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Semiparametric and Additive Model Selection 
Using an Improved Akaike Information 

Criterion 

Jeffrey S. SIMONOFF and Chih-Ling TSAI 

An improved AIC-based criterion is derived for model selection in general smoothing- 
based modeling. including semiparametric models and additive models. Examples are 
provided of applications to goodness-of-fit, smoothing parameter and variable selection 
in an additive model and semiparametric models, and variable selection in a model with 
a nonlinear function of linear terms. 

Key Words: Goodness-of-fit; Kullback-Leibler discrepancy; Nonparametric regression; 
Smoothing spline regression estimator. 

1. INTRODUCTION 

Generalization of linear regression models to account for more complicated structure 
has been a focus of a good deal of research in recent years. The general model for 
regression data y = (y1 . . . . . y?,)' examined here has the form 

where 

(30) ' (30) 
,g,0 (x( 'o '~"o ' )  = Igi0 (x, p ) , . . . . g 3 0    XI,^) ' p ( i 0 ) ) l 1  

with 

a = 01, LY being a scalar and 1 being an n x 1 vector, and x f O )  and ,f3(j0) being p , ~  x 1 
vectors for i = 1. . . . . n. Here the functions g,0 are either specified, or unknown smooth 
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functions, the x(jO) are given n x pjo matrices of predictor values (pjo < n), and E is 
an n x 1 vector of independent errors with mean zero and variance a;. The predictor 
matrices are taken as fixed, or if they are random, analysis proceeds conditional on the 
observed values. 

Many models are special cases of (1.1), including the following: 

(a) linear model: k = 1, glo  the identity function; 
(b) nonparametric regression model: a = 0, k = 1, plo = 1, 8(1°) = 1, glo an 

unspecified smooth function; 
(c) semiparametric model: k = 2, glo  the identity function, p20 = 1, 3(20) = 1, 920 

an unspecified smooth function centered to have zero mean; 
(d) additive model: p,o = 1, 8(j0) = 1, and gjO an unspecified smooth function 

centered to have zero mean, for all j ;  and 
(e) mixed linearlnonlinear models: a possibly 0, g,o specified differentiable functions 

f o r j =  l . . . . , k .  

For discussion of models (a)-(d), including different estimation schemes, see Hastie and 
Tibshirani (1990) or Simonoff (1996, chap. 5) .  The form of the different estimators i?~ 
depends on the specific model, but all estimators treated here are linear estimators. The 
usefulness of models (c) and (d) comes from the fact that, assuming the model is true, 
the p vectors can be estimated at optimal parametric rates in model (c), while the g 
functions can be estimated at optimal nonparametric rates in both models. 

For any of these models, a crucial step in estimating p(jO) andlor gjo is one of 
model selection. If the model includes terms of the form x ( ~ ~ ) p ( j O ) ,  this corresponds 
to choosing the appropriate set of predictors, balancing the desire for a simple model 
against the desire for closeness of fit. If the model includes unspecified smooth function(s) 
gjo,  this corresponds to choosing the smoothing parameter(s), balancing the desire for a 
smooth curve against the desire for closeness of fit. 

Each version of the model selection problem can be executed by minimizing an 
approximately unbiased estimate of some measure of the discrepancy between the true 
regression function and the estimated regression function. This measure might be the 
mean average squared error (MASE) 

1 
MASE = - E[(m - m)'(m - m)].  

n 

often estimated using generalized cross-validation (GCV) (Craven and Wahba 1979), 
or the expected Kullback-Leibler discrepancy given in (2.3), often estimated using the 
Akaike information criterion (AIC) (Akaike 1973). 

These selectors can be justified based on asymptotic arguments. Shibata (1981) 
showed for model (a) that if the set of candidate models does not include the true 
model, 

Predictive MSE of the chosen model P + 1 
Predictive MSE of the optimal model 

as long as the number of candidate models does not get large too quickly (this is termed 
asymptotic efficiency). Hardle, Hall, and Marron (1988) demonstrated for model (b) that 



the GCV- or AIC-based choice for the smoothing parameter is asymptotically optimal, 
in the sense that 

(where is the smoothing parameter choice that minimizes the integrated squared error 
and MISE is the mean integrated squared error), as long as the level of smoothing does 
not get too small (similar results apply for MASE and ASE). 

Despite these favorable asymptotic properties, the model selectors GCV and AIC 
suffer from a well-known tendency to lead to overfitting of the model in finite samples. 
This refers to erring on the side of closeness of fit, leading to too many predictors in a 
model, and an estimated function 4, that is too rough. Hurvich and Tsai (1989) showed 
that this effect arises in small samples due to bias, and proposed a corrected version of 
AIC, AICc, that lessens the bias (while still being asymptotically efficient). Hurvich, 
Simonoff, and Tsai (1998) (hereafter referred to as HST) derived a version of AICc- for 
linear smoothers in the nonparametric model, and showed that its use leads to estimated 
regression functions that are not undersmoothed relative to those when using GCV or 
AIC (while still being asymptotically optimal). 

In this article the selector AICc is generalized to model (1.1). The derivations of 
the criterion for three models consistent with (1.1) are given in Section 2. Section 3 pro- 
vides applications of AICc to goodness-of-fit testing, variable and smoothing parameter 
selection in additive modeling and semiparametric modeling, and variable selection for 
a model with a nonlinear function of linear terms. Possible extensions of the proposed 
method are given in Section 4. 

2. DERIVATIONS OF AICc FOR THREE MODEL STRUCTURES 

In Section 1, we considered five special cases of model (1.1). Hurvich and Tsai 
(1989) obtained the model selection criterion AICc for parametric linear regression 
models (case (a)), and showed that its bias-correction properties lead to a criterion with 
less of a tendency to overfit the model by choosing too many predictors. HST derived 
AICc for nonparametric regression models (case (b)), demonstrating that it led to a 
smoothing parameter selector that did not tend to undersmooth when applied to many 
different linear estimators. In this article, we focus on developing the selection criterion 
AICc for cases (c)-(e), semiparametric regression models, additive models, and known 
differentiable functions of linear predictors. Although it would be possible to derive the 
criterion in complete generality for model (1.1), giving separate derivations for these 
three models highlights the steps that are involved to generalize the criterion to (1.1). 
The derivations are similar in spirit and construction to those in Hurvich and Tsai (1989) 
and HST, and for this reason only sketches of the derivations are provided here. 

Here, we essentially follow the notation of HST. Suppose that data y are generated 
from the true model 



where E lv(O. a i l n ) .  The candidate model is 

where ri -- S(0. $1,). Let f ( y )  denote the likelihood for ( p .  a2) .  and let Eo denote 
expectation under the true model. 

A useful measure of the discrepancy between the true model (2.1) and the candidate 
model (2.2) is the Kullback-Leibler information (omitting terms that are not functions of 
the candidate model, and are hence not relevant; see Linhart and Zucchini 1986, p. 18): 

d(p. a') = Eg 1-2 log f ( y ) ]  

A reasonable criterion for judging the quality of the candidate model is A = Eo[d(m.  e 2 ) ! ,  
where (m. C 2 )  is some estimator of ( m .  a'). Ignoring the constant n log(27~), we have 

A = Eo{n log e 2 )  + n a i ~ ~ { l / ~ ~ )  + E o { ( m  - hi)' (m  - m ) / e 2 ) .  (2.3) 

Given a collection of competing candidate models, then, the one that minimizes A is 
preferred (see Hurvich and Tsai 1989). 

Usually, A is not computable, since it depends on the unknown function m. For the 
sake of theoretical tractability, we will make the following three assumptions: 

(A.l) There exists a matrix H such that fii = H y .  That is, the estimator is a linear 
function of y.  

(A.2) 6 is an unbiased estimator of m (i.e., E o ( m )  = m). 
(A.3) The parametric component of candidate models (if there is one) includes its 

corresponding parametric component of the true model. 

These three assumptions warrant further discussion. HST also focused on linear 
estimators, which include the usual smoothers (such as local polynomials, smoothing 
splines, and regression splines). Assumptions (A.2) and (A.3) are more problematic, 
as 13 is rarely unbiased, and the true model is rarely a special case of the candidate 
model. It must be emphasized that these assumptions arise only in the derivation of the 
criterion, and are not relevant to the properties of the selectors based on the criterion 
(and are not made when deriving those properties). As was noted earlier, under model 
(a) AICc is asymptotically efficient (a statement based on condition (A.3) not holding), 
and under model (b) the AICc-based smoothing parameter is asymptotically optimal 
for any linear smoother (which will not generally satisfy condition (A.2)). Chen and 
Shiau (1994) showed that under model (c) GCV can be used to estimate g20 at the 
optimal nonparametric convergence rate while still estimating @ ( l o )  at the usual ~ ( n - ' 1 ' )  
rate; similar results apply to AIC and AICc, despite potentially different small-sample 
properties. 

Under these assumptions, 3 reduces to 

a; ) + n & {  E' H f  H E  
A = Eo{n  log e 2 )  + n 2 ~ o  

€ ' ( I  - H ) ' ( I  - H ) e  ef ( I  - H ) ' ( I  - H ) E  
(2.4) 



HST derived three approximations for A for the nonparametric regression context. Be- 
cause the form of 5 for that situation (eq. (2.2) of that paper) is identical to (2.4), these 
three approximations are also valid for the general model (1.1). The simplest of these 
approximations, AICc, was shown to be effective for smoothing parameter selection. It 
takes the form 

1 + t r (H) /n  
AICc = log 8 + 

1 - [tr(H) + 2] /n '  

Equation (2.5) is also identical to that for parametric regression models (Hurvich and 
Tsai 1989). In the next section, we will apply this equation to obtain selection criteria 
for cases (c)-(e). 

2.2 CORRECTED AIC FOR THREE MODEL STRUCTURES 

We provide the detailed structures of m and p for cases (c)-(e) when k = 2 here; 
discussion for k > 2 is given at the end of the section. The three pairs of mean functions 
m and p follow. 

Case (c)  

and 

where P(') is a pl x 1 vector, , d l * )  = (,B(lO) '. r ( l O )  I ) ' ,  r('o) is a (pl - plo) x 1 vector 
of zeros, x(') is an n x pl matrix, x ( ~ )  = X ( ~ O )  = (xi2), . . . . xh2))', 92 is an unknown 

(2) smooth function, and g 2 ( ~ ( 2 ) )  = (g2 (xi2)). . . . . g2 (2, ))I. 

Case (d) 

and 

p = g1 (x'l') + g2 (x'?') . 

where gl and g2 are both unknown smooth functions, g2 ( ~ ( ~ 1 )  is defined as in case (c) 

above, and gl ( ~ ( ' 1 )  = (gl(xj l ) ) .  . . . . g,(x?))) '  and x( ' )  = (xi ') .  . . . , x!:))'. 

Case ( e )  



and 

where x(')  and @ ( ' * I  are defined as in case (c) above, p(2)  is a p2 x 1 vector, P ( ~ * )  = 

(,d2') '. Y(20)  ' ) I ,  Y (20)  is a (p2 - pzo) x 1 vector of zeros, both gl and g2 are known 
differentiable funct~ons, g, ( x ( J ) ~ ( J ) )  = (g3 (x i3)  ' P ( J ) ) ,  . . . . g3 (x;) ' P ( J ) ) ) ' ,  ~ ( 3 )  = 

( x i 3 ) .  . . . . x;))' and xi') are p, x 1 vectors for j = 1 . 2  and z = 1 . .  . . . n. 
For each of these cases, the candidate model is fit to the data. The resulting H  

matrices for estimating m in cases (c)-(e) are 

for case (c) (see Speckman [1988, eqns. (5.2a) and (5.2b)], although Chen and Shiau 
[I9911 proposed a different estimation scheme); 

for case (d) (see Hastie and Tibshirani 1990, p. 120); and 

for case (e), respectively, where S1  and S2 are n x n smoother matrices that depend on 

~ ( l )  and ~ ( ~ 1 ,  respectively. H* = ( I  - s~ )x ( ' )  ( X I 1 )  ' ( I  - s ~ ) x ( ' ) ) - ~  xi') ' ( I  - S i ) ,  

( 1 )  ~ ( l )  / ( I  - S 2 ) / ( I  - s 2 ) X ( l ) ) - l  x(') ' ( I  - S 2 l f ( I  - ,921, and H = ( I  - S2)X ( 

asl ( X ( ~ ) ~ ( I ) )  ag2 ( ~ ( 2 ) p ( 2 )  

2 = diag a@(' )  ' I 
= diag 891 (xr')pcl)) x(l , ,  a g 2  ( ~ ( ~ ) p ( ~ )  

a ( x ( l ) p ( l ) )  a (x(21p(2)) I 
The scale parameter estimates for cases (c)-(e) are 8: = y l ( I  - H,)'(I - H,)y /n ,  

8; = y l ( I  - Hd) ' ( I  - H d ) y / n  and 82 = y f ( I  - H,)'(I - H,)y /n ,  respectively. Re- 
placing H  by H,, Hd or H, and e2 by 8,2, 8; or 82, respectively, into (2.5) then gives 
the corrected Akaike information criteria for semiparametric regression models, additive 
models, and models with known differentiable functions of unknown linear predictors. 

Generalization of the functions m and p to k > 2 is straightforward. Unfortunately, 
the form of the smoother matrix H  is complicated in this circumstance. Hastie and 
Tibshirani (1990, pp. 121-123) discussed fitting models (c) and (d) when there are two 



smooth terms. They showed that if smoothers such as smoothing or regression splines 
are used, there exists a solution to the associated penalized least squares problem. If 
cubic smoothing splines are used (as is the case in the examples in the next section), that 
solution is unique as long as the predictor variables are not perfectly collinear, and the 
so-called backfitting algorithm (which is the basis of fitting in the examples in the next 
section) converges to that solution, yielding as a by-product the required value of tr(H).  

3. APPLICATIONS OF AICc 

In this section we give several applications of AICc to problems of goodness-of-fit, 
variable selection, and smoothing parameter selection. 

Classical goodness-of-fit tests are generally either parametric (such as likelihood ratio 
tests) or nonparametric (such as X 2  tests). The latter tests often have low power against 
unspecified alternatives, while the former are only valid if the parametric assumptions are 
appropriate. Many authors have noted the possibility of using nonparametric regression 
methods to create goodness-of-fit tests based on the idea of comparing a smooth estimate 
of a functional (a density function, probability vector or regression function) to the null 
parametric form. Bickel and Rosenblatt (1973) and Simonoff (1985) gave examples of 
this idea for continuous density and categorical probability functions, respectively, while 
Hart (1997) described many approaches in the regression context. 

The AICc criterion can be used as a goodness-of-fit criterion because of its role as 
an estimate of the expected Kullback-Leibler discrepancy (2.3). The idea is to compare 
the estimated Kullback-Leibler discrepancy between the true regression function and the 
parametric null model to the estimated Kullback-Leibler discrepancy between the true 
regression function and an estimated smooth regression function; that is, the test statistic 
is 

A = AICc (A,) - AICc (As) .  

where fh, is a parametric fit and &, is the smooth fit obtained when choosing the 
smoothing parameter to minimize the AICc criterion. If the null model is not appropriate, 
AICC will be much lower for A ,  than for A,, so large values of A lead to rejection of 
the null hypothesis. 

Consider a situation with one predictor variable and null model being a simple linear 
model. 

If the smoothing method used has as a special case the least squares regression line, the 
statistic A is just a comparison between the AICc value for that special case and the 
minimized value; thus, A > 0. Examples of such smoothing methods include local linear 
estimators and cubic smoothing spline estimators. The tail probability for an observed 
value of the test, Ao, can be determined using Monte Carlo, as follows: 



Fit the least squares regression line to the data, obtaining fitted values 3 and 
residuals e = y - 3. 
Resample with replacement from e to obtain e*, and form a replicated target 
variable as y* = 3 + e*. Determine the value of A for this data set (call it ,4*). 
Repeat step (2) many times (e.g., 500-1,000). The estimated tail probability is 
the proportion of A* values that are greater than or equal to Ao. 

0 2 4 6 8 

Gamma 

0 2 4 6 

Gamma 

Gamma Gamma 

Figure 1. Estimated power functions for A (solid line). test of Eubank, Li and Wang (dashed line), and test of 
Eubank and Hart (dotted line). (a )  0, = 5, n=50: (b)  0, =5, n=100; (c) $1 = 10, n=50; id)  01 =lo, n=100. 



A small Monte Carlo simulation was used to assess the power of this test. The Monte 
Carlo has the same structure as that used in Eubank, Li, and Wang (1997). The predictor 
values are taken to be 2,  = t ,  - .5 ,  where 

with n = 50 or 100, respectively. The errors are distributed as standard normals. The 
alternative hypothesis has the form 

Figure 2. Estimtedpowerfitnctions for A (two predictors, r1=50) (a )  13, = 132 =5; (b) 3, = R 2  =lo.  In each 
plot estimated power functions are given for 7 2  =O (solid line), 72 = 32 (dotted line), and 72 = 2 9 2  (dashed 
line). 



Table 1. AICc values for additive models based on 1993 automobile data, along with associated 
degrees of freedom for the spline estimates for the predicting variables 

Predicting AICG Degrees 
variables value of freedom 

Engine size 3.61 12 8.22 
Horsepower 3.6707 4.65 
Weight 3.2683 3.69 
Engine size, Horsepower 3.5656 (2.62, 4.10) 
Engine size, Weight 3.2738 (1, 2.45) 
Horsepower, Weight 3.2915 (1, 2.70) 
Engine size, Horsepower, Weight 3.291 6 (1, 1, 2.43) 

where do = x t : / n  and dl  = [ z t : ~ ~ ] / [ z ~ ? ] ' / ~ ,  and y = j31/10. j  = 1. .  . . . 20  with 
31 = 5 or 10. There were 1,000 Monte Carlo replications for each simulation setting. 
Other choices of n and 31 were also examined, with broadly similar results (as would 
be expected, power increases with larger sample size and larger 7). 

Figure 1 gives the estimated power functions for three smoothing-based tests: A 
(based on a cubic smoothing spline estimator); a test based on a Fourier series estimator 
proposed by Eubank, Li, and Wang (1997); and a test based on the estimated order of 
a Fourier series estimator proposed by Eubank and Hart (1992). It can be seen that the 
power of A is quite competitive with those of the other tests, being broadly similar to 
that of the test of Eubank and Hart (1992). (Eubank et al. [I9971 pointed out that the 
reason for the poor power of their test for alternative (a) is that the optimal order of the 
Fourier series estimator in this case is one, and in that case the associated cosine function 
is nearly orthogonal to t2.) Since Eubank and Hart (1992) showed that their test can be 
much more powerful than classical tests-such as the CramCr-von Mises test for high 
frequency alternatives-these results imply that the test A can be much more powerful 
than classical tests. Note also that the test A can be based on any linear smoother (not 
just cubic smoothing splines, as was done here), leaving open the possibility for it to be 
constructed to have better performance in specific circumstances. 

Figure 2 gives estimated power functions for A for a model with two predictors (here 
rj2, is based on an additive model of the two predictors). The alternative hypothesis has 
the form 

where X I ,  = t, - .5 ,  x2i = lxlil, 71 = ~ ' 3 ~ / 1 0 .  j = 1..  . . > 2 0  with 31 = 3 2  = 5 or 
10. Results for n = 50 and 7 2  = 0, 132, and 2.32 are given, based on 500 Monte Carlo 
replications for each simulation setting. Not surprisingly, the power of the test is not as 
high when there are two predictors as when there is only one predictor, but the test still 
is effective in identifying deviations from linearity in one (or especially) both predictors. 



Additive models generalize linear models to allow arbitrary smooth functions of 
each predictor to enter the model in an additive fashion. Fitting such models requires 
both smoothing parameter selection (here joint selection for all of the variables in the 
model) and variable selection (to determine which smooth functions should be included 
in the model). Consider the following example. The data examined are properties of 
93, 1993 model, U.S. automobiles (Lock 1993). The goal was to model the highway 
gasoline mileage in miles per gallon as an additive function of smooth representations 
for engine size, horsepower, and weight. Table 1 summarizes the use of AICc in the 
fitting of the additive model using cubic smoothing splines. The best model is one based 
on only weight, with AICc = 3.2683. Figure 3 illustrates how this model fitting works. 
Although horsepower is strongly related to highway mileage marginally (Figure 3(a)), 
when a smooth function of weight is also included, the partial residuals given weight 
show that the relationship with horsepower has been removed (Figure 3(b)). Figure 3(c) 
gives the final model of choice of mileage on weight alone, showing that mileage of the 
auto is monotonically inversely related to the weight in a nonlinear fashion. 

Fitting semiparametric models involves both variable selection of the parametric part 
of the model (and variable selection of the nonparametric part if it includes more than one 
predictor) and smoothing parameter selection for the nonparametric part. In this section 
two examples are given where AICc is used for both of these purposes. 

In recent years, ratings of universities, colleges, graduate schools, and professional 
schools by different magazines have become very common. These ratings are used by 
prospective students and their parents to help choose the college that they will attend, but 
how are they related to objective quality measures? The data analyzed here come from 
the 48 U.S. research universities rated in the top 50, with complete data given in U.S. 
News and World Report (1996). The magazine provides data on the percentage of classes 
with size greater than 50 (Size > 50); the percentage of freshman students entering 
in 1991-1994 who returned for their sophomore years (Retention); the percentage of 
students entering in 1986-1989 who graduated within six years (Graduation); and the 
logged education expenditure per student (Expenditure). The ranking of the university 
by the magazine is the target variable in a semiparametric model, with these variables 
being the candidate predictor variables, and the academic reputation of the university 
(Reputation, as determined by a survey of university presidents, provosts, and deans) 
being controlled for as a smooth control variable. That is, since a university's academic 
reputation is presumably slow to change, what factors within more direct control of the 
university are related to its rating, given that reputation? The control variable is allowed 
to enter the model nonlinearly (as an unspecified smooth function) since its marginal 
relationship with university rank is nonlinear; see Figure 4. 

Table 2 summarizes the use of AICc in the fitting of the semiparametric model. For 
each possible set of predicting variables, the smoothing parameter for academic reputation 



Horsepower 

Figure 3. Additive model Jits ,for I993 automobile mileage data. ( a )  Highway mileage versus horsepower, 
with AICc-based smoothing spline estimate superimposed. (b )  Partial residualsfor AICc-based additive model 
of highwa?: mileage on horsepower, given weight, with smoothing spline estimate superimposed. ( c )  Highway 
mileage versus weight. with AICc-based smoothing spline superimposed. 



Academic reputation rank 

Figure 4. Scatterplot 0f'U.S. News and World Report rank 1,ersus academic reputation rankfor top 50 univer- 
sities, w'ith AICc-based cubic smoothing .spline estimate superimposed. 

is chosen to minimize AICc, with the final model chosen to be the one with smallest 
AICc value. It can be seen that the model chosen is based on only graduation rate and 
logged educational expenditure, with percentage of classes greater than 50 and freshman 
retention rate not adding to the fit. The degrees of freedom for the spline estimate in the 
semiparametric model equals 1, which corresponds to a linear fit; that is, the final model 
chosen is a multiple linear regression model, 

U.S. News rank = 203.973 - .802 x Graduation rate 

-27.005 x Logged expenditure per student 
+. 176 x Academic reputation, 

with R2 = ,924 and F = 177.35 on (3.44) degrees of freedom, which is highly signifi- 
cant (the individual t statistics for each variable are -9.79, -8.16, and 5.33, respectively). 
Thus, using AICc allows model selection of the parametric part of the semiparametric 
model, as well as recognition that a fully parametric model (without a smooth part) 
accounts for the structure in the data. The coefficients are all easily understandable, im- 
plying that a higher graduation rate, higher expenditures, and a better academic reputation 
are associated with a better U.S. News and World Report ranking (each given the other 
two). 

Semiparametric models also can be generalized to include more than one smooth 



Table 2. AICc values for semiparametric models based on U.S. News university rank data, along 
with associated degrees of freedom for the spline estimate for academic reputation 

Predicting AICc Degrees 
variables value of freedom 

None 5.4656 3.54 
Size > 50 5.3501 2.58 
Retention 5.0984 2.50 
Graduation 4.6880 3.08 
Expenditure 5.0515 1.68 
Size > 50, Retention 4.7886 2.69 
Size > 50, Graduation 4.6804 3.33 
Size > 50, Expenditure 5.0442 1.55 
Retention, Graduation 4.7326 2.84 
Retention, Expenditure 4.5334 1.38 
Graduation, Expenditure 3.9595 1 .OO 
Size > 50, Retention, Graduation 4.6665 2.87 
Size > 50, Retention, Expenditure 4.3663 1 .OO 
Size > 50, Graduation, Expenditure 4.0141 1 .OO 
Retention, Graduation, Expenditure 3.9699 1 .OO 
Size > 50, Retention, Graduation, Expenditure 4.0128 1 .OO 

term. Consider again the 1993 automobile data analyzed in Section 3.2. Table 3 summa- 
rizes a model fit to that data where, in addition to the three predictors that potentially 
enter the model through smooth functions (engine size, horsepower, and weight), three 
additional indicator variables potentially enter the model linearly. These three predictors 
correspond to whether or not the automobile can be bought with manual transmission, 
is of domestic origin, and is a van, respectively. Table 3 gives the linear predictors that 
minimize AICc given the smooth terms that are included in the model. It is apparent 
that including whether or not the auto is a van is useful in the model (and better than 
not including it at all; the AICc values for each set of smooth terms is smaller in Table 
3 than that in Table 1, where no linear terms were considered); for the model including 
a smooth horsepower function, whether or not the auto is of domestic origin is useful 
also. The availability of manual transmission is never included among the useful linear 
predictors based on the AICc criterion. The model with minimized AICc includes Van 
as a linear predictor, and horsepower and weight as smooth terms, but the degrees of 
freedom for the horsepower term equals one, implying a semiparametric model with two 
linear predictors and one smooth term, 

Highway MPG = 48.18 - ,0172 x Horsepower - 4.355 x Van + g(Weight). 

This model uses only 1.01 more effective degrees of freedom than the AICc-based 
smooth model on weight alone (since there are fewer degrees of freedom associated with 
the smooth term), while having residual sum of squares more than 10% smaller. The 
coefficients of the linear predictors are intuitive, with higher horsepower associated with 
worse mileage (given auto type and weight), and a van having on average more than four 
miles per gallon worse highway mileage than a regular automobile, given horsepower 
and weight. 



Table 3. AICc values for semiparametric models based on 1993 automobile data, along with associ- 
ated degrees of freedom for the spline estimates for the predicting variables for the smooth 
terms. The set of linear predictors that yields the minimized AICc value given the smooth 
terms included in the model is given for each set of smooth terms 

Predicting variables AICc Degrees 

Linear oredictors Smooth terms value of freedom 

Van Engine size 3.461 0 4.75 
Van, Domestic Horsepower 3.3546 4.72 
Van Weight 3.201 5 2.65 
Van Engine size, Horsepower 3.3054 (2.67, 5.02) 
Van Engine size, Weight 3.2227 (1, 2.66) 
Van Horsepower, Weight 3.1 880 (1, 2.70) 
Van Engine size, Horsepower, Weight 3.2134 (1, 1, 2.68) 

Atkinson (1985, pp. 48-50, 122-123) analyzed data given originally in Ruppert 
and Carroll (1980) examining the relationship between the salinity of water in Pamlico 
Sound, NC, and the salinity lagged two weeks, a seasonal effect, and river discharge. 
After correcting an apparently erroneous data value, Atkinson explored fitting a linear 
model for both salinity and logged salinity on all three predictors. Table 4 summarizes 
variable selection for these two model fits for these data. As can be seen, in both cases 
lagged salinity and river discharge are deemed important predictors, while the seasonal 
effect is not. 

An alternative approach to fitting a linear model with logged salinity as the target is 
to fit an exponential model with salinity as the target, 

Salinity = exp(po + plLagged salinity + p2Discharge + ,33Season) + t. 
Fitting this model, which is an example of model (e) from Section 1, has the advantage 
of addressing goodness-of-fit in the original units of the target variable, rather than 
logged units, and is appropriate if the errors are additive in the original scale, rather 
than multiplicative. Table 4 summarizes variable selection for this exponential model, 
and shows that AICc chooses the model that uses all three predictors. 

The AICc value for this exponential model is smaller than that for the best linear 
model, suggesting that the nonlinear model is more appropriate. This is consistent with 
Atkinson's results, and is supported by an application of the goodness-of-fit test A of 
Section 3.1, which equals ,1124, with (Monte Carlo-based) tail probability .09. The AICc 
values for the exponential model and the linear model with logged salinity as the target 
are not comparable, but Figure 5 highlights an advantage of the exponential model. The 
figure gives density estimates of the residuals from the exponential model fit, and from a 
back-transformed version of the log-linear model fit on the predictors (i.e., the residuals 
after exponentiating the fitted values from the model using logged salinity as the target). 
The density estimates are penalized likelihood estimates, with smoothing parameters 
chosen using AICc (see Simonoff 1998). The density estimates show that the residuals 
from the exponential model are better centered around zero (mean - ,003 vs. .04, median 
.07 vs. . lo,  and mode .09 vs. . l l ,  respectively) and less variable (standard deviation .91 
versus standard deviation 1.00). Thus, working in the original scale using the nonlinear 



Table 4. AICc values for models based on salinity data 

Predicting AICc 
variables value 

Linear model on salinity 
Lagged salinity 1.9925 
Season 3.4027 
Discharge 2.8768 
Lagged salinity, Season 2.0406 
Lagged salinity, Discharge 1.3379 
Season, Discharge 2.9016 
Lagged salinity, Season, Discharge 1.3896 

Linear model on logged salinity 
Lagged salinity -2.4236 
Season -1.0015 
Discharge -1.5769 
Lagged salinity, Season -2.3892 
Lagged salinity, Discharge -3.2681 
Season, Discharge - 1.5545 
Lagged salinity, Season, Discharge -3.2275 

Exponential model on salinity 
Lagged salinity 2.1174 
Season 3.4020 
Discharge 2.8345 
Lagged salinity, Season 2.1354 
Lagged salinity, Discharge 1.3017 
Season, Discharge 2.8492 
Lagged salinity, Season, Discharge . 1.2361 

(exponential) model apparently results in a better fit for salinity than working in the 
logged scale using a linear model. 

4. CONCLUSION 

In this article we have derived and illustrated the AICc criterion for general re- 
gression models, including semiparametric and additive models. The results given here 
can be generalized in several ways. The selection criteria can be easily generalized to 
models of the form (1.1) by modifying the criterion in the ways derived in cases (c)-(e) 
of Section 2. Linear estimators that are piecewise smooth, but allow for possible discon- 
tinuities in the regression function, could also be fit using AICc; for an example of such 
an estimator, see Koo (1997). 

Models based on non-Gaussian distributions can be accommodated using quasi- 
likelihood and generalized linear models. Hurvich and Tsai (1995) obtained a version of 
AICc for the quasi-likelihood model with a parametric linear predictor using a linear 
approximation to the Kullback-Leibler distance. This approach also can be used to obtain 
AICc for the quasi-likelihood model with a nonparametric smooth function, as follows. 
Suppose data y are generated from the true extended quasi-likelihood model (Nelder 
and Pregibon 1987; McCullagh and Nelder 1989, p. 350) 



Residual 

Figure 5. Penalized likelihood density estimates of residuals from exponential fit (solid line) and back- 
tranrfortned log-linearfit (dotted line),for salinity data. 

where Q ( y ;  m) = y'00 - b(00) + c ( y )  (see McCullagh and Nelder 1989, p. 336), 
E o ( y )  = m ,  80 = (010.. . . .0,,0)', b(.)  and c( .)  are suitably chosen functions, and 
the relationship between the mean of y and covariate x (an n x 1 vector) is linked 
by the function k ( m )  = 00 = h(x). The candidate model is the same as Equation 
(3.1), replacing m, 00 ,  (T;, and EO by p, 0 ,  02, and E ,  respectively, with E denoting 
expectation under the candidate model. Applying the same techniques as were used in 
Section 2, we obtain 

where 8 = H y ,  6' = (y - I % ) ' Q ( ~  - & ) / n ,  fi? = k - ' ( 8 ) ,  Q  is 

a2 b  ( 8 )  1' = --- aeae' 
evaluated at 8  = 8,  and H  can be obtained from O'Sullivan, Yandell, and Raynor (1986) 
or Green and Silverman (1994, chap. 5) .  By making the assumptions (A.2) and (A.3) 
and by using appropriate approximations, A is approximately 

712(T; a = E ~ I I I   log(^?^)] + E" 
nc* 'H*  'H*c* 

E* ' ( I  - H * ) ' ( I  - H*)E* ] [ € *  ' ( I  - H * ) ' ( I  - H * ) E *  1 ' 



where 0; = 2Eo[y1y - b(y)  - m10 + b ( 0 ) ] / r ~ ,  E* = v["'(~ - m ) ,  & is V evaluated 

at 0  = 00,  and H* = V , " H V ; ' ~ .  Then. AICc has the same form as (2.5), replacing 
H  H* = P I / ~ H Q I / ?  1 

The AICc: criterion can be obtained in an analogous way for the nonparametric 
generalized linear model (Green and Silverman 1994, p. 98), generalized additive model 
(Hastie and Tibshirani 1990), generalized partially linear single index model (Carroll, 
Fan, Gijbels, and Wand 1997), generalized semilinear model (Emond and Self 1997) and 
smoothing methods for categorical data (Simonoff 1996, chap. 6). The close connection 
between categorical data smoothing and local likelihood density estimation and penalized 
likelihood density estimation means that AICc also can be used as a smoothing parameter 
selector in the density estimation context, as was done in Figure 5 (see Simonoff 1998). 

The S-Plus functions and data sets used for the examples in Section 3 can be obtained 
via the World Wide Web at the address http://www.stern.nyu.edu/~jsimonof/aiccsemi.dmp. 
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