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Summary

The hippocampus, a structure located in the temporal lobes
of the brain, is critical for the ability to recollect contextual

details of past episodes. It is still debated whether the hippo-

campus also enables recognition memory for previously
encountered context-free items. Brain imaging [1, 2] and

neuropsychological patient studies [3, 4] have both individ-
ually provided conflicting answers to this question.We over-

came the individual limitations of imaging and behavioral
patient studies by combining them and observed a novel

relationship between item memory and the hippocampus.
We show that interindividual variability of hippocampal

volumes in a large patient population with graded levels
of hippocampal volume loss and controls correlates with

context, but not item-memory performance. Nevertheless,
concurrent measures of brain activity using magnetoence-

phalography reveal an early (350 ms) but sustained hippo-
campus-dependent signal that evolves from an item signal

into a context memory signal. This is temporally distinct
from an item-memory signal that is not hippocampus depen-

dent. Thus, we provide evidence for a hippocampus-depen-
dent item-memory process that initiates context retrieval

without making a substantial contribution to item recogni-
tion performance. Our results reconcile contradictory evi-

dence concerning hippocampal involvement in itemmemory
and show that hippocampus-dependent mnemonic pro-

cesses are more rapid than previously believed.
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Results

An important goal in memory research is to map the functional
organization of a cognitive process onto anatomy. This has
proven particularly controversial for the hippocampus, a struc-
ture located within the medial temporal lobes (MTL), and
its relationship to the functional components of recognition
memory [5, 6]. Dual-process models of recognition memory
distinguish between two components, namely, familiarity
with items and recollection of context [7–9]. To date, it is still
unresolved whether the hippocampus is selectively required
for context memory or also for item memory.
Behavioral studies of patients with selective hippocampal

lesions have produced conflicting results. Whereas some
studies have shown selective deficits in context memory
following hippocampal injury [3, 9, 10], others have also shown
item-memory deficits [4, 11–13]. Lesion-behavior studies,
however, suffer from a difficulty in unambiguously dissociating
between memory processes (e.g., item versus context
memory), making it difficult to conclude that a given process
is functionally preserved.
Another influential line of research using functional imaging

has also provided conflicting results. Some studies have
shown selective context-related signals in the hippocampus
[1, 14]; others have shown both item and context signals
[2, 15]. Imaging studies, however, do not allow conclusions
about causality: the presence of an item signal in the hippo-
campus does not allow the conclusion that the hippocampus
is critical for item-memory performance (see [16] for a review
of patient and imaging data).
By combining a lesion-behavior study with functional

imaging, we overcame the limitation of each method alone
and sought to identify a causal relationship between hippo-
campal integrity and functional as well as behavioral indices
of item and context memory. We used the largest sample of
patients with selective hippocampal lesions to date to partici-
pate in a functional imaging experiment. Patients had varying
degrees of selective hippocampal injury following an early-
life hypoxic-ischemic episode.
We recorded magnetoencephalography (MEG) while 17

patients and 14 controls participated in an item (words) and
context (scenes) associative recognition-memory paradigm
(Figure 1A). During a study (or encoding) phase, words were
superimposed over visual scenes. Memory for the item and
its paired context were later tested using an old/new recogni-
tion judgment (item memory) and a scene three-alternative
forced choice (context memory), respectively. Due to the
graded severity of pathology in this large sample, we were
able to utilize an extensive variability of hippocampal integrity
across all patients, as well as controls (Figure 1B). We there-
fore adopted a novel correlative approach to assessing hippo-
campus dependency (see Supplemental Information available
online). Behaviorally, we correlated hippocampal volume with
measures of both item and context memory. For the imaging
data, we adopted an approach that was blind to differences
between context hits versus misses by correlating hippo-
campal volume initially with overall item recognition signals
(i.e., collapsed across context hits and misses). In a second

https://core.ac.uk/display/16245898?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.cub.2012.10.055
http://dx.doi.org/10.1016/j.cub.2012.10.055
mailto:a.horner@ucl.ac.uk


Figure 1. Experimental Design, Hippocampal

Volumes, and Neuropsychological Test Scores

for Patients and Controls

(A) Study and test phase trial sequences for the

item and context memory task. At study, word-

scene pairs were presented, and participants

were required to judge whether the word denoted

a living or nonliving object (see Supplemental

Information). At test, old and new words were

presented, and participants were required to

judge the old/new status of the word. If they re-

sponded ‘‘new,’’ they rated their confidence

with the options ‘‘not sure’’ or ‘‘sure’’ (see Supple-

mental Information for analyses of confidence

judgments). If they responded ‘‘old,’’ they rated

their confidence for the upcoming context

decision with the options ‘‘not sure,’’ ‘‘sure,’’ or

‘‘very sure’’ and then chose the scene originally

paired with the word from three alternatives

(plus a blank square if they believed the scene

was not presented).

(B) Hippocampal volumes across the participant

group showing controls (dark gray) and patients

(white).

(C) Literacy, numeracy, full-scale IQ (FSIQ), and

memory quotient (MQ) neuropsychological test

scores. Patients showed comparable perfor-

mance to controls and to the standard popula-

tion mean (i.e., 100 6 15) in terms of literacy,

numeracy, and FSIQ but showed a clear deficit

in MQ. Error bars show 61 SEM for each

condition.

Current Biology Vol 22 No 24
2370
step, we assessed whether these memory signals were
selectively related to item or context memory or incorporated
both components.

Participants’ item memory, judging whether a word at test
was previously presented at study, was high with patients
and controls showing >83% hits (old items classified as old)
and <15% false alarms (FAs: new items classified as old; see
Table S1). Using a corrected hit rate (Pr = hits2 FAs) measure
of discriminability, we saw only a marginal correlation with
hippocampal volume:R2 = 0.10, df = 29, p = 0.08 (see Figure 2A
and Supplemental Information for correlations within the
patient group only). Furthermore, no significant item-memory
difference between patients and controls was seen: t(29) =
1.25, p = 0.22. Thus, we could not find firm evidence for a rela-
tionship between hippocampal volume and item-memory
performance.

Context memory performance was calculated by dividing
the number of context hits (correct scene selection) by the
number of item hits for each participant. Context memory
significantly correlated with hippocampal volume: R2 = 0.33,
df = 29, p < 0.001 (Figure 2B), and was impaired in patients
(33.1% context accuracy) relative to controls: 54.9%, t(29) =
3.57, p < 0.01. Finally, patients did not perform significantly
above chance: t(16) = 0.04, p = 0.97 [controls relative to
chance: t(13) = 3.99, p < 0.01]. Thus, we found strong evidence
to suggest hippocampal volume was related to context
memory performance. Behaviorally, we therefore saw a clear
dissociation, with the hippocampus selectively contributing
to context, but not item-memory performance (see Supple-
mental Information for a direct comparison of the relationship
between hippocampal volumes and item and context memory,
as well as analyses of subjective confidence ratings).

Next, we assessed whether our findings were selective to
the hippocampus or also extended to extrahippocampal
regions of the MTL that are known to be involved in recogni-
tion memory (for a review, see [5]). Hippocampal volumes
were not correlated with the volume of the parahippocampal
region, indicating that hippocampal injury was anatomically
specific. Furthermore, unlike hippocampal volumes, the
volume of the parahippocampal region correlated signifi-
cantly with item but not context memory (see Supplemental
Information).
In our MEG data, we looked across all sensors and time

points (see Supplemental Information for analysis details)
for significant differences in event-related fields (ERFs)
between item-memory hits and correct rejections (CRs: new
items identified as new). Two distinct effects were seen.
The first was over left occipitotemporal sensors from 300 to
350 ms (Figure S1A). This presented as a large deviation for
both hits and CRs relative to baseline from 150 ms onward,
with a diminished effect for hits relative to CRs (Figure 3).
This occipitotemporal effect failed to show a relationship
with hippocampal volume: R2 < 0.01, df = 29, p = 0.74 (Fig-
ure 2C). Furthermore, this effect was present in both the
patients: t(16) = 2.51, p < 0.05, and controls: t(13) = 2.83,
p < .05 [hits versus CRs difference for patients versus
controls: t(29) = 0.09, p = 0.93]. Finally, when splitting control
participants’ item hits into context hits and context misses,
no context differences were seen over occipitotemporal
sensors, either in the 300–350 ms time window (t’s < 0.77,
p’s > 0.46) or in a later 500–600 ms time window (t’s < 0.86,
p’s > 0.40), when context effects typically emerge in EEG
(Figure 4) [17]. As such, the early transient occipitotemporal
effect is likely a neural signature of the behavioral item-
memory effect.
The second MEG effect emerged over left frontotemporal

sensors from 350 to 400 ms (Figure S1B) and persisted for
400 ms. This frontotemporal effect presented as a large



Figure 2. Correlating Hippocampal Volume with

Memory Performance and Magnetoencephalo-

graphic Effects

Correlation analyses between bilateral hippo-

campal volume and itemmemory (Pr) (A), context

memory (conditional context hits) (B), the 300–

350 ms occipitotemporal effect (hits – CRs)

(C), and the 350–400 ms frontotemporal effect

(hits – CRs) (D) across all participants. Solid lines

represent the line of best fit, and dashed lines

represent 95% confidence intervals. Patients

are highlighted in red, controls in black.

The Hippocampus and Item and Context Memory
2371
deviation for both hits and CRs relative to baseline (in the
opposite direction to the occipitotemporal effect) with dimin-
ished amplitude for hits relative to CRs (Figure 3) and corre-
lated with hippocampal volume: R2 = 0.18, df = 29, p < 0.05
(Figure 2D). Furthermore, whereas the effect was seen in the
controls: t(13) = 4.24, p < 0.001, it was absent in the patients:
t(16) = 1.63, p = 0.12 [hits versus CRs difference for patients
versus controls: t(29) = 2.31, p < 0.05]. Thus, the frontotempo-
ral effect closely mirrored the behavioral context memory
results (see Supplemental Information for a direct comparison
of hippocampal correlations with the frontotemporal and
occipitotemporal effects).

Further analyses of the frontotemporal effect revealed
a novel functional relationship between item and context
memory. First, we found no amplitude difference between
context hits and context misses between 350 and 400 ms
for the control participants: t(13) = 1.05, p = 0.31 [patients:
t(16) = 0.45, p = 0.66; Figure 4], indicating that this time
window reflected an item-memory effect. Instead, controls
showed a context hits versus context misses amplitude
difference in a later time window of the frontotemporal effect,
between 500 and 600 ms: t(13) = 2.55, p < 0.05, a period
during which context effects typically emerge in EEG studies
[17, 18]. This effect was absent in patients: t(16) = 0.82, p =
0.41, confirming that, like the early frontotemporal item effect,
it is also hippocampus dependent (the size of the context
effect, however, did not correlate with hippocampal volume:
R2 = 0.07, df = 29, p = 0.15). No further time period over oc-
cipitotemporal or frontotemporal sensors showed a signifi-
cant context hits versus context misses effect, suggesting
context modulation was specific to the 500–600 ms time
window over frontotemporal sensors (see Supplemental
Information).

Thus, our data show the existence of two topographically
contiguous hippocampus-dependent processes: an early
(350–400 ms) item-memory process followed by a later
(500–600 ms) context-memory process. Importantly, this
hippocampus-dependent item-memory
process was temporally distinct from
the aforementioned occipitotemporal
item-memory effect. Thus, the fronto-
temporal item-memory effect reflects
a previously unreported item-memory
process that is already hippocampus
dependent and evolves into a context-
memory process. Further within-sub-
ject analyses of trials with large and
small item-memory effects confirm
a temporal dependency between the
500–600 ms context-memory effect
and the frontotemporal, but not the occipitotemporal, item-
memory effect (see Supplemental Information).

Discussion

Our data show that hippocampus-dependent memory
processes are rapidly brought online at 350–400 ms, which
is w150 ms earlier than previously suggested [17]. The exis-
tence of an early hippocampus-dependent effect presenting
first as an item-memory effect and subsequently evolving
into a context-memory effect could be seen as providing
evidence for a hippocampal contribution to both item and
context memory. However, the dissociation between our
functional and behavioral measures questions this interpreta-
tion. Despite the fact that this same frontotemporal effect was
absent in our patients, their item memory was not impaired.
The early hippocampus-dependent frontotemporal item effect
would therefore not appear to causally drive behavioral item-
memory performance. Instead, item-memory performance
appeared to depend on the volume of the parahippocampal
region.
Our combined lesion-behavior and functional imagingmeth-

odologies help reconcile seemingly contradictory findings
regarding the involvement of the hippocampus in itemmemory
in previous studies [2, 15]. We have identified a functionally
hippocampus-dependent item-memory process that behav-
iorally shows only a trend (Figure 2) toward a correlation with
item-memory performance. These data indicate that hippo-
campus-dependent item-memory signals may not be critical
for item-memory performance per se but may set the stage
for successful context recollection. Hence, functional imaging
studies that report hippocampal item-memory signals do not
contradict the possibility that the hippocampus is critical for
context memory, but not for item memory, as suggested by
a number of previous studies [2, 15, 19]. At the same time,
our results also show that a purely functional, i.e., imaging
based, dissociation of item- and context-memory processes,



Figure 3. Topographies, Event-Related Fields, and Time Windows of Interest for the Magnetoencephalographic Effects

Topographies (A and D), event-related fields (ERFs) collapsed across patients and controls (B and E), and time-window analyses (C and F) for the

clusters revealed in the 3D SPM analysis (see Figure S1). The occipitotemporal 300–350 ms effect (A–C) is shown; the frontotemporal 350–400 ms effect

(see Supplemental Information for analysis of later 700–750 ms effect) (D–F) is shown. Topographies represent the difference in fT between hits and CRs

(collapsed across controls and patients) at the mid time point in the 50 ms time window, with the black circles highlighting the sensors selected for further

analyses. The ERF plots show the ERFs for hits and CRs averaged across the peak sensors highlighted in the topographies, with time windows for further

analyses highlighted in gray. The time-window analyses represent the average (fT) within the 50ms highlighted in gray in the ERF plots, plotted separately for

controls and patients. Error bars show 61 SEM for each condition; ***p < 0.001, **p < 0.01, *p < 0.05.
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as suggested by a number of previous studies [1, 14], may be
an oversimplification.

What type of process does the early hippocampus-depen-
dent item-memory signal denote? We suggest that this effect
reflects the rapid recruitment of a memory process that
requires the hippocampus and enables subsequent context
retrieval. This proposal is consistent with recent evidence for
an early intracranial hippocampal signal [20] (though we note
the authors found context effects earlier than in the present
study). Thus, although context information may be retrieved
from 500 ms onward, hippocampus-dependent mnemonic
processes that set the stage for subsequent context retrieval
are initiated much earlier than previously suggested. One
possibility is that our early hippocampus-dependent effect
reflects the onset of pattern completion processes thought
to be critical for the retrieval of a complete hippocampal
memory engram (in this case, a word-scene association)
following the presentation of a partial cue only (i.e., a word)
[21, 22]. Thus, context effects would begin to emerge only later
(i.e., 500–600 ms) following pattern completion, allowing for
the phenomenological experience of recollection. This inter-
pretation does not rule out the possibility that such an item-
initiated pattern-completion process also provides some
benefits for item memory, as suggested by the trend for
a correlation between hippocampal volume and item-memory
performance (Figure 2).

We propose item-memory performance is primarily sup-
ported by an early (300–350 ms) process outside of the
hippocampus (e.g., perirhinal cortex). This item signal rapidly
propagates to the hippocampus, initiating a pattern-comple-
tion process from 400 ms onward. Completion of such an
item-initiated pattern-completion process at 500–600 ms
results in the retrieval of context memory (and possibly further
benefits item memory).
Our results therefore reconcile seemingly contradictory

evidence concerning the role of the hippocampus in item
memory and provide new insight into the timing of such
mnemonic processes. These observations show that hippo-
campus-dependent processes involved in episodic memory,
that is, the ‘‘reliving’’ of past events, begin much earlier than
we previously thought and can initially be devoid of context
information.

Experimental Procedures

Participants

Seventeen patients and fourteen controls participated (see Figure 1,

Supplemental Information, and [23, 24] for patient and control details).

Medial Temporal Lobe Volume Data

Whole-head 3D T1-weighted FLASH images (1 mm3) were acquired on a

1.5T Siemens Avanto system. Bilateral hippocampi were manually

segmented using MEDx software and subsequently corrected for total

intracranial volume. All volumes are reported in mm3 and relate to the

mean across bilateral hippocampi (patient group: 2,264 mm3, SD 496;

control: 3,295 mm3, SD 298). Extrahippocampal MTL volumes were esti-

mated, using automated FreeSurfer analyses [25]. We used the parahippo-

campal region as defined in [26] because this covers a large portion of

MTL volume, including the parahippocampal gyrus, as well as portions of

the perirhinal cortex.

Materials

For each participant, 120 concrete nouns (42% living, 58% nonliving), with

a Kucera-Francis frequency of 2–17, were randomly assigned to one of

two categories relating to the old and new conditions, respectively. Sixty

grayscale images of scenes (500 3 300 pixels, 50% indoor, 50% outdoor)

were randomly assigned to each old word, creating 60 word-scene pairs.



Figure 4. Event-Related Fields and Time Windows of Interest across Context Hits, Context Misses, and Item CRs for the Two Magnetoencephalographic

Effects

(A and D) ERFs collapsed across patients and controls and time-window analyses for (B and E) the early time windows (300–350 ms occipitotemporal

effect and 350–400 frontotemporal effects) and (C and F) the 500–600 ms time window. The occipitotemporal effect (A–C) is shown; the frontotemporal

effect (D–F) is shown. ERF plots show ERFs for context hits, context misses, and item CRs (collapsed across controls and patients), with time windows

for further analyses highlighted in gray. The time-window analyses represent the average (fT) within the 50 ms or 100 ms highlighted in gray in the ERF plots,

plotted separately for controls and patients. Error bars show 61 SEM for each condition; *p < 0.05.
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Procedure

The experiment consisted of six study-test cycles. At study, participants

were presented with word-scene pairs and required to perform a living/

nonliving judgment on the word. At test, old/new words were presented,

and participants performed an old/new item recognition judgment (item

memory) and a further confidence judgment. If they responded ‘‘old’’

they also performed a three-alternative forced-choice source-memory

test, choosing which scene was originally paired with the word (context

memory) (see Figure 1A and Supplemental Information for details of trial

sequence).

Participants were seated upright with their head underneath the helmet of

an MEGmachine. Stimuli were back projected onto a screen approximately

1 m in front of them, with images subtending approximately 6� of horizontal
and vertical visual angle.

MEG Acquisition and Analysis

MEG was recorded in a magnetically shielded room using a 275-channel

CTF MEG system in third-order gradiometer configuration at a sampling

rate of 600 Hz. Analyses were conducted using SPM8 (http://www.fil.ion.

ucl.ac.uk/spm) (see Supplemental Information for MEG data preprocess-

ing). To search for sensor-level ERF differences between conditions across

all sensors and time points, we adopted a mass univariate approach, in

which F tests were performed at every point in a 3D image of channel space

and time (as detailed in Supplemental Information and [27]). We searched

across all voxels for significant differences (p < 0.001 uncorrected) between

hits and CRs regardless of patient status (i.e., collapsed across patients and

controls). We subsequently focused our analyses on time windows and

sensors of interest identified by this main effect to look for correlations

between ERFs and hippocampal volume, as well as differences between

controls and patients.
Supplemental Information

Supplemental Information includes Supplemental Discussion, three

figures, two tables, and Supplemental Experimental Procedures and can

be found with this article online at http://dx.doi.org/10.1016/j.cub.2012.

10.055.
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