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Multiproduct Oligopoly and Bertrand Supertraps

Abstract

We study oligopoly price competition between multiproduct ¯rms, ¯rms whose products
interact in the pro¯t function. Speci¯cally, we focus on the impact of intra-¯rm product inter-
actions on the level of equilibrium prices and pro¯ts. This impact is divided into two e®ects: a
direct e®ect and a strategic e®ect (i.e., through the competitors' actions). We derive conditions
such that, if intra-¯rm product interactions cause prices to decrease (increase) while holding
competitors' prices ¯xed, then the strategic e®ect hurts (bene¯ts) the ¯rm. We also show that,
under reasonable general assumptions, the strategic e®ect more than outweighs the direct ef-
fect, so that equilibrium pro¯ts vary in the direction opposite of the direct e®ect (Bertrand
supertrap). Several instances of Bertrand supertraps are developed. For example, stronger
demand complementarity or economies of scope lead to tougher price competition to an extent
that may decrease pro¯tability (even when the direct pro¯t e®ect is positive). We present a
number of applications of the general results, including learning curves, network e®ects, systems
competition, bundling, switching costs, and internet cross-referencing.

Keywords: Competition, strategic complementarity, pro¯t complementarity, pro¯tability, economies
of scope, learning curves, core competencies, network e®ects, systems competition, bundling,
switching costs, the Internet.

JEL Code Nos.: C7, L1.
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1. Introduction

Most ¯rms produce more than one product: Ford produces cars and trucks; Kodak sells

cameras and ¯lm; TWA o®ers air travel services along various routes; and so fourth. Not only

do these ¯rms sell di®erent products, they sell products that \interact" with each other in

the ¯rm's pro¯t function. For example, if some Ford-loyal consumers are undecided between

buying a car and buying a truck, selling more trucks may imply selling fewer cars. For Kodak,

by contrast, increasing sales of cameras is likely to imply an increase in the sales of ¯lm. As for

TWA, increasing output or capacity in the Chicago-St Louis and St Louis-New York routes is

likely to decrease the cost of o®ering air travel from New York to Chicago, another example of

intra-¯rm products interaction.

Similarly, in a dynamic context, we can interpret a ¯rm selling a given product in di®erent

periods as a multiproduct ¯rm. Speci¯cally, we can interpret the output of a given product in

di®erent periods as di®erent outputs. In this context, interactions across products within a ¯rm

result from dynamic e®ects on the ¯rm's demand or cost function. For example, increasing the

output of aircraft sold today lowers Boeing's cost of selling aircraft next period. We thus have

an additional class of examples of multiproduct oligopoly competition with interactions across

products. Switching costs and dynamic network e®ects would provide additional examples

within the same class.

In this paper we look at oligopoly price competition between multiproduct ¯rms, ¯rms whose

products interact in the ¯rm's pro¯t function, as in the above examples. We are interested in

the impact of intra-¯rm product interactions on the level of equilibrium prices and pro¯ts. We

divide this impact into two e®ects: a direct e®ect and a strategic e®ect which takes place through

the competitors' actions. We show that, under reasonable conditions, the strategic e®ect more

than outweighs the direct e®ect, so that equilibrium pro¯ts vary in the opposite direction of

the direct e®ect. We call this a Bertrand supertrap, a reference to the supercompetitive e®ect

of product interactions on ¯rm competition.1

We present several instances of Bertrand supertraps. For example, we show that ¯rm

pro¯ts are lower the greater the degree of intra-¯rm demand complementarity (that is, demand

complementarity between the products o®ered by a given ¯rm), while pro¯ts are higher with

1The term \Bertrand trap" has been used by some authors (Hermalin 1993) as a reference to the situation

where equilibrium pro¯ts under some form of single-product competition (e.g., Hotelling) remain constant

despite seemingly favorable exogenous changes. For example, if all ¯rms' marginal cost is decreased, the strategic

e®ect (price reduction) exactly cancels the direct e®ect (cost reduction).
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greater demand substitutability. Moreover, increasing the degree of economies of scope, while

lowering the ¯rms' costs, may decrease pro¯tability. Similar e®ects take place in the context of

learning curves, network e®ects, systems competition, bundling, switching costs, and internet

cross-referencing.2

In order to understand the strategic e®ect, consider the thought experiment whereby, as the

level of product interactions within ¯rm i is changed, the actions of ¯rm i's competitors are

set ¯xed at their initial equilibrium level.3 Given this exogenous change in the level of product

interaction, ¯rm i would want to change its prices. We refer to this reaction as the monopoly

e®ect. In other words, the monopoly e®ect is the e®ect on ¯rm i's prices of a change in the

degree of product interaction, keeping other ¯rms' prices constant. If this monopoly e®ect is

in the direction of increasing prices, then the strategic e®ect bene¯ts ¯rm i because of strate-

gic complementarity in prices. That is, in equilibrium, ¯rm i's competitors raise their prices,

which bene¯ts ¯rm i. Conversely, if the monopoly e®ect is in the direction of decreasing prices,

then the strategic e®ect hurts ¯rm i. We characterize the conditions of the pro¯t function

that determine the sign of the monopoly e®ect. Roughly speaking, demand complementarity

and economies of scope imply a price-reduction monopoly e®ect, and consequently a negative

strategic e®ect. In order to make this argument precise, we must distinguish between the cases

when ¯rm i's pro¯t function is and is not supermodular in the vector of all prices. If super-

modularity holds, then the above results apply for all levels of intra-¯rm product interactions.

If supermodularity does not hold, then the results only apply for small degrees of intra-¯rm

product interaction. Supermodularity of the pro¯t function may obtain when, for example,

¯rms sell demand substitutes.

When the direct and strategic e®ects have opposite signs, the natural question is to deter-

mine their relative importance. We show that, for symmetric equilibria and when the entire

market is covered (constant total demand), the strategic e®ect outweighs the direct e®ect: ba-

sically, the direct e®ect is more than \competed away." The idea that the strategic e®ect may

cancel the direct e®ect is not new. For example, under symmetric Hotelling (or Bertrand) com-

petition a (common) decrease in marginal cost leads to a strategic e®ect that exactly cancels

2The competitive price discrimination literature that addresses the issue of product choice (Katz, 1984;

Champsaur and Rochet, 1989; Stole, 1995) is related to our work. However, that literature addresses the

choice of the degree of product interactions, while our focus is the impact of product interaction on pro¯ts. We

brie°y discuss the endogenous choice of product interactions in Section 7 below. Regarding competitive price

discrimination see also Borenstein (1985), Corts (1998), and Armstrong and Vickers (1999).
3
Throughout the paper, we will take prices as the strategic variable. However, some of our results apply

more generally to any strategic variable.
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the direct e®ect of the cost reduction; likewise, a (common) increase in consumer valuations

does not a®ect the equilibrium level of pro¯ts. What is new in our analysis is the idea that the

strategic e®ect may outweigh the direct e®ect in a large range of interesting situations where

the level of intra-¯rm product interactions changes, and where ¯rms compete with multiple

products.4 For example, we show that an increase in economies of scope, though it leads to a

decrease in total and in marginal costs (direct e®ect) implies a decrease in equilibrium pro¯ts

(strategic e®ect greater than direct e®ect).

To conclude this introduction, we describe some of the applications of our general results.

When ¯rms sell demand complements (e.g., cameras and ¯lm), the monopoly e®ect of

greater complementarity is to lower prices: a lower price of a given product generates additional

demand for the ¯rm's other products. It follows (from our results) that greater complementarity

induces more intense competition and lower equilibrium pro¯ts. Conversely, when ¯rms sell

demand substitutes (e.g., online and in-store grocery shopping), an increase in the degree of

substitutability softens competition and leads to greater equilibrium pro¯ts.

If ¯rms enjoy economies of scope, then the monopoly e®ect of an increase in intra-¯rm prod-

uct interactions is for each ¯rm to decrease prices. In fact, lowering the price of good j lowers

the cost of good `: It follows that greater economies of scope induce more intense competition

to the point that equilibrium pro¯ts are lower, even though costs are lower. Conversely, an

increase in the degree of diseconomies of scope implies an increase in equilibrium pro¯ts.

A related application is the case of learning curves in production. The monopoly e®ect

is that a greater degree of learning induces ¯rms to cut prices in order to lower future costs.

Therefore, greater learning implies more intense competition, which in turn results in lower

pro¯ts. This extends Cabral and Riordan (1994) to the case of any number of ¯rms and

continuous output level; it also shows that their learning curve result is part of a general theory

of oligopoly competition with multiproduct ¯rms.

Network externalities cause the monopoly e®ect to be in the direction of cutting prices, in

order to induce a greater future network (Katz and Shapiro, 1986). It may therefore be the

case that pro¯ts are lower with network externalities than without. Similarly, under systems

competition (e.g., hardware/software) ¯rms sell complementary components of a system, and

4Bulow et al. (1985) also point out that supposedly positive exogenous changes in one market may have

negative e®ects in another market because of the strategic interaction between ¯rms. The idea that the strategic

e®ect may dominate the direct e®ect can also be obtained in other settings (without changes in intra-¯rm product

interactions) with one or multiple products (for example, the results in Corts, 1998, can be interpreted in this

spirit).
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therefore the monopoly e®ect is in the direction of cutting prices in order to sell more of one

component and increase demand for the other component. It follows that systems competition

may result in lower equilibrium pro¯ts than the situation where there are no intra-¯rm product

interactions.

Pure bundling can be seen as the extreme case of systems competition (one product can

only be sold jointly with another). We thus provide conditions such that pure bundling implies

lower pro¯ts than no bundling. This is consistent with the results in Whinston (1990), where

bundling is used as an entry deterrent, and where potential competing ¯rms o®er only one

product (see also Nalebu®, 2000). Demand synergies between products within a ¯rm can be

seen as related to systems competition; we show that greater demand synergies may lead to

lower pro¯ts (Strauss, 1999).

We also look at other possible applications of our general results, including switching costs

and internet cross-referencing.

The rest of the paper is organized as follows. The next section goes through some prelim-

inary de¯nitions and assumptions. Section 3 focuses on the strategic e®ect, discusses how the

monopoly e®ect translates into equilibrium behavior under competition, and presents condi-

tions on the pro¯t functions that determine the sign of the monopoly e®ect. Section 4 presents

conditions under which the strategic e®ect outweighs the direct e®ect. An extension of the gen-

eral framework to dynamic problems is presented in Section 5. Section 6 goes through several

applications. Section 7 discusses the case when the level of intra-¯rm product interactions is

endogenous and concludes the paper.

2. Preliminaries

Consider an oligopoly with I price-setting ¯rms. Each ¯rm o®ers a set Ji of products. Let

pi
j
be the price of product j set by ¯rm i, pi = (pi

j
) the vector of ¯rm i's prices, p = (pi) the

vector of all prices, p¡i the price vector of ¯rm i's competitors, and pi
¡j

the vector of ¯rm i's

prices except pi
j
: Firm i's pro¯t function is ¦i(p; s), where s is an exogenous parameter that

measures the level of intra-¯rm product interaction; the role of s is at the center of this paper.

Firms simultaneously set prices in a one-shot game, the equilibrium of which is given by bp.
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The pro¯t function can be written as

¦i(p; s) =
X
j2Ji

pi
j
Di

j
(p; s)¡Ci(Di(p; s); s);

where Di

j
is the demand for product j sold by ¯rm i; Di(p) the vector of ¯rm i's demands, and

Ci(¢) ¯rm i's cost of supplying Di: Two polar cases can be considered: the case when product

interactions occur only through the demand functions, and the case when product interactions

occur only through the cost function.5

Throughout the paper we maintain the assumption that any ¯rm i's pro¯t is increasing in

the rivals' prices (competitive markets):

Assumption 1 (competitive markets): For each ¯rm i,

@ ¦i

@ pkj
¸ 0;

for all k 6= i and j 2 Jk. Moreover, there is at least a j 2 Jk for which the inequality is strict.6

Assumption 1 states that a ¯rm is never worse o® when a competitor raises one of its prices.

This is not a trivial assumption in the case of multiproduct ¯rms. When intra-¯rm product

interactions take place through the cost function, Assumption 1 holds if there are economies

of scope: an increase in a competitor's price increases demand for the ¯rm's products, which

in turn unambiguously decreases costs and increases pro¯ts. Similarly, product interactions

through the demand side when ¯rms sell substitute products would also satisfy this assumption.

If, however, the product interactions are through the cost function and involve diseconomies of

scope, or through the demand side and involve demand complements, then Assumption 1 only

holds if the competitive e®ect is greater (in terms of pro¯ts) than the e®ect of diseconomies

of scope or demand complementarity. Assumption 1 also holds in the case when ¯rms sell

products that are complements within the ¯rm but products are not complements across ¯rms

(see the example below of demand synergies). Finally, Assumption 1 holds, if in an obvious

way, for small levels of intra-¯rm product interaction.

5A formal de¯nition of these cases is presented in the next section.
6
We assume throughout that the pro¯t function is di®erentiable and continuous. Several of our results can be

derived without these assumptions, using the methods presented in Milgrom and Roberts (1990) or Villas-Boas

(1997).
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As mentioned above, we paramaterize the pro¯t functions by s 2 IR: The role of this

exogenous parameter is de¯ned by the following assumption:

Assumption 2 (intra-¯rm product interactions): For any ¯rm i and products j and ` (j 6= `)

sold by ¯rm i,
@

@s

@2¦i

@pi
j@p

i

`

¸ 0 and
@2¦i

@pi
j@p

i

`

¯
¯
¯
¯
¯
s=0

= 0;

with strict inequalities for at least one ¯rm i:

In order to better describe the impact of s, we introduce the concepts of pro¯t complemen-

tarity and substitutability:

Definition 1 (pro¯t complements/substitutes): Products j and ` (j 6= `) are said to be pro¯t

complements for ¯rm i if and only if @2¦i

@ pi
j

@ pi
`

¸ 0: Products j and ` (j 6= `) are said to be pro¯t

substitutes for ¯rm i if and only if @2¦i

@ pi
j

@ pi
`

· 0:

Given Assumption 2, we have pro¯t complementarity for positive s and pro¯t substitutabil-

ity for negative s: An increase in the absolute value of s corresponds to an increase in the

degree of product interactions within a ¯rm. For s positive this is an increase in pro¯t comple-

mentarity; for s negative we have an increase in pro¯t substitutability. As we will see below,

pro¯t complementarity is implied by demand substitutability or economies of scope. Pro¯t

substitutability holds when ¯rms sell demand complements or have diseconomies of scope.7

We make one ¯nal general assumption regarding interaction across products from di®erent

¯rms:

Assumption 3 (strategic complementarity): For each pair of ¯rms i; k; for all j 2 Ji there is

a ` 2 Jk such that
@2¦i

@ pij @ pk
`

> 0:

Furthermore, for any products j 2 Ji and ` 2 Jk, we have

@2¦i

@pij@p
k

`

¯
¯
¯
¯
¯
s=0

¸ 0:

7Throughout the paper, we use the term economies (and diseconomies) of scope to mean pro¯t complemen-

tarity (substitutability) under cost interactions. This de¯nition is related, but not identical, to the de¯nition of

economies of scope used in the literature (see Panzar, 1991).
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Assumption 3 corresponds to the traditional assumption of strategic complementarity in

prices when ¯rms sell substitute products. Here, it is extended to the case in which each ¯rm

sells several products: if the price of a competitor's product is increased, and if everything else

is kept constant, then the ¯rm would like to increase at least one of its prices. This assumption

also implies that, for no product interaction (s = 0), products across ¯rms are substitutes or

independent.

In some applications, a particular form of strategic complementarity may occur which in-

volves all products in the market (we would have supermodularity). We call it strong strategic

complementarity and de¯ne it formally as:

Definition 2 (strong strategic complementarity): If, for all ¯rms i and k and for all products

j 2 Ji and ` 2 Jk

@2¦i

@pij@p
k

`

¸ 0;

then strong strategic complementarity holds.

When intra-¯rm product interactions result from ¯rms selling substitute products, we ex-

pect strong strategic complementarity to hold, since all the products in the market are demand

substitutes. On the other hand, when intra-¯rm interactions result from ¯rms selling comple-

ments, strong strategic complementarity may not hold, because a ¯rm could be selling a product

that is a complement with respect to a product sold by another ¯rm. For cost interactions,

strong strategic complementarity will likely hold if there are diseconomies of scope: an increase

in pk
`
leads to an increase for some j 2 Ji of D

i

j
; the ¯rm's demand of product j, which results

in an increase in the marginal cost of ¯rm i's other products, and an increase in the optimal

levels of these products' prices.

The market equilibrium bp(s) is determined by the ¯rst-order conditions for all the ¯rms,

@¦i(bp(s); s)
@pij

= 0; 8i; j 2 Ji:

We assume throughout that the second-order conditions are satis¯ed and that the equilibrium

is unique for any s.8 From the ¯rst-order conditions for each ¯rm i, we can write ¯rm i's best-

response functions as pi = bi(p¡i; s); where bi is a vector of functions. The monopoly e®ect of s;

8If the equilibrium is not unique, then the results below present comparative statics on the upper and lower

bounds of the equilibrium set (see Milgrom and Roberts, 1990). In the applications presented below, the

equilibrium is always unique.
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that is, the e®ect of a change in s holding competitors' prices constant, can be obtained from the

derivative of bi with respect to s: Obviously, in equilibrium we also have bpi(s) = bi(bp¡i(s); s); 8i:
Our main goal is to determine the impact on equilibrium prices, bp(s); and pro¯ts, ¦i(bp(s); s);

of an increase in the degree of product interactions, s: By the envelope theorem, we know that

d¦i(p̂(s); s)

d s
=

@¦i(p̂(s); s)

@ s
+
X
k6=i

X
j2Jk

@¦i(p̂(s); s)

@ pkj

dbpk
j
(s)

ds
:

The ¯rst term on the right-hand side is the direct e®ect of intra-¯rm product interactions on

pro¯ts. The second term is the strategic e®ect (that is, through the competitors' actions). The

total e®ect is simply the sum of the direct and strategic e®ects. We analyze the strategic e®ect

in the next section. Section 4 compares the strategic and direct e®ects in order to evaluate the

total e®ect.

3. The Strategic Effect

In this section, we ¯rst characterize the strategic e®ect given the monopoly e®ect. This

analysis drives the main results in the paper. We then show how the degree of intra-¯rm

product interactions a®ects the monopoly e®ect for the cases of interactions in demand and in

costs. Finally, we link these two ideas to obtain general results on the strategic e®ect.

3.1. Main Idea

In this subsection, we provide conditions under which the strategic e®ect is positive or negative.

Assumption 1 implies that, if for all k 6= i and j 2 Jk;
dbpk

j
(s)

ds
¸ 0, then the strategic e®ect on

¦i is positive. Similarly, if for all k 6= i and j 2 Jk;
dbpk

j
(s)

ds
· 0, then the strategic e®ect on ¦i is

negative.

As discussed above, the monopoly e®ect (the optimal reaction to a change in s, holding

competitors' prices ¯xed), is determined by the partial derivative
@bi

j
(p¡i;s)

@s
: In order to determine

the direction of the strategic e®ect, given the monopoly e®ect, one then has to relate
dbp

k

`
(s)

ds
and

@bi
j
(p¡i;s)

@s
for all ¯rms i and k; j 2 Ji; and ` 2 Jk: This is done by the following result for pro¯t

complementarity (s > 0) and pro¯t substitutability (s < 0).

Theorem 1 (strategic e®ect): If s > 0 and strong strategic complementarity holds, then the

strategic e®ect has the same sign as the monopoly e®ect, that is,
dbp

i

j
(s)

ds
¸ 0(· 0); 8i; j 2 Ji; if
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@b
i

j
(p¡i

;s)

@s
¸ 0(· 0); 8i; j 2 Ji. If s < 0 or strong strategic complementarity does not hold, the

same statement is true if jsj is su±ciently small and the monopoly e®ect is represented with a

strict inequality.

Consider the thought experiment whereby all of ¯rm i's competitors' actions are kept ¯xed.

This is as if ¯rm i were a monopolist. Theorem 1 states that, if an increase in s were to lead the

\monopolist" ¯rm i to increase its prices, then, in the oligopoly equilibrium, all prices increase

as a result of an increase in s:

The proof of this and the following results may be found in the Appendix. Theorem 1

follows from standard supermodularity results. If pro¯t complementarity and strong strategic

complementarity hold, then the pro¯t functions are supermodular in all prices, both within and

across ¯rms. If either pro¯t complementarity or strong strategic complementarity do not hold,

then we must make sure product interactions do not outweigh the cross-¯rm pricing e®ects;

thus the condition that s be small in absolute value.

The next subsection characterizes the monopoly e®ect as a function of conditions on the

pro¯t function.

3.2. Monopoly E®ect

This subsection derives conditions which determine the sign of the monopoly e®ect.9 We then

link these conditions directly to the strategic e®ect identi¯ed above.

As stated above, an important part of our analysis is to see how changes in s a®ect the

marginal pro¯t with respect to each of ¯rm i's prices. Remember that we have pro¯t comple-

mentarity when s > 0 and pro¯t substitutability when s < 0:

Theorem 2: If s > 0 and @2¦i

@pi

j
@s

> 0 ( @2¦i

@pi
j
@s

< 0) for all j 2 Ji; then the monopoly e®ect is

positive (negative), that is,
@bi

j
(p¡i;s)

@s
> 0 (

@bi
j
(p¡i;s)

@s
< 0) for all j 2 Ji: If s < 0, jsj is small,

and @2¦i

@pi
j
@s

> 0 ( @2¦i

@pi
j
@s

< 0) for all j 2 Ji; then the monopoly e®ect is negative (positive), that is,

@bi
j
(bp¡i;s)

@jsj
< 0 (

@bi
j
(bp¡i;s)

@jsj
> 0) for all j 2 Ji:

9These conditions formalize known results from the analysis of monopoly pricing. See, for example, Tirole

(1988, pp. 69-72). Readers who are familiar with these results may want to skip directly to Section 4.
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This result simply states that the monopoly e®ect has the same sign as the impact of the

product interaction parameter on each product's price marginal pro¯t. For pro¯t complemen-

tarity the result holds for any degree of product interactions because of the supermodularity

results. The case of pro¯t substitutability is similar, but one must make sure that the intra-¯rm

product interactions are not so great as to reverse the e®ects of exogenous changes in s: This

implies the condition that jsj be small.

The natural next step is to derive conditions that determine the sign of @2¦i

@pi
j
@s
. We consider

separately the cases of demand and cost interactions.

Definition 3 (demand interactions): Under the demand interactions case, ¯rm i's pro¯t func-

tion can be written as

¦i(p; s) =
X

j2Ji

pijD
i
j(p

i
j; sp

i
¡j; p

¡i)¡
X

j2Ji

Ci
j(D

i
j(p

i
j; sp

i
¡j; p

¡i));

with
@Di

j

@(spi
k
)
> 0 for k 6= j: Moreover, the second derivatives of the demand and cost functions

are small compared to the ¯rst derivatives.

It can be easily checked that the conditions for demand interactions satisfy Assumption 2.

When s = 0, the products sold by ¯rm i are independent, given the prices of the other ¯rms.

When s is positive, the ¯rm sells demand substitutes; when s is negative, the ¯rm sells demand

complements.10

We can then obtain the following result:

Proposition 1: If jsj is small, then, under demand interactions, @2¦i

@pi

j
@s

> 0 for all i; j 2 Ji:

Linking this result to Theorem 2, we can see that the monopoly e®ect is to increase prices if

the ¯rm sells product substitutes and to decrease prices if the ¯rm sells product complements.

Let us consider now the case of product interactions in the cost functions.

10
Note that our de¯nition of demand interactions only allows for e®ects on D

i

j
through p

i

¡j
. The results

presented here are robust to the introduction of additional e®ects so long as they are small with respect to the

main e®ect as in De¯nition 3. Assuming the second derivatives to be small allows us to concentrate on the ¯rst

order e®ects.
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Definition 4 (cost interactions): Under the cost interactions case, ¯rm i's pro¯t function

may be written as

¦i(p; s) =
X

j2Ji

pi
j
Di

j
(pi

j
; p¡i)¡

X

j2Ji

Ci

j
(Di

j
(pi

j
; p¡i); sDi

¡j
(pi
¡j
; p¡i)):

Moreover,
@Ci

j

@(sDi

k
)
< 0,

@2Ci

j

@Di

j
@(sDi

k
)
< 0 for k 6= j; and

¯̄
¯̄ @2Ci

j

@(sDi

k
)@(sDi

`
)

¯̄
¯̄ is small compared with

¯̄
¯̄ @2Ci

j

@Di

j
@(sDi

k
)

¯̄
¯̄ for k; ` 6= j:

It can be easily checked that the conditions for the cost interactions case satisfy Assumption

2. When s = 0; the products sold by ¯rm i are independent. When s is positive, the ¯rm enjoys

economies of scope (see Footnote 7), while when s is negative the ¯rm has diseconomies of scope.

We can then obtain the following result:

Proposition 2: Under cost interactions, @2¦i

@pi

j
@s

< 0 for all i; j 2 Ji:

Linking this result to Theorem 2, we can see that the monopoly e®ect is to decrease prices

if the ¯rm has economies of scope and to increase prices if the ¯rm has diseconomies of scope.

3.3. General Result

Building directly on Theorems 1 and 2 and on Propositions 1 and 2, we can now derive general

results of the sign of strategic e®ect given conditions on the payo® functions. We separate the

results for pro¯t complementarity (s > 0) and pro¯t substitutability (s < 0).

Theorem 3: If s > 0 and strong strategic complementarity holds, then the strategic e®ect is

positive (negative), that is,
dbpi

j
(s)

ds
¸ 0 (

dbpi
j
(s)

ds
· 0) for all i; j 2 Ji; if

@2¦i

@pi
j
@s

> 0 ( @2¦i

@pi
j
@s

< 0) for

all i; j 2 Ji. In particular, the strategic e®ect is positive under demand substitutes and negative

under economies of scope. If strong strategic complementarity does not hold the results still hold

for s small.

Theorem 4: If s < 0 and jsj is small, then the strategic e®ect is negative (positive), that is,
dbpi

j
(s)

djsj
· 0 (dbp(s)

djsj
¸ 0) for all i; j 2 Ji; if

@2¦i

@pi
j
@s

> 0 ( @2¦i

@pi
j
@s

< 0) for all i; j 2 Ji: In particular,

the strategic e®ect is negative under demand complements and positive under diseconomies of

scope.
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4. Total Effect in Symmetric Markets

In the previous section we have determined the sign of the strategic e®ect. In other words, we

have determined whether an increase in s leads to an increase or a decrease in equilibrium prices.

This tells us something about the impact of s on ¯rm pro¯tability through the competitors'

prices. However, changes in s also have a direct e®ect on pro¯ts. The question is then to

determine the value of the total e®ect of a change of the degree of intra-¯rm product interactions

on equilibrium pro¯ts.

Our analysis in this section is restricted to symmetric equilibria of symmetric markets.

We make the following assumption regarding the equilibria in the symmetric markets we are

considering.

Assumption 4 (symmetric equilibrium): There exists a unique equilibrium, bp, which is sym-

metric: bpi = bpk; 8i; k.

In symmetric industries all ¯rms carry the same products, so that each ¯rm's product j is

the same as any other ¯rm's. We also assume that, for each product, the market is fully covered

in equilibrium (total demand is constant), so that the only e®ect of prices is to divide demand

across ¯rms:

Assumption 5 (market fully covered): For every j 2 Ji and s,
P

I

i=1
Di

j
(bp; s) = Dj.

We present two results, one for demand interactions and another for interactions in the cost

function.

Theorem 5 (demand interactions): Consider the demand interactions case. If ¯rms sell de-

mand substitutes (s positive) then the total e®ect is positive, that is, pro¯ts increase in the

degree of intra-¯rm demand substitutability. If ¯rms sell demand complements (s negative) and

the degree of complementarity is small (jsj is small) then the total e®ect is negative, that is,

pro¯ts decrease in the degree of intra-¯rm demand complementarity.

This result states that competing ¯rms bene¯t from intra-¯rm demand substitutability,

while they are hurt by demand complementarity. That is, the strategic e®ect characterized in

the previous section dominates, even though the direct e®ect could be to decrease pro¯ts under

demand substitutability, or to increase pro¯ts under demand complementarity.

Suppose now that all intra-¯rm product interactions take place on the cost side. Our second

result in this section allows for a full characterization of the total e®ect.

13



Theorem 6 (cost interactions): Consider the cost interactions case and suppose that @

@s

@
2
C

i

@Di2

j

·

0;8i; j: If there are economies of scope (s positive), then the total e®ect is negative, that is, pro¯ts

decrease with the degree of economies of scope. If there are diseconomies of scope (s negative),

then the total e®ect is positive, that is, pro¯ts increase in the degree of diseconomies of scope.

This result states that in symmetric, fully-covered markets, competing ¯rms are hurt by

economies of scope while they bene¯t from diseconomies of scope. This means that the strategic

e®ect, characterized in the previous section, dominates the direct e®ect. Although the direct

e®ect of greater economies of scope may be to improve pro¯ts, the total e®ect involves lower

pro¯ts.11

The above Bertrand supertrap results are obtained for total market coverage and symmetry.

By continuity, small deviations from these conditions do not change the results. However, note

that one may reverse the results if we have a large deviation from the above conditions. A

downward sloping market demand curve may imply a more favorable total e®ect than we

considered. For example, consider the case of economies of scope. An increase in s implies a

positive direct e®ect (cost savings) and a negative strategic e®ect (lower prices). If the market

demand is downward sloping, then we would expect the strategic e®ect to be less negative

than in the ¯xed total demand case, perhaps to an extent that the direct e®ect dominates the

strategic e®ect. Likewise, in an asymmetric oligopoly, the strategic e®ect on a large ¯rm's pro¯t

is likely to be smaller; it is therefore possible that the total e®ect has the same sign as the direct

e®ect. In fact, in the limit of monopoly (the extreme of an asymmetric oligopoly), the strategic

e®ect is zero and the total e®ect has the same sign as the direct e®ect.

5. Dynamic Market Interactions

As mentioned in the introduction, we can think of multiperiod competition as a particular

case of multiproduct competition. Suppose that each ¯rm o®ers one product over T periods.

This situation is analogous to that of a ¯rm selling T products. Intra-¯rm product interactions

would then correspond to dynamic interactions in the production or sale of the ¯rm's product.

Examples of this are competition with learning curves, network externalities, or switching

11The condition that
@

@s

@
2
C

i

@Di2

j

· 0 simply captures the idea that when there are economies (diseconomies) of

scope there are no diseconomies (economies) of scale.
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costs. In these situations, the results of the previous sections still apply if we look at open-loop

equilibria, that is, the case when all prices are set at the beginning of the game.

In most cases, however, ¯rms are able to change their prices at di®erent moments in time.

It thus makes sense to focus on Markov perfect equilibria, that is, equilibria such that the ¯rms'

strategies in each period are only a function of the payo®-relevant state variables.12

Suppose that, in each of two periods, I symmetric ¯rms sell one product each.13 In period

t, ¯rm i sets price pi
t
: Firm i's ¯rst-period pro¯t is given by ¼i

1
(p1), where pt = (pi

t
). Firm i's

second-period pro¯t is given by ¼i

2
(p2; p1; s):

14 The second period pro¯t is discounted by the

factor ±, so that ¯rm i's net present value in the ¯rst period is ¼i

1
(p1) + ±¼i

2
(p2; p1; s):

15 We

focus on the symmetric equilibrium of the game and assume that jsj is small. Assumption 2

corresponds in this case to @

@s

@
2
¼
i

2

@pi
1
@pi

2

¸ 0 and
@
2
¼
i

2

@pi
1
@pi

2

¯
¯
¯
¯
s=0

= 0:

The second-period equilibrium is derived from
@¼i

2

@pi
2

= 0; 8i; from which we obtain the equi-

librium price pi
¤

2
(p1; s) for each ¯rm i: First-period equilibrium prices, in turn, are derived

from
@¼i

1

@pi
1

+ ±
@¼i

2

@pi
1

+ ±
X

k6=i

@¼i

2

@pk
2

@pk
¤

2

@pi
1

= 0: (1)

The ¯rst two terms of (1) are exactly as in the previous sections. The third term is speci¯c to

dynamic games. It corresponds to the impact of ¯rm i's ¯rst-period price on its competitors'

second-period prices. Our main point is that, if the sum of the second and third terms has the

same sign as the second term, then the results in the previous sections will still go through. To

put it di®erently, in order for the results from the static game to extend to dynamic games, it

is necessary that the third term does not outweigh the e®ect of the second term.

The condition that the sign of
@¼

i

2

@pi
1

is the same as the sign of
@¼

i

2

@pi
1

+ ±
P

k6=i

@¼
i

2

@pk
2

@p
k
¤

2

@pi
1

is quite

natural and will hold under a variety of applications. For example, under cost interactions the

12See Maskin and Tirole (1997) for a de¯nition of Markov perfect equilibria. Under general conditions this

set of equilibria is equal to the set of closed-loop equilibria.
13For the two-period horizon being considered the set of Markov perfect equilibria is equal to the set of

subgame perfect equilibria.
14In a longer-horizon model, ¼

i

2
(p2; p1; s) would represent the net present value of pro¯ts in the second and

future periods.
15Note that the computation of the pro¯t function in the ¯rst period can be quite complicated because ¯rst-

period demands may also depend on consumer expectations of second-period prices (as, for example, in markets

with switching costs or network externalities). This e®ect could make ¯rst-period pro¯ts a function of the

intra-¯rm product interaction parameter, s: We rule out this possibility in order to simplify the analysis, but

the results presented here still go through if the consumer expectations e®ect is not too large (for example, it

is zero under cost interactions or myopic consumers).
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condition implies that a ¯rm bene¯ts from having a lower cost even though its competitors

may behave more aggressively because of the ¯rm's lower cost; under demand interactions, the

condition implies that the direct impact of the ¯rst-period demand on second-period pro¯ts

dominates any possible e®ect through the competitors' actions.

In terms of the pro¯t function, the precise condition under which the above holds true is

given by the following result:

Theorem 7 (dynamic market interaction): Consider the symmetric equilibrium of a symmet-

ric industry and suppose that s is close to zero. First-period prices are decreasing in s (negative

strategic e®ect) if

@2¼i

2

@s@pi1
+

I ¡ 1

(a¡ b)(a+ b(I ¡ 1))

@¼i

2

@pk2

"
a
@

@s

@2¼i

2

@pi2@p
k
1

¡ b
@

@s

@2¼i

2

@pi2@p
i
1

#
< 0; (2)

where a ´ ¡
@2¼i

2

@pi
2

2

; and b ´ ¡
@2¼i

2

@pi
2
@pk

2

; with k 6= i: If condition (2) is not satis¯ed then equilibrium

¯rst-period prices are increasing in s:

Assuming that the expression in (2) has the same sign as
@
2
¼
i

2

@s@pi
1

{ as indeed is the case in the

applications we consider below { we can now state the dynamic version of the results presented

in the previous sections. Speci¯cally, when second-period demand is increasing in ¯rst-period

demand (because of, for example, switching costs or network e®ects), ¯rst-period prices are

lower the greater the degree of switching costs or network e®ects. More generally, ¯rst-period

prices are decreasing in the degree of dynamic demand complementarity. Conversely, ¯rst-

period prices are increasing in the degree of dynamic demand substitutability.

Turning to cost interactions, if each ¯rm's second-period costs is decreasing in its ¯rst-

period output (learning curve), then ¯rst-period prices are lower the \steeper" the learning

curve. Similarly, if greater production in the ¯rst period increases costs in the second period,

then ¯rst-period prices are higher the greater the e®ect of ¯rst-period production on second-

period costs.

As in Section 4, we can also look at the total e®ect of dynamic intra-¯rm interactions.

Suppose, as before, that the market is fully covered in both periods. Suppose additionally that

¯rst-period prices a®ect the second-period pro¯ts through the di®erence between ¯rst-period

prices, that is,

¼i

2
(p2; p1; s) = ¼i

2
(p2; s(p

i

1
¡ p1

1
); :::; s(pi

1
¡ pI

1
)): (3)
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Then, because we are considering a symmetric equilibrium, changes in s do not a®ect equi-

librium pro¯ts in the second period.16 Moreover, since the market is fully covered in the ¯rst

period, the total e®ect is determined by the ¯rst-period equilibrium prices. We thus conclude

that the total e®ect is positive or negative under the same conditions as those derived above

for the ¯rst-period strategic e®ect.

6. Applications

As suggested by the examples in the introduction, intra-¯rm product interactions are a

fairly prevalent phenomenon. In this section, we present a series of applications of our general

framework.

6.1. Economies of scope

As discussed above, the case of economies of scope is a direct application of our general results,

and in a fully-covered symmetric market pro¯ts decrease with greater economies of scope.

Consider the following speci¯c example to illustrate the result. Suppose that two ¯rms compete

in two products. Each product is characterized by a Hotelling demand: there is a mass one

of consumers uniformly distributed along a unit segment; consumers pay a transportation cost

of t per unit of distance; and ¯rms are located at the extremes of the segment. The demands

for the two products are independent and equal to Di

j
(pi

j
; pk

j
) = 1

2
+

pk
j
¡pi

j

2t
for all i; k 6= i; and

j: Suppose also that each ¯rm's cost function is given by C = cq1 + cq2 ¡ sq1q2; where q1 and

q2 represent the outputs of product 1 and 2 by the ¯rm, respectively, and are equal to each of

the ¯rm demands for each product (this notation for outputs is used throughout this section).

Thus, s measures the degree of economies of scope. It can be easily checked that this example

satis¯es the de¯nition of cost interactions introduced earlier.

Firm i's pro¯t function is given by

¦i =
1

2t

0
@

2X
j=1

(t+ pk
j
¡ pi

j
)(pi

j
¡ c) +

s

2t

2Y
j=1

³
t+ pk

j
¡ pi

j

´
1
A ; with k 6= i:

16
This assumption is satis¯ed in all the examples of the applications we consider below.
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Deriving the ¯rst-order conditions and solving for a symmetric equilibrium yields

bpi
j
= c+ t¡

1

2
s:

Substituting in the pro¯t function and simplifying, we get

¦i = t¡
1

4
s: (4)

In other words, equilibrium pro¯ts are lower the greater the degree of economies of scope.

The direct e®ect of an increase in s is clearly positive: @ ¼i

@ s
= qi

1
qi
2
. Equation (4) thus implies

that the strategic e®ect more than outweighs the direct e®ect { a Bertrand supertrap. This

result could also be derived from our Theorems 3 and 6. In fact, it is straightforward to show

that the example satis¯es the theorems' conditions.

A possible real-world application of these results is telecommunications. Recently, Bell

Atlantic was allowed to enter the long-distance market.17 This event signals \a new era of

competition in telecommunications markets," one where companies will o®er both local and

long-distance services. This raises the question of how prices and pro¯ts will change in com-

parison to the case when local and long-distance services are o®ered by separate companies.

Suppose the initial situation is characterized by 2I ¯rms, I competitors in long-distance and I

competitors in local services, the latter being di®erent from the former.18 Consider a new situa-

tion when there are I ¯rms, each o®ering both local and long-distance services. Our theoretical

results suggest that, if there are cost e±ciencies in o®ering local and long-distance, in the form

modeled above, then equilibrium prices and pro¯ts will be lower in the \global" competition

scenario.

6.2. Core competencies

One possible implication of the core competencies hypothesis is that pro¯tability is greater

when a ¯rm focuses on a small set of products or services { its core competencies (Prahalad

and Hamel, 1990). For example, it may be that managers cannot pay enough attention to

any particular activity when the ¯rm is involved in too many activities. This can be modeled

17\First Baby Bell To Gain Approval for Long Distance," The New York Times, December 22, 1999.
18There is still relatively little competition in local telecommunications. Our results would also apply to the

case when local telecommunications are a monopoly.
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by a cost function that exhibits diseconomies of scope: it is more costly to produce q1 and q2

together then it is to produce both separately. If we believe that these diseconomies of scope

are valid at the margin, then we have the reverse of the case considered before: industry pro¯ts

are greater when two ¯rms produce two products each than when there are four ¯rms, each

producing one product. Even though the direct e®ect of multi-product ¯rms spinning o® one of

their products is positive, the total e®ect is negative: a \focused" ¯rm is not only more e±cient

but also more aggressive, to the point that, in equilibrium, price cuts outweigh cost savings.

6.3. Demand synergies

Consider now the case of \demand synergies:" greater sales of ¯rm i's product j increases the

demand for ¯rm i's product `: One important instance of this setting is internet software. Good

j might be a browser plug-in and good ` the software necessary for web site managers to create

¯les downloadable with that plug-in. For example, Acrobat reader and Acrobat writer would

be goods j and `; respectively; or RealPlayer and the software that creates ¯les to be read with

RealPlayer. In these examples, the greater the number of users of a given plug-in, the greater

value web site managers have in creating ¯les under that plug-in's format { and the greater

the demand for the software necessary to create such ¯les. These e®ects result in demand

complementarity, and applying the results above we know that greater demand synergies may

yield lower equilibrium pro¯ts.

Consider the following speci¯c example of this situation with duopoly competition, where

¯rms o®er two products subject to these cross-market e®ects (Strauss, 1999). Speci¯cally, each

¯rm i = 1; 2 o®ers a product A (demanded by Type A buyers) and a product B (demanded by

Type B buyers). Consumers of each type are uniformly distributed along Hotelling segments

and ¯rms are located at the extremes of the segments. Each Type B's valuation (for a B

product) is given by r minus the cost of \traveling" to the seller, which is equal to the distance

traveled. For Type A consumers, however, gross valuation for ¯rm i's A product also includes

the term esqiB, where q
i
B is demand for ¯rm i's B product, and es = ¡s > 0: So, continuing with

the above example, qi
B
would be the number of consumers buying ¯rm i's plug-in and qi

A
the

number of web site managers buying ¯rm i's software.

It can be shown that the demand for product B is given by qi
B
= Di

B
(pi

B
; pk

B
) =

1+pk
B
¡pi

B

2
(as

in a standard Hotelling model), whereas demand for product A is given by qi
A
= Di

A
(pi; pk) =

1+pk
A
¡pi

A
+espk

B
¡espi

B

2
: Finally, assuming zero costs (for simplicity), ¯rm i's pro¯ts are given by

¦i = pi
A
qi
A
+ pi

B
qi
B
. Straightforward di®erentiation yields

@Di

A

@es
= (pk

B
¡ pi

B
)=2, which is zero in a
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symmetric equilibrium,
@Di

A

@pi
A

= ¡1=2, which is independent of es, and
@Di

A

@pi
B

= ¡es=2, which is zero

at es = 0 and decreasing in es: We thus have demand complementarity. Theorem 4 implies that,

if es is small, then an increase in es has a negative strategic e®ect. Moreover, Theorem 5 implies

that the total e®ect is also negative. We thus conclude that equilibrium pro¯ts are lower the

greater the degree of demand synergies, a result derived in Strauss (1999).

6.4. Click and mortar

As e-commerce booms, many ¯rms are linking their stores to their web sites. Other retailers,

such as Wal-Mart and K-Mart, have formed partnerships with Internet ¯rms. The goal of these

e®orts is not only to shift from store sales to online sales but rather, according to the ¯rms,

to create a synergy that will increase total sales. Some retailers claim they are already seeing

growth in one selling channel increase sales in another one. The president of Sharper Image,

for example, states that \all three channels [stores, Internet and catalogs] are growing at a nice

pace. Cannibalism is minimal."19

Suppose that the alliance between stores and online sellers (bricks and clicks) extends to

joint pricing decisions. (In fact, this is the right assumption if they are jointly owned.) Then our

analysis of the demand synergies case would indicate that total industry pro¯ts are lower under

click-and-mortar competition than in the case when stores and Internet sellers are independent.

As before, the reason is that the alliance induces ¯rms to price more aggressively: one extra

online sale, for example, implies not only the extra margin from the online sale but also a

fraction of an extra sale in the corresponding store.

In other cases, such as grocery shopping, there are reasons to believe that online and in-

store sales are substitutes, not complements. In this case, our prediction would be the opposite,

namely that industry pro¯ts are greater if retailers and online sellers are linked. In a recent

article on the future of online retailer Webvan, it was stated that

Many . . . caution Webvan against dropping its prices to garner customers. The

rabid price competition that was once the premise of the Internet ended up being a

death sentence to many retailers . . .

Webvan [should not] avoid alliances with traditional retailers: they need each other

. . . Don't give consumers an either-or choice between o²ine and online purchasing

19\Retailers Strive for Shopping Synergy," The Wall Street Journal, December 20, 1999.
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of consumables.20

Our analysis corroborates the view that online retailers such as Webvan would be better o® if

linked to traditional retailers, among other reasons because this would soften price competition.

6.5. Systems competition

Suppose that consumers buy systems composed of J components, e.g., a computer and a

computer monitor in the case J = 2. Suppose moreover that I ¯rms supply each of the

J components. Each consumer buys one \system" and has a valuation vi
j
for ¯rm i's jth

component. Consumers can either mix and match components from di®erent ¯rms or buy a

\system" from ¯rm i. Let es be the bene¯t that consumers derive from buying a ¯rm i-only

\system", with es = ¡s > 0: How do equilibrium pro¯ts vary as a function of es? Consider ¯rst

the case when es = 0. In this case, ¯rm i's demands for its J products are independent:
@D

i

`

@pi
j

= 0.

Consider now the case when es is positive. In this case, some consumers buy ¯rm i's products

as a \system." It follows that
@Di

`

@pi
j

· 0. This suggests that demand complementarity applies

and, as es increases, ¯rm pro¯ts decrease.

6.6. Bundling

Pure bundling may be interpreted as the limit of systems competition when, for a very high es;

consumers only buy \systems" from the same ¯rm. The above analysis suggests that competi-

tion with pure bundling leads to lower equilibrium payo®s than no bundling. As an illustration,

consider the case of a double-Hotelling demand system (J = 2), whereby consumers are uni-

formly and independently distributed along two unit segments (each consumer has a location

in each of the segments). Each consumer buys one pair of products. Under no bundling, equi-

librium pro¯ts are the sum of two Hotelling pro¯ts. Under pure bundling, it is as if consumers

were only buying one product. Since the valuations for the components are independent, it is as

if ¯rms were located at the extreme of a segment of length two. The density of consumers along

this segment is triangular, with a value of one at the middle (as in the simple Hotelling game).

Therefore, the equilibrium price is the same as for each of the components under no bundling

which means that the equilibrium pro¯ts under pure bundling are one half of the equilibrium

pro¯ts under no bundling.

20\Will Webvan Ever Find a Better Way to Bring Home the Bacon?," The Wall Street Journal, October 2,

2000.
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The result that bundling makes ¯rms more aggressive is not novel. Whinston (1990), for

example, considers a model of a monopolist in a given market who leverages its power into

a second market. Tying sales of the ¯rst and second products may allow the monopolist to

drive rivals out of the second market (the tied good market).21 Although the context in which

Whinston looks at bundling is di®erent from ours, the intuition for the result is the same.

6.7. Switching costs

In several markets consumers incur costs if they choose to switch sellers between periods |

switching costs. This case can then be construed as a case of dynamic market interactions with

intertemporal demand complementarity. That is, a lower price in the ¯rst period yields a great

pro¯t in the second period. In relation to the previous section, such a model would have two

additional e®ects. First, the switching costs could a®ect the demand own-price sensitivity in

the second period. Second, consumers in the ¯rst period make choices taking into account the

expected prices in the second period. If these two additional e®ects are not too large, we then

obtain that greater switching costs yield a lower present value of equilibrium pro¯ts.

Consider the following duopoly example where the ¯rst e®ect disappears in equilibrium, and

the second e®ect ends up not being too large. Firms sell a given product in two periods. Each

consumer buys at most one unit in each period. Consumers are uniformly distributed along a

Hotelling segment, whereas ¯rms are located at the extremes of the segment. Transportation

costs are t per unit. Firms and consumers care equally about both periods and production

costs are zero. A consumer who buys from ¯rm i in the ¯rst period and wants to buy from ¯rm

j 6= i in the second period has to incur a switching cost es = ¡s > 0; which is assumed small

compared to t:

Suppose also that the consumer's location on the Hotelling line in the second period is

independent from his or her location in the ¯rst period.22 To motivate this assumption, suppose

that ¯rms sell di®erent incompatible word processors. A consumer's location on the Hotelling

line refers to the number of work colleagues who use the same word processor: if most colleagues

use Microsoft Word, then the consumer's location is close to Microsoft's. Between the ¯rst and

the second period, consumers change jobs and start working with a di®erent group of colleagues.

21Speci¯cally, Whinston (1990) states that, for the monopolist, \tying represents a commitment to foreclose

sales in the tied good market, which can drive its rival's pro¯ts below the point where remaining in the market

is pro¯table" (p. 840).
22This is similar to the assumption in von Weizsacker (1984). Other authors (including, e.g., Beggs and

Klemperer, 1989), make the opposite extreme assumption, namely that location is the same in all periods.

22



This e®ectively corresponds to being assigned a new location on the Hotelling line, one that we

assume is independent from the initial one.

Given the above assumptions, we can start by determining second-period demand for each

¯rm. A consumer who bought from ¯rm i in the ¯rst period will be indi®erent between the two

¯rms in the second period if and only if the consumer's address, x, is such that pi
2
+tx = pk

2
+t(1¡

x)+ es, where x is the distance with respect to ¯rm i. Solving for x, we get x = 1=2+(pk
2
¡pi

2
+

es)=(2t). Suppose that qi
1
consumers bought from ¯rm i in the ¯rst period. Then ¯rm i's demand

in the second period is given by qi
1

µ
1=2 + (pk

2
¡ pi

2
+ es)=(2t)¶+ qk

1

µ
1=2 + (pk

2
¡ pi

2
¡ es)=(2t)¶.

From the ¯rst order conditions in the second period for both ¯rms one can obtain the equilibrium

second period prices as a function of qi
1
(note that qk

1
= 1 ¡ qi

1
) as pi

2
= t +

2q
i

1
¡1

3
es and

pk2 = t¡
2qi

1
¡1

3
es: Second period pro¯ts for ¯rm i as a function of qi1 are ¼i

2 =
1

2t
(t +

2qi
1
¡1

3
es)2:

Consider now the decisions by ¯rst-period consumers. For the marginal consumer buying

product i; denoted by qi1 (because the marginal consumer determines the demand for ¯rm i in

the ¯rst period), with probability 1

2
+

5¡4qi
1

6t
es the consumer will buy product i in the second period

at expected price plus transportation costs equal to 5t

4
+

4qi
1
+1

12
es: With probability 1

2
¡

5¡4qi
1

6t
es the

consumer will buy product k in the second period at expected price plus transportation costs

plus switching costs equal to 5t

4
¡

4qi
1
+1

12
es+ es: Similarly, one can obtain the consumer payo®s if

the marginal consumer buys product j: Indi®erence of the marginal consumer then yields

qi1 = Di

1(p
i

1; p
k

1) =
t+ 2es2

3t
+ pk1 ¡ pi1

2t + 4es2

3t

:

If consumers are myopic, or there are no switching costs, this reduces to the static Hotelling

demands. Switching costs and forward-looking consumers makes the ¯rst-period demands less

price sensitive because the marginal consumers realize that by buying one product they increase

the probability of paying a higher price in the next period.

Straightforward di®erentiation of the total pro¯ts in the ¯rst period, ¦i = pi1q
i

1 + ¼i

2; yields

pi1 = pk1 = t¡ 2es(t¡es)

3t
: This means that the greater the switching costs, the lower the equilibrium

prices and pro¯ts. Even though the ¯rst-period consumer expectations reduce the price sen-

sitivity in the ¯rst period, which is an e®ect not considered in the previous section,23 we still

obtain the result that with demand complementarity equilibrium pro¯ts are lower.24

23As noted above, this e®ect completely disappears if consumers are myopic.
24This result is also obtained in von Weizsacker (1984), through a di®erent mechanism, for the case of constant

prices. Note that the assumption of independence of locations can be weakened without losing the result that
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6.8. Network externalities

Consider a product such that consumer utility is increasing in the number of past consumer

purchases { a network externality.25 In this setting, lower prices in earlier periods generate

greater demand and pro¯ts in future periods. We can then apply the results of the previous

section to obtain that ¯rms may compete so much in the earlier periods that they end up with

a lower present value of equilibrium pro¯ts.

Consider the following speci¯c duopoly example where ¯rms sell a given durable product

in two periods. A measure one of consumers buys one unit from one of the ¯rms in the ¯rst

period. A second set of consumers face the same choice in the second period. Consumers are

uniformly distributed along a Hotelling segment, whereas ¯rms are located at the extremes of

the segment. In addition to the Hotelling transportation cost, second-period consumers derive

an extra utility that is proportional to the number of consumers who bought the same product

in the ¯rst period { a network externality.26 Speci¯cally, consumers in the second period derive

net utility

U i = esqi
1
¡ tdi ¡ pi

2
;

where U i is the utility from buying from ¯rm i, qi
1
is ¯rm i's output in the ¯rst period, pi

2
is

¯rm i's price in the second period, es measures the intensity of network e®ects with es = ¡s > 0;

t is the importance of product di®erentiation (transportation cost), and di is the distance from

the consumer to ¯rm i: For simplicity, assume that costs are zero.

Firms compete by simultaneously setting prices in each period. Second-period pro¯ts are

given by

¼i

2
=

1

2t
pi
2

³
t¡ es¡ (pi

2
¡ pk

2
) + 2esqi

1

´
:

The equilibrium of the second-period pricing game is given by pi
2
= t + 2

3
qi
1
¡ 1

3
es, leading to

switching costs lower equilibrium pro¯ts. However, this would mean that in the symmetric equilibrium the

switching costs would have e®ects in the second period, a case outside the total e®ect result considered in the

previous section.
25Network e®ects may also arise indirectly through the informational role of market shares (Caminal and

Vives, 1996), and through compatibility issues (Farrell and Saloner, 1986).
26Note that we are assuming that network e®ects only apply to the second-period consumers. The case where

the network e®ects also apply to the ¯rst-period consumers generates similar results, as in the switching costs

example.
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second-period equilibrium pro¯ts of

b¼i
2
=

1

2t

µ
t+

1

3
es(2qi

1
¡ 1)

¶2

:

First-period equilibrium pro¯ts are given by pi
1
qi
1
+b¼i

2
. Since qi

1
= Di

1
(pi

1
; pk

1
) = 1

2
+(pk

1
¡pi

1
)=(2t),

we have an expression that is a function of pi
1
; pk

1
. Solving the equilibrium pricing game we get

pi
1
= t ¡ 2

3
es and total equilibrium pro¯ts of t ¡ 1

3
es, a value that is decreasing in es (Bertrand

supertrap).

As noted above, the result that the strategic e®ect is negative and outweighs the direct

e®ect could also be derived by applying our Theorem 7. In fact, simple calculations show that

the second term in (2) is proportional to es, whereas the ¯rst one is negative and independent

of es. It follows that, for a small value of es, condition (2) holds. Moreover, ¼i
2
depends on ¯rst

period prices through the value of qi
1
, which in turn is a function of the price di®erence pi

1
¡ pk

1
,

that is, ¼i
2
can be written as in (3). It follows that total equilibrium pro¯ts are decreasing in es:

6.9. Learning by doing

Similarly to network externalities, we can apply our general framework to a two-period model

of oligopoly competition with learning-by-doing. Consider the case when, in each period, ¯rms

compete in prices. Suppose that each ¯rm's second-period marginal cost is decreasing in its

¯rst-period output { the learning curve hypothesis. Our results imply that, in a subgame

perfect equilibrium, prices and pro¯ts are lower than they would be were there no learning

e®ects. Cabral and Riordan (1994) present a similar result in a model with two ¯rms, in¯nite

horizon, and discrete demand.

7. Concluding Remarks

We have examined the impact of intra-¯rm product interactions on the equilibrium strategies

and payo®s of competing oligopolists. As illustrated in Section 6, there are many market

situations where product interactions imply a direct and a strategic e®ect in opposite directions.

Moreover, the strategic e®ect may outweigh the direct e®ect in absolute value, a situation that

we call \Bertrand supertrap." In these situations, the e®ect of price competition is so powerful

that \more is less:" stronger product interactions, which in a monopoly situation would imply

greater pro¯ts, turn out to lower equilibrium pro¯ts under competition.
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We have looked at the comparative statics of a common change in s, the degree of prod-

uct interactions. However, in many situations the value of s results from the ¯rms' decisions.

For example, ¯rms may have some discretion in choosing the degree of product substitutabil-

ity/complementarity or the cost technologies that determine the degree of learning by doing or

economies of scope. The natural way to model this would be to consider a two-stage game: in

the ¯rst stage, ¯rms simultaneously choose the level of si; one for each ¯rm; in the second stage,

¯rms compete in prices. The impact of si is now more likely to be determined by the direct ef-

fect rather than the strategic e®ect through the competitors' actions, because the ¯rms' actions

may be more sensitive to their own si:
27 A tantalizing possibility is then that the total e®ect

of a unilateral increase in si is positive even though a common increase in s leads to a negative

total e®ect, as was the case in several of the applications considered above. The direct e®ect

dominates in the choice of si by each ¯rm, while the strategic e®ect dominates in the overall

payo®. In other words, it is possible that the two-stage (symmetric) game has the structure of

a prisoner's dilemma. For example, ¯rms may choose technologies with steep learning curves,

or selling conditions that imply a high degree of intra-¯rm demand complementarity (e.g., pure

bundling). Even though, unilaterally, ¯rms are better o® by doing so, in equilibrium they are

worse o® than they would be if there were no intra-¯rm product interactions.

The situation may be di®erent if the meta-game is one of sequential, not simultaneous,

choice of si. In particular, consider the case where Firm A; an incumbent, ¯rst chooses the

value of sA, and Firm B; a potential entrant, then decides whether to enter and which value

sB to choose.28 Firm A's monopoly and duopoly pro¯ts are given by ¦A(sA) and ¼A(sA; sB),

respectively. Firm B's duopoly pro¯ts are given by ¼B(sB; sA; µ); where
@¼B

@µ
> 0. The variable

µ is public information at the time Firm B decides whether to enter, but unknown at the time

Firm A chooses sA: Suppose the prior on µ is given by the cumulative distribution function

F (µ) and let µ¤(sA) be such that maxsB ¼
B(sB; sA; µ

¤(sA)) = 0: Firm A's expected payo® is

then given by

F
³
µ¤(sA)

´
¦A(sA) +

Z
1

µ¤(sA)
¼A(sA; s

¤

B
(µ))dF (µ);

27Remember that the e®ect of s in Section 4 is for the symmetric case, that is, all si changing at the same

time. The condition that makes the direct e®ect greater, when si alone is being considered, is related to the

condition (2) above.
28In the particular case when s represents the bundling decision, this structure is similar to the one analyzed

by Whinston (1990). This general structure can also be seen as related to Fudenberg and Tirole (1984).
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where s¤
B
(µ) = argmaxsB ¼

2(sB; sA; µ). This analysis suggests an extra reason why a unilateral

increase in sA may have a positive e®ect. Not only an increase in sA may increase the value

of the duopoly pro¯ts (as suggested above) but it may also increase Firm A's ex-ante expected

payo®. First, with some probability Firm A will be a monopolist, and the total e®ect of sA

on ¦A(sA) is simply the direct e®ect. Second, if, as our results suggest, ¼B(s¤
B
(µ); sA; µ) is

decreasing in sA, then an increase in sA implies an increase in µ¤, which in turn increases Firm

A's expected payo®. In other words, precisely because greater values of s imply lower duopoly

pro¯ts, an increase in sA may have the strategic e®ect of deterring entry.

The above extensions of our basic framework to include the endogenous choice of si suggest

a solution to an apparent puzzle raised by our results. Business people and business analysts

are wont to stress the positive e®ect of strategies that lead to demand synergies, cost synergies,

greater switching costs, and so forth { the very same strategies which, according to our analysis,

lead to lower industry pro¯tability. If the two-stage game has the structure of a prisoner's

dilemma (simultaneous choice of si), then we may interpret the business advice as re°ecting

the fact that choosing a high si is a dominant strategy, a fact that is consistent with our result

that higher values of si by all ¯rms lead to lower pro¯ts. If, on the other hand, we consider the

sequential choice of si, then our results point to the bene¯ts that early entrants may reap from

intra-¯rm product interactions.
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APPENDIX

Proof of Theorem 1: For s > 0 and strong strategic complementarity each pro¯t function is

supermodular in all prices, which implies that all functions bi
j
(p¡i; s); 8i; j 2 Ji; are increasing

in every element of p¡i: The mappings indexed by s; pi ! bi(p¡i; s); 8i are then increasing

mappings in the componentwise order. Furthermore, given the monopoly e®ect, either the

mapping is increasing or decreasing in s: Therefore, applying the results in Milgrom and Roberts

(1990), the ¯xed point of the mapping bi; 8i is increasing or decreasing in s; depending on

whether
@bi

j
(p¡i;s)

@s
¸ 0; 8i; j 2 Ji or

@bi
j
(p¡i;s)

@s
· 0; 8i; j 2 Ji; respectively.

If s < 0 or if strong strategic complementarity does not hold, one must make sure that the

intra-¯rm product interactions are not so great as to reverse the e®ects of exogenous changes

in s: If jsj is small, then these intra-¯rm product interactions e®ects do not outweigh the e®ects

of strategic complementarity. To see this, de¯ne the following matrix and vector:

H i ´

"
@2¦i

@ pij @ p
i
`

#
(j; ` = 1; : : : ; Ji);

vik` ´

"
@2¦i

@ pij @ p
k
`

#
(j = 1; : : : ; Ji):

Firm i's ¯rst-order conditions are given by

@¦i(p̂)

@ pij
= 0; j 2 Ji

and can be rewritten as

pij = f i
j(p

i
¡j; p

¡i; s); j 2 Ji: (i)

Solving with respect to pij, we get

pij = bij(p
¡i; s); j 2 Ji:

We would like to show that bij is increasing in every element of p¡i for s = 0: Note that total

di®erentiation of (i) with respect to pi and pk` ; (k 6= i) yields

d pij
d pk`

= ¡Hi¡1vik` :
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which is strictly positive for s = 0: In fact, s = 0 implies that H i is a diagonal matrix with

negative elements in the diagonal (because of Assumption 2 and of the second-order conditions)

and vik` is composed of positive elements (because of Assumption 3), where at least one element

is strictly positive. Then, if by the monopoly e®ect all
@bi

j
(p¡i;s)

@s
are di®erent from zero at

s = 0 then we can apply the supermodularity results. We can then obtain that at s = 0;

if
@bi

j
(p¡i;s)

@s
> 0;8i; j 2 Ji then

dbpi
j
(s)

ds
> 0; 8i; j 2 Ji; and if

@bi
j
(p¡i;s)

@s
< 0; 8i; j 2 Ji then

dbpi
j
(s)

ds
< 0;8i; j 2 Ji: By continuity this result is also satis¯ed for jsj small. Q.E.D.

Proof of Theorem 2: Suppose ¯rst that @2¦i

@pi

j
@s

> 0;8j 2 Ji: Writing ¯rm i's ¯rst-order

conditions as pij = f i
j(p

i
¡j; p

¡i; s); j 2 Ji; we have, because of the second order conditions,
@f i

j

@s
> 0:

Suppose that s > 0 (pro¯t complementarity). Then, f i

j
is increasing in all the elements of

pi
¡j
: Moreover, the mapping indexed by s; pi ! f i(pi; p¡i; s) is increasing in pi and s in the

componentwise order. Therefore, applying the results in Milgrom and Roberts (1990), the ¯xed

point of the mapping f i is increasing in s in the componentwise order, that is,
@bi

j
(p¡i;s)

@s
> 0; for

all j 2 Ji:

Suppose now that s < 0 (pro¯t substitutability). Then, at s = 0; f i

j(p
i

¡j; p
¡i; s) = bij(p

¡i; s)

which implies
@bi

j
(p¡i;s)

@s
> 0; for all j 2 Ji: By continuity, the result also holds for small jsj.

The case when @2¦i

@pi
j
@s

< 0;8j 2 Ji; is analogous. Q.E.D.

Proof of Proposition 1: Di®erentiating ¦i with respect to pi
j
and s we get

@2¦i

@pij@s
=
X

k6=j;k2Ji

pi
k

@Di

j

@(spi
k
)
+
X

k6=j;k2Ji

(pi
k
¡

dCi

k

dDi

k

)
@Di

k

@(spij)
+O2

where O2 includes terms with the second derivatives of the demand or cost functions. From the

¯rst-order conditions, we get that pi
k
¡

dC
i

k

dDi

k

> 0 for small jsj. Given the de¯nition of demand

interactions, it follows that @
2
¦
i

@pi
j
@s

> 0 for all j 2 Ji: Q.E.D.

Proof of Proposition 2: Di®erentiating ¦i with respect to pi
j
and s we get

@2¦i

@pij@s
= ¡

X

k6=j;k2Ji

2

4 @Ci

k

@(sDi
j)
Di0

j +
@2Ci

j

@Di
j@(sD

i
k)
Di

kD
i0

j +
X

`6=k;`2Ji

s
@2Ci

k

@(sDi
j)@(sD

i
`)
Di

`D
i0

j

3

5 :

From the de¯nition of cost interactions, we have @2¦i

@pi

j
@s

< 0; for all j 2 Ji: Q.E.D.
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Proof of Theorem 5: Since total demand is constant, the equilibrium is symmetric, and

there are no product interactions in costs, it follows that the only terms in the pro¯t function

that vary with s are prices. The result then follows from Theorems 3 and 4. Q.E.D.

Proof of Theorem 6: Firm i's equilibrium pro¯ts are given by b¦i(s) =
P

J

j=1
p̂i
j
(s)Di

j
(bp(s))¡

C(Di(bp(s)); s): This may be rewritten as

b¦i(s) =
JX

j=1

Ã
bpi
j
(s)¡

@ C

@ Di
j

(Di(bp(s)); s)
!
Di

j
(bp(s))+

JX

j=1

@ C

@ Di
j

(Di(bp(s)); s)Di

j
(bp(s))¡C(Di(bp(s)); s):

(ii)

Firm i's j'th ¯rst-order condition for pro¯t maximization can be written as

Ã
pi
j
¡

@ C

@ Di
j

!
@ Di

j

@ pij
= ¡Di

j
:

Assumptions 4 and 5 imply that the right-hand side is invariant with respect to s: Cost inter-

actions implies that the second term on the left-hand side is also invariant with respect to s: It

follows that margins are invariant with respect to s: We conclude that an increase in s implies

a decrease in equilibrium pro¯ts if and only if the last two terms in (ii) decrease in s; that is, if

JX

j=1

@2C

@ Di
j @ s

Di

j
¡

@ C

@ s
· 0 (iii)

(We only need to take partial derivatives with respect to s because the equilibrium demands

do not change with s, by Assumption 5.)

With ¯xed costs being independent of s we have

@Ci

@s
(Di; s) =

JX

j=1

Z
D

i

j

0

@2Ci

@ Di
j @ s

(Di

j¡
; Di

j
= t; Di

j+
= 0) dt

where Di

j¡
is the vector with the elements of Di

k
for k < j and Di

j+
is the vector with elements

Di

k
for k > j: Assumption 2 and the Theorem assumptions that @

@s

@2Ci

@Di

j
@Di

k

< 0; 8i; j 2 Ji; k 2 Ji;

and @

@s

@2Ci

@Di2

j

· 0;8i; j, imply that

@2Ci

@s@Di
j

Di

j
·
Z

Di

j

0

@2Ci

@ Di
j @ s

(Di

j¡
;Di

j
= t; Di

j+
= 0) dt;
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since @2Ci

@s@Di

j

· @2Ci

@ Di

j
@ s
(Di

j¡
; Di

j
= t; Di

j+
= 0) for 0 · t · Di

j
: Adding up for all product j, we

conclude that (iii) holds, which in turn implies the result. Q.E.D.

Proof of Theorem 7: We are looking at a symmetric equilibrium when s is close to zero.

Since there is strategic complementarity in the ¯rst period by assumption, we just need to

investigate whether @

@s

µ
@¼i

2

@pi
1

+ (I ¡ 1)
@¼i

2

@pk
2

@pk
¤

2

@pi

1

¶
; with k 6= i; is positive or negative. Because at

@pk
¤

2

@pi
1

¯̄
¯̄
s=0

= 0; the proof reduces to computing @

@s

@pk
¤

2

@pi
1

at s close to zero. Totally di®erentiating

the second-period ¯rst-order conditions of ¯rm k with respect to pi
1
and s we get

X
j

@pj
¤

2

@pi
1

@

@s

@2¼k

2

@pk
2
@pj

2

+
X
j

@2¼k

2

@pk
2
@pj

2

@

@s

@pj
¤

2

@pi
1

+
@

@s

@2¼k

2

@pk
2
@pi

1

= 0:

Again, because
@pk

¤

2

@pi
1

¯̄
¯̄
s=0

= 0 8k; we get

"
@

@s

@pj
¤

2

@pk1

#

j=1;I

= ¡

"
@2¼k

2

@pk
2
@pj

2

#
¡1

j;k=1;I

"
@

@s

@2¼k

2

@pk2@p
i
1

#

k=1;I

:

Since we are considering a symmetric equilibrium of a symmetric industry, the matrix
·

@2¼k

2

@pk
2
@p

j

2

¸

has the same number in diagonal element, ¡a ´
@2¼k

2

@pk
2

2

; and the same number in every ele-

ment o® the diagonal, ¡b ´
@2¼k

2

@pk
2
@p

j

2

; with k 6= j: The inverse matrix has the same form, with

diagonal elements equal to ¡ a+b(I¡2)

(a¡b)[a+b(I¡1)]
and o®-diagonal elements equal to b

(a¡b)[a+b(I¡1)]
:

Because, by symmetry, all elements @

@s

@2¼k

2

@pk
2
@pi

1

with k 6= i are equal, we have that @

@s

@pk
¤

2

@pi
1

=

1

(a¡b)[a+b(I¡1)]

µ
a @

@s

@2¼k

2

@pk
2
@pi

1

¡ b @

@s

@2¼k

2

@pk
2
@pk

1

¶
for k 6= i; from which we can immediately obtain condi-

tion (2). Q.E.D.
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