.
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A Proof of Proposition 2

For an arbitrary contract ({Ct, t ≤ τL}, τL), under which the agent’s continuation value
follows (15), consider the process

Gt =

Z t

0
e−rsμds+ e−rtb(Wt)

for t ≤ τL, τK . Because b0(W ) > −1 for all W, Gt jumps down when Ct jumps up. Further-
more, when Ct is continuous, we have

dGt = e−rt(μ− rb(Wt) + γWtb
0(Wt) + β2tσ

2b00(Wt)/2− dCt(1 + b0(Wt)))dt+ βtσdZt.

Because b is also a concave function that satisfies (13), it follows and Gt is a supermartingale,
and a martingale if and only if βt = λ and dCt = 0.

By Proposition 1, the principal’s profit at time τK is bounded from above by b̄(WτK ) ≤
b(WτK ), with equality only ifWτK =WK . Therefore, the principal’s expected profit at time
0 is bounded from above by

E

"Z min(τL,τK)

0
e−rsμds+ e−rmin(τL,τK)b(Wmin(τL,τK))

#
= E[Gmin(τL,τK)] ≤ G0 = b(W0).

This bound is attained only for the contract presented in Proposition 2, that is, if βt = λ and
dCt = 0 until the capital upgrade, which happens whenWt hitsWK , and if the continuation
contract is given by Proposition 1 for starting value WK after the capital upgrade. QED

B Implementation with recontracting at time τK

We claimed in Section 1.5, that the optimal contract can be implemented just by specifying
the agent’s compensation {Ct, t ≤ min(τL, τK)} before the IPO and the agent’s payoff WτK
at the time of the IPO. The following lemma proves this claim:

Lemma 2 Whenever it is optimal to wait to upgrade, rather than to upgrade immediately,
the principal and the agent do not have incentives to renegotiate at time τK .

Proof. There are two cases to consider. If b0(WK) = b̄0(WK) ≤ 0, the upgrade point
WK is on the decreasing portion of b̄ and it is not possible for both parties to benefit by
renegotiating away from (WK , b̄(WK)) to another point on b̄. If b0(WK) = b̄0(WK) > 0,
then b(W ) < b(WK) = b̄(WK) −K on [WL,WK) because b is a concave function. In this
case, it would be optimal to upgrade immediately, and to start the agent with a value
W0 > WK that maximizes b̄. To see why, note that b̄(W0) −K > b̄(WK) −K ≥ b(W ) for
all W ∈ [WL,WK ]. QED.

C Proof of Proposition 4

The first part of the proposition is proven in the text. The comparative statics with respect
toK, L̄−L and μ̄−μ follow from the differential equation and the boundary conditions. We
only provide a brief sketch of the proofs here since they are straightforward. For instance,
an increase in μ̄ − μ decreases ∆00 (wK), which makes the function ∆ more concave and
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therefore steeper to the left of wK . To make sure that ∆ (wL) is still equal to L̄− L, it is
clear that wK must decrease when μ̄− μ increases.

Now consider an increase in wL to wL + vl, and let us show that this causes wK to
increase by vk < vl. Denote by ∆̃ the function that solves equation (16) with boundary
conditions

∆̃(wL + vl) = L̄− L, ∆̃(wK + vk) = K, and ∆̃0(wK + vk) = 0,

and let us compare it with the function ∆ that solves (16) with boundary conditions (17).
If we show that

∆̃0(w + vk)−∆0(w) > 0 (19)

for all w < wK , it follows immediately that vl > vk. The boundary conditions together
with equation (16) imply that the first and second derivatives of ∆ and ∆̃ match at wK

and wK + vk respectively, while

∆̃000(wK + vk) = 4γ (wK + vk) (μ̄− μ− rK) > 4γwk (μ̄− μ− rK) = ∆000(wK).

It follows that (19) holds for w < wK sufficiently close to wK . If (19) is ever violated, let
w < wK be the largest value where ∆̃0(w + vk)−∆0(w) = 0. Then, since ∆̃0(w + vk + )−
∆0(w+ ) > 0, it follows that ∆̃00(w+vk)−∆00(w) ≥ 0. At the same time, since (19) holds on
(w,wK), it follows that ∆̃(w+vk) < ∆(w). But then (16) implies that ∆̃00(w+vk) < ∆00(w),
a contradiction. QED.

D Proof of Proposition 7

The proof uses the differential equation

rḡ(w) = μ̄+ γwḡ0(w) +
1

2
ḡ00(w) (20)

and relies on the following lemma:

Lemma 3 Suppose that a function g (w;φ) solves (20) subject to g0 (0) = φ. Then for all
w > 0, g (w;φ) and g0 (w;φ) increase with φ. Reciprocally if g

¡
w;φ1

¢
> g

¡
w;φ0

¢
for some

w > 0, then: φ1 > φ0, g
¡
w;φ1

¢
> g

¡
w;φ0

¢
and g0

¡
w;φ1

¢
> g0

¡
w;φ0

¢
for all w > 0.

Proof. First of all it is clear that for w small and positive, g
¡
w;φ1

¢
> g

¡
w;φ0

¢
since

g0
¡
0;φ1

¢
> g0

¡
0;φ0

¢
. If the ranking was reversed for larger values of w, the two functions

would have to cross. But then they would have two common points, and they would be
identical since the space of they are solutions to the same second order equation. Therefore
g
¡
w;φ1

¢
> g

¡
w;φ0

¢
. Now define

wL = min
©
w ; g0

¡
w;φ1

¢ ≤ g0
¡
w;φ0

¢ª
By continuity, g0

¡
wL;φ

1
¢
= g0

¡
wL;φ

0
¢
. But then, g00

¡
w;φ1

¢
> g00

¡
w;φ0

¢
, and therefore

g0
¡
w;φ1

¢
< g0

¡
w;φ0

¢
at least on a small interval to the left of wL. This contradicts the

definition of wL. Therefore, g0
¡
w;φ1

¢
> g0

¡
w;φ0

¢
for all w ≥ 0. The second part of the

lemma is easily proved using similar arguments. QED.
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We can now proceed to proving parts one and two of Proposition 7.
If the agent has all the bargaining power, the initial condition is determined by b (W0) =

I, where I is the setup cost of the firm, and the condition b0 (W0) < 0. Differentiating the
initial condition, we get

∂b (W0)

∂σ
+

∂W0

∂σ
b0 (W0) = 0

Since ∂b(W0)
∂σ < 0 and b0 (W0) < 0, we see that ∂W0

∂σ < 0.
If the investor has all the bargaining power, then he will choose W0 to maximize b (W0),

so b0 (W0) = 0. Define
ḡ (w) = b̄ (λσw)

Then ḡ(w) satisfies equation (20) with boundary conditions

ḡ(0) = L̄, ḡ0 (wc) = −λσ, and ḡ00 (wc) = 0. (21)

Consider solutions to the equation (20) with a boundary condition ḡ(0) = L and various
slopes ḡ0(0). Lemma 3 shows that the slopes ḡ0(w) are increasing in ḡ0(0) for all w, and so
the minimum slope of ḡ (at point wc) is also increasing in ḡ0(0). See the phase diagram on
Figure 3. It follows that as σ decreases, ḡ0(w) increases at all points.

Recall the definition of ∆ from the proof of Proposition 4. Point w0 = W0/(λσ), the
maximum of b(λσw) = ∆(w) + ḡ(w), is determined by the first-order condition

∆0(w0) + ḡ0(w0) = 0.

Since ḡ0(w0) increases as σ decreases, it follows that w0 also increases. QED

E Closed form expressions for observed quantities

The dynamics of w are given by

dwt = γwtdt+ dZt

We will use Ito’s lemma to obtain the drift of any function f (w) twice continuously differ-
entiable:

df =

µ
γwf 0 +

1

2
f 00
¶
dt+ f 0dZ

The model imposes restrictions on the drift that lead to differential equations of the form

γwf 0 +
1

2
f 00 = h (w) (22)

for some function h (.). We shall then use the following lemma repeatedly

Lemma 4 The solution to equation (22) takes the form

f (w) = f (0) + f 0 (0)
Z w

0
e−γz

2
dz + 2

Z w

0
e−γz

2

µZ z

0
h (s) eγs

2
ds

¶
dz

Proof. Multiply both sides of equation (22) by 2eγw
2

2γweγw
2
f 0 (w) + f 00 (w) eγw

2
= 2h (w) eγw

2

d
³
f 0eγw

2
´
= 2h (w) eγw

2
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so

f 0 (w) = e−γw
2

∙
f 0 (0) +

Z w

0
2h (s) eγs

2
ds

¸
and

f (w) = f (0) +

Z w

0
e−γz

2
dz

∙
f 0 (0) +

Z z

0
2h (s) eγs

2
ds

¸
QED

E.1 Probability of IPO

Consider the probability that an IPO occurs, Pr (τK < τL) = E [1τK<τL ], and define the
function p (w) by

p (w) ≡ Et [1τK<τL | wt = w] .

The drift of p must be zero because it is a martingale. The function p must therefore satisfy
the differential equation

γwp0 (w) +
1

2
p00 (w) = 0 ,

with boundary conditions p (wL) = 0 and p (wK) = 1. Using Lemma 4, it is easy to see that

p (w) =

µZ w

wL

e−γs
2
ds

¶
/

µZ wK

wL

e−γs
2
ds

¶
for all w ∈ [wL, wK ]

The probability of IPO is increasing and concave.

E.2 Age at IPO

The average age of firms when they go public is:

E [τK | τK < τL] =
E [τK · 1τK<τL ]

Pr (τK < τL)
,

whereE [τK · 1τK<τL ] is a martingale. Define the function f (w) ≡ E [τK · 1τK<τL | w0 = w].
This function is such that:

Et [τK · 1τK<τL ] = Et [(τK − t) · 1τK<τL ] + t ·Et [1τK<τL ] = f (wt) + t · p (wt) .

The drift of the left hand side is zero, and since the drift of p is also 0, f (.) must satisfy:

γwf 0 (w) +
1

2
f 00 (w) = −p (w) ,

with boundary conditions f (wL) = 0 and f (wK) = 0. The solution is:

f (w) = 2p (w)×
Z wK

wL

e−γz
2

µZ z

wL

p (s) eγs
2
ds

¶
dz − 2

Z w

wL

e−γz
2

µZ z

wL

p (s) eγs
2
ds

¶
dz .

The average age of IPO firms is therefore:

a (w0) =
f (w0)

p (w0)
= 2

Z wK

wL

e−γz
2

µZ z

wL

p (s) eγs
2
ds

¶
dz− 2

p (w0)

Z w0

wL

e−γz
2

µZ z

wL

p (s) eγs
2
ds

¶
dz .
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E.3 Exit Rate

Private firms enter at w0 and then either go out of business at time τL or go public at time
τK . Define the average age of existing private firms

z (w) ≡ E [min (τL, τK) | w0 = w] .

Since Et [min (τL, τK) | wt = w] = z (wt) + t is also a martingale, the function z (.) must
solve

γwz0 (w) +
1

2
z00 (w) + 1 = 0,

with boundary conditions z (wL) = 0 and z (wK) = 0. The solution is

z (w) = 2p (w)×
Z wK

wL

e−γz
2

µZ z

wL

eγs
2
ds

¶
dz − 2

Z w

wL

e−γz
2

µZ z

wL

eγs
2
ds

¶
dz.

The total exit rate is equal to 1/z, but a fraction p (w0) of the firms go public. Therefore,
the rate at which private firms go out of business is

1− p (w0)

z (w0)
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