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1. INTRODUCTION 

Often one wishes to determine whether or not there exists a (causal) relationship between hypoth- 

esized predictor or independent variables and some response or dependent variable. Furthermore, 

at times, one needs to forecast the value of the response variable based on some assumed rela- 

tionship. In many situations, it is not in our power to determine that such a relationship is valid 

just by assuming or asserting a mathematical model of the relationship. Instead, data must be 

collected from the population of available data of these variables and an empirical relationship 

between the dependent and independent variables in question must be established on the basis 

of the data. 

The practitioner may wish to develop a concrete model from an assumed relationship, i.e., 

some arbitrary mathematical function G(xi, . . . , xp) = y, where xi,. . . , xp are the independent 

variables and y is the dependent variable. In this paper, the function G will be assumed to be a 

linear function L. Although more general cases can be considered, often they can be dealt with by 

transforming the variables. In order to test the proposed model, the practitioner must obtain a 

sample of data as described. Recognizing the existence of imprecision, the model must be modified 

to include a random error term, thereby giving the linear regression model y = L(xl, . . , xP) + E. 

In the case of forecasting, the objective is not to test the validity of a hypothesized relation- 

ship between the variables, but rather to “invent” a relationship which adequately describes the 

variation in the data. However, it is essential that the strength or statistical significance of the 

created model, as well as of the forecasts be described. This description is also useful for the 
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case of testing a proposed model, since one would want to know the level of assurance that a 

model is correct. In both cases, generally only linear relationships will be permitted, although 

at times transformations of the dependent and/or independent variables can be performed to 

include nonlinear ones. 

Thus, one must determine some line or a hyperplane which is closest to the data under some 

distance criterion or function. Recognizing the importance of considering errors in a model of 

this type was already done by Galileo Galilei (1564-1642) in the 17th century and determining 

the line which best fits three or more points was studied as early as the 18th century by Roger 

Joseph Boscovich (1711-1787). The technique that resulted is formally known as linear regression 

and was developed by Adrien Marie Legendre (c. 1752-1833), Carl Friedrich Gauss (1777-1855), 

Joseph Fourier (1768-1830), and many, many other eminent mathematicians. See the voluminous 

papers by Harter [l-6] for an exhaustive treatment of the history of regression up to the mid- 

1970s. 

There are different distance functions or metrics which can be utilized to perform linear regres- 

sion. Therefore, the original problem is categorized under the class of mathematical problems. 

In order to solve these problems, a remarkably wide range of mathematical techniques are in- 

voked. At times, classical analysis is sufficient, while other problems require the use of linear 

programming (LP) d an even discrete optimization. Furthermore, several of the possible metrics 

are interrelated and approximation theory becomes a useful tool as well. In this chapter, sev- 

eral metrics will be discussed, as well as their respective statistical properties, quality of fit, and 

possible refinements. 

2. TRADITIONAL LINEAR REGRESSION TECHNIQUES 

To formalize the linear regression model, we assume that we have n measurements or observa- 

tions on the dependent variable y and some number p 2 1 of independent variables xl,. . , x7, of 

each one for which we know n values as well. We denote 

y=[j, X=[; m m m y)flj+ )...) XP)> (2.0.1) 

where y E W” is a vector of n observations and X is an n x p matrix of reals frequently referred 

to as the design matrix. Furthermore, xi,. . . , xp are column vectors with n components and 

Xl,... , xn are row vectors with p 

respectively. 

components corresponding to the columns and rows of X, 

The statistical (or hypothesized) linear regression model is 

y=xp+q (2.0.2) 

where flT = (pi,. . . , &) is the vector of parameters of the linear model and eT = (~1,. . ,cn) 

a vector of n random variables corresponding to the error terms in the asserted relationship. 

An upper index T denotes Yransposition” of a vector or matrix throughout this work. In 

the statistical model, the dependent variable y, thus, is a random variable for which we obtain 

measurements or observations that contain some “noise” or measurement errors that are captured 

in the error terms E. On the other hand, for the numerical problem that we are facing, we write 

y=Xp+r, (2.0.3) 

where given some arbitrarily fixed parameter vector 0, the components ri of the vector rT = 

(Tl,..’ , rn) are the residuals that result, given the observations y, a fixed design matrix X, and 
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the chosen vector 0 E WP. The residuals r are thus in terms of the statistical model, realizations of 

the random error terms E given the particular observations y and parameter settings /3. Given y 

and X, the general objective in linear regression is to find parameter settings p E Ii@’ such that 

some appropriate measure of the dispersion of the resulting residuals r E Iw” is as small as 

possible. 

We note that it is entirely possible that, e.g., 4 = 1, for all j E (1,. . . , n} in the design 

matrix X. In this case, we refer to ,Or as the “intercept term” corresponding to the situation in 

the two parameter case, i.e., when p = 2. If Z{ = 1, for all j E { 1,. . . , n} and p = 1, the problem 

of finding a “best” fitting scalar ,Bi means that we want some good measure of “centrality” of 

the observations y. 

The notion of what is “best” can be made precise using different norms on IR” and we discuss 

next the most commonly used ones. 

2.1. Lz or Least Squares Regression 

Least squares regression is, by far, the most well-known and utilized regression technique. The 

regression estimates /3 are found by minimizing the sum of squared residuals under the Euclidean 

(or &-) norm llxllz = m, i.e., we wish to find parameters p E ll%P such that 

S = rTr = (y - Xfl)T (y - Xp) = yTy - 2PT (XTy) + PT (XTX) 0 (2.1.1) 

is minimum. Note that the expression is not the value of the Euclidean norm of the residuals, 

but rather the square of the norm. This transformation is monotone, and thus, it does not 

affect optimality. The function to be minimized is positive semidefinite, and thus, the first-order 

conditions do the job, i.e., to minimize S, its gradient VS with respect to p must be calculated 

and set to zero or 

;vs = -XTy + (XTX) = op. (2.1.2) 

The equations (XTX) = pXTy that must be solved for fi are called the normal equations for 

[z-regression. 

Assuming that the rank of X is p, i.e., that r(X) = p, it follows that (XTX)-l exists and the 

optimal ,O = pLs is given by 

pLs = (XTX)_l XTy, (2.1.3) 

i.e., the &-norm yields a unique optimum. For matters of our analysis, we will make this rank 

assumption, the solution is not unique, but we could work with some “pseudo-inverse” of XTX, 

which we will not do. Clearly, the computational effort is centered about the inversion of XTX, 

but a numerical solver must be able to cope with the possible singularity of XTX. 

Alternatively, the least squares regression estimates pLs can be found by linear programming, 

and thus, do not require an explicit inversion of XTX nor consideration of singular matrices, 

as this is done automatically by any commercial LP solver. The gradient with respect to 0 is 

calculated componentwise 

(2.1.4) 

The problem of finding a solution to the normal equations (2.1.2) then is the linear program 

minimize Z 

subject to for Ic= l,...,p, (2.1.5) 

z 1 0, A,... ,/I, free. 
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This linear program attains its optimal solution at z = 0 with the p normal equations enforced, 

thereby giving least squares estimates. Although there is no computational difficulty without 

full-column rank of the design matrix, in such a case, the linear program will not have a unique 

solution either. However, any commercial LP solver can be used to find least squares regression 

estimates, and in the case of nonuniqueness, alternative optima can be determined automatically. 

Primarily due to the convenient closed form (2.1.3) of least squares regression estimators, the 

statistical linear regression model has been studied intensively for well over 200 years now and- 

under the assumption of a normal (or Gaussian or exponential) distribution of the error terms E- 

an impressive statistical apparatus has been created to assess the goodness of fit, the quality of 

individual and/or subsets of the regression coefficients, as well as other statistmica properties of 

the linear regression model. The very assumption of the normality of the distribution of the error 

terms has, however, been under attack from the very beginning as, for instance, in the words of 

Francis Ysidro Edgeworth (1845-1926) written in 1883 where he submits that “. . the ancient 

solitary reign of the exponential (Gaussian) law of error should come to an end” (cited in [I, 

p. 1671). On the other hand, some of the properties of the statistical linear regression model 

alluded to above require seemingly weak assumptions. See, e.g., [7, p. 411. 

Statistical properties of the least squares estimators p Ls of the “true” parameters /3 of the 

linear regression model, such as, e.g., their asymptotic “consistency”, are easy to prove under 

the Gauss-Markov conditions (see [8]). The entire analysis of least squares regression has been 

extended to the case where the error terms E follow a normal distribution with mean zero and 

covariance matrix C. As in the Gauss-Markov case where the common error variance o2 may 

a priori be known or unknown, X may be known or unknown. In either case, for “small” 

sample sizes, the resulting distributions of the regression estimates pLs when viewed as random 

variables can be calculated directly and tabulated, while for “large” sample sizes, asymptotic 

distributions can be found (under certain additional restrictions). Based on these distributional 

results, a multitude of tests for the significance of, as well as confidence intervals (or ellipsoids) 

for individual (or subsets of the) regression estimates-none of which we will summarize here and 

all of which are valid given the assumed normality of the distribution of the error terms e-have 

been developed and are readily available to the practitioner of least squares linear regression. 

If and when the error terms in the linear regression model do indeed follow a normal distribu- 

tion, then the least squares regression estimates pLs are “best estimators” under most acceptable 

criteria that the statistical profession has developed in the past two centuries or so. However, as 

we have pointed out above, the very assumption of the general applicability of the normal law of 

errors has been under attack from the very beginning of the development of linear regression and, 

in particular, the least squares analysis hinges critically on the existence of the second moment 

of the error distribution. Thus, if we must assume or believe that the error distribution follows, 

for instance, a Cauchy distribution or any “long-tailed” distribution having no finite second mo- 

ment, then the elegant arguments made in favor of the least squares regression estimators become 

invalid, and thus, it may become mandatory to look for other criteria to find “best” estimators 

for the linear regression model (2.0.2). 

2.2. Li or Least Sum of Absolute Deviations Regression 

Proposed apparently by the Jesuit Boscovich in the 18th century and studied, among many 

others, by Pierre Simon Laplace (1749%1827), Fourier, Gauss and Edgeworth in the lgth century. 

(i-regression came to a new life in the 1960s with the observation by Fama [9], Mandelbrot (lo], 

Blattberg and Sargent [ll], Sharpe [12], and others that stock-market prices, market-indices, 

and other economic time series cannot be explained nor predicted well enough in the traditional 

least squares setting. In most cases, remarkably better explanatory or predictive results were 

obtained through the use of li-regression where the estimates of the parameters p E l@’ of the 

linear regression model are found by minimizing the sum of the absolute (rather than squared) 
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residuals, i.e., here we wish to find fl E Iw* such that 

IIY - WI, = 2 1% - xiP( (2.2.1) 
i=l 

is minimum and the Cl-norm ]]x]]i = C ]~j] instead of the &-norm is employed in the process of 

minimizing the dispersion of the residuals. Clearly, this objective function is nondifferentiable, 

calculus does not help, and a closed form solution-unlike the least squares case-simply does 

not exist. Even worse is that it was not clear for a long time what solution method to use to 

find the minimum in (2.2.1) and that even under the assumption of a full rank design matrix, 

the uniqueness of an optimal solution cannot be guaranteed. With the advent of computers 

and numerical techniques such as linear programming, [i-regression has, however, become a 

viable alternative to least squares regression. As a result, both empirical and theoretical studies 

addressing the properties of f?i-regression have again been augmented considerably in the past 30 

years or so. Li-regression is called in the literature by a multitude of names that all mean the 

same: LAD (least absolute deviation), LAE (least absolute error), LAV (least absolute value), 

LAR (least absolute residual), LSAD (least sum of absolute deviations), MAD (minimum absolute 

deviation), MSAE ( minimum sum of absolute errors), and so forth. All but LSAD and MSAE 

are truly misnomers because they paraphrase the em- norm rather than as intended the !i-norm. 

The key to the numerical solution of the [i-regression problem is the fact (known already to 

Fourier, Charles Jean Gustave Nicolas de la Vallee Poussin (1866-1962) and probably others) 

that the minimization problem (2.2.1) is a linear programming (LP) problem of the form 

minimize eTr+ + eTr- n 71 

subject to Xp+r+ -r- =y, (2.2.2) 

p free, r+ 2 0, r- 2 0. 

Other forms of writing the [i-regression problem as a linear program are possible and can be 

found in the literature. In the formulation (2.2.2), the residuals r of the general form (2.0.3) are 

simply replaced by a difference r + - r- of nonnegative variables, i.e., we require that r+ 2 0 and 

r- 2 0, whereas the parameters p E Iw* are “free” to assume positive, zero, or negative values. 

The objective function of (2.2.2) “hides” the nondifferentiability of the absolute value objective 

function in a clever way, but captures the objective function of ei-regression correctly, since 

we are minimizing. Moreover, from the mathematical properties of linear programming solution 

procedures, it follows readily that in any solution inspected by, e.g., the simplex algorithm, either 

r+ > 0 or r, > 0, but not both, thus giving [ril in the objective function depending on whether 

r,>Oorri<Oforanyi~N,whereN={l,...,n}. 

We denote by P the polyhedron associated with our linear program 

P={(p,r+,r-)EIWp+2~:XP+r+-r-=y,r+>0,r->0}, (2.2.3) 

and let z = (P,r+, r-) for short. As in least squares regression, we will make the blanket 

assumption that r(X) = p. Consequently, the rank of the constraint matrix defining P equals 

2n + p and P is a nonempty pointed polyhedron of dimension n + p, i.e., dim P = n + p. (For 

all undefined polyhedral terms, see, e.g., (13, Chapter 71.) From the least squares estimates pLs 

defined in (2.1.3) and their residuals rLs = y - XpLs, we find 

zLs = (p”“, max (0, rLs} , - min (0, r”“}) E P. (2.2.4) 

The face FLS of smallest dimension of P containing zLs satisfies dim FLS = p - r(Xz), where 

(Xz, yz) is the largest submatrix of (X, y) such that XzpLs = yz, i.e., such that the corre- 

sponding least squares residuals are zero, and r(Xz) = 0 if X z = 8. This follows because the 
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equation system satisfied by z Ls has a rank of 2n + r(X,). Consequently, zLs typically lies on 

some low-dimensional face of P, but it is, in general, neither an extreme point of P nor an optimal 

solution to (2.2.2). To characterize optimality of pLs for [l-regression let 

2 = {i E N : ?y = 0) , u = {i E N : r,“” > o} ) L = {i E N : ?y < o} (2.2.5) 

Furthermore, XZ = (x’)~Ez, ez = (1,. . . , l)T with 121 components equal to one and Xu, eu, XL, 

and eL are defined likewise. Whenever we write min IIy - XflII1, it is understood t,hat the mini- 

mization is over all p E IRY. 

PROPOSITION 1. 

(i) The least squares estimate pLs is an optimal solution to minlly - Xfllll if and only if 

there exists v E IRlzl such that 

vXz = -e&X” + elX1;, -eH <v<ez. (2.2.6) 

If Z = 8, condition (2.2.6) simplifies to e&Xu = e:XL. 

(4 min lly - WI1 L IlrLSl1311~LSII~, where IIxllm = max{IzjI : j E N} is the &-norm. 

PROOF OF PROPOSITION l(i). The dual linear program to (2.2.2) is given by 

max{uy:uX=O,-e,TIuIe,T)=max{urLS:uX=O, -e,‘<u<_e,‘}, 

where the asserted equality follows because uy = u(XpLs + rLS) = urLS for all u E&?? satisfying 

UX = 0. Suppose now that condition (2.2.6) is satisfied. Define ui = 1 for i t U, u, = -1 for 

i E L, and uz = v. Then u is a feasible solution to the dual, urLS = eJrbs - ezrhs = (IrLs/I1, 

and thus, pLs IS an optimal solution to the kl-regression problem by the weak theorem of duality 

of linear programming. Suppose, on the other hand, that 0 Ls is an optimal solution to the 

[l-regression problem, but that v E !Rlzl satisfying (2.2.6) does not exist. By Farkas’ lemma, it 

follows (see, e.g., [13, Exercise 6.51) that there exist 6 E IWP, q+, q- E Iwlzi such that 

xzt+q+-q- =o, (-4% + eL&) 5 + eHq+ + e$- -c 0: 

rl+ 2 0, 7#- 2 0. 

If Xz is empty, then 0 # -e&Xu + e;XL and we choose any t E I@’ such that (-eJXU + 

eLXL)t < 0. Since rb” > 0 and ri” < 0, there exists X > 0 such that r&(X) = x-41” - XXuc 2 0 

and rL(X) = -ris + XXL< >_ 0. Consequently, p(X) = pLs + Xc, r;(X) = Xv+> r;(X) = X7-, 

r;(X) = 0, and r:(X) = 0, together with r;(X) and r;(X) define a feasible solution to the linear 

program (2.2.2). Calculating its objective function, we get 

e,Tr+ (A) + e,Tr- (A) = X (e&l+ +eh-) + Ilr$ (A)(/, + (Iri (A)(\, 
= IJrLsII1 + X (eHv+ + egq- -4Xut + eLX&) -c I(rLsI(, , 

and consequently, pLs is not optimal. 

PROOF OF PROPOSITION l(ii). If llrLSlloo = 0, then the ratio is defined to be zero and the 

inequality holds. Otherwise, uT = rLS/llrLSII~ is a feasible solution to the dual of (2.2.2), and 

hence, by linear programming duality, 

llrLsI/z minI(y-XP((1=max{urLS:uX=0,-e~IuIeh}>_2. 
IlrLs II M 

The proposition shows that even if the least squares solution z Ls defines an extreme point of P, 

then pLs is in general not an optimal solution to the tl-regression problem as condition (2.2.6) 
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may be violated. Since by assumption, r(X) = p, it follows by a standard argument from linear 

programming that zLs is an extreme point of P if and only if r(Xz) = p. Indeed, condition (2.2.6), 

together with such a rank condition, characterizes optimal extreme points of P completely, since 

the extreme points of a pointed polyhedron are precisely its faces of dimension zero. 

PROPOSITION 2. Let p E I@‘, rB = y - Xp, zfi, and Z, U, L be defined as in (2.2.4) and (2.2.5) 

with pLs replaced by p. Then zp is an optimal extreme point of P if and only if r(Xz) = p and 

(2.2.6) is satisfied. 

Thus, for every optimal extreme point solution 0’ E W’ of the !!I-regression problem, there 

exists a nonsingular p x p submatrix Xg of Xz such that 

p* = XilyB, r+ =max{O,y-Xp*}, r- = -min{O,y-Xp’}, (2.2.7) 

defines an extreme point z* = (p*, r+ ,I--) of P satisfying condition (2.2.6), where B & Z, 

IBI = p and y B is the subvector of y corresponding to the rows of Xg, Since the parameters 

p E IRP are free variables of the linear program (2.2.2), every (decent) commercial LP solver will 

automatically put all p variables into the LP basis (provided that r(X) = p as assumed!) and 

produce an optimal solution of the form (2.2.7). An optimal solution to (2.2.2) need, of course, 

not be unique. The following proposition (and its proof) is adapted from Koenker and Bassett 

[14, Theorem 3.31 and gives a necessary and sufficient condition for the Cl-regression problem to 

have a unique solution. 

PROPOSITION 3. p* E W' as defined in (2.2.7) uniquely solves the [l-regression problem if and 

only if 

-ep’ - Cl xiXjjl 1 < (e;X, - ezX,> Xi’ < ei + C \xiXi’ 1 , (2.2.8) 
iED iED 

where D = Z - B and 1x1 = ()x11,. . . , 15pJ)T, for any x E IRp. 

PROOF. p* is unique if and only if IJy - Xp*Ill < IIy - X(P*+W)I(~, for all w E IF!? with w # 0. 

Since by the triangle inequality, IIy - Xpll 1 is a convex function of p, it is necessary and sufficient 

that the inequality holds for all “sufficiently small” nonzero w E W. Because Xg is nonsingular, 

setting v = XBW, the inequality holds if and only if 

c Irfl < c Illi\ + c jr; - XiXb’VI ) 

iER iEB iER 

for all v E IW with llvllz = E and sufficiently small E > 0, where r* = y - Xp* and R = DU UuL. 

Define 

sign (u; .z) = 
{ 

sign(u) , if u # 0, 

sign (z) , if u = 0. 

For small enough E > 0, we get 

Ir,t - xiXi’vI = sign (r2*; -xiXi’v) (T’ - xix-$) z B 

and the last inequality simplifies to 

C sign (rl; -x”Xilv) xix;% < C lwil , 
iER iEB 

for all v E WP with IlvlJ2 = E, which is equivalent to 

C sign ( -xiXi’uk) xiXB1uk + C sign (~a) xiXB1uk < 1, 
iED iEUUL 

C sign (xiX;‘uk) xiXB1 ulc + C sign(ra)xiX;‘uk > -1, 
iED GUUL 

where uk E I@’ is the Icth unit vector and Ic = 1,. . . ,p. Thus, (2.2.8) follows. 
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As in linear programming calculations, alternative optima are the rule rather than the excep- 
tion. It becomes necessary to find a “compromise” between competing optimal extreme-point 
solutions to the /?I-regression problem. So let p’,. , pq be all Q 2 1 optimal extreme point 
solutions to (2.2.2). Then we choose as the [i-regression estimate pL1 E E%P, the center of gravity 

of the extremal solutions, 

pL’ = d -& p’, 
e=l 

(22.9) 

thereby getting a unique !I-regression estimator for any data. In practice, one will typically 
content oneself with some optimal extreme-point solution to the Cl-regression problem, but ren- 
dering the ei-regression estimator unique like in (2.2.9) has some consequences for the associated 
statistical model. 

Different from the least squares analysis and manifestly due to the lack of a convenient, 
mathematically tractable closed form solution for the fi-regression estimator, the sta.tistical the- 
ory developed for [i-regression is less advanced than it is for [z-regression. Whereas for the 
[n-regression estimates pLs, one has the formula pLs = ,0 + (XTX)-‘XT&, which permits one 
to determine the sample distribution of /3 Ls from the error distribution, the dependence of the 
lr-regression estimator on the errors is more complicated. Assuming, for simplicity, the unique- 
ness of pL1, we get pL1 = /3 + X&leg, and thus, different from flLs, where all error terms E 
enter at once. Here the dependence of pL 1 is “local” on only a subset EB of the error terms. But 
to obtain the sample distribution of the [i-regression estimates, we must vary over all possible 
values of the observations (and thus, all errors), and hence, the dependence of pLl on XB (which 
varies as well!) may make a precise determination of the distribution of pLl computationally 
intractable; see also [15,16]. However, it has been proven that asymptotically the Pi-regression 
estimator follows a normal distribution. 

For reasons that may be debatable, statisticians like “unbiased” estimators, i.e., they like 
to have a relation of the form E(pL1) = p, which essentially says that “on average” the 
!!r-regression estimates pL1 estimate the “true” underlying parameter p of the statistical linear 
regression model (2.0.2) correctly no matter what ,f3 E LRP may be. It is a fact that the restriction 
to optimal extreme point solutions p* of the [i-regression problem may indeed produce “biased” 
estimators, see [17] for a pertaining small example with a discrete probability distribution of 
the error terms. However, defining the ki-regression estimator as in (2.2.9) gets one around this 
difficulty. Assuming that the error terms E are symmetrically distributed random variables with 
mean zero, one shows the unbiasedness of p L; as follows. Let pLl(c) = (l/q) cb, pe (E) with 

q > 1 as defined in (2.2.9). It follows that 

For y = Xp - E, we get from the symmetry of the optimality condition 

i.e., more precisely, that for y, we have precisely q optimal extreme point solutions Be = @(-E) 
defined by al,..., B, as well. Consequently, ,0 - pL1(e) = -[p - pL1 (--E)], and thus, from the 
symmetry of the error distribution, we have .E(pL1) = p as argued in [ 171. This is dependent 

upon whether the underlying error distribution is discrete or continuous. Moreover, in the case 
of a continuous distribution, one can rule out nonuniqueness of /?ILl, and thus, biasedness as 
well, because they are events of probability measure zero in this case. Thus, the fl-regression 
estimator is unbiased (“for what it is worth” in the words of Sielken and Hartley [17, p. 6411). 
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The real question of the statistical analysis rests with whether or not practical tests of the 

significance of and confidence intervals for the Cl-regression estimator can be found. As we 
have mentioned above, except perhaps for very small sample sizes, it seems next to impossible 

to determine the sample distribution of p L1 exactly. Thus, the question arises whether or not 

these distributions can be found approximately. This is indeed the case, as was shown by way 

of a Monte Carlo simulation by Rosenberg and Carlson [15] and made analytically precise via 

an asymptotic distributional result by Bassett and Koenker [lS], see also [19]. More precisely, 

Bassett and Koenker consider a sequence of linear models of the form yn = X,0 + sn, where 

yn E R” and X, is rz x p with r(X,) = p < n. The error terms are assumed to be i.i.d. random 

variables with a marginal distribution function F having a median of zero. The latter assumption 

can always be met by including an intercept term in the design matrix. 

THEOREM 1. (See [IS].) Let {Pz} d enote a sequence of unique solutions to min/]y, - X,/!l]]i 

and assume the following. 

(i) F is continuous and has a continuous and positive density f at the median. 

(ii) lim,,+, (l/n)X,TX, = Q is a positive definite matrix. 

Then fi(PI*, - P) converges in distribution to a p-dimensional Gaussian random vector with 

mean 0 and covariance matrix u2Qd1, where w2 = (2f(O))- 2 is the asymptotic variance of the 

sample median of random samples from F. 

In contrast to the corresponding asymptotic theory for &-regression, see, e.g., [20, p. 3981, 

the existence of the second moment of F is (as well as further technical conditions are) not re- 
quired. Moreover, it follows from the theorem that the asymptotic confidence ellipsoids of the 
!I-regression estimators are strictly smaller than those for the least squares estimators for all 
distributions F, for which the sample median is a more efficient estimator of location than the 
sample mean (such as, e.g., the double exponential (Laplace) distribution or the Cauchy distri- 
bution). It follows, furthermore, that the !i-regression estimates are asymptotically consistent 
estimators of the parameters of the linear regression model. Finally, based on the theorem of 
Bassett and Koenker, asymptotic tests and confidence intervals for JJi-regression estimators using 
the x2 distribution and the standardized normal distribution have been developed by Koenker 

and Bassett [21], Dielman and Pfaffenberger [22], and others. In other words, as in &-regression 
analysis, an entire apparatus to judge the quality of fit of the estimates of the linear model (2.0.2) 

is available to the practitioner of large-scale ei-regression. 

2.3. L, or Chebychev Regression 

According to Harter [l, p. 1491, the idea of minimizing the maximum residual error in “solving” 
inconsistent (linear) systems of equations goes back to Leonhard Euler (1707-1783). Jean-Victor 
Poncelet (178881867) used this criterion in his work on approximating certain nonlinear functions 
over some finite interval by linear ones, which is what Pafnuty Lvovich Chebychev (1821-1894) 
generalized by considering polynomials in the approximation process, The criterion of minimizing 
the maximum residual remains a major criterion today in approximation theoq, see, e.g., [23]. 

For the linear regression model (2.0.2) or (2.0.3), this criterion means that parameters p E EP 

are sought such that 

](y - Xfl(l, = max { Iyi - xi@] : 1 5 i 5 n} (2.3.1) 

is minimum, i.e., the &,-norm ]]x]], = max(IzCiI : i E N = (1,. . . , n}} on Iw” is used instead of 
the Ci- or &norm in the process of minimizing the dispersion of the residuals. As in the case of 
the ei-norm, this objective function is nondifferentiable and-except in very special cases, see, 
e.g., Proposition 4(iv) below-a general closed form solution to the problem simply is not known 
to exist. As a result, there is little treatment of &-regression in the statistical literature, even 
though the method of &-regression is recommended whenever the sample midrange is a more 
efficient estimator of the location or “centrality” parameter of the error distribution than either 
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the sample mean or the sample median. This is the case, e.g., if the errors follow a uniform 
distribution, see, e.g., [5]. 

The key to the solution of the &,-regression problem is the fact-known probably to Euler 

and other mathematicians of the lgth century-that the minimization problem (2.3.1) is a linear 

program of the form 
minimize Y 

subject to XP + ye, > Y, 

-WJ+re, 2 -Y, 
(2.3.2) 

/3 free, y free. 

Other formulations of the &,-regression problem as a linear program are possible and can be 

found in the literature. In our analysis of the &,-regression problem (2.3.2), we will again make 

the blanket assumption that r(X) = p and an intercept term may or may not be present in the 

design matrix. Moreover, we will make the assumption that ,0 E lFP such that Xp = y does not 

exist, i.e., we rule out the possibility of a “perfect fit”, for convenience in the following analysis. 

We denote by Q the polyhedron associated with our linear program 

4 = {(P,r) E RPf':XP+ye, L Y, -W+re, 2 -Y}. (2.3.3) 

From our blanket assumption, it follows immediately that the rank of the constraint matrix of 

(2.3.2) equals p + 1. Since Q is evidently nonempty, it is a pointed polyhedron in lP+‘, i.e., Q 

has extreme points, and moreover, dim Q = p + 1. For any p E W, we define 

YP = IIY - XPII 03’ A= {WV: /r”/ =?P), 

where rp = y - Xfl are the corresponding residuals, we define f E IP’ by 

(2.3.4) 

f% = 1, if,? 20, fL = -I, if r,P < 0, (2.3.5) 

and let XA = (xi)ie~ and fA = (fi)ieA. 

PROPOSITION 4. 

6) (D,rP) ERp+l is an extreme point of Q if and only if r(XAfA) = p + 1. 

(ii) (ply@) E Rp+’ is an optimal solution to (2.3.2) if and only if there exists w E IdAl such 

that 
WXA = 0, WfA = 1. (2.3.6) 

(iii) min]]Y - Xp]]oo 2 ]]rLs]]i/]]rLs]]i, where rLs = y - XflLs are the least squares residuals 

and pLs are the least squares estimates defined in (2.1.3). 

(iv) If n = p + 1, then an optimal solution to (2.3.2) is (PC, y’), where 

0” = @S -y @‘x)-l XTfLS, IlrLSI/i ~ ” = I(rLs/I1 ’ 
(2.3.7) 

P Ls is the least squares solution (2.1.3) and fLs is defined as in (2.3.5) for 0 = pLs. 

PROOF OF PROPOSITION 4(i). If r(XAfA) = p + 1, then (fl,rP) lies on a face of dimension zero 

of Q, and thus, it is an extreme point of Q. Suppose now that (0, rp) is an extreme point of Q, 

but that r(XAfA) < p + 1. Consequently, there exists (A, Xa) E KP+‘, (A,&) # 0, such that 
XAX + XafA = 0. But then (0 + EX, yp + &Xc) E Q and (0 - EX, yp - EX~) E Q for some E > 0 

as is readily checked. Thus, 

(p,rP) =~(p+EX:yP+EXO)+~(P--EX,yP-EXO), 

and hence, (p, rp) is not an extreme point of Q since (A, Xa) # 0. 



Linear Regression 

PROOF OF PROPOSITION 4(ii). The dual linear program to (2.3.2) is given by 

max {uy - vy : uX - VX = 0, ue, + ve, = 1, u > 0, v > 0} 
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(2.3.8) 

Suppose (2.3.6) is satisfied. Then setting 

UA = max (0, w} , UN-A = 0, VA = (0, -W}, VN-A = 0, 

we have a feasible solution to (2.3.8). Moreover, (u - v)y = (u - v)rP for all (u,v) satisfying 

uX - VX = 0. From the definition of A, (UA - vA)rz = yp, and thus, the assertion follows from 

the weak duality theorem of linear programming. Suppose now that (p, r@) is optimal, but that 

(2.3.6) has no solution. It follows from Farkas’ lemma that there exist [a and E E RP such that 

X,6 + JofA = 0 and &, < 0. Consequently, (0 + &<,-y@ + E[O) E Q for some E > 0 as is readily 

verified. But yp + E& < yp, and thus, (p,rP) is not optimal. 

PROOF OF PROPOSITION 4(iii). As we ruled out a perfect fit, rLs # 0, and thus, u = 

amax(0, rLs}, v = amax(0, -rLs}, where (Y-’ = IlrLSII1 defines a feasible solution to the 

dual (2.3.8) of (2.3.2) with an objective function value ofcr]]r Ls 2 So the assertion follows from 11s. 

the duality theorem of linear programming. 

PROOF OF PROPOSITION 4(iv). Define F = diag@, . . , f,““) and note that by the definition 

of fLs , we have FF = I,. The constraint set of (2.3.2) is equivalent to FXPfye, 2 Fy, -FXP+ 

ye, 2 -Fy, where y and 0 E Iwp are free variables. Since n = p + 1, the matrix (FXe,) is 

of size (p + 1) x (p + 1) and we claim that it is nonsingular. For if it is not, then there exists 

X E I%*+’ such that XFX = 0 and Ae, = 0. Letting p = XF, we have PX = 0 and pfLs = 0. 

But r(X) = p and (rLS)TX = 0. Thus, ~1 = G(rLS)T, where b is a scalar because n = p + 1. 

Consequently, from pf Ls = 0, we get S]] rLs ]] r =O. Since we have ruled out a perfect fit ]]rLs ]I 1 # 0, 

consequently, 6 = 0, and thus, the claim follows. Hence, FX@ + ye, = Fy has a unique solution. 

Multiplying by XTF, we find P+$XTX)-lXTfLS = pLs, while multiplication by (rLS)TF yields 

-dl~LSll~ = IlrLsll~~ C onsequently, (2.3.7) follows. Moreover, -FX/3’ + -yCen 2 -Fy, because 

TCen 2 -(Fy - FXP”) = -IrPI, and thus, (p”, yc) is an extreme point of Q. The optimality of 

(pc,yc) follows from Part (ii) because (XAfA) = (XFe), and thus, w = (l/llrLSII1)(rLS)T solves 

(2.3.6). I 

Part (i) of Proposition 4 is from [24], Parts (iii) and (iv) can be found in [25, p. 411. For- 

mula (2.3.7) is of interest only if es-norm calculations are carried out, while Parts (i) and (ii) 

imply that there exists a (p + 1) x (p + 1) nonsingular submatrix of the constraint system of 

the linear program (2.3.2) which defines an optimal extreme point solution to the &,-regression 

problem. Naively, one can thus solve the linear program (2.3.2) by enumerating all (p+ 1) x (p+ 1) 

submatrices of the constraint set of (2.3.2), checking their nonsingularity and feasibility of the cor- 

responding solution, and picking anyone for which the resulting value of y is minimal. Evidently, 

solving (2.3.2) by any commercial LP solver is far more efficient. 

For every optimal extreme point solution p* E IWP of the &-regression problem, there exists, 

hence, a nonsingular (p + 1) x (p + 1) submatrix (XBfB) of (XAfA) such that 

= (XBfB)-’ yB (2.3.9) 

is an extreme point of Q satisfying condition (2.3.6), where B c A, IBI = p + 1, and yB is the 

subvector of y corresponding to the rows of Xg. Optimal solutions to the linear program (2.3.2) 

need, of course, not be unique. The following proposition gives a necessary and sufficient condition 

for the .&-regression problem to have a unique solution. 

PROPOSITION 5. Let p* E IRP as defined in (2.3.9) be an optimal solution to (2.3.2). Then p* is 

unique if and only if 

F>XAE 2 0, tk < 0, (2.3.10) 
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is inconsistent for k = 1,. . ,p, where F> = diag(f,*)icA and A, f’ are defined as in (2.3.4), 

(2.3.5) with p replaced with p’. 

PROOF. ,8* uniquely solves (2.3.2) if and only if min{cp : (P,r*) E Q} = co* for all c E IWP, 
i.e., if and only if the optimal face of Q is exactly the extreme point (p*, y*) of Q. Consequently, 
by the strong duality theorem of linear programming, 

max{u (y - 7*en) + v (-y - +f*en) : UX - VX = c, u > 0, v 2 0) = CD*, 

for all c E IWP. Writing y = Xp* + r*, (p*, y*) is thus unique if and only if 

max{u (r* - T*en) + v (-r* - T*en) : UX - VX = c, u > 0, v > 0) = 0. 

for all c E Rp. Since rk_A - Y*eN_A < 0 and -I->-A - T*eN_A < 0, it follows that UN-A = 

VN_A = 0 in every optimal solution to this linear program. Moreover, for all i E A, if r: < 0, 
then ui = 0 and if rT > 0, then v, = 0 in every optimal solution. Thus, (P*,r*) is unique if and 
only if 

UAF~XA = C> UA 2 0, 

has a solution for every c E lFP, or equivalently that 

UAF>XA = u:, UA > 0, 

has a solution for every k E (1,. . . ,p}, where uk E IWP is the lath unit vector. Applying Farkas’ 
lemma shows that condition (2.3.10) is necessary and sufficient for the uniqueness of (p*, y*). 1 

Our condition for uniqueness requires that p systems of inequalities must be checked for incon- 
sistency which is, of course, a laborious computation. The literature on &-regression does not 
offer-to the best of our knowledge-any condition. Uniqueness of an optimal solution to (2.3.2) 
is, of course, not to be expected. So as in the case of f!l-regression, we let /?‘, . . . , ,B’J denote all 
q > 1 optimal extreme point solutions to the linear program (2.3.2) and define the &-regression 
estimate to be 

pL- = $o’, (2.3.11) 
e=i 

thereby getting a unique too- regression estimator for any data. As in the case of &l-regression, 
in the practice of .&,-regression, one will usually content oneself with finding a single optimal 
extreme point solution to the linear program (2.3.2). 

We have been unable to locate any substantial statistical analysis of &-regression in the lit- 
erature. The only pertaining result (see [17]) concerns the biasedness or unbiasedness of the 
.&-regression estimator. As in the case of the [l-regression estimator, one establishes the un- 
biasedness of (2.3.11) along the lines of the arguments employed in Section 2.2. By analogy to 
the cases of the L1-norm and &-norm, one might think that an asymptotic distributional result 
for the &,-regression estimator similar to the theorem of Bassett and Koenker (see Section 2.2) 
can be proven. In other words, such a result would be that if the marginal error distribution F 

is centered such that the midrange of the errors is zero, then the asymptotic distribution of the 
/&-regression estimator is normal as in the Bassett-Koenker theorem with the quantity w2 re- 
placed by the asymptotic variance of the sample midrange of random samples from F. This is 
motivated by the well-known fact that the sample midrange is an optimal estimate of centrality 
under the &,-norm, whereas the median is optimal for the .!I-norm and the arithmetic mean is 
optimal for the e2-norm. However, the sample midrange does not have nice statistical properties 
like those of the sample median and the sample mean. More specifically, in the case of univari- 
ate location, the &,-location estimator (sample midrange) is not even &i consistent, nor is its 
limiting distribution the normal distribution. Rather, the sample midrange of a standard normal 
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distribution converges at a rate proportional to I/ log n (cf. [26]). Furthermore, the limiting cu- 

mulative distribution function (cdf) of the sample midrange from a standard normal distribution 

is the logistic distribution (cf. [27]) 

F(x)= &. (2.3.12) 

Therefore, there is little reason to believe that in the case of regression, the &-estimator is fi 

consistent and/or asymptotically normal. 

2.4. Summary 

Looking at virtually every textbook in statistics today, one is left with the impression that 

linear regression consists only of least squares regression, i.e., the treatment of the general lin- 

ear regression model (2.0.2) or (2.0.3) by way of the &-norm. Hardly any text that we have 

consulted deals with el-regression where, however, in the past 20 years or so, a solid body of 

statistical knowledge has been assembled-in response to historical attempts and to needs that 

are expressed and documented in the econometric literature for well over 30 years now. L,- 

regression--though historically an exciting topic-appears to have been completely neglected by 

the statistical (textbook) literature. This is all the more astonishing because the computational 

problems of el- and &,-regression of yesteryear have long been overcome by the advent of linear 

programming and easily available commercial software to solve such problems very efficiently in- 

deed. In our survey, we have purposely restricted ourself to a discussion of methods and models 

for which efficient computing software, given today’s machinery, is readily available. In particu- 

lar, we have left out a summary of linear regression models using the more general .$,-norms with 

p fc {1,2, co} for which the computational requirements are considerably more burdensome than 

in the linear programming case (as they generally require methods from convex programming 

where machine computations are far more limited today). Even with this self-imposed restriction 

on e,-, &- and &,-regression, we have managed to clarify certain issues like the uniqueness of 

e,- and &,-regression estimates in our review, for which we give deterministic necessary and 

sufficient conditions in Sections 2.2 and 2.3, respectively, which appear to be new. 
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