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Abstract

This paper presents a model and the corresponding
solution method for the problem of jointly selecting a set
of primary routes and assigning capacities to the links in
a computer communication network. The network topol-
ogy and the traffic characteristics are known; a set of
candidate routes for each communicating pair of nodes,
and a set of candidate capacities for each link are also
given. The goal is to obtain the least costly feasible de-
sign, where the costs include both capacity and queuing
components.

The resulting combinatorial optimization problem is
solved using Lagrangean relaxation and subgradient op-
timization techniques. The method was tested cn several
topologies, and in all cases good feasible solutions, as well
as tight lower bounds were obtained.

1. Introduction

As a result of the important advantages they offer,
both the number and the range of applications supported
by communication based computer systems have signifi-
cantly increased. A variety of computer networks, such
as SNA[13], BNA[15] and DECNET|6] architectures, TE-
LENET|20], TYMNET|21], TRANSPAC|5], AIS/NET-
1000(1] and DATAPAC][4] are currently available. This
paper deals with the following problem faced by the net-
work designer whenever a new network is set up or when
an existing network is to be expanded: how to simultane-
osly select the link capacities and the routes to be used by
the communicating nodes in the network, such as to in-
gure an acceptable performance level at & minimum cost.
The topology of the network and estimates of the external
traffic requirements are given. Messages in the network
follow static, non-bifurcated routes. The motivation in
concentrating on this routing strategy is that it is com-
mon to most operational networks. Moreover, simulation
results in [11] suggest that, at steady state, there is no
significant difference between the delays induced in the
network by good static and adaptive routing strategies.

Static routing policies are generally implemented by
providing each pair of communicating nodes in the net-
work with an ordered set of routes, out of which the first
available route is chosen whenever a session is initiated
(see [3]). In this paper we concentrate on the choice of
the primary route, i.e the most "recommended” among
the routes in the candidate set.

Much of the existing literature deals with the two
imbedded subproblems independently. This is often in-
appropiate, since the close interplay between the capacity
value of a link, and the delay incurred by a given flow ou
that link, makes it difficult to claim that a t(ruly pood
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solution has been found for either of these subproblems
wlen considered separately.

The literature focussing on the capacity and flow as-
signment (CFA) problem is very limited. In (18], the
authors incorporate the heuristic methods for capacity
assigninent developed in (17], into a more general proce-
dure. Using several initial flow assignments as starting
points, tice procedure iterates between the cost minimiz-
ing capacity assignment algorithms, and a flow assign-
ment phase in which a measure of the average delay is
minimized, until a local optimum is reached. In addition,
a priority assignment scheme is also considered. Using a
similar iterative approach, Gerla and Kleinrock present in
[12] four heuristic methods for solving the CFA problem
based on their flow deviation algorithm [7]. A weakness
conmon to all existing attempts to solve the CFA prob-
lem is that no means, either theoretical or empirical, are
provided in order to evaluate the quality of the heuristic
solution vhey generate. This may seriously hamper their
uscefulness for real life applications.

The remainder of the paper is organized as follows:
in section 2 the CFA problem is formulated as a nonlinear
integer programming problem. Section 3 presents the La-
grangean relaxation of the problem, and section 4 shows
how a subgradient optimization procedure can be used
to improve on the quality of the lower bound provided
Ly the relaxation. In section 5, we show how good feasi-
ble solutions to the problem can be generated during the
co.uputation of the lower bound. Detailed results of com-
putiationil tests are presented in section 6. We conclude
Ly discussing some related open problems and suggesting
further 1v=earch.

2. I'roblem Formulation

The queuing phenomena are captured by modeling
each link as a server whose service rate is determined by
its capacity, and by viewing messages on the link as cus-
tomers competing for its service. The resulting model is
that of a network of queues. We assume unlimited buffer-
ing space and no processing delay at the nodes, so that
the delays incurred by messages in the network are solely
due to the limited bandwidth of the links. For ease of
exposition, propagation delays, which are negligible for
terrestrial links, are ignored. We make the common as-
sumptious of Poisson external arrivals and exponentially
distributed message lengths. We also use the indepen-
dence assumption, first introduced by Kleinrock in [16].

Sinc: the model deals in a unified way with both the
flow and le capacity assignment issues, the following two




distinct types of costs are considered:

- capacity costs, comprised of a fixed setup cost (in-
cluding a base monthly charge and a term proportional
to the distance between the two nodes), and a variable
cost, which is a function of the traffic on the line;

- queuing costs, associated with the delay incurred

by messages in the network.
The following notation will be used throughout the
paper:
L= the total number of links in the network.
I;= the index set of line types available for link

le L.

Qux = the capacity of line type k,k € I.

Si. = the fixed cost of line type k, k € I;.

Cix = the variable cost of line type k, k € I; per
unit of traffic on link L

D = unit cost of delay.

R = the set of candidate routes. It may be obtained
through various route generation procedures or
may be provided by the users.

I1 = the set of communicating origin-destination
pairs in the network.

S,, = the set of candidate routes for p,p € Il.

We assume that S, NS, = ¢ for p # g.
A, = the message arrival rate of the unique origin-

destination pair associated with route r,r € R.
We define A, = A,,Vr € 5.
~ = the total external arrival rate.

6,1 = an indicator function, taking the value one if
link [ is used in route r, and zero otherwise.
1/u = the average message length.
z, = a decision variable, which is one if route r is

chosen to carry the flow of its associated origin-
destination pair, and zero otherwise.
yix = a decision variable, which is one if line type k
is assigned to link /, and zero otherwise.
In terms of the z, and yix variables defined above

the CFA problem is:
Problem P1
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The constraints in (2) ensure that the flow on each
link is feasible, i.e that it does not exceed the capacity
value assigned to the link. Constraints (3) and (4) guar-

2

antee that only one line type is chosen for each link, and
only one route for each origin-destination pair, respec-
tively.

Problem P1 is a nonlinear combinatorial optimiza-
tion problem. For fixed values of the y variables, (2)
is equivalent to the constraint set of the multiconstrained
knapsack problem, a classical optimization problem known
to be in the NP-complete class. Also, the nonlinearity of
the objective function and the very large number of con-
straints and variables corresponding to the size of today’s
communication networks, significantly increase the com-
plexity of the problem.

The problem is reformulated by introducing a new
set of decision variables. A similar reformulation, that
better highlights the underlying structure of the problem,
was introduced earlier in [9].

Define f; to be the utilization of link [/, i.e that pro-
portion of its capacity used by the actual message flow.
fi can be expressed as:
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In terms of the new set of decision variables, the CFA
problem becomes:
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Since the objective function is nondecreasing increas-
ing in the f; directions, (7) is rewritten as an inequality
in (9). The quadratic term in the last sum of (8) can be
linearized as a result of the following observation:

Lemma 1 The following relation holds over the
feasible region defined by (9)-(14):

Z Cu !rmﬁ{z Quivii) = z CieQuefivir

€L El €L
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Proof The constraints in (12) imply that yx may
be one for a single k value in each I; set, i.e:
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0
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for all y;,’s that satisfy (12).
As a result of the above lemma, problem P2 can be

rewritten as:
D
Zpy = min {Z h o+ Z Stevie + Z CreQuxf1vix }

lel IEL leL
€ kel kGl

subject to: (9)-(14)

3. Lagrangean Relaxation

The Lagrangean relaxation of the problem is formed
by multiplying the constraints in (9) by a vector of non-
positive Lagrange multipliers o;, [ € L, and adding them
to the objective function. The resulting problem is:

Problem P(a)

L(a) = min { Z lf'if}f + Z Stkvik + Z CieQixfivie+
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It is known from optimization theory [10] that for
any vector of multipliers, L(a) is a lower bound on the
value of the objective function of the original problem.
The best Lagrangean bound is given by the vector a*
that corresponds to: L(a*) = maz,<o{L(a)}.

Two important issues when Lagrangean methods are
used for difficult combinatorial problems are the ease of
solving the relaxed problem, and efficiently obtaining the
vector a” (or a good approximation of it). In the follow-
ing we show how in the present case the relaxed problem
can be readily solved, while the second issue is dealt with

in the next section. )
For any a, the objective function of the Lagrangean

can be rewritten as: L(a) = L(a) + Lz(a), where:
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i.e it can be decomposed into a component depending
only on the link decision variables f; and y«, and a second
component depending on the routing variables z.. Since
the set of coupling constraints is no longer present in the
relaxed problem, P(a) can be decomposed into:

Subproblem P;(a)

Li(a) = min { D‘ﬁ + Z Sicvic + ZQrkfmk(Cu + o) }
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and Subproblem P;(c)
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Subproblem P;(a) may be further separated into |L!
subproblems, one for each link in the network, where the
subproblem associated with the lth link is:
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To solve the above subproblem, we take advantage of
the fact that the set of candidate capacities for each link
will generally be of small cardinality, and exhaustively
search tlie [; set. Thus, for any given values of the y
variables that satisfy the constraints in (16) and (17), the
subproblem becomes: Subproblem Pj(a, k)

L(a k) = min {D,’”‘{l = i)+ Qu(Cux + )i } + Sk
subject to:
0<fig1

where the k index corresponds to the y;x variable chosen

to be one. . .
The solution to the subproblem is:

_ -D -]
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L!(a)is givenby: L (a) = minkes, {L}(a, k) } and L, (a)
Li(e) = ¥ Li(a)
Similarly, subproblem P;(a) can be decomposed into
|[1] subproblems, one for each origin-destination pair ,
where the pth subproblem is: Subproblem P}(«a)

Li(a) =min { Z GrZy }
res;
5 st

TES,
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where a, = 3, —aiA b/

P!(a) is solved by setting z, = 1 for that index
b € S, that satisfies: a, = min.es,a,. This gives the
value of LL(e), and therefore of Lz(a).

4. The Subgradient Optimization Procedure

This section presents the methods used in order to
obtain that value of L(a) that is as close as possible to
Zpa, the original objective function value, i.e provides

vre S,




the tightest lower bound on the value of the objective
function.

A subgradient optimization procedure is used in or-
der to estimate a*. This iterative method was found to
be effective in producing good lower bounds in a variety
of combinatorial optimization problems|2,8,9,14].

Let z.(a'), uix (') and fi{a') be the optimal solution
to the Lagrangean problem for a fixed vector a'. The
subgradient directions are given by:

7(a') = fia’) Z Quevik(a') - Z AL‘:’E—} VieL

kel ren

The vector of multipliers corresponding to the (1 + 1)-st
subgradient iteration can be computed as:

n:'“ = a} + t;n(a’)

Poljack has shown in [19] that the convergence of L(a)
to L(a*) is guaranteed whenever the sequence of t;’s con-
verges to zero and ...t = co. Since such a sequence
cannot be numerically generated, most existing applica-
tions of the subgradient method use the following heuris-
tic rule for computing the ¢,’s:

_Er-g - L{a")

(eI

where Z p2 is an overestimate of the value of the objective
function and s; a scalar whose value is halved whenever
no improvement in the value of the Lagrangean function
is observed in a predetermined number of iterations.

The following steps comprise the subgradient opti-
mization procedure:

1. Initialization:

a. using a heuristic, get an initial value for Zp, (or
set Zpg = 00);

b. select an arbitrary initial value a" for the multi-
pliers;

c. set a* = aY, improvement counter IMP = 0,
iteration counter ITR = 0, current best value of the La-
grangean function L(a*) = 0, and stepsize s; = s (a value
between 0 and 2).

2. Solving the Lagrangean problem:

a. Set IMP =IMP +1;

b. Solve problem P(a') using the current multipliers
o', and obtain the values for L(a*), z,(a'), yk(a’) and
f;(a‘].

3. Testing and updating the parameters:

a. If L(a') is greater than the current L(a"), then
set L(a*) = L(a'), a® =2’ and IMP =-1;

b. If z.(a*), wk(c') and fi(a') are feasible for prob-
lem P2, compute the corresponding value of Zpz, and if
it is less than Zpo, set Zpo = Zpy;

c. If the value of IMP has reached a prespecified
limit, set s; = 8;/2, o' = a*, IMP = 0, and go to step 2;

d. check for termination conditions. The algorithm
stops whenever the total number of iterations exceeds
a prespecified limit, the stepsize s; becomes exceedingly
small, or when the values of the overestimate and of the
Lagrangean are acceptably close, i.e the algorithm has
converged within a given tolerance limit.

4. Updating the multipliers:

The multipliers to be used in the next iteration are
computed as: o = min{0,a} + t;m(e’)}.

5. Set ITR=ITR + 1. Go to step 2.

A price often to be paid for the ease with which the
relaxed problem can be solved is that, even after apply-
ing the subgradient procedure,the resulting lower bound
is still of poor quality. This is explained in our case by
the fact that the relaxed constraints express the very con-
nection between the two sets of decision variables. The
lower bound is tightened by generating additional con-
straints (i.e constraints that would be redundant in the
original problem, but that may prove to be binding in
the relaxed problem) and thus reducing the feasible re-
gicn over which the Lagrangean problem is defined. The
main idea behind the redundant constraint generation is
to try to make some of the structure of the set of candi-
date routes "known” to the link related subproblems, i.e
an attempt to recapture some of the meaning lost through

relaxation.

Define A, = {p by =1 Vr e S,,} , 1.e the set
of origin-destination pairs whose primary route must use
link I/, and B, = {p 164 =1 forsomer € S,,} l.e the

set of origin-destination pairs that might use link { as part
of their primary path. As a result, the following tighter

formulation of subproblem P{(a, k) is obtained:
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The solution to the subproblem is now:

(Ti(k) if -D/(Cik+e)Qiuk <1, and

a; < —Cy, and

Lie < Fi(k) < U

filk) = § Lu if ~D/(Cle+0o)Qux21,0r
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\ Ul if fik) > U

where: 7,(’:) =1- \/—D/(Cgk + cn)ij

The reformulated Lagrangean problem produced sig-
nificantly tighter lower bounds. Finally, the following ob-
servation was also used in an attempt to further improve
the quality of the bound: in any feasible solution, the
value of the flow on any link ! must be expressible as a
sum of the message rates of some of the origin-destination
pairs that might use link [ as part of their primary route.
As a result, for each k, fi is defined only over a discrete
set of vzlaes in the interval [Lj, Uj]. This additional




restriction only marginally improved the quality of the
bound.

5. Heuristic Procedures

It is important to obtain good upper bounds, not
only because they represent a benchmark against which,
in the absence of the optimal solution, the quality of the
lower bound provided by the Lagrangean can be mea-
sured, but foremost because they represent feasible solu-
tions to the original problem. If the gap between the two
bounds is reasonably small, the solution corresponding to
the upper bound can safely be used instead of the optimal
one.

The algorithm presented earlier can be extended so
that, using the solutions to the Lagrangean problem ob-
tained during the subgradient procedure as a starting
point and with some additional computational effort, a
sequence of feasible solutions is generated. The following
ideas were incorporated as part of the heuristic procedure:

1. Each time that a new solution to the Lagrangean
problem is generated, it is checked for feasibility in terms
of the relaxed set of constraints. If it is feasible and of
lower cost, it replaces Z pa, the current value of the over-
estimate.

2. In order to increase the chances of identifying fea-
sible solutions, the following observation was used: when-
ever subproblem P} (a) is solved, it is often the case that
more than one route have the same reduced cost a, (where
»same” is thought to mean within an ¢ << 1 away from
the minimum). A list of such routes is kept for each
origin-destination pair. Several candidate solutions can
then be generated by randomly selecting a route from
each list, and checking the resulting assignment for feasi-
bility in terms of the capacity assignment provided by the
Lagrangean. This randomization procedure significantly
increases the power of the algorithm to identify feasible
solutions.

3. Taking advantage of the =mall cardinality of the
sets, guarantees the generation of several feasible solu-
tions at each subgradient iteration. Since the objective
function is decomposable over the links, it is easy to ob-
tain the best feasible capacity assignment for any given
flow on a link, i.e to compute o, minkey, A(f,"‘, Qi) for
7=1...J ,where A{f,",Q;g} is the cost of link ! as a func-
tion of its capacity and of the flow assigned to it, and J
is the number of candidate solutions generated by the
randomization procedure outlined above.

4. It is possible to follow the capacity improvement
step with a route improvement procedure which is based
on a modified version of the model. The solution to the
following problem is the flow assignment that corresponds
to the lowest queuing and variable costs for a given ca-
pacity assignment:

D
Zp = min {Z : _!}: +C,Qu ki }

€L
subject to:
(18) Z Arbuze/n S fiQy; VIEL
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where 7 € I; corresponds to the line type assigned to link
l.

The constraints in (18) are relaxed and a subgradient
procedure is applied to the resulting Lagrangean problem.
The tests have shown that the algorithm converges very
fast, a solution tolerance of under 1% being generally ob-
tained in less than 40 iterations. Thus, a nearly optimal
fiow assignment is obtained without a major computa-
tional effort.

5. The above procedure can significantly change the
flow pattern on the links, and as a result some other ca-
pacity assignment may become preferable in terms of the
overall cost. We therefore iterate between the capac-
ity and route improvement algorithms until no further
change in the overall cost can be achieved.

The search for a local optimum is automatically trig-
gered whenever a feasible solution with an objective func-
tion value less than Z is generated by the randomization
procedure, where Z is the best feasible solution obtained
so far without attempting any further improvement. Fur-
thermore, every N iterations, the user is given the option
to initiate a search using the best solution generated at
the current iteration as a starting point.

6. Computational Results

The model and the algorithm presented in this pa-
per are currently implemented in a system that allows
for an easy and flexible definition of the topologies to be
used and of the model parameters. At the end of each
major iteration (defined as a given number of subgra-
dient iteiations, to be specified by the user), control is
returned to the user. At this point, the procedure may
either be stopped, if a satisfactory solution was reached,
or continued. At the begining of each major iteration,
the user may change the values of some of the param-
eters thai control the procedure, like J, the i umber of
candidate solutions to be generated by the randomiza-
tion procedure, N, the number of subgradient iterations
after which a search for a local optimum may be initiated,
or the stopping conditions for the subgradient optimiza-
tion procedure. A comprehensive output corresponding
to the best feasible solution generated so far is produced,
and it can be viewed by the user at the end of each ma-
jor iteration. In addition to the current value of the La-
grangean, the overestimate and its corresponding average
message delay, the output also gives a detailed descrip-
tion of the capacity assignment, specifying for each link




in the network, tlhe line type currently assigned to it, its
message rate and utilization, its associated fixed, variable
and queuing costs, and the percentage of the overall cost
attributable to it, thus presenting the user with a full pic-
ture of the current solution that can be used as u basis
for gaining further insights into the characteristics of the
problem under consideration.

In order to obtain a feeling for its perfomance and be-
haviour under different conditions, the system was tested
on several topologies and for different parameter values.
Some of the results of these experiments are presented
here. The runs were performed on a VAX 11/780 ma-
chine running under VMS.

Four different topologies (fig. 1-4) were used in the
experiments. In all cases, each node was allowed to com-
municate with each other node in the network (i.e a host
is assumed to be located at each node), resulting in n(n-
1)/2 origin-destination pairs, where n is the number of
nodes in the network. Also, it was assumed that two ses-
sions were active at each node, each of them generating a
traffic of one message per second on an average, resulting
in an average traffic of four messages per second for both
directions.

The set of candidate routes was obtained by the com-
bined effect of two route generation algorithms. Tle first
is based on a capacitated minimum cost flow algorithm.
When specialized so that all arcs have a maximum capac-
ity and cost of one, the algorithm generates a set of edge
disjoint paths between any two communicating nodes in
the network. For the second method, the "cost” of each
arc is again assumed to be one, and a set of candidate
routes for each origin-destination pair is generated by us-
ing a modified shortest path algorithm, that proceeds as
follows:

For each communicating pair of nodes (i,j):

1. Determine the shortest path from 2 to 7, and
store it as a candidate route. Obviously, this will be the
minimum number of hops route. Set K = number of hops
in this route.

2. Set the cost of the Kth arc in the route to occ.

3. Recompute the shortest path between z and j. If
the cost of the path is finite, store it as another candidate

route.
4. Reset the cost of the Kth link to 1. Set K=K-1.

If K=0, stop. Else go to step 2.

The above procedure will generate up to K + 1 dif-
ferent routes. -

Since the two algorithms may generate some identi-
cal routes, duplicate routes are eliminated.

The experiments were conducted with two main pur-
poses in mind: first, to test the performance of the al-
gorithms, and second, to examine the impact of various
parameters on the solution generated, and thus to get a
feeling for the appropriateness of the model to be used as
a flexible design tool. The capacity and delay costs used
as a base case are presented in Table 1. For simplicity
of exposition and without loss in generality, the same set
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of candidate capacities was considered for all links. The
values for the capacity costs are the same as the ones used
in [17] and [18]. The cost of delay is an estimate based on
the value to the user of the time spent while awaiting for
an answer from the system. Notice also the economies of
scale exhibited by the structure of the variable capacity
costs.

In the following tables, in addition to the values of
the best Lagrangean, best feasible solution,its breakdown
into major cost components, and the ratio of the upper
bound to the lower bound, we also show the value of
the average delay per message (measured in milliseconds)
corresponding to the best feasible solution, which can be
viewed as a measure of the response time in the network.

Table 2 shows the results for different mean message
lengths, measured in bits. A change in the average mes-
sage leng.h corresponds to a change in the amount of total
traffic the network is expected to support. In most cases,
since the capacity cost components are always dominant
in the overall cost, an increase in the total load results in
higher average message delays. Notice though that in the
case of the OCT network, the average delay went down
as a result of increasing the message length from 400 to
500 bits. As a result, the corresponding increase in the
fixed capucity cost is even more significant now (32%, as
opposed to roughly 18% in all other cases).

Table 3 examines the solutions obtained for different
costs of delay. As expected, when the cost of a unit of
delay increases, the expected delay in the network goes
down, but at the expense of an increase in the line and in
the traffic low costs. Whenever the cost of a unit of delay
is difficult to predict, the designer may easily generate
several solutions corresponding to different values of this
parameter. The resulting curve, that corresponds to the
tradeoff between response time and link costs, can then
be used by the decision maker as a basis for selecting the
prefered ilternative.

The unpact of variations (50% and 150% of the base
costs) in the fixed and variable costs are examined in Ta-
bles 4 and 5, respectively. It can be observed from Table
4 that as the fixed capacity costs increase, their domi-
nance in the total cost becomes even more marked. As a
result, links are assigned lower capacity values, and the
average mnessage delay goes up correspondingly. On the
other hand, due to the economies of scale incorporated
in the structure of the variable costs (see table 1), higher
capacity values tend to become relatively more attractive
as the wright of the variable cost in the overall cost in-
creases. This effect can be observed in Table 5, though it
is :ess significant.

Finaly, Table 6 gives a more detailed picture of the
way in which the capacity assignment corresponding to
the best feasible solution is affected by changes in the




model parameters. The entries in the table give the ca-
pacity value (expressed in Kbps) asigned to the line. The
one factor that, predictably enough, seems to have the
most significant impact is the load applied to the mnet-
work, represented here by changes in the average message
length. Notice though that, as the network gets closer to
saturation, further increases in the load have less of an
impact on the capacity assignment. For instance, when
the average message length increases from 100 to 200 bits,
15 links in the ARPA network are assigned a higher ca-
pacity, while, as a result of a similar change from 500 to
600 bits, only 5 links are affected. A similar observation
can also be made with respect to the other parameters,
namely that, due to the heavy weight in the total cost
of the fixed capacity cost, as their values move in a di-
rection that tends to increase the capacity assigned to
a link, the impact of the change is felt less in terms of
the capacity assignment and more in terms of the queu-
ing cost incurred, and therefore of the expected delay in
the network. For instance, a change from 400 to 1000 in
the value of the cost of delay results in five links being
assigned a higher capacity, while when the cost of delay
increases from 2000 to 3000, a more significant change,
the capacity value of only two links goes up, while link
18 is even assigned a lower capacity.

The effect of the econoniies of scale in the structure
of the variable costs mentioned before, can also be ob-
served in Table 6 in terms of the capacity assignment.
The impact is not very significant though, and it becomes
apparent only for major changes in the values of these
costs.

It is important to keep in mind that the solutions
generated by the model are based on often rough es-
timates of the external traffic requirements. It is then
highly desirable to have a robust solution , i.e a solution
whose cost when used under real traffic conditions does
not significantly differ from its estimated cost. The next
set of experiments tested the seusitivity of the solution to

this parameter.
Define:

A. = the matrix of estimates of traflic requirements
A, = the matrix of actual traffic requirements

A, = capacity and routing obtained based on A,

A, = capacity and routing obtained based on A,

The following measures are then of interest: C(A., A.)
is an estimate of the solution cost, i.e the cost of the so-
lution as determined by the algorithm during the design
stage, C(Aq, A.), is the actual cost of this solution when
implemented, i.e its cost under real traffic conditions, and
C(Aa, Ay), the cost of the solution that would have been
generated, had the actual traffic conditions been known.
An important ratio that can be used as a measure of the
robustness of the solutions generated by the algorithm,

7

is C'(Ay, A.)/C(A., Au). Notice that this ratio will not
always be greater than one, since in both cases we deal
only witl, heuristic solutions.

In testing, great uncertainty in estimating the ex-
ternal traffic requirements was allowed for, by randomly
gencrating errors within intervals ranging from + 10% to
+ 50% The results showed that the ratio is very close to
one, meaning that there will be no significant difference
between the actual cost of the solution generated by the
algorithm, and the cost of the solution that could have
been obtained had the real values of the external arrival
rates been known. The solutions generated are not very
sensitive to variations in the external arrival traffic, defi-
nitely an encouraging fact.

7. Conclusions

A model and solution methods for the problem of
capacity and primary route assignment in computer com-
mnunication networks were presented. What we see as the
main value of this approach is that the model as well
as the optimization procedure deal simultaneously with
both aspects of the problem, thus driving the solution
towards - global optimum. From the computational ex-
perience, it can be concluded that the procedure is both
efficient and effective in identifying robust solutions that
cre satisfactorily close to the lower bound.

The present model can be generalized to deal with
different classes of customers, characterized by different
priorities, message lengths, and/or delay requirements.
Work is currently in progress on modeling and develop-
ing the solution techniques for the case when the delay
phenomena are represented as a network of nonpreemp-
tive head of the line priority queues.
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2| NODES
26 LINKS

Figure 1: Topology and distances fur the
ARPA network

OoCT
26 NODES
30 LINKS

Figure 2: Topology and distances for the OCT network

26 NODES
4] LINKS

Figure 3: Topology and distance for the USA network
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Veriable Upper/lowa Avernge

16840
27802
29504
50867
0980
11261
4T
91459
107332
W10
TINAY
(i
20890
104307

134812

1.225
1126
1.085
1078
1.081
1.043
1.085
1.088
1.06%
1.070
1.083
1.049
1076
1.042

1.1

emage
dalay

78
na2
18.2
7
»ne
B3
179
e
e
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184
20
13.4
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TABLE 2 Summary of cemputational results for different _.u

lmgths

CAPACITY

[bpa)

4“7
T20
262
860

4 5 6
57 273 326 X
X 453 @898
B46 X 452
442 X
SETUP
COST

{dollars/month| |dollars/month /mile! [doliars/month /bps

750

g

1300

DISTANCE
COST

21

4.2

42

21

Delay Cost = 3000 (dollars /month /message!
Average Mmssage Length = 400 |bits!

TABLE 1: Capacity set and bese costs used in computational

experiments

VARIABLE
COST

36

252

126

017



Bowerk Duisy Lewer Upper Quewing Fined Variable Upper/Lows Avarage
m et bousd bousd cost o oont, g
dalay
ARFPA 1 170337 19es8l 236 142113 B2 1.104 140.2
ARPA 100 183236 307904 pa08 145848  B385) 1134 1.2
ARFPA 400 213030 231687 ISTE  1EIN0Z  EINOP 1.092 M3
ARPA 1000 346580 265822 47187 168047 E2H0 1.078 2.1
ARPA 3000 387438 311079 @38« 177338  BOS6T 1.082 M7
ARPA 2000 313380 343510 BUETY 4TI 48510 1.097 17.8
oCT 1 313863 361097 182 6T606  BIIN 1.180 €22
oCT 100 B38TUT 36999 14162 ITTIIl  BSE2C 1.142 M5
ocT 1000 453570 474905  9397F  IBS133  RTTRM 1.047 3.1
oCT 000 524904 BAOTH4 165875  BOI4E0 91459 1.088 e
oCT BTB4G0 620706 134092 I943sc  BA227 1.073 17.2
USA 1 4TS 2991TY 418 215301 B339 1.162 1809
Usa 100 383124 320249 18328 12391  MIN0 1.151 ez
Usa 1000 374321 404534 61726 206684 THI24 1.080 237
UsaA 000 43500¢ 483281 95803 IETS  TIedD 1.083 14
Usa 3000 485873 510445 127416 319ETC TIA5E 1.050 163
RING 1 311688 385053 433 72311 112307 1.180 109 €
RING 100 356498 40TBOR 17501 778205 112102 1.143 4“1
RING 1000 494890 18119 83127 327090  10709¢ 1.047 0o
RING 2000 571382 95285 138505 352472 104307 1.042 175
RING 000 €29613 84235 LEBOSE 3TRI2G 102851 1.064 183
TABLE 3: 8 y of camputational experiments for diflerent
delsy rosts
Meswork Mulapher of Lower Upper Queming Fuxed Vanable Uppwr/lower Average
1] vanabile cost  bowad bouad con! cout cosl g
dalsy
ARPA 0 238517 280165  B2B0C  17TaEE 1.080 e
ARPA B MITEY ZAB643  B2851  ITTIER 264l 1.082 47
ARPA 1 284567 311079 B2864 177358  BOSST 1.078 7
ARPA 1.6 312435 330854 81207 1TMMIT  TEOTO 1.077 u.2
ARPA 3 B84011 417758 81622 1Te417 151718 1074 Ml
oCcT 1] 430502 473104 125188  34TOTE 1.086 M
oCT B 480119 S1E48 136990 334000 48320 1.073 6.2
ocT 1 524084 S00TO4  1GB8TS 303480 91459 1.088 e
ocT 1.5 SOUP80 €089.7 112363 6701 133453 1.070 21.6
usa 0 1728 BM4TRI 116232 ITIEI0 1.074 2112
Usa E MUDT! 428307 108421 ITRI2I  3THES 1.086 0.8
UsA 1 43EP0C SA3281 BG603 TMOTS  T2e4! 1.063 184
USA 1.5 4T2374 BO01T1  Bete0 396230 108301 1.088 18.2
RING 4] 472373 491070 143814 34T206 1.08% 181
RING E ] B19770 43165 141880 B4BME 2859 1.045 17.8
RING 1 ET1364 596285 188805 362477 104307 1.042 175
RING 15 822047 S4TH42 138323 383N IB61S 1.0413 174
TABLE §: Bummary of jomal ert fur different variable

capecity costs

10

Neswork  Maltipber of Lower

Upper Queming Fued Vanable Upper/Lower Averag-

1] fixed cost  bowad bowsd cost con con memage
dela
ARPA 5 198527 211307 BTTIS 104329 49203 1.064 172
ARPA 1 287428 311078 B2884  ITTISE  BOSET 1.082 47
ARPA 15 ARSI  DOROTY 2450 284513 B1110 1.08% 278
ARFPA 3 BB4014 S4M497 104802 WET4RT  B31D7 1.120 3.2
ocT 1] 35498 3TT1I6 TTRE4  2131TO A0« 1.062 180
ocT 1 B24904 BOOTR4 105875 BOMME0  R14SY 1.082 ne
ocT 1.5 6THES0 TIONSO  170TTI 448180 9ROSS 1.052 328
USA & 09310 312465  TE22L 161420 T1B1) 1043 15.2
usa 1 435906 483281 DRBAI 04975 Tedd 1.003 18 4
USA 15 BSTESS 598342 112852 09995 TENOS 10712 n1
RING 5 389009 410976 103446 20701F 100512 1.085 130
RING 1 B71368 BMG2E5 138505 352472 104307 1.042 178
RING 18 THIPG TELISO 150601 49E921 106957 1.080 201
TABLE «: B y of computationsl expert for different fixed
capacity costs
LinkID Bese Case Case Case Case Case Case Case Case Case
cam 1 ] 3 ] 5 [} ? [] L}
b 108 I 30 108 108 330 108 08 w0e 230
2 108 108 108 L] 50 108 0 0 1] 108
) 108 108 108 108 « 108 108 0 19.2 108
4 108 108 108 B0 0 108 108 1] 108 108
13 n0 30 108 10 30 30 250 %0 230
L] 108 108 108 108 w0 108 108 108 108 108
1 108 230 20 108 ] 108 108 108 108 108
L} 0 I 0 108 108 0 0 0 no 10
] ™0 W 30 108 108 30 30 no B B
10 30 10 130 108 80 no 230 108 no W0
1 30 10 30 108 108 130 w0 ™0 »0 130
12 ™0 0 0 108 80 230 108 108 106 230
13 108 20 30 108 ] o 108 108 108 230
14 108 108 108 50 &0 108 108 0 108 108
15 bl 108 108 50 w0e 108 108 108 108
16 ™0 I 30 108 ] 0 w0 108 ™ W™
17 108 230 130 108 ] 0 108 108 108 X
18 108 108 108 1o W L ] 50 50 L
1w 108 108 108 108 0 108 108 108 108 108
o 108 I 108 108 L] 108 108 108 108 108
] 0 o 20 108 108 n0 130 0 a0 I
n 108 108 108 108 0 108 108 108 108 108
n 0 o0 30 130 108 o 0 130 ™o
M 20 0 0 0 108 o 130 90 ™0 I
E 1) 0 I 30 108 108 230 0 30 30 10
» 30 10e 108 108 1] 108 108 108 108 108
Case |: Avernge mamage hngth = 800 [bics!
Case 2: Average massage langth = 50O |bia)
Case 3. Average memage leagth = 200 [biss)
Case 4: Average mamsage length = 100 [bics]
Case §: Cont of delay = 3000 |dollars/meonth /memage’
Case ¢: Cost of delay = 1000 |dollers /month /message’
Case 7. Con of delay = 400 |dollars/month /memsage’
Case §: Fixed capacity costs = 3 ° base tase
Case § Variable capacity costs = § * base case
TABLE ¢: Impect of p hanges an the eapecity assi t
(ARPA setwerk)



