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Abstract

We discuss two models from the literature that have been developed to formulate piecewise

linear approximation of separable nonlinear functions by way of mixed-integer programs. We

show that the most commonly proposed method is computationally inferior to a lesser known

technique by comparing analytically the linear programming relaxations of the two formulations.

A third way of formulating the problem, that shares the advantages of the better of the two

known methods, is also proposed.
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Introduction

Applications of linear programming technology often require the modeling of nonlinearities in

the objective function or in some of the constraints of an otherwise linear optimization model.

Such nonlinearities may come about due to economies or diseconomies of scale, \kinked" de-

mand or production cost curves, etc. Already in the early 1950's it has been recognized that such

occurrences can be dealt with adequately by approximating nonlinearities by piecewise linear

functions and modeling these in a mixed-integer framework by introducing new 0-1 variables;

see e.g. Balinski and Spielberg (1969) for an overview and historical references. Most text-

books in Operations Research/Integer Programming, see e.g. Nemhauser and Wolsey (1988),

Wagner (1969) and others, o�er one or two possibilities of expressing piecewise linear approxi-

mations of separable nonlinear functions in this manner.

The two classical formulations (Model I and II, below) can be found e.g. in Dantzig (1963). We

are, however, not aware of a discussion of the quality or thightness of the various formulations

that have been proposed a long while ago. Such considerations play indeed an essential role

when the resulting mixed zero-one program is subsequently solved by branch-and-bound or

branch-and-cut using linear programming algorithms in the solution process.

Besides reviewing the two classical formulations, the issue of the quality of the formulation is

what we address here. We show that an analytical comparison of the two di�erent formulations

of the problem reveals that one of them is always inferior to the other, i.e., that the linear

programming relaxation produces always worse bounds in one case than in the other. We then

propose a third way of formulating piecewise linear approximation via a mixed zero-one program

that shares the (local) properties of the better of the two classical formulations.

Let �(x1; : : : ; xn) be any separable, nonlinear function from R
n into R. Separability means

that we assume that the function can be written as

�(x1; : : : ; xn) =

nX

j=1

�j(xj) ; (1)
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Figure 1: Piecewise linear approximation

where each �j(xj) maps R into R. Given �-

nite intervals [a
j
0; a

j
u] for each variable xj where

j 2 f1; : : : ; ng we approximate each �j(xj) by

a piecewise linear function b�j(xj) over this in-

terval. To do so we choose a partitioning a
j
0 <

a
j
1 < a

j
2 < : : : < a

j

kj
= a

j
u of the interval [a

j
0; a

j
u]

for each j 2 f1; : : : ; ng, see Figure 1. It is well-

known that by re�ning the partitioning, i.e., by

choosing kj large enough and the distance be-

tween any two consecutive points of the par-

titioning small enough, we can {under certain

technical conditions{ approximate �j(xj) arbi-

trarily closely by such piecewise linear functions.

We denote by

b
j
` = �j(a

j
`) for 0 � ` � kj ; (2)

the function values at the points a
j
` which we can calculate where j 2 f1; : : : ; ng. In the following

we drop the index j for notational convenience because we will consider a single term of the right-

hand of (1) only. Of course, as there are typically constraints linking the variables x1; : : : ; xn



4.

our proceeding is a \local" analysis. What are looking for is a \locally ideal" formulation of the

approximation problem, i.e., a formulation that in the absence of other constraints models the

problem perfectly; see Padberg and Rijal (1996) for more detail.

1. The �rst model

In Model I we write for the single, continuous variable x

x = a0 + y1 + : : :+ yk :

We require that each y` is a continuous variable satisfying

(i) 0 � y` � a` � a`�1 for 1 � ` � k

and moreover, the following dichotomy:

(ii) either yi = ai � ai�1 for 1 � i � ` or y`+1 = 0 for 1 � ` � k � 1:

Assuming that this can be \formulated" conveniently, we then get the piecewise linear approxi-

mation for any term of the right-hand side of (1) by way of

b�(x) = b0 +
b1 � b0

a1 � a0
y1 +

b2 � b1

a2 � a1
y2 + : : :+

bk � bk�1

ak � ak�1
yk :

From (i) it follows that (ii) can be replaced by the requirement

(ii0) either yi � ai � ai�1 for 1 � i � ` or y`+1 � 0 for 1 � ` � k � 1:

To formulate this in linear inequalities using integer variables we introduce zero-one variables z`
and consider the mixed zero-one model

x = a0 +

kX

`=1

y` ; b�(x) = b0 +

kX

`=1

b` � b`�1

a` � a`�1
y` ; (3)

y1 � a1 � a0 ; yk � 0 ; (4)

y` � (a` � a`�1)z` ; y`+1 � (a`+1 � a`)z` for 1 � ` � k � 1 ; (5)

where z` 2 f0; 1g for 1 � ` � k � 1 are the \new" 0-1 variables. For k = 1 there is no need

for a zero-one variable and (3), (4) describe the linear approximation correctly. For k = 2 the

correctness follows by examining the two cases where z1 = 0 and z1 = 1, respectively. The

correctness of the mixed zero-one model (3), : : : , (5) for the piecewise linear approximation of

a nonlinear function follows by induction on k.

It follows from (5) that every solution to (4) and (5) satis�es automatically

1 � z1 � z2 � : : : � zk�1 � 0;

thus the upper and lower bounds on the 0-1 variables are not required in the formulation. In

a computer model, however, we would declare the variables z` to be \binary" variables rather

than general \integer" variables. A similar remark applies to the 0-1 variables of the second and

third model below. In Theorem 1 (below) we prove that Model I is a locally ideal formulation

for piecewise linear approximation.
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2. The second model

In Model II {which is the only one that one �nds e.g. in Nemhauser and Wolsey (1988){ we

exploit the fact that given a partitioning a0 < a1 < : : : < ak = au every real x 2 [a0; au] can

be written uniquely as a convex combination of at most two consecutive points a`; a`+1 of the

partitioning. Thus we write for the continuous variable x

x = a0�0 + a1�1 + : : :+ ak�k ;

where we require that the continuous variables �` satisfy

(i)

kX

`=0

�` = 1 ; �` � 0 for 0 � ` � k;

(ii) at most two consecutive �` and �`+1; say, are positive:

If the requirement (ii) can be expressed conveniently using integer variables, we then get the

piecewise linear approximation for any term of the right-hand side of (1) by way of

b�(x) = b0�0 + b1�1 + : : :+ bk�k :

To formulate (i) and (ii) as the set of solutions to a mixed zero-one program we introduce 0-1

variables �` for 0 � ` � k � 1 and consider the model

x =

kX

`=0

a`�` ; b�(x) =
kX

`=0

b`�` ; (6)

0 � �0 � �0 ; 0 � �` � �`�1 + �` for 1 � ` � k � 1 ; 0 � �k � �k�1 ; (7)

kX

`=0

�` = 1 ;

k�1X

`=0

�` = 1 ; (8)

�` � 0 for 1 � ` � k � 2 ; (9)

where �` 2 f0; 1g for 0 � ` � k � 1 are the \new" 0-1 variables. Note that the nonnegativity of

�0 and �k�1 is implied by (7). For k = 1 the formulation (6), : : : , (9) of the problem at hand is

evidently correct. The correctness of Model II for arbitrary k � 1 follows inductively.

3. Comparison of Model I and Model II

In the following we assume that k � 3, because for k � 2 either model is locally ideal. Model

I has k real variables and k � 1 0-1 variables, while Model II has k + 1 real variables and k 0-1

variables. To compare the two models we use the equations (8) to eliminate �0 and �0 from the

formulation. Using the variable transformation for the remaining continuous variables

y` = (a` � a`�1)

kX

j=`

�j for 1 � ` � k

and its inverse mapping that we calculate to be

�j =
yj

aj � aj�1
�

yj+1

aj+1 � aj
for 1 � j � k � 1 ; �k =

1

ak � ak�1
yk ;
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we obtain the following equivalent formulation of Model II :

x = a0 +

kX

`=1

y` ; b�(x) = b0 +

kX

`=1

b` � b`�1

a` � a`�1
y` ; (10)

y1 � a1 � a0 ; y1 � (a1 � a0)

k�1X

`=1

�` ; (11)

(a` � a`�1)y`+1 � (a`+1 � a`)y` for 1 � ` � k � 1 ; (12)

y1

a1 � a0
�

y2

a2 � a1
� 1�

k�1X

`=2

�` ;
y`

a` � a`�1
�

y`+1

a`+1 � a`
� �`�1 + �` for 2 � ` � k � 1; (13)

yk � 0 ; yk � (ak � ak�1)�k�1 ; (14)

�` � 0 for 1 � ` � k � 2 ; (15)

where �` 2 f0; 1g for 1 � ` � k � 1. Note that (11) implies that
Pk�1

`=1 �` � 1 and thusPk�1
`=j �` � 1 for all 1 � j � k � 1 and feasible 0-1 values �`, 1 � ` � k � 1. Using the variable

substitution

zj =

k�1X

`=j

�` for 1 � j � k � 1 ;

which is integrality preserving because its inverse is given by

�j = zj � zj+1 for 1 � j � k � 2 ; �k�1 = zk�1 ;

the above constraints (11), : : : , (15) can be written equivalently as follows:

y1 � a1 � a0 ; y1 � (a1 � a0)z1 ; (16)

(a` � a`�1)y`+1 � (a`+1 � a`)y` for 1 � ` � k � 1 ; (17)
y1

a1 � a0
�

y2

a2 � a1
� 1� z2 ;

y`

a` � a`�1
�

y`+1

a`+1 � a`
� z`�1 � z`+1 for 2 � ` � k � 1; (18)

yk � 0 ; yk � (ak � ak�1)zk�1 ; (19)

z` � z`+1 � 0 ; for 1 � ` � k � 2 ; (20)

where for ` = k � 1 we simply let zk = 0 in (18) and the integer variables z` are 0-1 valued for

1 � ` � k�1. It follows that the (equivalently) changed Model II has now the same variable set

as Model I and we are in the position to compare the two formulations in the context of a linear

programming based approach to the solution of the corresponding mixed-integer programming

problem. Note that like in Model I the constraints (16), (19) and (20) imply that every feasible

solution to (16), : : : , (20) automatically satis�es 1 � z1 � z2 � : : : � zk�1 � 0.

We denote the linear programming (LP) relaxation of Model I by

F I
LP = f(y; z) 2 R2k�1 : (y; z) satis�es (4) and (5)g: (21)

Likewise we denote the LP relaxation of the (equivalently) changed Model II by

F II
LP = f(y; z) 2 R2k�1 : (y; z) satis�es (16); : : : ; (20)g: (22)

It is an immediate consequence of the respective formulations that both F I
LP and F II

LP are

bounded subsets and thus polytopes in R2k�1 .
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Theorem 1. (i) Model I is locally ideal, i.e., z 2 f0;1gk�1 for all extreme points in F I
LP .

(ii) F I
LP is properly contained in F II

LP . F II
LP has extreme points (y; z) with z 62 f0;1gk�1.

Proof. We scale the continuous variables of Model I by introducing new variables

y0` = y`=(a` � a`�1) for 1 � ` � k: (23)

The constraint set de�ning F I
LP can thus be written as

y01 � 1; y0k � 0; y0` � z`; y0`+1 � z` for 1 � ` � k � 1: (24)

It follows that the constraint matrix given by (24) is totally unimodular and hence by Cramer's

rule every extreme point of the feasible given by (24) has all components equal to zero or one.

This implies (i).

(ii) Let (y; z) 2 FI
LP

, i.e., (y; z) satis�es (4) and (5). Then (y; z) satis�es (16) and (19)

trivially. From (5) and a` � a`�1 > 0 for all 1 � ` � k we calculate

(a`+1 � a`)y` � (a`+1 � a`)(a` � a`�1)z` � (a` � a`�1)y`+1

for 1 � ` � k � 1 and thus (17) is satis�ed. From (4) and (5) we have y1 � a1 � a0 and y2 �

(a2�a1)z2 and thus the �rst relation of (18) follows. Again from (5) we have y` � (a`�a`�1)z`�1
and y`+1 � (a`+1 � a`)z`+1 for all 2 � ` � k � 1, where zk = 0, and thus combining the

two inequalities we see that (18) is satis�ed. As we have noted in the discussion of Model I

every (y; z) 2 FI
LP

satis�es 1 � z1 � z2 � : : : � zk�1 � 0 and thus (20) is satis�ed as well.

Consequently, (y; z) 2 FII
LP

and thus F I
LP � F II

LP . Let (y; z) 2 F
II

LP
be such that z 2 f0;1gk�1.

It follows from (16), : : : , (20) that yi = ai � ai�1 for i = 1; : : : ; h, 0 � yh+1 � ah+1 � ah, yi = 0

for i = h+2; : : : ; k, zi = 1 for i = 1; : : : ; h, zi = 0 for i = h+1; : : : ; k� 1 where 0 � h � k� 1.

From (4) and (5) thus (y; z) 2 FI
LP

. Now consider (y; z) given by y1 = (a1 � a0)=2, yj = 0 for

2 � j � k, z1 = z2 = 1=2, and zj = 0 for 3 � j � k � 1. It follows that (y; z) satis�es (16),

: : : , (20), i.e., (y; z) 2 FII
LP

. But (y; z) violates the constraint y2 � (a2 � a1)z2 of Model I and

thus (y; z) 62 FI
LP

. Since F II
LP is a polytope, it follows that it has extreme points (y; z) with

z 62 f0;1gk�1.

By Theorem 1 F II
LP has extreme points with fractional components for z and indeed it has

many such extreme points. It is not overly di�cult to characterize all of them, which we leave as

a good exercise for graduate students. It is amazing that most textbooks treat only Model II in

the context of using mixed-integer programming to approximate separable nonlinear functions

by piecewise linear ones.

Model I, which has been known since the 1950's, is locally far better than Model II since all of

its extreme points (y; z) satisfy z 2 f0;1gk�1. Of course, this does not mean that the \overall"

model {of which the piecewise linear approximation is but a part{ has the same property. But

the proper inclusion F I
LP � F II

LP shows that the linear programming bound obtained from using

Model I must always be equal to or better than the one obtained from Model II in any case, i.e.,

even in the worst case.

It is now an easy exercise to derive ex post a formulation of Model II in � and � variables

that guarantees the same outcome as Model I. This may sometimes be desirable because all

variables of Model II assume values between zero and one. (The same e�ect can, of course, also

be obtained by scaling the continuous variables of Model I like we did in the proof of Theorem 1;

see (23).) We leave it as an exercise to prove that the following Model III is a correct formulation,



8.

which is obtained from Model I by reversing the various transformations that we have used to

analyze Model II.

x =

kX

`=0

a`�`; b�(x) =
kX

`=0

b`�`; (25)

kX

`=0

�` = 1;

k�1X

`=0

�` = 1; (26)

k�1X

j=`

�j �

kX

j=`+1

�j �

k�1X

j=`+1

�j for 1 � ` � k � 2; (27)

0 � �0 � �o; 0 � �k � �k�1; (28)

where �` 2 f0; 1g for 0 � ` � k � 1.

Evidently, Model III has at �rst sight little resemblance to the original Model II except that

the same set of variables is used. More precisely, let

PLP = f(�;�) 2 R2k+1 : (�;�) satis�es (7), (8), (9)g ;

P
#
LP = f(�;�) 2 R2k+1 : (�;�) satis�es (26), (27), (28)g ;

be the linear programming relaxation of Model II and III, respectively. It follows that

P
#
LP � PLP and P

#
LP = conv (PLP \ (Rk+1 � Zk)) :

By construction, Model III shares locally the property of Model I of having all its extreme

points (�;�) satisfy � 2 f0; 1gk . Model III can be used in lieu of Model I, but Model II should

de�nitely be abandoned despite its popularity in the textbooks. Model II just happens to be

a poor formulation for the piecewise linear approximation problem when linear programming

methods are used.
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