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We use sample path arguments to derive convexity properties of an M/M/S queue with

impatient customers that balk and renege. First, assuming that the balking probability and

reneging rate are increasing and concave in the total number of customers in the system

(head-count), we prove that the expected head-count is convex decreasing in the capacity

(service rate). Second, with linear reneging and balking, we show that the expected lost sales

rate is convex decreasing in the capacity. Finally, we employ a sample-path sub-modularity

approach to comparative statics. That is, we employ sample path arguments to show how the

optimal capacity changes as we vary the parameters of customer demand and impatience.

We find that the optimal capacity increases in the demand rate and decreases with the

balking probability, but is not monotone in the reneging rate. This means, surprisingly, that

failure to account for customers’ reneging may result in over -investment in capacity. Finally,

we show that a seemingly minor change in system structure, customer commitment during

service, produces qualitatively different convexity properties and comparative statics.

1. Introduction and Overview of Results

This paper develops qualitative insights about how the optimal capacity investment for a

make-to-order system is influenced by customers’ impatience, which may lead them to cancel

an order (renege) or not to order at all (balk) when waiting is required. Technically, we prove

convexity and comparative statics properties for a M/M/S queue with quite general reneging

and balking behavior.

A dominant assumption in the manufacturing operations management literature is that

customers will wait for as long as necessary to obtain a product (infinite backordering). In
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reality, only a subset of customers will wait, and only for a limited time. Unfortunately,

models that incorporate dynamic balking and reneging are notoriously intractable. There

exist many structural results and simple optimal policies for inventory management with

infinite backordering, but relatively few for systems with lost sales, and these few require

strong assumptions (e.g. at most one order may be outstanding (Johansen and Thorstenson,

1993; 1996; Moinzadeh and Nahmias, 1988)) or approximations (Nahmias, 1979; Cohen,

Kleindorfer and Lee, 1988; Johansen and Hill, 2000). The following papers provide analytic

results for make-to-order manufacturing systems in which the customer arrival process de-

pends on the static expected waiting cost, but not dynamic state information (Mendelson

and Whang, 1990; Van Mieghem 1995, 2000; Armony and Haviv 2000; Lederer and Li, 1997;

and Afeche 2004). Duenyas and Hopp (1995) were the first to study a make-to-order system

in which the customer arrival process is shaped by dynamically quoting delivery leadtimes.

Because dynamic leadtime quotation and scheduling in make-to-order systems is so complex,

researchers employ heuristic algorithms, simulation and approximations (Duenyas and Hopp,

1995; Hopp and Sturgis, 2001; Keskinocak, Ravi and Tayur, 2001; Kapusckinski and Tayur,

2002; Plambeck, 2003). All the aforementioned papers model the make-to-order system with

a single server queue. In contrast, we provide analytic results for multi-server systems.

Modeling dynamic balking and reneging is difficult but worthwhile, because one obtains

qualitatively different managerial insights, and structurally different control policies. For

example, Armony and Plambeck (2002) show that failure to account for duplicate ordering

and reneging can cause either over- or under-investment in capacity. By incorporating

capacity constraints and customer reneging into the well known Bass model, Ho, Savin, and

Terwiesch (2002) obtain qualitatively different insights. Kumar and Swaminathan (2003)

analyze a related model of new product introduction with balking rather than reneging and

find optimal control policies that are structurally different. Plambeck (2004) analyzes an

assemble-to-order system in which orders must be filled within a product-specific target

leadtime, or they are lost. A simple policy with independent control of each component is

near optimal. In contrast, when customers wait for as long as necessary to obtain the product,

optimal control becomes more complex: component production and assembly sequencing

depend upon the inventory positions for all components (Plambeck and Ward, 2003). In

(Li and Lee, 1994) two firms compete by setting prices; customers observe queue lengths

and jockey between the firms to minimize delivery-time. In contrast to traditional Bertrand

equilibrium with zero prices and profits, because customer orders depend dynamically on
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the leadtime, the firms sustain strictly positive profits. In a dynamic Bayesian formulation,

Chen and Plambeck (2004) show the value of reducing inventory levels to learn about about

customer’s willingness to wait.

Most of the existing research assumes the simplest structure for reneging (customers

renege after an exponentially distributed amount of time) or balking (balk with probability

p if there is any wait, and with probability (1-p) wait until the product is delivered). Two

notable exceptions are Ward and Glynn (2004) and Zeltyn and Mandelbaum (2004). Both

papers allow general distributions for reneging and balking, and perform asymptotic analysis

of these systems under conventional heavy traffic and the many-servers heavy traffic regimes,

respectively. Mandelbaum and Shimkin (2000) derive complex dynamic customer behavior

from primitives on valuation and waiting costs, for an M/M/S queue with congestion/failure

shocks, assuming customers cannot observe the queue length.

Most of the literature on balking and reneging in queues focuses on performance evalua-

tion and estimation (see, for example, Baccelli and Hebuterne (1981), Garnett, Mandelbaum

and Reiman (2002), Mandelbaum and Zeltyn (1998) and Mandelbaum, Sakov and Zeltyn

(2000) and references therein). One exception, (Kumar and Ward, 2005) proposes an admis-

sion control policy for a system with reneging in which revenue from admitting a customer

is less than the penalty incurred if that customer later reneges. Recently, researchers have

made rapid progress in staffing for call centers (Harrison and Zeevi (2005); Mandelbaum and

Zeltyn (2005) and Borst, Mandelbaum, Reiman and Zeltyn (2005)), which involves determin-

ing the number of servers of possibly several pools and thus differs from our 1-dimensional

model of capacity planning for a make-to-order system.

We derive fundamental properties of an M/M/S queue with state-dependent balking and

reneging rates. We adopt the sample path approach of Shaked and Shanthikumar (1988)

to verify convexity of stochastic processes and related cost functions. First, in Section 3,

assuming that the balking probability and reneging rate are increasing and concave in the

head-count, we prove that the expected head-count is convex decreasing in the capacity

(service rate). This is complementary to the famous result that in a G/G/1 queue with a

convex increasing delay cost and without balking/reneging, a customers’ expected cost of

delay is a convex decreasing function of capacity (Weber, 1983). Second, in Section 4, we

assume linear reneging and constant balking probability, and show that the expected lost

sales rate is convex decreasing in the capacity. This is similar to the result by Fridgeirsdottir

and Chu (2005) that in a G/G/1 queue with convex nondecreasing delay cost and without
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balking/reneging, the expected delay cost rate is convex increasing in the arrival rate, and

to the result by Janakiraman and Roundy (2004) that for an inventory system with lost

sales and stochastic sequential leadtimes, expected discounted cost is convex in the base

stock level. Establishing that the expected cost function is convex in the control parameter

(capacity, arrival rate and base stock level in the preceding examples) justifies using a simple

search procedure to compute the optimal parameter level and sets the stage for deriving

qualitative insights from comparative statics.

Inspired by Shaked and Shantikumar’s (1988) concept of sample-path convexity, in Sec-

tion 4 we employ a sample-path sub-modularity approach to comparative statics. That is,

we employ sample path arguments to show how the optimal capacity changes as we vary the

parameters of customer demand and impatience. We find that the optimal capacity increases

in the demand rate and decreases with the balking probability, but is not monotone in the

reneging rate. This means, surprisingly, that failure to account for customers’ impatience

and reneging may result in over -investment in capacity.

Finally, in Section 5, we assume commitment during service, i.e., customers cannot balk

or renege during service. This seemingly minor change in system structure produces qual-

itatively different results. The expected rate of reneging from the system in steady-state

is convex, but the expected rate of balking and hence expected cost is non-convex in some

parameter regions. Furthermore, the optimal capacity is no longer monotone in the balking

probability. We conclude that commitment during service strongly impacts the convexity

properties and comparative statics of make-to-order systems with impatient customers.

2. Notation and Model Formulation

Consider a make-to-order system modelled by a multi-server, infinite-buffer queue. Cus-

tomers arrive at the system according to a Poisson process with rate λ. The service time has

an exponential distribution with rate µ. We denote the number of customers in the system

(head-count) by Y . An arriving customer may decide to balk, namely, to leave upon arrival.

The balking probability is a function of the head-count, and is denoted by β(·). Finally,

customers may decide to cancel their order (renege) at any point during their wait or while

being served. The reneging rate is a function of the head-count, and is denoted by η(·). All

arrivals, service times, balking and reneging are assumed to be independent. Therefore, the

head-count process is a continuous time Markov chain (CTMC).
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The system manager knows the customers characteristics modelled here by λ, β, and η,

wishes to choose the service capacity µ to minimize the cost associated with lost sales and

capacity investment:

C(µ) = C(µ; λ, η, β) = c[λEβ(Y (∞)) + Eη(Y (∞))] + kµ,

where Y (∞) is the head-count in steady-state, and, without loss of generality, it is assumed

that c = 1.

Let θ be an arbitrary parameter, and let µ∗(θ) be a value of µ that minimizes a certain

function g(µ; θ). The meaning of the saying ‘µ∗(θ) is increasing in θ’ when µ∗(θ) is not

necessarily unique, is that if θL < θH , and µH minimizes g(µ; θH) then there exists µL ≤ µH ,

such that µL minimizes g(µ; θL). Similarly, if µL minimizes g(µ; θL), then there exists µH ≥
µL, such that µH minimizes g(µ; θH). Throughout the paper we use the term increasing to

mean non-decreasing, and the term decreasing to mean non-increasing.

3. Convexity of Cost in Capacity

In this section we address the issue of convexity of the cost function in the capacity variable

µ. We start by establishing the convexity of the expected head-count as a function of the

capacity. This convexity property is true for very general balking and reneging functions.

The only requirements is that both functions are non-decreasing and concave in the head-

count.

Proposition 1 Let Y (t) denote the head-count process for an M/M/S system with reneging

and balking. Suppose that the reneging rate η(·) and the balking probability β(·) are both non-

decreasing and concave functions of Y , then the expected head-count in steady state, EY (∞),

is convex in the service rate, µ.

The proof of Proposition 1 is based on the sample path approach. In particular, we

prove that Y satisfies sample path convexity (a term that has been introduced by Shaked

and Shanthikumar (1988)). More specifically, for any service rates 0 ≤ µ1 ≤ µ2 ≤ µ3 ≤ µ4

such that µ1 + µ4 = µ2 + µ3, we show that there exist Y1, ..., Y4, which are versions of the

original head-count processes (Yi has service rate of µi), and which satisfy the following two

properties for all t ≥ 0:

1. Y1(t) + Y4(t) ≥ Y2(t) + Y3(t), a.s, and
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2. Y1(t) ≥ max{Y2(t), Y3(t), Y4(t)}, a.s.

Then, according to Shaked and Shanthikumar (1988), Y is said to be stochastically

decreasing and convex in the sample path sense (SDCX(sp)). From Theorem 3.6, Proposition

2.11 and Remark 2.8 of Shaked and Shanthikumar (1988) it follows that EY (∞) is decreasing

and convex in µ. To prove that 1. and 2. hold, we discretize time, uniformize the transition

rates, and finally prove 1. and 2. using path-wise coupling and induction on time. Details

are given in the Appendix.

This convexity result is particularly interesting in the case that customers cannot observe

the head-count. Note that (with a slight abuse of notation) both simple functions η(y) = ηy

for some constant η ≥ 0, and β(y) = β for some constant 1 ≥ β ≥ 0 satisfy the assumptions of

Proposition 1. Both these functions are likely scenarios when the head-count is unobservable.

The reneging function corresponds to the case where every order is cancelled if is not fulfilled

by an exponential amount of time with mean 1/η. Similarly, the balking probability function

corresponds to the case where the customer is not aware of the head-count and makes her

balking decision at random. The cost function that goes along with these reneging and

balking functions is C(µ; λ, η, β) = λβ + ηEY (∞) + kµ. It is easily verified (see Proposition

2) that Proposition 1 implies the convexity of this cost function in µ.

A similar result to proposition 1 appears in Shaked and Shanthikumar (1988) (Theorem

5.5). The similarity is that both our result and theirs assume that the departure rate is

increasing and concave in the head-count. The difference is in the conclusions. They show

that for a single server queue the head-count is increasing and convex in the arrival rate,

while we show that for a multi-server queue the head-count is decreasing and convex in the

service rate.

Convexity of the cost as a function of capacity implies that efficient optimization algo-

rithms can be applied to find the capacity level which minimizes cost. In addition, this

convexity allows for comparative statics that evaluate the effect of changes in the model

parameters on the optimal capacity level. The latter is pursued in the next section.

4. Optimal Capacity Investment

In this section we investigate the effect of varying fundamental system parameters on the

optimal capacity investment. We assume that each customer balks with probability β > 0

(regardless of the head-count upon arrival) and reneges after an exponential time with rate
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η > 0 (This is the case when the head-count is unobservable). As one would expect, we find

that the optimal capacity is increasing in λ and decreasing in β. Surprisingly, we find that

the optimal capacity may either increase or decrease in η.

Theorem 1 Suppose that the balking probability function is constant at β(y) = β, for some

0 ≤ β < 1, and that the reneging rate function is η(y) = ηy, for some η ≥ 0. Let

C(µ; λ, η, β) = λβ + ηEY (∞) + kµ, (1)

be the cost function associated with lost sales and capacity investment. Let µ∗(λ, η, β) be

the optimal capacity that minimizes C(µ; λ, η, β). Then, µ∗(λ, η, β) is non-decreasing in λ,

non-increasing in β, but is not necessarily monotone in η.

The proof of Theorem 1 is based on four propositions. The first shows that C(µ; λ, η, β)

is convex in µ; therefore, for all given values of λ, η, and β, µ∗(λ, η, β) is well defined

(although it may be non-unique), and any local minimum of C(µ; λ, η, β) is also a global

minimum. The second proposition shows that µ∗(λ, η, β) is increasing in λ. Similarly, the

third proposition shows that µ∗(λ, η, β) is decreasing in the balking probability β. Finally,

in the fourth proposition we show that µ∗(λ, η, β) may either increase or decrease in η. Most

arguments are based on the sample path approach. Building on the concept of sample path

convexity, we define the sample-path sub-modularity property the implies monotonicity of

the expected-cost-minimizing value of one parameter in a second parameter (Theorem 2).

Proposition 2 Under the assumptions of Theorem 1, the cost function C(µ; λ, η, β) is con-

vex in µ for all values of λ, η and β.

Proof : Fix λ, η and β and let f(µ) = ηEY (∞). Clearly, the convexity of f in µ implies

that C is also convex in µ. To establish the convexity of f , note that the reneging rate and

the balking probability functions are both non-decreasing and concave, and therefore, by

Proposition 1 it follows that f(µ) is convex in µ. ¤
In order to show that the optimal capacity is increasing in λ and decreasing in β we

introduce and utilize the following concept of sample-path sub-modularity.

Definition: Let X = Xγ,δ be a stochastic process which depends on the two parameters γ

and δ. We say that X is “path-wise sub-modular” with respect to γ and δ if for all γL < γH

and δL < δH we have four processes X̂γ,δ, γ = γL, γH , δ = δL, δH which are defined on the

same probability space, such that
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1. X̂γ,δ is a version of Xγ,δ for every fixed pair (γ, δ) (that is, X̂γ,δ
st
= Xγ,δ), and

2. X̂γH ,δH
− X̂γH ,δL

≤ X̂γL,δH
− X̂γL,δL

, a.s.

The next theorem establishes the connection between the sample-path sub-modularity

property and monotonicity.

Theorem 2 Let X = Xγ,δ be a stochastic process, and let g(γ, δ) = EXγ,δ be its expected

value in steady-state. Suppose that g(·) is convex in γ for every fixed δ and that it is path-wise

sub-modular with respect to these two variables. Let γ∗(δ) be the (possibly non-unique) value

of γ that minimizes g(γ, δ) for every fixed value of δ, then γ∗(δ) is increasing in δ.

Proof: Let δL, δH be two values of δ such that δL < δH . Let γ∗(δL) be a value of γ

that minimizes g(γ, δL). We need to show that there is γ̂ ≥ γ∗(δL) such that γ̂ minimizes

g(γ, δH). By contradiction, assume that for all optimal solutions γ∗(δH) of g(γ, δH), we have

γ∗(δH) < γ∗(δL). In particular,

0 ≤ g (γ∗(δH), δL)− g (γ∗(δL), δL) ≤ g (γ∗(δH), δH)− g (γ∗(δL), δH) ≤ 0, (2)

where the first inequality follows from the optimality of γ∗(δL), the second on follows from

the sample-path sub-modularity and the assumption that γ∗(δH) < γ∗(δL), and the third

one follows from the optimality of γ∗(δH). In particular, (2) implies that g (γ∗(δH), δH) =

g (γ∗(δL), δH), which in turn implies that γ∗(δL) is minimizes g(γ, δH). This leads to a

contradiction. ¤

The next proposition establishes that the head-count process is path-wise sub-modular

in µ and λ (β and η will be omitted from the current expressions for expository purposes).

From Theorem 2 it then follows that µ∗(λ) is non-decreasing in λ.

Proposition 3 For any values of λ and µ, let Yλ,µ represent the head-count process when

the arrival rate is λ and the service capacity is µ. Then Yλ,µ is path-wise sub-modular in λ

and µ.

Note that the proposition only establishes the path-wise sub-modularity of Yλ,µ. However,

it is straightforward to verify that this implies the sample-path sub-modularity of the entire

cost function in these two parameters. The proof of Proposition 3 follows the sample path

8



approach. More specifically, we show that for all λL < λH and µL < µH there exist versions

of Yλ,µ, for λ ∈ {λL, λH} and µ ∈ {µL, µH}, such that the following three properties hold at

all times t ≥ 0:

I. YλH ,µL
(t) = max[Yλ,µ(t) : λ ∈ {λL, λH}, µ ∈ {µL, µH}], a.s.,

II. YλL,µH
(t) = min[Yλ,µ(t) : λ ∈ {λL, λH}, µ ∈ {µL, µH}], a.s., and

III. YλH ,µH
(t)− YλH ,µL

(t) ≤ YλL,µH
(t)− YλL,µL

(t), a.s.

Similarly to the proof of Proposition 1, we show I. II. and III. using time discretization

and uniformization, and then establishing these properties using sample-path coupling and

induction on time. Details are given in the appendix.

The next proposition establishes the monotonicity of the optimal capacity in the balking

probability. Specifically, we show that if the balking probability function is constant then the

optimal capacity is decreasing (in fact, non-increasing) in this constant balking probability.

Proposition 4 Let λ and η be fixed. Then the optimal capacity µ∗(β) which minimizes the

cost C(µ; λ, η, β) is non-increasing in β.

Proof: Consider another system with arrival rate equal to λ(1 − β), no balking (balking

probability = 0), and reneging rate η. It is easy to see that the head-count process for the

new system evolves the same as the head-count process for the original system. According

to Proposition 3 the optimal capacity that minimizes C(µ; λ(1 − β), η, 0) is non-decreasing

in λ(1 − β) and is, therefore, non-increasing in β. But the actual cost we seek to minimize

is C(µ; λ, η, β) = C(µ; λ(1− β), η, 0) + λβ. Since this additional term is not a function of µ,

it follows that µ∗(λ, η, β) = µ∗(λ(1− β), η, 0), and hence is also non-increasing in β. ¤

Corollary 1 Let η be fixed. Then the optimal capacity µ∗(λ, β) which minimizes the cost

C(µ; λ, η, β) is non-increasing in the balking rate (λβ).

Proof: The proof follows immediately from the proof of Proposition 4. ¤

The final proposition establishes that µ∗(λ, η, β) may be either increasing or decreasing

in η. This counterintuitive result will be contrasted in the discussion with the traditional

model of infinite backordering, in which such phenomenon does not occur. This underlines

the importance of modelling order cancellation explicitly.
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Proposition 5 Fix the values of λ and β, and let µ∗(η) be the optimal capacity which min-

imizes the cost function C(µ; λ, η, β), then µ∗(η) can either increase or decrease in η.

Proof: Recall the cost function C(µ; η) := C(µ; λ, η, β) = βλ+ηEY (∞)+kµ. Suppose that

S = 1 and β = 0. In order to prove the proposition we first show that for arbitrary values of

λ and k with 0 < k < 1, µ∗(η) may decrease in η. To show that, we note that the definitions

C(µ; η = 0) = (λ − µ)1{µ≤λ} + kµ, and C(µ; η = ∞) = λ + kµ are continuous extensions

of the cost function C(·) for all values η in the closed interval [0,∞]. However, notice that

µ∗(η = 0) = λ, whereas, µ∗(η = ∞) = 0, that is, µ∗(η) may decrease with η.4

To show that µ∗(η) may also increase in η, all we have to show is that there exist

0 < k < 1 and ηk > 0 such that µ∗k(ηk) > λ (recall that µ∗(η = 0) = λ). We show that,

in fact, a stronger result applies; namely, that for every fixed value of η > 0, there exists

a value k = k(η), 0 < k < 1, such that µ∗k(η) > λ, where µ∗k(η) stands for the optimal

capacity that minimizes the cost function C(µ; λ, η, β) = ηEY (∞) + kµ. To show that, fix

the value of η > 0, and note that the function f(µ) = ηEY (∞) is decreasing and convex in

µ (Proposition 1). We claim that it is sufficient to show that:

There exists µ0 such that: µ0 > λ, f(µ0) < f(λ) and f ′(µ−0 ) > −1, (3)

where f ′(µ−0 ) is the directional derivative of f at µ = µ0 from below (exists due to Lemma

3.1.5 of Bazaraa, Sherali and Shetty (1993)). If (3) is true then the convexity of f(µ) implies

that f ′(µ−0 ) ≤ f ′(µ+
0 ) (here, f ′(µ+

0 ) is the directional derivative of f at µ = µ0 from above).

Let k be such that f ′(µ−0 ) ≤ −k ≤ f ′(µ+
0 ), then C ′(µ−0 ) = f ′(µ−0 ) + k ≤ 0, and C ′(µ+

0 ) =

f ′(µ+
0 ) + k ≥ 0. In particular, µ∗k(η) = µ0 is a local minimum for C(·), and from convexity,

it is also a global minimum.

To establish (3), note that from flow conservation f(µ) = ηEY (∞) = λ−µP (Y (∞) > 0).

In particular, f(µ = λ) > 0, and limµ→∞ f(µ) = 0. Since f(µ) is a non-increasing function of

µ, this implies that there exists µ1 > λ such that f(µ) < f(λ), for all µ ≥ µ1. Now note that

if f ′(µ−) ≤ −1 for all µ ≥ µ1, then f(µ) < 0 for µ large enough, which is a contradiction.

This shows that µ0 is well defined. ¤
4The continuity of µ∗(η) (which follows from Theorem 3.1.3 of Bazaraa, Sherali and Shetty (1993) and

the implicit functions theorem) may be used to show that µ∗(η) indeed decreases for some points on the
interval (0,∞).
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5. Customer Commitment During Service

For many service systems and some make-to-order manufacturing systems, it is reasonable

to assume that customers will not balk or renege during service. According to Farlie (2004),

small manufacturers of customized computers charge a customer’s credit card before ini-

tiating assembly, to prevent cancellations during the assembly process. The assumption

that customers cannot balk or renege during service (which we call ‘customer commitment’)

makes derivation of convexity and comparative statics results much more difficult. In fact,

some of our previous results are no longer true under this assumption.

To illustrate the effect of customer commitment during service on convexity we use

the simplest form of balking and reneging that falls within this framework. Specifically,

throughout this section, we assume that the balking probability function is of the form

β(Y ) = β1{Y≥S} and the reneging rate function is of the form η(Y ) = η(Y − S)+, for some

positive constants β ≤ 1 and η. These balking and reneging functions are likely scenarios

when customers cannot observe the head-count but are aware of whether their service is

in progress, is about to begin, or is going to be delayed. Consequently, each customer will

balk with probability β if and only if no server is available when she arrives. Similarly,

she will renege after an exponential time with rate η as long as she is waiting in line. The

expected balking rate and reneging rate in steady-state associated with the above functions

are b(µ; λ, η, β) = λβP (Y (∞) ≥ S) and r(µ; λ, η, β) = ηE[Y (∞)− S]+, respectively.

In this section we also allow for the cost associated with a customer balking (cb) to differ

from the cost associated with a customer reneging (cr). Let

C(µ; λ, η, β) = cbλβP (Y (∞) ≥ S) + crηE[Y (∞)− S]+ + kµ, (4)

denote the cost function associated with lost sales and capacity investment. It is straightfor-

ward to see that all our results in the previous sections hold when the cost of balking differs

from the cost of reneging. Surprisingly, with customer commitment during service, impor-

tant system properties (convexity of the cost (4) as a function capacity µ and monotonicity

of the optimal capacity µ∗ in the balking probability β) depend upon the relative costs of

balking and reneging.

We start by establishing that the expected reneging rate from the system in steady-state

is a convex function of µ for µ ≥ η.
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Proposition 6 Suppose that η > 0 and let

r(µ; λ, η, β) = ηE[Y (∞)− S]+, (5)

denote the expected reneging rate in steady-state. Then if either S = 1 or β = 0 then r(·) is

convex in µ for µ ≥ η.

Before proving this proposition we introduce the following Lemma:

Lemma 1 Under the assumptions of Proposition 6, the head-count process Y is stochasti-

cally decreasing and convex in µ for µ ≥ η.

The proof of Lemma 1 appears in the Appendix. It is similar to the proof of Proposition

1, but it does not follow for this proposition because the assumptions of the concavity of the

balking probability and reneging rate in the head-count do not hold.

Proof of Proposition 6: Suppose that µ ≥ η. By Lemma 1 the head-count process Y

is stochastically decreasing and convex in µ. Now, since the function η(y) = η(y − S)+ is

increasing and convex in y, it follows that the process η(Y − S)+ is also stochastically de-

creasing and convex in µ. Finally, it follows that r(µ; λ, η, β) = ηE[Y (∞)−S]+ is decreasing

and convex in µ. ¤
In contrast, the expected balking rate from the system in steady-state is non-convex in

µ, when the reneging rate η is small. This result seems counter-intuitive, especially in light

of Lemma 1. However, note that in the customer commitment case, the balking probability

β1{Y≥S} is not convex in the head-count, and therefore the convexity of this rate in µ does

not follow from Lemma 1. The direct sample-path argument for convexity also fails. To see

this, note that the direct approach requires establishing sample path convexity for 1{Y≥S},

analogously to the proof of Proposition 1. However, the quantity 1{Y≥S} does not carry

enough information for such arguments to work. For example, consider four systems with

service rates µ1 ≥ µ2 ≥ µ3 ≥ µ4, and µ1 + µ4 = µ2 + µ3. Pathwise convexity requires that

1{Y1(t)≥S} + 1{Y4(t)≥S} ≥ 1{Y2≥S} + 1{Y3≥S}, ∀t ≥ 0. (6)

But (6) could work at time t0, with Y1(t0) = Y4(t0) = S and Y2(t0) = Y3(t0) = S + 1. In

this case, the next departure from all systems will result in Y1(t0) = Y4(t0) = S − 1, and

Y2(t0) = Y3(t0) = S, which violates (6). The next proposition states the non-convexity of

the balking rate in µ.

12



Proposition 7 Let

b(µ; λ, η, β) = λβP (Y (∞) ≥ S), (7)

denote the expected balking rate in steady-state. Then b(·) is not necessarily convex in µ. In

particular, if S = 1, then for sufficiently small values of η, b(·) is not convex in µ.

Proof: Let S = 1, and fix λ and β. First we examine the limit of the balking rate function

as the reneging rate η approaches zero. Note that, from the monotone convergence theorem,

we have that

b(µ) := lim
η↓0

b(µ; λ, η, β) =

{
λβ, µ ≤ λ(1− β),
λ2β

µ+λβ
, µ > λ(1− β).

In particular, b(µ) is not convex at the point µ0 = λ(1 − β). Moreover, if we let µ1 =

µ0/2 and µ2 = 3µ0/2, then µ0 = (µ1 + µ2)/2, but b(µ0) > (b(µ1) + b(µ2))/2. We next

show that for sufficiently small values of η > 0, b(µ; η) := b(µ; λ, η, β) is not convex in µ.

Let ε = b(µ0) − (b(µ1) + b(µ2))/2. By the definition of b(µ), there exists η(ε) such that

| b(µ; η)− b(µ)| < ε/3, for all η ≤ η(ε) and µ = µ0, µ1, µ2. This implies, that for all η ≤ η(ε)

b(µ0; η)− b(µ1; η) + b(µ2; η)

2
≥ b(µ0)− ε

3
− b(µ1) + ε

3
+ b(µ2) + ε

3

2
> 0.

¤
Figure 1 illustrates the non-convexity of the balking rate as a function of µ for the special

case where S = 1, λ = 50, η = 0.5 and β = 0.2.

In light of the proof of Proposition 7, one might think that the non-convexity in µ may

only occur if we allow for traffic intensity (ρ := λ(1 − β)/µ) values which are greater than

or equal to 1. An exhaustive numerical search over the parameter values reveals that this

is not the case. Specifically, for high traffic intensity which is close to 1 (but still less than

1) and low reneging rate, the balking rate is not convex. This numerical result is illustrated

in Figure 2. The surface in the figure displays, for each pair of values of β and (λ/µ), the

highest value of η for which the steady-state expected rate of balking is non-convex in the

capacity µ. That is, nonconvexity occurs below the surface in Figure 2 and convexity above.

Note that for an arrival rate λ 6= 1, the value of η in the figure would be scaled by λ, but

the region of non-convexity in the (β, λ/µ) space will not change.

Finally, we prove that the convexity properties of the cost function (4) depend upon the

relative costs of balking and reneging. Proposition 8 focuses on the single-server case; we

conjecture that similar convexity properties hold for the multi-server case (S > 1) but have

not been able to prove this.
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Figure 1: Steady-state expected balking rate is non-convex in capacity µ

0
0.05

0.1
0.15

0.2
0.25

0.9

1

1.1

1.2

1.3
0

0.05

0.1

0.15

0.2

0.25

0.3

β

Non−convexity region of balking rate in µ

λ/µ

η
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function of capacity µ (for arrival rate λ = 1).
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Proposition 8 Suppose that S = 1. If cr ≥ cb, then the cost function C(·) defined in

(4) is convex in µ for all µ ≥ η. Also, if cbβ ≤ cr < cb then C(·) is convex in µ for

µ ≥ max{η, λ(1 − β)}. On the other hand, if cr < cbβ, then, for sufficiently small η > 0,

C(·) is non-convex in µ.

Proof: Fix λ, β, and η > 0 (to be omitted as parameters of C(·) for brevity). Suppose that

µ ≥ η and that cr = cb = 1. We will prove that C ′′(µ) ≥ 0. From this, convexity of C(·)
in µ for any cr and cb satisfying cr ≥ cb follows immediately from Proposition 6. From flow

conservation we have that

C(µ) = λ− µP (Y ≥ 1) + kµ.

Let P (µ) = P (Y ≥ 1). Then,

C ′(µ) = −µP ′(µ)− P (µ) + k,

and

C ′′(µ) = −2P ′(µ)− µP ′′(µ).

Therefore, if

−2P ′(µ) ≥ µP ′′(µ), (8)

then C(·) is convex. Notice that P (·) is decreasing in µ. Therefore, the right-hand-side of

(8) is non-negative. Hence, if the left-hand-side of (8) is negative the proof is complete.

Otherwise, if P ′′(µ) ≥ 0, then the balking rate λβP (µ) is convex in µ. In this case, by (4),

we only need to establish the convexity of the reneging rate in µ. But this has been shown

in Proposition 6.

Suppose now that cbβ ≤ cr < cb and that µ ≥ max{η, λ(1− β)}. We show that if cr = 1

and cβ = 1/β, then C(·) is convex in µ. Convexity for the general cbβ ≤ cr < cb case will

immediately follow from Proposition 6. If indeed cr = 1 and cβ = 1/β, then, from flow

conservation,

C(µ) = λ + (λ(1− β)− µ)P (Y ≥ 1) + kµ.

Recall that P (µ) = P (Y ≥ 1). Then,

C ′(µ) = (λ(1− β)− µ)P ′(µ)− P (µ) + k,

and

C ′′(µ) = −2P ′(µ) + (λ(1− β)− µ)P ′′(µ).
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Therefore, if

−2P ′(µ) ≥ (µ− λ(1− β))P ′′(µ), (9)

then C(·) is convex. Following considerations similar to those in the previous case, and

noting that µ− λ(1− β) ≥ 0, we conclude the convexity of C(·) in µ for this region.

Finally, suppose that cr < cbβ. We show that the limit of the cost of lost sales as η > 0

approaches zero is not convex. The rest will follow analogously to the proof of Proposition

7. Note that, from flow conservation and from the monotone convergence theorem, we have

that
C̃(µ) : = limη↓0 {cbλβP (Y (∞) ≥ 1) + crηE[Y (∞)− 1]+}

=

{
cbλβ + cr(λ(1− β)− µ), µ ≤ λ(1− β),

cb
λ2β

µ+λβ
, µ > λ(1− β).

Let µ0 = λ(1− β). Then the left derivative of C̃(·) at µ = µ0 is

C̃ ′(µ = µ−0 ) = −cr.

Also, its right derivative at µ = µ0 is

C̃ ′(µ = µ+
0 ) = −cbβ.

Clearly, if cr < cbβ, then C̃(·) is not convex at µ0. ¤
In light of the above, one might think that convexity properties change but, fundamen-

tally, comparative statics do not. Surprisingly, customer commitment destroys one of the

monotonicity results obtained in the previous section. Recall that according to Theorem 1

the optimal capacity is increasing in the arrival rate and decreasing in the balking probability

for the non-commitment case. For the case of customer commitment during service, while

we believe that the monotonicity in the arrival rate still holds, we prove that the optimal

capacity is not necessarily monotone in the balking probability.

Proposition 9 Let C(µ; λ, η, β) be the cost function defined in (4) and let µ∗(λ, η, β) be the

optimal capacity that minimizes C(·). Then, µ∗(·) is not necessarily monotone in the balking

probability β. In particular, with a single server (S = 1), for all sufficiently small η, the

optimal capacity µ∗(λ, η, ·) exhibits non-monotonicity in β.

Proof: Suppose that S = 1, cb = cr = 1 and fix λ > 0. The limit of the cost function as

η ↓ 0 satisfies:

C(µ; β) := lim
η↓0

C(µ; λ, η, β) =

{
λ− (1− k)µ, µ ≤ λ(1− β),

λ2β
µ+λβ

+ kµ, µ > λ(1− β).
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Figure 3: The optimal capacity is non-monotone in the balking probability (S = 1, λ =
1, k = 1 and η ↓ 0).

It is easy to see that the optimal value of µ that minimizes C(µ; β) satisfies:

µ∗(β) =





λ(1− β), k ≥ β,

λ
(√

β/k − β
)

, k < β.

Suppose that λ = 1 and k = 0.1. In this case, as shown in Figure 3, µ∗(β) is first decreasing

in β and then it is increasing. In particular, for β1 = 0 < β2 = 0.1 < β3 = 0.2, we

have mu∗(β1) > µ∗(β2) < µ∗(β3) and µ∗(β) is non-monotone. Arguments analogous to the

proof of Proposition 7 show that for sufficiently small values of η, µ∗(β, η) is not necessarily

monotone in β. ¤
Intuitively, if η ↓ 0, then for relatively small values of β, the dominant cost is the cost

of capacity. In this case, the optimal capacity is the minimum that guarantees stability

(µ = λ(1 − β)), which is decreasing in β. For higher values of β, if k is sufficiently small,

then the dominant cost becomes the balking cost. In this case, to counteract the increasing

balking rate, the optimal µ is increasing in β.

We conclude that customer commitment during service strongly influences the convexity

properties and comparative statics of make-to-order systems with impatient customers.
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6. Discussion

We have derived convexity properties for the cost of capacity and lost sales, as a function

of capacity, and evaluated how balking and reneging influence the optimal capacity invest-

ment. Some of our results (particularly Proposition 5) are counterintuitive. Furthermore,

we show that a seemingly minor change in system structure, customer commitment during

service, leads to qualitatively different results. These results underline the importance of

painstakingly accounting for balking and reneging in the design of make-to-order or service

systems.

Proposition 5 demonstrates an important difference between systems with backordering

costs and systems with reneging. It suggests that, before investing in capacity, managers need

to carefully model and estimate customers’ willingness to wait for their orders to be fulfilled.

Surprisingly, a larger reneging rate does not necessarily imply that greater capacity is needed.

To contrast this result with the more traditional models of inventory theory, suppose that

one assumes that customers will wait indefinitely for their order, but the manufacturer will

incur a backordering cost in addition to the cost of capacity. In this paper’s notation,

one can write down the cost function as C̃(µ; λ) = cEY (∞) + kµ, where c is the cost per

backlogged order per time unit, and no balking or reneging occurs. Note that C̃(µ; λ) and

C(µ; λ, η, β = 0) are almost identical in form. The one crucial difference is that EY (∞) in

the infinite-backordering model is independent of its coefficient c, whereas EY (∞) in our

model depends on its coefficient η in a non-trivial manner. In particular, in the infinite-

backordering model, the optimal capacity is always increasing in the backordering cost c. In

contrast, the optimal capacity in a system with reneging may decrease with the reneging rate.

The operations management literature widely assumes infinite backordering (rather than lost

sales) for analytic tractability. Customer impatience is represented by a high backordering

cost c, which is said to account for the “loss of good will” from forcing customers to wait.

The striking qualitative difference in results (that optimal capacity always increases with c in

infinite backordering model but may decrease with η in model with explicit reneging) shows

that, in deriving qualitative or structural insights, one cannot rely on a backorder penalty

to represent customers’ impatience. More specifically, in making decisions about capacity

investment for a make-to-order system, failure to explicitly account for reneging may result

in over-investment in capacity. Further research is needed to understand the implications of

balking and reneging for more general production-inventory systems.
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A. Appendix: Proofs

Proof of Proposition 1: We first prove the proposition for the single-server case (S = 1).

The general multi-server case is dealt with at the end of this proof. The proof is based on the

sample path approach. Specifically, we prove that Y (viewed as a function of µ) satisfies sam-

ple path convexity (a term that has been introduced by Shaked and Shanthikumar (1988)).

Specifically, let 0 ≤ µ1 ≤ µ2 ≤ µ3 ≤ µ4 be four service rates such that µ1 + µ4 = µ2 + µ3,

and fix λ, β(·) and η(·). Suppose that there exist Y1, ..., Y4, which are versions of the original

head-count processes (Yi has service rate of µi) that satisfy the following two properties for

all t ≥ 0:

1. Y1(t) + Y4(t) ≥ Y2(t) + Y3(t), a.s.

2. Y1(t) ≥ max{Y2(t), Y3(t), Y4(t)}, a.s.

Then, according to Shaked and Shanthikumar (1988), Y is said to be stochastically

decreasing and convex in the sample path sense (SDCX(sp)). From Theorem 3.6, Proposition

2.11 and Remark 2.8 of Shaked and Shanthikumar (1988) it follows that EY (∞) is decreasing

and convex in µ.

To construct the coupled versions Y1, ..., Y4 we wish to come up with appropriate uni-

formized discrete versions of the original processes. However, for uniformization to work one

needs bounded transition rates of the original Markov chain, which is not the case in this

paper (we do not assume boundedness of the reneging rates η(y)). To resolve this problem

we define for all M > 0 a truncated reneging function ηM(y) = min{η(y),M}. Clearly,

since η(·) is concave, and min{·,M}, is non-decreasing and concave, ηM(·) is also concave.

Moreover, for any fixed M > 0, ηM(·) is bounded. Let Y M
1 , ..., Y M

4 be uniformized discrete

versions of the head-count processes with arrival rate λ, balking probability function β(·),
service capacity µi, i = 1, ..., 4, and reneging rate function ηM(·). We will show that for each

M > 0 and for every n ∈ Z+ properties 1. and 2. hold at time n, with respect to Y M
1 , ..., Y M

4 .

It will then follow that EY M(∞) is decreasing and convex in µ. But since Y M(∞) weakly

converges to Y (∞)5 it follows from Proposition 2.11 of Shaked and Shanthikumar (1988)

that EY (∞) is a decreasing and convex function of µ.

5This can be shown by writing down the stationary distributions of the corresponding birth and death
processes explicitly, and show that those distributions converge to the limiting one, with unbounded reneging
rates.
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We now fix M > 0, and establish, by induction, that if 1. and 2. hold at time n = 0 for

Suppose that 1. and 2. hold for Y M
1 , ..., Y M

4 , then they hold for all n = 1, 2, .... For brevity,

we omit the superscript M from the subsequent terms. In addition to 1. and 2. we define a

third property as follows:

1̃. Y1(n) + Y4(n) = Y2(n) + Y3(n),

that is, property 1̃. is property 1. with an equality replacing the inequality. We first establish

that if properties 1̃. and 2. are satisfied at time n, then properties 1. and 2. hold at time

n + 1. Let v = λ + µ4 + M. be an upper bound on the total transition rate of the processes

Y1, ..., Y4. For n, such that 1̃. and 2. hold, we define the following possible uniformized and

coupled transitions:

Arrival + balking: With probability λ
v

we have a new order arriving into all four systems.

When a new order arrives, it balks system i with probability β(Yi(n)). This is done

as follows: Let Y(1)(n) ≥ Y(2)(n) ≥ Y(3)(n) ≥ Y(4)(n) be the order statistics for Yi(n),

i = 1, .., 4. Respectively, refer to system (i) as the systems whose head-count is Y(i)(n).

Note that from properties 1̃ and 2, it follows that Y(1)(n) = Y1(n) and Y(4)(n) = Y4(n).

Now let βi = β(Y(i)(n)). From the monotonicity and concavity of β(·) is follows that:

a. β1 ≥ β2 ≥ β3 ≥ β4,

b. β1 + β4 ≤ β2 + β3.

Now, let U ∼ Uniform(0, 1). U will determine in which systems the order just arrived

will immediately balk according to the following rules:

i. If U ≤ β4, then balk in all four systems.

ii. Else, if U ≤ β2 + β3 − 1, then balk from queues 1, (2) and (3).

iii. Else, if U ≤ β3, then balk in queues (3) and 1 only.

iv. Else, if U ≤ β1, then balk in queues (2) and 1 only.

v. Else, if U ≤ β2 + β3 − β4, balk in queue (2) only.
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To verify that the balking occur according to the right probabilities, note that in systems

1, (3) and 4 the balking probabilities are trivially equal to the required probabilities. In

queue (2), if β2 + β3 − β4 < 1 balking will occur with probability: β4 + (β2 + β3 − β4 −
β3) = β2. Similarly, if β2 + β3 − β4 ≥ 1, balking in this queue will occur with probability:

(β2 + β3 − 1) + (1− β3) = β2.

Service Completion: With probability µ4

v
we have a service completion event. To deter-

mine which systems are going to indeed have service completions (as opposed to a

transition from a state to itself), let U v Uniform(0, 1).

a. If U < µ1

µ4
we have service completions from all systems for which Yi(n) > 0.

b. If µ1

µ4
≤ U < µ2

µ4
, we have departures in systems 2 and 4 only, whenever the corre-

sponding queues are non-empty.

c. If µ2

µ4
≤ U < 1, we have departures in systems 3 and 4 only, whenever the corre-

sponding queue are non-empty.

It is easy to see, that system i has a service completion with probability µi

v
as long as

Yi(n) > 0 (recall that µ1 + µ4 = µ2 + µ3). Note that the reason why we do not simply

have a service completion from system i whenever U < µi

µ4
, is that in this case we may

have a service completion from system 4 only, which may violate property 1.

A Reneging Job (order cancellation) : Finally, with probability [η(Yi(n)) ∧ M ]/v we

have an order cancellation from system i. The coupling works as follows: let Y(1)(n) ≥
Y(2)(n) ≥ Y(3)(n) ≥ Y(4)(n) be the ordered statistics of Y1(n), ..., Y4(n), and let ξ(i) =

ηM(Y(i)(n)) = min{η(Y(i)(n)),M}. Note that property 1̃. and the convexity of ηM(·)
imply that ξ(1) + ξ(4) ≤ ξ(2) + ξ(3) (that is, the inequality with respect to the ξi’s is

the opposite of property 1.) Let U v Uniform(0, 1) be the random variable that

determines the reneging from all systems. Let m = max{M, ξ(3) + ξ(2) − ξ(4)}.

a. If U <
ξ(4)
m

, we will have one order cancellation from all the systems such that

Yi(n) > 0.

b. If
ξ(4)
m
≤ U <

ξ(3)
m

, we have one order cancellation from each of the systems (3) and

(1) (provided that Y(i)(n) > 0, for i = 1, 3).
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c. If
ξ(3)
m
≤ U <

ξ(1)
m

, we have one order cancellation from each of the systems (2) and

(1) (provided that Y(i)(n) > 0, for i = 1, 2).

d. If
ξ(1)
m
≤ U <

ξ(3)+ξ(2)−ξ(4)
m

, we have one order cancellation from system (2), provided

that Y(2)(n) > 0.

Note that given this setup, an order cancellation occurs in system (i) with probability

[η(Y(i)(n)) ∧M ]/v.

We will now show that if properties 1̃. and 2. hold at time n, 1.-2. are satisfied at time

n + 1. We will go over the different types of events, to show that 1.-2. still hold at time

n + 1:

Arrival + balking: Since we have arrivals coming into all systems at the same time, prop-

erties 1.-2. will still hold at time n + 1, if no balking occurs. To verify that properties

1. and 2. hold at time n+1 in case of balking note that these can happen only if from

time n to n + 1 one of the following occurs:

I. The LHS of 1. stays the same, while the RHS of 1. increases by 1 or 2: This will

only occur when there is balking in both queues 1 and 4, which implies balking

in queues (2) and (3) as well.

II. The LHS of 1. increases by 1, while the RHS of 1. increases by 2: This change in

the LHS of 1. can only occur when the arrival to queue 4 does not balk, while

the arrival to queue 1 balks. However, in this case, at least one of the arrival to

queue (2) or (3) will balk.

III. Yi(n) = Y1(n) for some i 6= 1, and Y1 stays the same, while Yi increases by 1

(this will violate 2.): This would occur only if Y(2)(n) = Y1(n) and there will

be balking in queue 1 and not in queue (2). However, if Y(2)(n) = Y1(n), then

Y(3)(n) = Y4(n), and in particular β3 = β4. In this case, it is easily verified that

balking in queue 1 implies balking in queue (2) as well.

Service Completion: Here we have to make sure we are avoiding the following:

I. The LHS of 1. decreases by 1, while the RHS does not change:

II. The LHS of 1. decreases by 2, while the RHS decreases by 1 or does not change.
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III. Yi = Y1 for some i 6= 1, and Y1 decreases by 1, while Yi does not change (hence

property 2. is violated).

Observe that none of these can happen because whenever Yi = 0 for either i = 2 or 3,

we have Y4 = 0. Moreover, if Yi = Y1, then if Y1 decreases, Yi will also decrease.

Order Cancellation: In this case, properties 1. - 2. will be violated if any of the above

I.-III. occur. We show that this cannot happen by going over the different values of

the uniform variable U . First note that here Y(1) = Y1 and Y(4) = Y4. Without loss of

generality, assume that Y(2) = Y2, and Y(3) = Y3, and omit the (·) from the subscript.

Also, recall that ξ1 + ξ4 ≤ ξ2 + ξ3.

a. If U < ξ4
m

, then Y4(n) > 0, which implies that Yi(n) > 0 for all i, which means that

all values of Yi(n) will be reduced by 1.

b. If ξ4
m
≤ U < ξ3

m
, then Y3(n) > Y4(n). This implies that Y1(n) > Y2(n) (from property

1̃.), and therefore the fact that Y1(n) and Y3(n) are the only processes reduced by

1, will not violate 1.-2.

c. If ξ3
m
≤ U < ξ1

m
, then Y1(n) > Y3(n). This implies that Y2(n) > Y4(n) ≥ 0 (see

property 1̃.), and therefore the fact that Y1(n) and Y2(n) are the only processes

reduced by 1, will not violate1.-2.

d. If ξ1
m
≤ U < ξ2+ξ3−ξ4

m
, then 1.− 2. will clearly not be violated.

So far we have shown that if at time n properties 1̃. and 2. hold, then at time n + 1

both properties 1 and 2 will hold. Suppose that at time n property 1. holds with a strict

inequality, that is:

Y1(n) + Y4(n) > Y2(n) + Y3(n).

In order to describe the transitions in this case, we first define the following transformation

of Y1(n) and Y4(n) : Ỹ1(n) = max{0, Y2(n) + Y3(n) − Y4(n)} and Ỹ4(n) = min{Y2(n) +

Y3(n), Y4(n)}. It is easy to see that Ỹi(n) ≤ Yi(n) for i = 1, 4. and that Ỹ1(n)+ Ỹ4(n) =

Y2(n) + Y3(n). That is, property 1̃. holds for the modified values of Yi(n). Let Ỹi(n + 1), i =

1, 2, 3, 4, be the values of these processes after one transition, that occurred according to the

above rules. In particular, we know that properties 1. and 2. hold for Ỹi(n+1), i = 1, 2, 3, 4.

Let F i,x(y) = Pµ=µi
{Yi(n + 1) > y | Yi(n) = x}, then it is easy to verify that F i,x(y) is
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non-decreasing in x. In particular, for i = 1, 4, let Yi(n + 1) = F
−1

i,Yi(n)(F i, eYi(n)(Ỹi(n + 1))),

and for i = 2, 3, simply let Yi(n + 1) = Ỹi(n + 1). One can now easily verify that for all

i, Yi(n + 1) ≥ Ỹi(n + 1), that properties 1. and 2. hold for Yi(n + 1), i = 1, .., 4, and that

Yi(n + 1) has the right distribution (i.e. for all y, Pµ=µi
{Yi(n + 1) > y|Yi(n)} = F i,Yi(n)(y).

This completes the proof of the Proposition for the single server case.

It is left to prove the proposition for the general multiserver (S > 1) case. To extend

the above proof to the M/M/S system, the only case that needs to be treated is service

completions. We first establish the following relation:

If µ1 + µ4 = µ2 + µ3, Y1 + Y4 = Y2 + Y3 and Y1 is greater than max{Y2, Y3} then

µ1Y1 + µ4Y4 ≤ µ2Y2 + µ3Y3.

However, µ4Y1 + µ4Y4 = µ4Y2 + µ4Y3. Therefore, in order to prove the relation it is

sufficient to show: (µ1 − µ4)Y1 ≤ (µ2 − µ4)Y2 + (µ3 − µ4)Y3. The last is true because

µi − µ4 ≤ 0, µ1 − µ4 is equal to (µ2 − µ4) + (µ3 − µ4), and Y1 is greater than max{Y2, Y3}.
Once we have this relation in hand it follows that: µ1 min{Y1, S} + µ4 min{Y4, S} ≤

µ2 min{Y2, S}+ µ3 min{Y3, S}.
To see this, notice that because Y1 and Y4 are more spread out than Y2 and Y3 and because

min is a concave function, min{Y1, S}+min{Y4, S} ≤ min{Y2, S}+min{Y3, S}. (For a proof

assume that there are two random variables, the first of which takes values Y1 and Y4 with

probability 0.5 each, whereas the second takes the other two values with equal probability.

The random variables have the same expected value but one dominates the other in the

convex order.)

This observation and the earlier proved relation complete the proof that µ1 min{Y1, S}+

µ4 min{Y4, S} ≤ µ2 min{Y2, S}+ µ3 min{Y3, S}.
Finally, this shows that we can couple the four systems such that the second and third

have more service completions on each sample path and that 1̃. and 2. hold at each service

completion.

¤

Proof of Proposition 3: The proof follows the sample path approach. In particular, we

discretize time, and uniformize the transition rates in an analogous way to what was done in

the proof of Proposition 1. Specifically, we bound the reneging rate from above by M, and

after we prove the result for any M, we let M →∞, to get the desired result. Given a value

of M, we show that we have sample-path sub-modularity for all n. More specifically, suppose
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that the following three properties hold at time n = 0, for all λL < λH and µL < µH :

I. YλH ,µL
(n) = max{Yλ,µ(n) ; λ = λL, λH , µ = µL, µH},

II. YλL,µH
(n) = min{Yλ,µ(n) ; λ = λL, λH , µ = µL, µH},

III. YλH ,µH
(n)− YλH ,µL

(n) ≤ YλL,µH
(n)− YλL,µL

(n),

then we show by induction that they hold for all n ≥ 0.

Suppose that S = 1, and let v = λH + µH + M . That is, v is the maximal transition

rate in all four systems given any state. Now suppose that I.-III. hold at time n, where III.

holds with an equality (we will call this property ĨII). In this case we have three types of

transitions:

Arrival + balking: With probability λH

v
we have an arrival event. The coupling works as

follows: let U v Uniform(0, 1).

1. If U < λL

λH
we have one arrival into each of the four systems.

2. If U ≥ λL

λH
we have arrivals into the systems with λ = λH only.

Once it has been determined which systems will have new arrivals, these new arrivals all

balk together with probability β, and otherwise they join the queue.

Service Completion: With probability µH

v
we have a service completion event. To deter-

mine which systems have a departure, let U v Uniform(0, 1).

1. If U < µL

µH
we have a service completion for each one of the systems for which

Yλ,µ(n) > 0.

2. If U ≥ µL

µH
we have a service completion for those systems with µ = µH only,

whenever Yλ,µH
(n) > 0.

Order Cancellation: With probability M
v

we have an order cancellation event. Let ηM(y) =

min{ηy, M} be the reneging rate function. Let Y(i), i = 1, 2, 3, 4 be a permuta-

tion of {Yλ,µ(n); λ = λL, λH , µ = µL, µH} such that Y(1) ≥ Y(2) ≥ Y(3) ≥ Y(4).

Let ξ(i) = ηM(Y(i)). Note that I.,II, and ĨII. and the concavity of ηM(·) imply that

ξ(1) + ξ(4) ≤ ξ(2) + ξ(3). Finally, let m = max{M, ξ(2) + ξ(3) − ξ(4)}. To determine which

systems have a service cancellation, let U v Uniform(0, 1).
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1. If U <
ξ(4)
m

, we have a service cancellation from each one of the systems, provided

that the corresponding head-count is positive.

2. If
ξ(4)
m
≤ U <

ξ(3)
m

, we have a service cancellation in systems (1) and (3), provided

that Y(i) > 0, i = 1, 3.

3. If
ξ(3)
m
≤ U <

ξ(1)
m

, we have a service cancellation in systems (1) and (2), provided

that Y(i) > 0, i = 1, 2.

4. If
ξ(1)
m
≤ U <

ξ(2)+ξ(3)−ξ(4)
m

, we have a service cancellation is system (2), provided

that Y(2) > 0.

Verifying that if I., II., and ĨII hold at time n, then I., II. and III. hold at time

n + 1 is straightforward, and is analogous to proving Proposition 1. We omit the

details. If instead of ĨII, we have III at time n, proceed similarly to the proof of

the same proposition to validate the induction step. If S > 1 proceed similarly to the

general proof of Proposition 1, realizing that the only case to be concerned about is

the service completion. However, the service rates of the four systems being compared

can be ordered as µ1, ..., µ4 as in the proof of Proposition 1. Therefore, this part of the

proof extends without modifications.

This completes the proof of the proposition. ¤

Proof of Lemma 1: Following the notation of the proof of Proposition 1, let 0 ≤ µ1 ≤
µ2 ≤ µ3 ≤ µ4 be four service rates such that µ1 + µ4 = µ2 + µ3. Assume that the reneging

rate η is bounded above by µ4. This is a weaker condition than the one stated in the Lemma,

but it turns out to be sufficient in establishing the its results.

Analogously to the proof of Proposition 1, let Y1, ..., Y4 be discretized and uniformized

versions of the head-count with service rates µ1, ..., µ4, respectively, that satisfy properties:

1. Y1(n) + Y4(n) ≥ Y2(n) + Y3(n), a.s.

2. Y1(n) ≥ max{Y2(n), Y3(n), Y4(n)}, a.s.

at time n = 0. By induction, we wish to show that properties 1. and 2. hold for all

n ≥ 0.

The induction proof of 1. and 2. goes through by the simple construction explained next.

Note that arrivals, balking and service completion do not introduce a problem. For reneging,
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one can transfer customers from system 1 to system 4 until one of two events happens: either

Y4 equals the minimum of Y2 and Y3, or Y4 equals S. In the first case, after the transfer Y1

will equal the maximum of Y2 and Y3. In the second case all systems will have S or more

customers. The transfer will not decrease the rate at which queues deplete in systems 1 and

4 due to the assumption on the reneging rate. Moreover, 1̃. (or 1.) and 2. will continue to

hold. It thus follows that the induction proof goes through after this modification. In detail,

in the first case the two sets of systems will have equal reneging rate. In the second case,

(Y1−S)+(Y4−S) = (Y2−S)+(Y3−S). The reneging rates depend on these four quantities

and the earlier proof for Proposition 1 goes through.

Notice that if the condition η ≤ µ4 does not hold then the induction step will not work.

For example, if S = 1, then when Y1 = 2, Y2 = Y3 = 1, Y4 = 0, reneging can take place

only in the first system. Thus, 1. will get violated when there is a reneging. Similarly, if

β > 0 and S > 1, then the induction will not work either. For example, if S = 2, then when

Y1 = 2, Y2 = Y3 = 1, Y4 = 0, balking may only occur in system 1, and if it does occur

condition 1. will again be violated. Therefore, it appears that the conditions of the lemma

are not only sufficient but also necessary. ¤

Acknowledgments

This research was supported by the National Science Foundation under grant DMI-0239840.

27



References

Afeche, P. 2004, Incentive-compatible revenue management in queueing systems: optimal

strategic idleness and other delaying tactics, working paper. Kellogg School of Manage-

ment.

Armony, M. and M. Haviv. 2000. Price and delay competition between two service providers.

European Journal of Operational Research 147(1) 32-50.

Armony, M. and E. L. Plambeck. 2002. The impact of duplicate orders on demand estimation

and capacity investment. forthcoming in Management Science.

Baccelli, F. and Hebuterne G. 1981. On queues with impatient customers. In: F.J. Kylatra

(Ed.), Performance ’81. North-Holland Publishing Company, 159-179.

M.S. Bazaraa, H.D. Sherali, and C.M. Shetty. 1993. Nonlinear Programming: Theory and

Algorithms. 2nd edition. John Wiley & Sons, Inc.

Borst, S., Mandelbaum, A., Reiman M. and Zeltyn, S. 2005. Dimensioning call centers with

abandonment. In preparation.

Chen, L. and E.L. Plambeck. 2004. Dynamic inventory management with learning about

the demand distribution and substitution probability. Working Paper, Stanford Graduate

School of Business, Stanford, CA.

Cohen, M., P. Kleindorfer, and H. Lee. 1988. Service constrained (s,S) inventory systems

with priority demand classes and lost sales. Management Science 34 (4) 482-499.

Fridgeirsdottir, K. and S. Chiu. 2005 A note on convexity of the expected delay cost in

single server queues, forthcoming in Operations Research 53 (3).

Duenyas, I. 1995. Single facility due date setting with multiple customer classes Management

Science 41 608-619.

Duenyas, I. and W.J. Hopp. 1995. Quoting customer lead times Management Science 41

43-57.

Fairlie, R. 2004. How a custom PC can come with some very alien payment policies. Com-

puter Shopper, March 10.

Garnett O., Mandelbaum A. and Reiman M. 2002. Designing a Call Center with Impatient

Customers. Manufacturing and Service Operations Management, 4(3), 208-227.

28



Harrison and Zeevi. 2005. A method for staffing large call centers based on stochastic fluid

models. Manufacturing and Service Operations Management 7 (1) 20-36.

Ho, T.-H., S. Savin and C. Terwiesch. 2002. Managing demand and sales dynamics in new

product diffusion. Management Science, 48 (2) 187-206.

Hopp, W.J. and M.R. Sturgis. 2001. A simple and robust leadtime-quoting policy. Manu-

facturing and Service Operations Management 3 (4) 331-336.

Janakiraman, G. and R.O. Roundy. 2004. Lost-sales problems with stochastic leadtimes:

convexity results for base-stock policies. Operations Research. 52 (5) 795-803.

Johansen, S.G. and R.M. Hill. 2000. The (r,Q) control of a periodic-review inventory system

with continuous demand and lost sales. International Journal of Production Economics

68 279-286.

Johansen, S.G. and A. Thorstenson. 1993. Optimal and approximate (Q,r) inventory policies

with lost sales and gamma-distributed leadtimes. International Journal of Production

Economics 30-31 179-194.

Johansen, S.G. and A. Thorstenson. 1996. Optimal (r,Q) inventory policies with Poisson

demands and lost sales: discounted and undiscounted cases. International Journal of

Production Economics 46-47 359-371.

Kapuscinski, R. and S. Tayur. 2002. Reliable due date setting in a capacitated MTO system

with two customer classes. Michigan Business School Working Paper.

P. Keskinocak, R. Ravi, S. Tayur. 2001. Scheduling and reliable lead time quotation for

orders with availability intervals and lead time sensitive revenues. Management Science

47 (2) 264-279.

Kumar, S. and J. Swaminathan. 2003. Diffusion of innovations under supply constraints.

Operations Research 51 (6) 866-879.

Lederer, P.J. and L. Li. 1997. Pricing, production, scheduling and delivery-time competition.

Operations Research 45 (3) 407-420

Li, L. and Y.S. Lee. 1997. Pricing and delivery-time performance in a competitive environ-

ment. Management Science 40 (5) 633-646.

Mandelbaum A., Sakov A. and Zeltyn S. 2000. Empirical Analysis of a Call Center. Technical

Report.

29



Mandelbaum, A. and N. Shimkin. 2000. A model for rational abandonments from invisible

queues. Queueing Systems 36 (1-3) 1084-1134.

Mandelbaum A. and Zeltyn S. 1998. Estimating Characteristics of Queueing Networks Using

Transactional Data. Queueing Systems 29, 75-127.

Mendelson, H., S. Whang. 1990. Optimal incentive-compatible priority pricing for the

M/M/1 queue. Operations Research 38 (5) 870-883.

Moinzadeh, K. and S. Nahmias 1988. A continuous review model for an inventory system

with two supply modes. Management Science 6 761-773.

Nahmias, S. 1979. Simple approximations for a variety of dynamic leadtime lost-sales inven-

tory models. Operations Research 27 (5) 904-924.

Plambeck, E.L. 2004. Optimal leadtime differentiation via diffusion approximations. Oper-

ations Research 52 (2) 213-228.

Plambeck, E.L. 2004. Asymptotically optimal control for an assemble-to-order system with

capacitated component production and fixed transport cost. Working Paper, Stanford

Graduate School of Business, Stanford, CA.

Plambeck, E.L. and A.R. Ward. 2003. Optimal control of high-volume assemble-to-order

systems, Working Paper, Stanford Graduate School of Business, Stanford, CA.

Van Mieghem, J.A. 1995. Dynamic scheduling with convex delay costs: the generalized cµ

rule. Annals of Applied Probability 5 (3) 809-833.

Van Mieghem, J. 2000. Price and service discrimination in queueing systems: incentive

compatibility of Gcµ scheduling. Management Science 46 (9) 1249-1267.

Ward, A.R. and P. Glynn. 2004. A diffusion approximation for a GI/GI/1 queue with

balking or reneging. Working Paper, School of Industrial and Systems Engineering,

Georgia Institute of Technology, Atlanta, GA.

Ward and Kumar. 2005. Asymptotically optimal admission control of a queue with impa-

tient customers. Working paper. School of Industrial and Systems Engineering, Georgia

Institute of Technology, Atlanta, GA.

Weber, R.R. 1983. A note on waiting times in single server queues. Operations Research 31

(5) 950-951.

Wein, L.M. 1991. Due date setting and priority sequencing in a multiclass M/G/1 queue.

30



Management Science 37 (7) 834-80.

Wein, L.M. and P. Chevalier. 1992. A broader view of the job-shop scheduling problem.

Management Science 38 (7) 1018-1033.

Zeltyn S. and Mandelbaum A. 2004. Call centers with impatient customers: many-server

asymptotics of the M/M/n+G queue. Working paper.

31


