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The  conceptual design of user interfaces focuses on the  specification of the structure 
of the  dialog, independent of any particular implementation approach. While there is 
common agreement with respect to  the  importance of this  activity, adequate methods 
and  tools t o  support  i t  are generally unavailable. The  Dialog Charts (DCsl vield high 
level dialog schemas tha t  are abstract enough t o  support  the conceptual de- . I  of 
dialog control structures. They combine dialog concepts with widely accepted design 
principles, in a uniform diagraming framework. SpecificalIy, the DCs distinguish 
between the  dialog parties, provide for hierarchical decomposition and enforce a 
structured control flow. 

-4 clear set of guiding principles for the conceptual design of dialogs has yet to 
emerge. In this paper we have elected t o  focus on the notions of descriptive power and 
usable power, as they apply to  conceptual dialog modeling tools. The  conceptual 
descriptive power of the  DCs is informally examined by applying them in a varied set 
of examples and relating them to  their lower level counterparts, namely 
implementation dialog models like augmented transition networks or  context-free 
grammars.  The  usable power of the DCs has been examined empirically through a 
qualitative study of their actual use by system designers. The  Dialog Char t  models 
were found by  dialog designers t o  be a useful conceptual design tool, which exhibit the  
essential at tr ibutes identified for conceptual models. 

Ken Clarr's comments on an earlier version of this paper are gratefully acknowledged 
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1. Conceptual Models of Dialogs 

T h e  intensifying discussion of conceptual dialog models is an  inevitable result of the recent 

consolidation of a dialog management paradigm. This paradigm partitions a system'user dialog 

into three linked generic functions: the handling of syntax, the handling of control and the 

handling of the applications (Figure 1-1). This conceptualization essentially underlies a wide 

ar ray  of contemporary dialog models, expressed in various terminologies (e.g., [37:,  , Iqj, . .  j34', , ;18]. . 

[I; ,  1381, [19] 1351, 1141 and [16;). The set of dialog concerns is parcelled out  as follows: the 

s y n t a z  defines the valid set of user inputs and captures presentation aspects, including the 

delivery of outputs  to  the user; the handling of the  applicationa entails the definition of the 

interface t o  the  required application modules and the passing of information to  and from these 

modules; finally, the  control aspect of dialog management is concerned with the maintenance and 

enforcement of the dialog structure, practically defining the set of interaction contexts and the  

permissible sequences of user-system activities. 

User - System 

I 
Dialog PiIanagement 

Figure 1-1: The  Generic St ructure  of Dialog Management 

Syntax 
handling 

One implication of the  three-partite model of dialog management is t ha t  the  design of the  

dialog structure of a system can be handled somewhat independently of both the  design of the 

application as well as the  interaction style o r  implemented appearance of the  user interface. A 

model of t h e  control structure of the  dialog is, therefore, a stable abstraction of the  dialog: i t  

outlines possible sequences of system/user interactions without being bound to a specific 
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implementation Con rtely, such a conceptual model of the dialog captures the essential 

decisions about the  nature of the dialog, decoupled from related dec~sions about,  say,  the variety 

or  scope of data  management services, or the provision of specific facilities for users' 

input output .  These models therefore guide the actual implementation of the dialog component, 

and allow the examination of dialog designs for correctness, consistency and simplicity prior to  

(expensive) implementation [12]. 

This paper presents and examines a n  approach for the specification of conceptual models of 

dialog. Although several methods have been suggested for modeling and specifying 

humanicomputer interactions, they are generally oriented towards programmers. These methods 

typically address implementation aspects of dialog design, and furthermore, they do not directly 

support  the  process of dialog design. The  general state of the a r t  of conceptual modeling of 

dialogs is rather problematic: "While there is nearly universal agreement tha t  [conceptual design] 

is the  most critical point in the process, there is also a nearly universal lack of adequate tools and 

iormalisms t o  aid the designer a t  t ha t  taskn (p.314 in [36]). 

In developing the elusive notion of conceptual models of dialogs, analogous concerns in the  

area of database design provide some useful insights. The contemporary view of database design 

clearly differentiates among three types of d a t a  models 1461: the  conceptual model (e.g., Enti ty 

Relationship Model), the  implementation model (e.g., Network Model), and  the  physical model 

(e.g., file organization and  access method> The  essence of a proper database design process is 

the gradual refinement of system specifications through the  development of a consistent set of 

corresponding models (Figure 1-2). Conceptual models capture users' views and outline 

fundamental system requirements; these models are  ideally expressed in ways which are  directly 

examinable by users. Implementation models add  formality and thereby disambiguate, within the 

framework established by the conceptual model, any implementation issues. Xfoving closer to  the 

realm of computing, physical models further ascertain the  feasibility of the  system by translating 

the implementation model into concrete d a t a  and  software structures, relating them to  available 

hardware options. The  analogy, it seems, can form a useful agenda for the  discussion of proposed 

methods for constructing conceptual dialog models. 
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Figure 1-2: Model Hierarchy in Database Design Processes 

By far the most influential conceptual data  model is Chen's Entity/Relationship Model 

(ERM) 181. Date's critical remarks concerning this model (pp.611-612 in [lo]) anticipate the likely 

criticism of conceptual dialog models. In particular, ERM is said to be vague, imprecise, loose 

and not well-defined, its definition may not meet all the requirement considered necessary t o  

qualify as "true" data  model; it is said to be a .thin layer on top" of the much more rigorous 

relational data  model; tha t  i t  leaves crucial modeling aspects implicit; and tha t  its popularity 

could be attributed to the diagraming technique, rather than to the ERM "per s e n .  One can 

plausibly argue that precisely these deficiencies make the ERM so useful: They directly 

correspond to the quintessential attributes of the early stages of the analysis and design of 

database applications. The Dialog Charts discussed in this paper were conceived to facilitate 

similarly the early stages in the design of dialog structures, and critiques like the above can be 

rightly leveled a t  them. Nevertheless, the charts seem to provide an effective vocabulary for the 

specification of conceptual dialog models and for solving dialog design problems. 

-b 

The Dialog Charts (abbreviated henceforth as "DCs"), are introduced in Section 2. One 

manifestation of the'early formative stage which characterizes the area of conceptual modeling of 

dialogs is the lack of commonly accepted criteria for assessing different modeling approaches. In 

this paper the DCs are examined with respect to their descriptive power - in Section 3 - and 

usable power - in Section 4. The deecriptive power of a conceptual modeling notation, to 

paraphrase [16], is the set of dialog situations that  can be modeled by the notation, and in turn 
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the set of implementation models of dialog that  can be described by the  notation. "The larger 

this set is, the more powerful the  notation" (p.215). Specifically, we study a range of dialog 

examples as they are modeled by the DCs, and examine their implementation oriented 

counterparts. The usable power of a conceptual modeling notation, in a similar paraphrase, 

captures the ease of applying the notation -- it identifies a subset of the  describable dialog 

situations which are conveniently modeled by the notation. Section 4 describes an  empirical 

investigation of the usable power of the DCs and their usefulness, as indicated by actual user 

experience. The discussion in Section 5 highlights our  findings in the  context of contemporary 

conceptual dialog design issues and relates them t o  a n  alternative approach explicitly aimed a t  

conceptual dialog modeling (UIDE [12]). 

2. Dialog Charts -- Notation 

Dialog Char ts  constitute a tool for solving dialog design problems. The  concepts formulated 

as the framework for the  Command Language Grammar  [31] are used in the  DCs to  identify the 

structural  elements of human/computer interactions. The  design discourse assumed and 

supported by the  DCs is made of cycles among the basic design activities of goal elaboration, 

design generation and design evaluation, until a satisfactory specification is found : 2 6 ] .  Finally, 

the  types of control flows in the  DCs and  their diagramatic nature correspond to  some key 

notions of the Syntax Char ts  [23]. A more complete discussion of the DCs viz. its underlying 

"ideologies" is included in (21. 

The  principles t h a t  define the  adequacy of a conceptual data model seem relevant in the 

discussion of conceptual dialog models. Specifically, a conceptual model in our  context should 

facilitate the identification, examination and discussion of concepts t h a t  are useful in an  informal 

discourse about the  world surrounding the  application. I t  should provide a set of corresponding 

symbolic object representations; a set of rules which define proper composition and linkage of 

these notations; and a set of operators for manipuiating those symbolic objects and their 

compositions [lo]. The  DCs a re  correspondingly made of diagramatic elements tha t  are 

structurely linked together, and in their development they are subjected to  a set of permiss~ble 

manipulations, i.e., the  rules t h a t  govern the  refinement and decomposition of a chart .  
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Six distinct constructs make up the DC notation. In order t o  facilitate reference and 

manipulation of these const,ructs, they are associated with sets of graphic symbols (Figure 2-1) 

Specifically, the constructs are: 

1. A decomposable user activity, i.e., a composite gesture (indicated by a box) 

2. A non-decomposable user activity, i.e., "terminaln (an oval). 

3. X decomposable system activity, i.e., a program ( a  double box). 

4. X n o n - d e ~ o m ~ o s a b l e  system activity, i.e., a reasonably "closed* and well-defined 
subroutine ( a  double oval). 

5 .  An activity tha t  combines user activities and system activities, i.e., a task or  a method 
tha t  involves user and system interaction. Such tasks could be either user-led or  
system-led (indicated by different combinations of a half single, half double box). 

6. Direction of flow (indicated by a n  arrow). The basic flows permissible are selection, 
iteration, sequence and  case. These can be combined arbitrarily. 

The arrows represent the directions of the sequences, and thereby play a critical role in the 

DCs' capacity to explicate structure. By limiting the  repertory of flows to  those commonly 

associated with structured programming approaches, a measure of desired quality is enforced on 

the result of the design. Specifically, structured flows can aid in identifying robust dialog logic 

and modular dialog design. Similar arguments have motivated the  inclusion of these constructs 

in lower levels of dialog modeling (e.g., 131). Junctions in the diagrams represent decision points. 

and are resolved by whomever holds the  initiative a t  t ha t  point. T h e  party (i.e., either user or 

system) whose range of actions is specified in the  routes tha t  branch o u t  of the  junction holds the 

dialog initiative and  selects the  a c t u ~  Aalog path  to  be followed. This  approach requires the 

adherence to  homogeneity const ra in t ,  namely tha t  all the  paths tha t  emanate  from a junction 

will be either all user-led o r  all system-led. I t  also brings ou t  the  fundamental decision on the 

assignment of dialog initiative, and  explicitly calls for its resolution. 

The major manipulation in dialog charting is the transformation of a n  element in a DC into 

a detailed chart. T h e  range of these manipulations and the  associated rules have been kept 

intentionally limited, t o  preserve simplicity. Specifically, any box can be further decomposed. It 

can be decomposed into more boxes o r  into boxes and ovals, o r  in to  ovals. However, once a box 

is either "all user" (i.e., single-lined box), or  "all system* (i.e., double-lined box), it can only be 
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C o n n e c t ~ o n  s y n o o ~ s  a r e  itnes with arrows: -+ 

COiu7F;Ci  S'RUCTURES, given I:: user-Gnry W D o l S  

s e c u e n c e  iterailon ,-, 

____*( F-+ - 

Figure 2-1: Dialog Charts notations and icons 

decomposed into more boxes and ovals of the same kind. Ovals are atomic and can't be further 

decomposed. An additional restriction, the homogeneity constraint, applies to the choice of the 

first ("left-most") element in the decomposition of user/system activities or "mixed par tyn tasks. 

Specifically, this leading element has to reflect the definition of the original task as either user-led 

or system-led. Therefore, for instance, the decomposition of a user-led task should be led by (i.e., 

"start  with") only user activities (either boxes or ovals), o r  other user-led mixed-party tasks. The 

purpose of this constraint is to facilitate the inheritance, consistency and homogeneity of dialog 

initiative among the various levels of specification and decomposition. 
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T h e  specification of error handling procedures within the general structure of a dialog tends 

to  obfuscate designers' and programmers' views of the underlying structure. T o  avoid this 

confusion, the  DCs follow the notions embedded in the Syntax Char ts  of Jensen and Wir th  

'23; and  support  the concept of designing only the permissible dialogs. Only the accepted, 

proper flows through a dialog are considered. Error  handling procedures are added to the DCs as 

annotations a t  the appropriate system level. If a procedure applies throughout the system it is 

stated a t  t he  highest level of specification, and if i t  applies only t o  a specific junction it is noted 

a t  t h a t  junction only. 

A classical issue in design, and especially in conceptual design, is how deeply should the 

structure be decomposed. A related issue is when a n  element is declared as a terminal rather 

than as a further decomposable. There is no  clear stopping rule for the  elaboration process. 

Design common sense, however, indicates tha t  the  process should stop either when further 

decomposition does not offer new relevant insights, or  when there are no more decomposable 

dialog elements (i.e., "no more boxesu). 

The  Dialog Char ts  belong primarily to  t h e  category of analytic methods for dialog design, 

namely those methods which employ an  abstract  and somewhat formal representation of an  

interaction. The  DCs focus exclusively on conceptual dialog modeling, and address its essential 

aspects by integrating simple visual concepts, structured flows, hierarchical decomposition and 

distinguishable dialog parties. While no single tenet of the  DCs is in itself novel (as clearly 

indicated by the  citations earlier in this section), their integration in the context of dialog design 

is. The  Char ts  were initially developed in 1982 and were used since then in dozens of system 

development projects where interactive decision support  systems and online database systems 

were designed. The  DCs are  typically taught  and demonstrated in about an  hour of class 

instruction, during which sufficient proficiency is gained. T h e  work of selected teams of designers 

has been studied more carefully as par t  of an  ongoing research project on the patterns of actual 

use of the DCs [ 6 ] .  .4 summary of this research is included in Section 4 below. 
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3. The Conceptual Descriptive Power of the DCs 

The  descriptive power of a notation for the conceptual design of dialogs ultimately relates 

to the range of dialogs situations which can be described by the notation. Obviously complete 

enumeration of dialog situation is a formidable task, if a t  all feasible, so current discussion of 

descriptive power has to resort to illuminating examples. In Section 3.1 two common dialog 

situations ar- modeled, demonstrating primarily the variety of conditions in which the DCs are 

applicable. 

A conceptual model should also be the broad generalization of "allM of its corresponding 

implementation models, and ideally generalized to  the point that  it is independent of any specific 

implementation model. At  the same time, it should provide a concrete but semantically rich 

framework upon which the implementation models will be defined -- in principle the result of the 

conceptual design should directly provide the basis for the "first iteration* in the subsequent 

implementation design. Evaluation of this aspect of the descriptive power of the DCs can 

therefore be accomplished through a critical examination of the mapping between a conceptual 

model and corresponding candidate implementation models. This is the subject of section 3.2 

below. 

3.1. DC Models of Dialog Situations 

The two cases in this section demonstrate the use of the DCs in the design of new dialogs or 

the analysis of existing ones. First, the  DCs are applied to  the conceptual design of a LOGIN 

command in a Military Message System (Section 6.4 in [21]). In a second example the DCs are 

used to  model and describe the structure of basic dialog of the popular Lotus 1-2-3 product. For  

demonstration purposes this section deliberately focuses on simple examples. 

In the LOGIN task a user enters into a dialog with a computer in order to establish a 

session 1211. The specific scenario is as follows: The user enters his or her name. If the system 

doesn't recognize the name, the user is prompted to  try again. When the user enters a valid 

name, the system prompts for a password. The user gets two tries to  enter a correct password 
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and proceed. If an incorrect password is entered twice, the user must begin the whole command 

again. On receipt of a correct password, the user must select a security level for the session, 

which must be no higher than the user's security clearance. 'If he enters a level that is too high, 

he is prompted to reenter it, until he enters an appropriate level. If he does not enter an 

appropriate security level, he is given the default level unclassified.' (p.44 in [21]). Note that the 

specification is somewhat ambiguous with respect to the dialog logic - there are two consequences 

of entering an inappropriate security level. 

Figure 3-1: MMS LOGIN Session, Topmos t  level DC 

The DCs for this scenario are provided in Figures 3-1 through 3-3, with each figure 

representing a different level of system elaboration. Figure 3-1 represents the topmos t  view of 

the session. It allows the designer to partition clearly the overall flow into well defined concerns. 

get a valrd 
user name , 

In some cases, the first level of elaboration may be enough. However, in order to  gain more 

insight into the LOGIN procedure a further elaboration should be worked out. Figure 3-2 

includes two successive levels of elaboration for the box numbered 2 in Figure 3-1. In another 

example, Figure 3-3 represents a second and third level *explosion* of the box numbered 3 in 

Figure 3-1. 

- level 3 

1 

get a valrd 
password 

2 
' 

Note how the use of the structured DCs forces the designer to disambiguate the verbal 

description of the session. Ln the DC, the interpretation is explicit: The user is either allowed to 

indicate no security clearance, or is allowed to enter a valid security clearance level. 

establish 
secur~ty session 
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' i i  ~ncorrect, t ry  
one more time 

-+ 

enterand check 

Figure 3-2: Levels 2 and 3 DCs for "Password Getting" subtask 

i 

enter and  cneck 
password 

The complete set of DCs for the LOGIN session shows which system modules and 

subroutines need to be programmed, those in double-lined symbols. The collection of the double 

boxes and ovals therefore serves as  a preliminary blueprint for the detailed design of the 

applications and the application processor. If, however, all double boxes and ovals are removed 

from the charts, the remaining set of connected user actions (i.e., the single-lined elements) 

constitutes a broad definition of the user interface syntax, as i t  practically identifies the complete 

valid user-generated syntax. 

I 4 + 

A (partial) description and analysis of the popular spreadsheet package 1-2-3 (by Lotus 

Development Corporation) is conducted in Figures 3-4 through 3-6. In Figure 3-4 the top level of 

interaction is specified, indicating clearly the extent of choices available to the user. Figure 3-5 is 

an explosion of the user-led task labeled Commands in Figure 3-4, highlighting the choices 

available to the user a t  that stage. Figure 3-6 further elaborates on the structure of the function 

Copy that has been offered to the user a t  the Commands level dialog. 
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/ request an 

L3 A / I valldate the 1 / 
security level y 3.3 1" 

/ request 1 set security 1 '(unclassified level unclassified + 

/ entera \ _+I( checklevel / /  , + 
tor valldlty 

a lower security 

Figure 3-3: Levels 2 and 3 DCs for 'Security Establishing* subtask 

This analysis of an existing dialog highlights some interesting observations about the DCs. 

Gs far as the explication of the extent of control goes, the three figures are visibly different - the 

taller the figure, the looser is the structure, and the user has to confront a wider set of choices. 

This in itself is neither 'good' nor *badm, but rather indicates instances in the design where 

tradeoffs between freedom and confusion should be evaluated. The structure of the Copy 

command is markedly different from the other two - i t  is closer to a linear, tightly controlled 

sequence, with relatively limited extent of user choices in carrying out the task involved. The 

DCs also render explicit the lack of 'structuredness' in the sequence of activities that leads to 

quitting the session (the *extrae exit from the bottom box in Figures 3-4 and 3-5). Again, the 

DCs bring the unstructured sequences to the designers attention, adding it to the design agenda. 
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Commands - 

Figure 3-4: DCs for Top Level Lotus 1-2-3 Dialog 

'-c wonsheet - ,.-. I DISP~Y 1' : 2 

- / ,, command ' 
u , I chores 1 1  -' Range 

' 3  

- Move I- 
I 5 5  1 

Figure 3-5: DCs for Lotus 1-2-3 Command Dialog 

The final decision whether t o  retain t h a t  structure or  "correct" i t  is a question the  designer has 

to ultimately decide upon. 
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Figure 3-6: DCs for Lotus 1-2-3 Copy Dialog 

Another comment relates to the wide range of implementation possibilities addressed with a 

DCs-based model. As it turns out,  each of the three dialog models in Figures 3-4 through 3-6 is 

implemented in a different interaction style: the toplevel dialog is implemented as an 

unprompted interaction, the Command follows primarily a menu-style interaction, with an 

alternate unprompted and abbreviated style, while the Copy command is implemented in a 

Question/Answer style, with direct manipulation being an optional type of user's gestures. The 

actual decision about interaction style is probably affected somewhat by the fundamental 

properties of the dialog as they are picked-up by the DCs, but  the determining factor is a set of 

assumptions about the user. Otherwise, the sharp difference between the implementation of the 

toplevel and the Command dialogs cannot be easily explained. 

i 

5 3 21 
t + 

A more rigorous examination of the DCs is obviously called for. In the following section the 

issue of descriptive power is further discussed with respect to the correspondence between 

conceptual and implementation models of dialog. 

From 
range. 

5 3 1 

3.2. Relating Conceptual and Implementation Modele 

In this section we reflect on the extent to which a conceptual model expressed as DCs 

provides a generalized description of its semantically corresponding implementation models. The 

core of the discussion is a critical examination of the mapping between a conceptual model and 
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corresponding candidate implementation models. Such an examination may indicate any 

limitations on the extent of correspondence between the two levels of modeling involved. This 

"correspondence criteria* is clearly only a necessary condition for a conceptual modeling tool, b u t  

the examination in this section also addresses the complementary issues of communication 

effectiveness and description efficiency. The discussion further highlights the visible differences in 

the way conceptual and implementation models express the same dialog situation. 

A single example is featured in this section, adopted from [16], for which four models are 

formulated, using in turn a contextfree grammar (BNF-based), an ATN, an event model and the 

DCs. Methodologically we use Green's article 1161 as the broad definition of the realm of 

currently acceptable methods for describing dialog control. The task in this example is the 

"rubber band" drawing of a line on the screen. This example is particularly interesting since it 

takes the issue of conceptual dialog modeling deep into the *territoryu of user interface 

implementation - the task is an exercise in direct manipulation that  is typically described in 

terms of specific user gestures. In this type of drawing, a line is anchored a t  one point, and 

extends to the current position of the cursor. I t  moves with the cursor until a user gesture nails 

i t  down and fixes it. Figure 3-7 includes a DC model for the rubber-band dialog. It only 

provides a toplevel view of the interaction, which seems to fit the level of complexity (or the lack 

of i t)  in this specific user/system exchange. 

adiust line 
to cun-ent 

Figure 3-7: A DC Model of the Rubber Band Line Task 

-* 

Backus-Naur Form (BNF) is an example of a contextfree, production rule grammar 

end the line 
and the 
sequence 3 
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Languages are described with this grammar as a set of rules, each specifying a substitution of a 

composite term by its constituent terms. The chain of substitutions eventually results in a fully 

specified string in the language [21]. Since dialogs are carried out through preordained 

expressions ("languages" of sorts), this type of grammar h~ an obvious appeal in the modeling of 

dialogs. 

Reisner's Action Language Grammar (ALG) [39] is a characteristic methodology for analytic 

dialog modeling. It uses a BhT notation to define a formal grammar that  describes actions taken 

by the user while interacting with the system. ALG could not serve as an implementation model 

for DC-based conceptual model since they are fundamentally incompatible - ALG only deals with 

one par t  of the dialog. The Multiparty Grammar [43] extends the Action Language Grammar, 

and allows the designer to explicitly identify human actions and computer actions. The model in 

Figure 3-8 is an implementation model of the rubber-band dialog, expressed through a multiparty 

dialect of BNF. 

line + b u m  oldgoint 

Context-fm grammu for rubber band line cumpie. 
mdgcnnt -b move adqolnt  

1 buuon 

e n d p n t  4 move d2 endpint  
I button d3 

Rubber h n d  line example with pmgnrm d o n s .  dl  -+ 

{ record fint point } 

Figure 3-8: BNF Models for Rubber Band Line Task (from [16]) 

State transition $diagrams are used for describing finite state machines, and have been used 

for quite some time to model dialogs 1371. When defining an interface with these diagrams, the 
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nodes of thk network correspond to different states or modes of the interaction. .Arcs linking 

nodes have one or more input events, output events, or application actions associated with them 

'19:. This basic form of transition networks has been augmented in a number of different ways 

wi th  a variety of additional features, forming what is referred to as augmented transition 

networks (ATN). For instance, the nodes in ATNs may also represent subnetworks, recursion 

and calls to other nodes [21j [22], Super etates [9], and uubconvereattonu 1481. Figure 3-9 

represents the rubber-band drawing task as an ATN-based dialog model. 

n move 

2. record f~rst potnt 
3 draw line lo curren: postlion 
4 record SeCOnG point 

Exampie rransit~on diagram with progrsm actions. 

acl~onl . record f~rst po~ni 
action2: draw l~ne to current position 
actton3: rpcord second point 

Exarnpie transitton dragram with aNons  on arcs. 

Figure 3-9: An A T N  Model for Rubber Band Line Task (from [16]) 

The event model of dialogs decomposes the interaction into independent descriptions, each 

of which encapsulates a single, somewhat self-contained activity of the user (e.g., a gesture), the 

control processor, or the application [16]. As befits an  implementation model, the  event model is 

strongly associated with a UlMS approach in which active event handlere are responding to 

identified events by invoking the associated procedures to mprocess the eventm. Such event 

processing can compute, generate events, and activate o r  deactivate other event handlers. An 

event handler is defined by the set of events i t  can handle, so activation and deactivation of a 

handler practically determines the set of permissible events - all the events recognized by the  

concurrently active handlers a t  a given point in time. 

The event handler in Figure 3-10 outlines an event model for our running rubber band line 

example. The TOKEN section in i t  associates external events with event handling procedures, 
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the V-AR section defines the local variables, the repeating section EVENT defines the event 

handling procedures themselves, and the N T  section sets up initial conditions. The disjoint 

nature of an event model makes it a natural choice for modeling a concurrent processing 

environment, or multithreaded dialogs [16]. 

T O E .  ,; E W  auaon 30 { 
3unon 3uaon: :n! 8 2 ~ ' :  

- ,- sue -- J -ZY 
move 3tove: ~ m z  6.-;f I;uc k c  - c * m c  w s ~ o o n :  

E v E ? ; T  Move 90 { 
3: suu -- i T i v  

y a w  ime h r n  &I a c z m r  miuon: 
Elw IF: 

2 .  

- -  - - -- - 

Figure 3-10: An Event Model for Rubber Band Line Task (from 1161) 

In general i t  seems that  BNF, ATN and event models address the implementation design of 

dialog control, and therefore do  not directly compete with the DCs in the 'conceptual arena.' 

They rather complement each other in the overail process of interface design. Nevertheless, 

contrasting the DCs with the three other modeling approaches illuminates some key concerns in 

the conceptual modeling of dialogs. The following comments highlight two of them, specifically 

the explication of dialog semantics and dialog control structure, and the formulation of models 

with varying levels of detail. 

BNF-based models describe all possible grammatically valid dialogs. As noted by [21], 

BNF-based representations can not explicitly represent control structure. BhT-based models, 

hence, do not differentiate among meaningful dialogs and dialogs tha t  are meaningless to the 

system or user [39] - the meaning of the dialog, i.e., its semantics, have to be handled elsewhere 

This is resolved most naturally within a DGbased conceptual model: with their explicit 

specification of interaction context the DCs constrain the dialog description beyond solely 
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grammatic validity. Although the control structure is explicit in an ATN, it  is nevertheless 

obscured by implementation-related details and large numbers of arcs that  can form an 

unconstrained network (as opposed to a structured network). The augmentations in the ATNs 

are efforts to use them to capture more of the semantics and complexities of the various dialog 

components. The event model explicitly manages these aspects of dialog control, but the details 

of the control structure itself are U b ~ r i e d Y  disjointly in the actual event handling code. Event 

handling approaches result in descriptions of :lalog that are difficult t o  examine observed, and 

input/output languages that cannot readily be determined without inspecting the actual code of 

the event-handler itself. The dialog's control structure is not directly observable and has t o  be 

pieced together outside the model. The conceptual design, as expressed in Dialog Charts, makes 

the control structure of the interaction explicit. It is important to notice that the basic flow, 

structure and connectivity of the design are apparent even before any particular interaction 

syntax is specified. Moreover, as we saw in the Military Message System example in the previous 

section, a detailed specification of interaction syntax can easily be derived from the DCs. 

The Dialog Charts also directly address the issue of high level modeling of the control 

structure by allowing the designer to  defer decisions about specific interaction sequences and 

applications interface issues. Approaches that emphasize formal accuracy cannot easily 

accommodate such deferment. Both the problems of obscured control structure and of 

overwhelming implementation details become more acute when a more complex task is analyzed. 

Consider a slightly more complex example, extending the line drawing into a rubber-band 

polyline drawing with cancel and backspace options. The rubber-band polyline drawing itself is a 

collection of individual lines that  are created as  rubber-band lines and connected end-point to 

end-point. Figure 3-11 presents functionally equivalent DC and ATN models for this task (the 

ATN model is directly quoted from 1161). The DCs are more abstract than the ATNs and 

therefore they incorporate the options easily in a higher level abstraction. As has been shown, 

this structured diagram can be decomposed to specify any particular interaction syntax that is 

desired. 
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4. T h e  Conceptual Usable Power of the DCs 

Against the backdrop of the conceptual descriptive power of the DCs, this section explores 

the ease with which designers can employ the charts in conducting system design activities. 

Although the DCs appeared to be well received by their users in varied design situations and a 

wide range of applications, there was no methodical basis for substantiating this anecdotal 

evidence. Apparently this is not an unusual situation: "Most people who have built tools for 

interface development claim that these tools enhance designer performance. The authors are not 

aware of any empirical evidence to support these claims* (p.233 in 1201). 

The empirical investigation reported in this section was explicitly aimed a t  answering the 

questions of h o w  des igners  a c t u a l l y  u s e  c o n c e p t u a l  des ign  t o o l s  and therefore w h a t  

m a k e s  d ia log  des ign  too l s  useful.  In the absence of existing firm theory of the use of 

conceptual dialog leling tools, the immediate need was the development of a more concrete set 

of research "concerns* or quehbions that  operationalized the notion of usefulness or the essence of 

"usable power* [16]. The corresponding questions that  eventually guided our study were: 

1. For what meaningful design purposes are the DCs used? 

2. In what stages of system development do designers find the DCs to  be helpful? 

3. W h a t  are the perceived effects of the DCs on the p r o d u c t s  or results of the design 
effort? 

4. What  are the perceived effects of the DCs on the nature of the design process?  

5. How do  designers feel about the DCs and about using them? Have any a t t i t u d i n a l  
patterns developed towards the DCs? 

These questions are meant to  encapsulate the notion of the tool's usefulness [6]. The overall 

vantage point is that  of the designer, and therefore subjective terms such a s  'meaningful," 

*useful,* *perceived,* or *atti tudew are to  be interpreted from the perspective of a designer who 

actually uses the tool, the DCs in this case. 

The research strategy adopted in this exploratory study has been qualitative, as outlined in 

Section 4.1. In seeking valid responses t o  the above questions our approach draws primarily on 

concepts of grounded theorv :15], [27], qualitative analysis methods [30], and qualitative content 
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analysis [25]. In Section 4.2 we present the results of applying this methodology in studying a 

team of designers who had just concluded a system development project in which they used the 

Dialog Charts. 

4.1. R e s e a r c h  Methodology  

The overall research design was a field experiment [28], which occurred over a period of 

about three months. The experimental task was the analysis, design, development and 

demonstration of an interactive database application. The application's scope, complexity and 

development mode were realistic -- a team-based development setting of a system of about 1000 

lines of high-level code. The team was made up of 4 undergraduate students in their senior year, 

all Information Systems majors, who were enrolled in a course on the analysis and design of 

interactive systems. The course included a review of various methodologies (including the DCs) 

for disciplined design of information systems and databases, and design teams were generally 

expected to apply these tools. Participants' inexperience (relative to practicing information 

systems professionals) does not seem to  limit the generalizability of the results. In the era of 

end-user computing many designers of interactive systems, especially those engaged in specifying 

the decomposition of the task, are not thoroughly trained in systems design. As it turned out,  

most of the participants took up jobs tha t  required them to  participate immediately in designing 

interactive systems. 

The basic premise of our approach to da ta  collection and analysis is that  to be "usefulw to 

the designer, a tool and/or methodology must be used, aid the designers in achieving their goals 

and objectives, and finally be perceived as  being useful. If i t  is not perceived as useful, there is 

no re&n to suspect that i t  will be used again regardless its actual benefit [ I l l .  This translates 

into the assumption that inferences can be made from "revealed perceptionsw about the usefulness 

of the target tool as they surface in the designers' retrospective reflection on the design and 

building of their system -- after the tool has been actually used. 

The main objective while capturing the da ta  was t o  solicit designers perceptions of the DCs 
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in an unobtrusive fashion. Following the completion of the development of their system, the 

team participated in an open-ended, semi-structured and funneled interview with a hidden-agenda 

:7!, [17], [45]. In such an interview questions are prespecified, but the answers are not,  and the 

broad range of questions masks the identity of the actual topic under study. The funneled 

interview begins by asking questions about a general area or domain, and then pursues areas that 

have been mentioned by the interviewed team more specifically. The results of this approach are 

tha t  each issue on the interview's hidden agenda is approached with the broadest and most open 

questions first. These are followed by more specific questions, often rephrased according to  the 

specific language used by the informants. 

The interview provided, therefore, a loose structure within which the designers related to 

their system development experiences. The first segment of the interview established the overall 

context (i.e., What  does the system do?), and then focused on the work tha t  the team 

accomplished in the various stages of system development -- from conceptual design all the way 

to  actual coding. The second segment of the interview raised two issues. It started with a 

discussion of the ~ r o b l e m s  encountered in specifying, designing and implementing the dialog. It 

then brought up the topic of design tools, and future intentions regarding tools tha t  have been 

used. Throughout the interview no direct focus was placed on the DCs in order to  preserve the 

hidden agenda, and to guarantee that  information about how the designer used the DCs was, to  

the extent possible, voluntary. The interviewer was an outsider who did not participate in any of 

the previous stages of the experiment itself. 

The audio-taped interviews provided the archival raw data  for analysis. Basically, 

qualitative analysis consists of progressively reducing and categorizing raw da ta  into various 

forms of display, i.e., "an organized assembly of information that  permits conclusion drawing* 

[30]. The analysis is an iterative process of da ta  reduction, display, and conclusion refinement. 

In this way, the data  which a t  first seems vague and inchoate gradually becomes more explicit 

and "grounded" [IS]. Initial da ta  reduction of the taped interview was achieved through a 

structured content analysis; i.e., semi-mechanical tracking, extraction, transcription and 
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categorization, of explicit "mentions" of the DCs [24]. A ment ion,  the basic unit of analysis in  

this study, is a group of utterances made by the designers about the tool, within a design context 

and categorization. A change in the broad context or major category signals the end of the 

mention. Mentions occurred in sequences, i.e., one or more mentions that  are contiguous. If a 

sequence arises spontaneously, i t  is an unsolicited sequence of mentions, while if i t  is triggered by 

a follow-up probe, it is a solicited sequence, and all its mentions are therefore solicited as well. 

The mentions were encoded by studying their relationship to the concept of usable power, 

as operationalized by the set of five research concerns listed earlier. These concerns were further 

differentiated into a set of seed categories, representing a concrete contextual framework for 

categorizing the empirical data. The initial set of categories used in this study is summarized in 

Figure 41. The formal statement of seed categories makes explicit assumptions and expectations 

about the nature of the researched phenomena [30]. The seed categories in this study were 

adopted from the "parent disciplinesR of systems design and software engineering. 

Q1. Purpose 
Gathering intelligence, goal elaboration, design generation, design evaluation, 
communicat ion 

Q2. Stage 
Documentation and analysis,  logical/conceptuaf design, implementat ion design, 
programming/coding, tecrting 

Q3. Product 
Modularity, control structure, data structure/architecture 

Q4. Process 
Design philosophy, constraints 

., 
QS. Attitudinal Patterns 
Learning, task  performance, subjective sat is  faction, retention, errors 

Figure 4-1: The Original Seed Categories 

Seed categories are further differentiated during the da ta  analysis, as categories and data  

are subjected to constant coinparison with new information [15]. The encoded mention frames 
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either fit in any of the existing categories or a new category is declared. In the process, the initial 

categories are partitioned or combined, new ones are added, and new properties and value sets are 

noted as suggested by the mentions that  are encountered during data collection, reduction and 

analysis [30]. A mention can relate to more than one question or category. Such an overlap 

might represent a complex perception or a link among the categories. As far as possible, the 

findings are articulated by formulating the data-context relationships so that  the data  appear as 

independent variables and the context targets appear as the dependent variables [25]. 

The basic assumption is that  mentions, because of the unobtrusive and free-response 

interview form, faithfully represent and reveal the perceptions of the designer. Making inferences 

from mentions about actual use is problematic, though -- the linkage between mentions of use 

and actual usage is not directly observable. For example, i t  is possible tha t  some users will not 

voluntarily mention using the DCs. In this case we assume that although the DCs were used, it is 

unlikely that they were perceived as either useful or as a significant part  of the development 

process. 

The empirical research reported here is in a sense a case study of a single dialog design tool 

and a single team of designers. Even though a case study is scientifically "weaker", it 

nevertheless rich and unconstrained, as befits the preliminary state of understanding dialog design 

processes. 

4.2. The Usability of the DCs 

The summary of the findings is presented in three complementary fashions. Following a 

brief discussion of the broad distribution of mentions into categories, we consider the observations 

category by category. Finally, we comment about the observed relationships among the 

categories indicated by the data.  

In all, there were 49 mentions of the Dialog Charts throughout the interview. Ideally, we 

wanted mentions to fit unambiguously into only one category. It turned out  that  the 

identification of such mentions often led to  mentions of very few words tha t  were stripped of 
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meaningful-context. Therefore, we operated under a more relaxed guideline that a mention 

should provide enough context to be understandable in itself, and yet should fit, i.e., be coded, 

primarily into not more than two categories. The 49 mentions received 80 such codings. We 

considered a mention as "reliably coited" if there was no disagreement about the applicability of 

the codings, although there might be other codings that  could apply. A "coding consensus* 

among the researchers was sought in the cases where mentions could be interpreted in more than 

one way. 

Figure 4-2 summarizes the mentions of the DCs by the team and underscores the richness of 

the information that  is under study. Although no major categories had to be added (c.f. Figure 

4-I), some new secondary categories have emerged (marked with an asterisk in Figure 4-2); Ln 

particular, the DCs were mentioned in connection to system maintenance,  a system development 

stage that was originally thought to be far removed from a conceptual design tool; user 

orientation was identified as another characteristic of dialog design products, and task clarity 

and comprehensibility was added to attitudinal patterns. All third-level categorizations have 

been suggested by the empirical data. They basically refine their corresponding categories and 

give them a more precise and concrete interpretation. Since the  analysis reflects a single site, no 

categories are being dropped, although some are currently 'empty." For instance, there was no 

mention of the use of the DCs for the purpose of intelligence gathering. 

The 49 mentions occurred in 23 sequences (Figure 4-3). Counter to  our expectations, the 

extent of mentioning the DCs in the two segments of the interview was similar. The total 

number in the first segment -- largely unsolicited mentions -- were 27 mentions and 14 codings, in 

11 sequences. During the second segment, in which somewhat more direct questions were posed, 

there were 22 mentions in 12 sequences, which were coded into 35 categories. Figure 4 3  shows 

the mentions, sequences and codings grouped according to whether or not they were solicited. 

Interestingly, Figure 4-3 does not reveal substantive disparity with respect to  codings in 

each segment, or along the solicited/unsolicited dimension. Our  original emphasis was on the 
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Figure 4-2: Tabulation of Mention Codings 
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Sequences Mentions Ccodings 
------------------.--.-----.-- 

Segment I probed 2 13 18 

unprobed 9 14 26 
- - - - - - - - - - - - - - - - - - - * - - - - - * - - - -  

Segment11 probed 4 14 25 

unprobed 8 8 11 
------------------.----------- 

Totals 23 49 80 

Figure 4-3: Tally of sequences, mentions and codes by interview segment 

authenticity of unsolicited mentions. At  least for this team i t  seems that  the intensity and nature 

of reference to  the DCs were not sensitive to  the solicitation or the lack of it. One possible 

interpretation is that  the team has formed fairly stable opinion about the DCs, and therefore 

related t o  them consistently across the different modes of evidence gathering. An alternative 

interpretation is that  the unobtrusive funneling was not actually so unobtrusive. The wide 

dispersion of the mentions through the conversation and abundance of references to other tools 

and aspects of the design process make the latter interpretation rather implausible. Asking for 

clarification of the information by soliciting with a probe led though to relatively longer 

sequences of mentions, which is not unexpected. 

Distribution of Codings 

By far, the majority of the mentions related to purpose (29 mentions) and sttitudinal 

patterna (30). With respect to the purpose of use category, Dialog Charts were mentioned 

most frequently in the context of deeign generation (15 mentions). While this could be expected, 

somewhat unexpected was the intensity of mentioning the use of the tool for the communication 

of design information (9 mentions). Although communicating is a characteristic of a usable 

development methodology 1471, there was no requirement that  the team use DCs as a 

communications vehicle. 
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The 30 mentions categorized under a t t i t u d i n a l  p a t t e r n s  came as a surprise: subjectitre 

s a t i ~  faction was the context for 17 of the mentions. Eight of these referred to the DCs as 

valuable and important,  while 4 referred to the surprise of the team and the usefulness of DCs. 

Needless to say, no such information was requested in the interview. 

Category by C a t e g o r y  S u m m a r y  of  M e n t i o n s  

In the following paragraphs, the content of mentions in each category is summarized and 

illustrated by examples. The mentions are reproduced in their entirety in [ 6 ] ,  and the numbers in 

the parentheses following mention quotations refer to the mention sequence number in the format 

of (team-id.Mention-seq). 

P u r p o s e :  Goal elaboration includes decomposing goals into potential sub-solutions or 

subgoals. The team did not mention their process of Coal Elaboration until late in the interview, 

when asked explicitly about dialog design. There they described using DCs to  *differentiate 

between system -- response or function, and user response or function, or something that 's  a 

combination of both* ((3.29). The products of goal elaboration are the functional requirements of 

the system, as paraphrased in the following mention: 

- And you s tar t  out with the very simplest, the hightest level ... break tha t  
down, and you go down and down and down until you hit the lowest level. 
You hit every possible situation. 

- You can't explode anymore. 
- Until you don't need to prompt the user for anymore information. 
- ... and you can just perform the necessary functions. (C.30) 

Design generation was the most frequent context in which the team mentioned the DCs. 

More specifically, the DCs were mentioned in the context of designing queries and prompts, 

menus, the "user interface*, the  control structure, the code, and error handling. 

Early on the team mentioned designing queries and prompts in conjunction with a user 

orientation towards eliciting necessary details from a user during system operation: 

- ...y ou have to set up queries, or question answer things, whether its menus or 
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whatever. Somehow, the system has to  egg-on the user, know what I mean? 
Lead them into what the system means. 

- How the system will prompt you into getting to what you want. 
- That 's  the whole idea behind the Dialog Charts. (C.3) 

This context of user orientation surfaced elsewhere in the interview, particularly in 

reference to the design generation of the dialog. In response to  the question "how did you go 

about specifying and designing your interface?* the team answered, 

- How you would most feel comfortable if you would put yourself in the user 
role. 

- That  basically came out of the Dialog Charts too. .. (C.28) 

One recurring theme in the interview was the surprise expressed a t  the usefulness of the 

DCs. It  surfaced while discussing menu design, in the logical design phase of the interview: 'We 

really did use them [the DCs] as far as designing menus* (C.12) and "The menus really came out 

of that  [the DCs] . * (C.25) 

It  is interesting to note tha t  the team extended the DC design vocabulary to  designing error 

processing. One mention in particular described how the team had integrated error processing 

with general control structure design: 

- Because you have t o  diagram where things are comming in from and going 
through. And you can see right where to check, and where to direct the flow 
of control to. 

- If i t  was wrong, you can direct i t  back to one particular point. I mean if 
you have something, wrong, some wrong input, and you direct i t  to  the 
wrong place back, you may-- 

- you may crash the whole system. 
- or  else you may change something that-- 
- should we go back to the very beginning menu? Or should we go back to 
where they got to tha t  point, where they made the mistake. (C.33) 

As indicated in Section 2 above, the DCs avoid cluttering the description of the dialog with its 

entire collection of alternative paths of error handling. The team's response t o  a question related 

to  the issue of error routines is therefore somewhat surprising: 

- ... I dont know whether it's supposed to include it or not, bu t  we included the 
error, because-- well I dont know, to  be quite honest with you, but we got 
very familiar with it [dialog charting, and, you know, we just took to i t ,  you know. I 

mean we just thought that  i t  was just a logical extension of i t ,  (C.43)] 
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Apparently the team felt free to change the tool to suit their purposes, an  interesting statement 

indicative of the team's familiarity and comfort with the DCs. 

Finally, the team mentioned using the DCs, among other design products, in coding their 

system: 
- ... We took our Dialog Charts, and our files, and our menus tha t  we designed, 

and we. .. actually started to code them. Coded the record layouts, coded the 
file description statements. 

- Set up the user interface. 
- Coded the menus, yes. (C.27) 

The mentions of the DCs in the context of design evaluation seem to  re-emphasize the 

familiarity that the team found with the charts, because they could use them in a flexible fashion, 

and even comment on suggested improvements to  the design process. They mentioned using 

Dialog Charting in an  iterative fashion to  evaluate their designs for completeness: 

- ... What we found was the Dialog Charts really needed to  be an interactive 
process. Because as  you go through them and through them and through 
them-- 

- You realize things tha t  you havent thought about before, or different ways. 
(C. 20) 

The team also commented tha t  DCs were used to re-evaluate their menu hierarchy. First, 

they asked when the user makes an  error, *...Should we go back to the very beginning menu? Or 

should we go back to  where they got to  tha t  point - where they made the mistake?" (C.33). 

Their response was, *...we had originally gone back to the original menu, and then decided that  

that's boringm (C.34). They were apparently satisfied with their restructuring, because as the 

mention continues, they note tha t  the control structure of the system had become "more flexible" 

and 'efficient * . 

The DCs were often mentioned in the context of communication from task to task. The 

DCs were used to  derive menus, as  input to the coding phase, and in determining how to prompt 

the user. Succinctly: "They really gave us a basis for so many of the next steps." (C.37). As 

one member commented in a voluntary mention, when there was a question of the value of the 

different design tools (i.e., dataflow diagrams, flow charts and dialog charts), the DCs "seemed to 
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be the most helpful, though, because when we did get into the later stages, we did actually use 

them. Much to my surprise." (C.10). Similar comments were repeated later in the conversation. 

Interestingly, one team member, while indicating his intention to  use the DCs in the future, 

focused on using them to communicate with users and in system maintenance: 

-... In terms of helping them maintain their system, I do keep in the back of 
my mind the Dialog Charts, which I thought were great. In terms of helping 
explain myself to them, what ideas I had. Whereas before maybe it was just 
kind of haphazard. Now I have some structure for explaining, and why I'm 
thinking what I'm thinking. (C.48) 

Stage: References in that  category were particularly scant. Nevertheless, three of the four 

mentions related to  communicating information among the various system development stages; 

for example, after the team commented on realizing the value of the DCs, they were asked "What 

was the value?" and the responses were "Just for the later stage, and actual physical design." 

(C.22), and "It helped in the implementation. How we were going to prompt the user." (C.23). 

A third mention related to  communicating to  system maintainers (C.48), and the last indicated 

confidence in the coding stage (C.36). 

Product: Mentions in this category link the use of the DCs to the structure of the 

resulting system architecture and dialog structure. The DCs were described by the team as *like 

a sketch of coding* (C.4), " a  beefed up data  flow diagram with the user in i t" (C.7), and " a  map 

of the system" (C.24). The team made an interesting comparative comment: 

- ... we never used those data  flow diagrams because they were all disjointed. 
- You know. This [the DCs] is a t  least connected and you could see different 

levels ... (C.6). 

Reference to  the Control Structure was made in response to  the probe: "What  were these 

Dialog Charts tha t  you mentioned?" 

- It's like diagrams of how the system should work. A t  what point you would 
intercept the user t o  get a response. And based on tha t  response what would 

T be the next step. (C.5) 
- You kinda see the flow of everything. 
- ... And try to  get an idea of what information you did have to  prompt the 

user for ... (C.6). 
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- ...y ou saw all the levels of depth. You saw all things that  you would really 
have to do and ask for to perform the functions that  you proposed. (C.31). 

The DC vocabulary is not intended t o  be used as a language for modeling data structure 

and architecture. Nevertheless, the folIowing mention indicates that  they helped in conceiving 

data  structure as well as the general hierarchical and modular structure of the system: 

- [you saw] which information you needed to  determine which file you had to 
access, what calculations needed to be done on the data. (C.32) 

Process :  References to how using Dialog Charts put constraint8 on the design noted how 

"You were forced to  put all the ideas you had into something concrete* (C.17), and how the 

charts helped the team " t o  keep a very strong control over what was going on." (C.35). 

Comments about the direction and philosophy of decsign were made in mention fC.30), where the 

DCs were brought up in the context of the functional decomposition of the system until .you hit 

every possible situationw, and also tha t  i t  is decomposed according to  party (C.29). Recapping 

mention (C.2) in design evaluation, the team put forth the idea tha t  the specification of the DCs 

really needed to  be an Iterative process. 

A t t i t u d i n a l  Patterns: The main theme tha t  cut through the mentions in this category is 

that  the DCs were found to  be surprisingly valuable. I t  is interesting to note tha t  the value was 

not discovered until the charts were used during stages subsequent to the conceptual/logical 

design. The team mentioned that  the DCs allowed them t o  feel "confident in our code* and 

made them feel tha t  the tasks of implementation went fast. Specifically, all of the  Learning 

mentions point out  t h a t  the usefulness of the DCs was not apparent to  the team until the later 

stages of the development process, where they were actually used, e.g., 

- I think we would have concentrated more on getting those right the first 
time, instead of going back and having t o  re-do them, not  knowing the value 
of them the first time ... cause we did, we went back and did them, like 
twice. (C.16). 

Three more mentions express the view in a similar fashion. It  looks as though the team 

experienced the value of the DCs when they learned tha t  the tool would concretely guide them in 

building their system. 
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 doin in^ Dialog Charts and some record descriptions was credited with positive Task 

performance in the following mention: 

- ... after we had gone back the physical worked out very well. 
- Very well, see how fast i t  went though. 
- Yea, but if we hadn't gone back we would have been stuck 
- I think we would have really trudged through that  one, so i t  paid off. 
- Yea, that's for surem.  
probe: and what did you redo again? 
- The Dialog charts. That was the main one. And some record descriptions. 
(c.441. 

The team related to  the ease in which menu design is derived from dialog charts (C.26), and also 

mentioned the DCs in the context of Task clarity and comprehensibility. For example: 

- Because, you saw all the levels of depth. You saw all the things that  you 
would really have to do and ask for t o  perform the functions that  you 
proposed. (C.31). 

- The main thing is that i t  helped us to- see the control. (C.35). 

Clearly, the team members derived Subjective satia faction from using the Dialog Charts. 

It was expressed in the intent to use the Dialog Charts in the future, in their happy surprise a t  

their usefulness, and in the perception of the DCs as valuable 

The idea tha t  the DCs proved to  be useful surprised and pleased the team, and they 

mentioned i t  four times. One mention is interesting in particular: 

- probably the best way to show the contrast is that  in the beginning, like 
when you first starting programming, they made you do flow charts. and 
you were supposed to do a flow charts before you programmed, and most 
people programmed and then drew the flow charts afterwards .... 

- So, I mean, this was totally the opposite. 
- ... thats why it's so surprising. For  once, we actually used it further on. 

(C.41). 

They were also surprised tha t  the Dialog Charts functioned as a mapping tool for system 

structure: *And it really is a true map, which is-surprising.' (C.24). The  value and importance 

of the dialog charts were mentioned three times, twice in connection with the learning process. 

For example: 

- But I think, when we went to the next step, we realized how valuable they 
were. 
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Rela t ionsh ips  A m o n g  Categories  

Generally speaking, a link is some co-occurrence of categories within a mention. As 

indicated earlier, mentions were categorized with the minimal number of categories, but in some 

cases more than one category adequately keyed the mention. Figure 4-4 summarizes the co- 

occurrence of categories in coded mentions. In the following paragraphs we briefly comment on 

some interesting double-coded mentions in the current set of data. 

purpose  

s t a g e  

p roduc t  

p r o c e s s  

a t t i t u d e  

purpose  s t a g e  p r o d u c t  p roces s  a t t i t u d e  

25,27 22,23 20,29 10,17 
2 8 4 8 26,38 

F i g u r e  44: Tally of Multiple-Coded Mentions, by Category 

Purpolue of using the DCs linked to Stage with respect to communicating information 

among stages of design. In particular, one mention indicates that  the DCs 'helped in the 

implementationD (C.23). Another mention linked P r o d u c t  to Purpose in reference to the 

results of designing the control structure: 'It's like a diagram of how the system should work' 

(C.5). Yet another evidenced a user orientation while designing the queries: '...you have to know 

the kind of user you're dealing with and formulate those queries accordingly.' ((3.3). 
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Co-mentions of purpose with attitudinal patterns occurred 4 times, which interestingly 

centered on communication. Two such multiple-coded mentions indicate surprise because the 

DCs were helpful or useful in later stages of system implementation (C.lO) and (C.38). One used 

the term "valuable" about the role of DCs in "so many* following steps. A fourth mention 

related DCs to  the ease of menu design (C.26). 

Product linked to process in a mention that  expressed the constraint that  the DCs forced 

them to put  their ideas into "something concrete" (C.14). It also linked to attitudinal 

patterns in three mentions. In (C.241, the team expressed surprise by the idea that  the DCs are 

a " t rue map" of the system, and (C.31) relates similarly to clarity of the structure and functions. 

User orientation in designing the product is expressed in (C.49), along with the intention to use 

DCs in the future: "No doubt about that." (C.49). One Process mention linked with 

attitudinal patterns. The DCs "helped us t o  see the control" as well as " to  keep a strong 

control over what was going on* (C.35). Four Attitudinal patterns mentions linked to  other 

aspects in that category. All four are learning mentions, three of which are linked to the value 

and importance subcategory, and the fourth mention was linked with task performance. 

By now the richness of the data  gleaned from this single team's experience is apparent. 

What  do  all these observations really mean? In the following discussion section we attempt to 

interpret our findings and relate them to issues currently on the evolving agenda of conceptual 

dialog modeling. 

5. Discussion: Conceptual Dialog Modeling in Perspective 

The sections above examine -- from a number of complementary perspectives - a 

methodology for the conceptual design of dialogs. There is actually a dearth of such studies not 

only in the domain of dialog design, but in the entire field of information system design. 

Without a clear guiding tradition, this section focuses on three questions, namely whether 

conceptual modeling of dialogs is a t  all relevant, whether the pervasive notion of direct 

manipulation defies conceptual modeling and therefore undermines its validity, and lastly how do 
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the DCs contrast with another contemporary approach to conceptual dialog modeling. Through 

this discussion the examination of the DCs is related to contemporary concerns in dialog design. 

5.1. T h e  Relevance of Conceptua l  dialog models  

Is the conceptual structure of interaction specifiable? Some argue that there is no 

meaningful way to  abstract an interaction, and that any attempt to strip it  of application or 

implementation detail renders such description worthless. The question has not been dealt with 

directly so far; in this section the case for conceptual modeling is informally reviewed. Key 

sources for observations are the recent debate around User Interface Management Systems (UIhIS) 

and our own empirical study reported above. 

User interface implementation is concerned with syntactic and lexical levels of design, 

command names, screen and icon design, menu organization, sequencing rules, and interaction 

techniques. It is being increasingly recognized that  UIMS's postulate is that  the syntactical 

aspects of the dialog can be ex t r ac t ed  from its ultimate realization, thereby separating the user 

interface from the application's functionality [41]. SucS a separation, so claim UIMS supporters, 

promises a clearer and more modular system architecture, as well as a more *consistentu 

interface. Conceptual design of dialogs in general, and the DCs in particular, share the same 

premise, but treat the s t r u c t u r e  of the interaction as a prime target of an independent design 

effort. Conceptual dialog design, therefore, refines the UIMS postulate by separating dialog 

structure from any of the application details as well as the syntactical aspects. 

The conviction that  interaction style design can be meaningfully discussed independently of 

the specific application context is widely held among user interface designers. Nevertheless, it is 

being recognized more and more clearly that  the user interface design problem and the 

application design problems evolve together from the initial task analysis all the way to the 

implementation, and an effective design tool has to address them in an integrated way. UIMS's 

emphasis on the user-visible, syntactical issues instead of broader concerns for system or dialog 

functionality has been criticized recently. Jim Miller in [41] identifies the following difficulties as 

the "real bottlenecks" in the areas of interface design and development: 
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1. The portrayal of the application's semantics in a way that  allows users to  carry out 
their tasks. 

2. Support for the activities of design, "If the role of interfaces is t o  help users 
understand and work with the semantics of a task domain, we nee4 tools that  will let 
interface designers represent these domains and make their important properties 
explicit in the interface." (p.199). 

In its core, the conceptual *modeling of dialogs directly addresses these concerns. 

The above comments are somewhat theoretically motivated, but does conceptual modeling 

actually work? Although it relates to  a single team only and is necessarily preliminary, the 

empiricai :,ortion of this study does support the case of conceptual design of dialogs. Specifically, 

designers have addressed, in their reference to  the DCs, the fundamental attributes of conceptual 

models and their use. 

Conspicuously, a frequent -- and unsolicited -- reference was made by the team to the DCs 

in the context of communicating between the logical and the physical stages. This idea relates 

directly to the essential role of conceptual modeling, namely guiding the design by establishing 

the conceptual framework within which the dialog is to be implemented. Furthermore, the 

general recognition of the value of the DCs was tied to  using the tool as a vehicle for iearning -- 

"going back and modifying" - and "growing" a system description and specification. The team's 

reference to  the use of the DCs as a tool for evaluation is also interesting, since evaluation per se 

was not part of the project, and was therefore completely motivated by the team itself. The 

team also indicated a number of times that  the DCs brought in the users as a focus of the 

modeling process, making them an un-ignorable part of the deliberation. There is, as already 

noted in Section 1 of this paper, wide agreement that the support for the above activities is the 

ultimate purposes of conceptual dialog modeling. 

Modeling in general, and conceptual modeling of computer based implementations in 

particular, are typically "disturbingY in the sense that constructing such models involves a series 

of decisions about what details to  neglect. Dealing with abstraction can easily create 

dissatisfaction and frustration. In this light designers' emotional responses to  the DCs are very 
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relevant and rather interesting -- seventeen mentions reflected various forms of subjective 

satisfaction with the DCs. The team, members of which took part  in a number of system 

development efforts before, expected the DCs to be "ritualistic* like other conceptual design 

tools. In fact, they expressed surprise that the DCs were actually advantageous and valuable, and 

that they actually used them during later stages of design. 

In light of the earlier discussion of UIMS, i t  is interesting that another frequent comment of 

the team was with respect to the relationship between the implementation and conceptual designs. 

It occurred to the team that  the DCs capture the essence of the menu in a convenient fashion -- 

captured in three unsolicited mentions. In fact, two are categorized under design generation in 

the logical stage. 

One area where conceptual modeling has become the norm is database design -- sound 

database design begins with a logical data  model. Experiences tha t  can fuel similar development 

in the area of dialog design are still under-reported. An interesting exception: according to  its 

developer, Fredrik Brooks, IBM System/360 job control interface (the notoriously unfriendly 

JCL) has assumed such a bad reputation because i t  lacked a clear conceptual basis [5]. Although 

the analogy between database design and dialog design is appealing, its limits should be explored 

-- how literally can i t  be taken? For example, data  modeling focuses on capturing the underlying 

static structure and typically fails t o  portray dynamic constraints and relationships, while dialog 

modeling must address the  dynamic essence of the dialog process. Are these differences between 

data  modeling and dialog modeling significant? 

The idea of separating logical, implementation and physical models, which has become a 

cornerstone of da ta  modeling seems t o  be directly relevant to dialog modeling, probably due to 

the fact that both apply t o  the process of system development in computerized environments. 

Could a more dialog-idiosyncratic yet generic model, like the  Seeheim Model 1381 (essentially 

Figure 1 - l ) ,  be useful in dialog design? The following section is dedicated to  the discussion of this 

matter. 
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5.2. The Direct Manipulation Benchmark 

The Seeheim model (Figure 1-I), which underlies both UmIS and conceptual modeling, has 

recently become a target for critical discussion (e.g., in 1411). I t  has been argued that the 

partitioning of the dialog task suggested by this view raises more problems than it solves in 

dealing with direct manipulation interfaces, concurrent processing and multiple input output 

channels. Since direct manipulation is probably the most pervasive concept in the contemporary 

scene of dialog design, i t  serves here as a benchmark. In this section we examine the "threat" 

that direct manipulation presents for conceptual modeling of dialogs in general and the DCs in 

particular. 

By way of introduction it should be noted that the notion of "conceptualm can be 

interpreted in a number of different ways. One possible interpretation is that  i t  is an abstract 

representation of the dialog which corresponds to the central element in the Seeheim model. A 

conceptual model in that sense is then realized in a particular syntactical form. A different 

interpretation is in line with the multi-layered modeling approach commonly used in database 

design procedures [46]. According to this interpretation the conceptual or logical model captures 

the structure of the dialog as as close as possible to  the user's functional view of it. Such a 

conceptual model is then translated into a more detailed and more formal implementation 

model, which is translated in turn into a concrete physical model. These two interpretations are 

closely related and commonly used as interchangeable, but there are also subtle differences 

between them. 

Direct manipulation [44] is a principle of dialog design and it  cannot be interpreted in a 

narroweense in either of the above approaches. As far as the Seeheim model is concerned, direct 

manipulation addresses all three aspects of dialog design, namely it  suggests direct gestures, i t  

defines the range of actions available, and it defines the relationship between the visible 

availability of dialog "items' and the applications that  they could be subjected to. From the 

database-inspired perspective direct manipulation conceptually fosters a dialog which centers 

around manipulable objects and identifies what can happen to these objects. At the 
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implementation level it entails the formal identification of objects and the formal specification of 

procedures that  can be applied to them, while in the physical level it implies the design of 

mechanisms for depicting and picking visible objects. 

The role of the DCs in the database-inspired interpretation is somewhat easier to 

understand. From a more theoretical perspective, Section 3.2 demonstrated the clear 

correspondence -- as well as the apparent distinction -- between the DC-model and its related 

implementation models. Moreover, it should be noted that  the examples in Section 3.2 are all 

dealing with direct manipulation interactions. The empirical observations, as reported in Section 

4.2, clearly support that view. One amply supported observation is that  the DCs indeed provide 

a means for effectively communicating information from one phase of the design process to the 

next -- a quintessential service of conceptual modeling. 

The same empirical evidence could be equally construed as supporting the other, Seeheim- 

inspired role of conceptual modeling a s  the guidance for the actual syntactical realization of the 

interface. A directly relevant observation is the correspondence tha t  designers found between the 

DC-based model and the menus, the actual syntax of interaction, tha t  "came out" of i t .  

However, the separation assumption in the core of the Seeheim model is in conflict with the 

reality of direct manipulation. Direct manipulation rests on "semantically rich" application 

dependent feedback, and may suggest therefore a very tight coupling between the syntactical and 

the application aspects of the dialog. Is i t  too tight for meaningful separation? Does direct 

manipulation unveil, therefore, the fundamental limitations of conceptual dialog modeling? 

These somewhat more theoretical problems with direct manipulation persist only if the 

Seeheim model is interpreted too literally and too narrowly. The model can mislead in the sense 

that the user-visible interface is indeed inseparable from the application, and artificial decoupling 

of these two intimately coupled elements may hinder implementation, rather than help it. A 

clear linkage between the syntactical aspects and the application is needed, in terms of bridging 

application requirements and system's appearance. Stated from the vantage point of 
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implementation, for a UGLfS to be able to handle the dialog's syntactical aspects, it necessarily 

depends on the "flow of semantics" from the application. Actually the Seeheim model can be 

looked upon from a different perspective, namely that it explicitly c o n n e c t s  the application and 

the user-visible interface, but suggests that  for design purposes (e.g., a 'cleaner* design), they 

should be discussed independently as part  of the design agenda, but not in an unrelated fashion. 

Figure 5-1 depicts this perception. There is a rather compelling argument for the importance of 

the dialog structure (i.e., the "conceptual modeIn) as the intermediate entity. 

I Application I Appl ica t ion  
I I 
I .................... 
I I Dlalog I I The D C ' s  focus  ------------------ I 

I I 
I Presen ta tLon  I U I M S  
.................... 

F i g u r e  5-1: An Alternative Depiction of the Seeheim Model 

The essence of this argument is tha t  the Seeheim model is a des ign  f r a m e w o r k ,  and the 

actual construction of the dialog may call for differing levels of integration or decoupling. It  

provides a relatively clear and valid agenda for thought about the problem of dialog design, and 

as such i t  entails some partitioning of the overall problem into manageable sub-problems. There 

should be a clear distinction between des ign  -- the clear identification of the environment of the 

system, its role and its functional components, and c o n s t r u c t i o n  or implementation -- resource 

allocation and the arrangement of working modules that  together fulfill the role and functional 

requirements set forth during the design. Such a view identifies very clearly the role of 

conceptual modeling as a design discipline which focuses designers' attention on semantic and 

functional aspects of the interactive system under consideration. 
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6.3. Different Disciplines of Conceptual Modeling of Dialogs 

Generally, there seem to be three typical approaches for designing dialog structures, 

specifically those which focus on a "properu design process, those which prescribe a *properm set 

of dialog attributes, and finally those which provide tools for dialog modeling and analysis. 

Procedural approaches describe sequences of activities that  dialog designers should follow. These 

approaches sometimes use formal or informal representations, but the emphasis is on how to 

approach the design and on how to  decompose the task (e.g., [9], and [29]). Guidelines sets are 

loose collections of principles, policies and rules to be used in dialog design (e.g., [49], 1131, [32], 

[33], [40] and [42]). A HguidelineY advises about the proper conduct for the dialog; for instance, 

"Control should always remain with the user." Analytic methods employ an abstract and 

somewhat formal representations of the interaction, along with rules for manipulating these 

representations. The Dialog Charts and the User Interface Design Environment ( W E )  

1121 belong primarily to this category. 

The UIDE has been presented as a candidate approach for the conceptual design of user 

interfaces. Its intended use -- and for that  matter of any conceptual model -- is to  represent 

conceptual design, to provide an abstract representation of dialogs (i.e., be a basis for a set of 

functionally equivalent interface implementations), provide a specification for a UIMS, a means to 

ascertain correctness and completeness, a means to evaluate the design with respect to  speed of 

use and ease of learning, and provide run time help to the user [12]. 

ULDE is the conceptual analog for the event model of interaction discussed in Section 3.2 

above. Its basic approach is to decompose the description/specification of the dialog into 

autonomous but linked frames which describe: 

1.  Objects and properties, 

2. Actions which can be performed on these objects, 

3. Information required by these actions, and 

4. Pre- and post- conditions for the actions. 

The overall approach is of formal specification, actually formal enough t o  be eventually accessible 

to a Ub1S. 
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UIDE-includes all information and context needed to carry out operations, as contrasted 

with lower level specification syntaxes (such as BhT and ATN), where such knowledge cannot be 

explicitly represented, and therefore cannot be used in interface design and implementation. 

Specifically, p r e  and post conditions schemas are UIDE's means for capturing application 

semantics and represent the evolution of context in system's use. Such a specification is the basis 

for context management, context sensitivity in menu presentation and help functions. UIDE 

decomposes the essence of the dialog flow into paired sets of pre and post conditions of actions. 

UIDE and DCs represent different approaches to  the conceptual design of dialogs. UIDE is 

aiialytic -- it focuses on the details, and its general design philosophy is *bottom-up.* The DCs 

are synthetic -- they focus on "holisticu description, following a "top-down* design process. The 

two approaches maintain the notion of transformation, or the manipulation of dialog 

representations. More formally, a trans formation is a gradual or marginal modification of a 

consistent set of schemas into another consistent set of schemas. Specialization and generalization 

transformations correspond to  the refinement of DC "boxes" into their underlying elements and 

regrouping DC elements into an  aggregate dialog element, respectively. 

In the current state of conceptual dialog modeling a more rigorous comparative assessment 

of these two conceptual design schemes is rather difficult. If one applies superficially the criteria 

of descriptive and usable power as a tentative agenda for evaluation, i t  seems t h a t  the two 

approaches are compatible with respect t o  their descriptive power, while the  DCs seem to  provide 

more usable power, i.e., how convenient is UIDE for end-users specification or inspection of 

dialog design? Further study and research is obviously called for, and some pertinent questions 

are therefore highlighted in the following concluding section. 

6. Conclusion and Further Research 

The Dialog Charts yield high-level dialog description that  is abstract enough t o  be useful for 

more than one implementation technique or strategy. The DCs also combine two types of 

decompositions in the same hierarchy, namely a functional decomposition, which is a common 
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design pr-actice, and a decomposition of parties, which is a distinct dialog modeling requirement. 

They model the functional requirements of the system, capture the sequencing and control of the 

interaction, while clearly differentiating between user gestures (i.e., the inputs) and system 

responses (i.e., the outputs). The DCs are simple and complement other design tools like DFDs, 

ERM in their respective areas of applicability. 

The examination in this paper is comprehensive but rudimentary. Unfortunately, there is 

no well-defined, validated theory to guide the evaluation of the various methodologies and tool 

vocabularies that are used for designing conceptual dialog models. Further research questions are 

clearly raised by this paper, and few key issues are highlighted in these concluding comments. 

First and foremost are fundamental questions with respect to the assessment of conceptual 

design tools. The links in the design chain that  are addressed by this paper are delineated in 

Figure 6-1. In Section 3 the notion of descriptive power has been mainly applied to the outcome 

of the conceptual design, and the DCs were assessed viz. their implementation counterparts. In 

Section 4 the complementary notion of usable power was applied mainly in the context of the ease 

of translating user requirements into a conceptual dialog model. Ideally, both criteria should 

have been applied a t  both ends of the  conceptual design activity. Nevertheless, assessing the 

descriptive power of a conceptual design tool with respect to the universe of user and application 

requirement is a perplexing task -- i t  is premised on the existence ot ,dme "complete* 

classification of user and application requirement. UsabIe power, representing a proper subset of 

the descriptive power, is therefore a close surrogate measure of quality. 

I User /Appl ic .  I \  I Conceptual I \  I Implementation I 
I Requirements I / I Design 1 / I  Deslgn I 

U s a b i l i t y  
Power 

D e s c r i p t i v e  
Power 

- 

Figure 6-1: Process Environment of Conceptual Dialog Modeling 
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As far-as the step of moving from a conceptual design to implementation design, one can 

argup that  given the somewhat mechanical nature of the transformation, assessment of the 

descriptive power at that juncture is conceivably straight forward. Although usable power is 

bounded by the descriptive power, discovering which types and forms of conceptual models 

translate easily into implementation models is an interesting question, which calls for further 

empirical inquiry. 

A related topic is the relationship between use juiness and usability of a conceptual design 

tool in general and the DCs in particular. A study of a single situation addresses usability, 

especially in it somewhat more formal sense, in a rather limited fashion. Not all situations are 

"amenabie* to  the DCs, so the essence of the question is in ascertaining the limits of the tool's 

applicability, e.g., what type of design situations are more *pronem to  dialog charting, or which 

range of applications calls for DC use. It has been commented that  "traditional" data processing 

systems are probably more amenable to  the DCs technique. There is a need for a rigorous 

assessment of the relationship between the variety of tasks and contexts in which tools are used 

and the perceived usefulness of tools. Such an examination will allow the prediction of a tool's 

behavior in a particular design environment, and also allow the designer to select appropriate 

design situations for using the tool. The empirical part of this study is currently being repeated 

with more teams [6]. Ultimately, i t  is going t o  address the concept of usable power more directly. 

Upon analysis of more and varied cases it  will become clearer in which situations the DCs are 

perceived as most valuable. 

Although the target tool in this study is the Dialog Charts, the research is an in-depth 

study of the dialog design process. How do people go about dialog design? What  are the 

requirements for designing dialog structure and control processor components? Ultimately these 

insights will form the basis for a set of assessment criteria to guide the development and 

evaluation of dialog design methodologies, and the development of sounder and more robust 

human/computer interaction. 
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