
AN EXAMINATION OF THE USE OF DIALOG CHARTS

IN SPECIFYING CONCEPTUAL MODELS OF DIALOGS

by

Gad Ariav
Informat ion Systems Area

New York University
90 Trinity Place

New York, NY 10006

and

Linda-Jo Calloway
Information & Communications

Management
Fordham University

Lincoln Center Campus
New York, NY 10023

August 1988

Center for Research on Information Systems
Information Systems Area

Graduate School of Business Administration
New York University

Working Paper Series

CRIS #I85
GBA #88-81

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

Page 1

The conceptual design of user interfaces focuses on the specification of the structure
of the dialog, independent of any particular implementation approach. While there is
common agreement with respect to the importance of this activity, adequate methods
and tools t o support i t are generally unavailable. The Dialog Charts (DCsl vield high
level dialog schemas tha t are abstract enough t o support the conceptual de- . I of
dialog control structures. They combine dialog concepts with widely accepted design
principles, in a uniform diagraming framework. SpecificalIy, the DCs distinguish
between the dialog parties, provide for hierarchical decomposition and enforce a
structured control flow.

-4 clear set of guiding principles for the conceptual design of dialogs has yet to
emerge. In this paper we have elected t o focus on the notions of descriptive power and
usable power, as they apply to conceptual dialog modeling tools. The conceptual
descriptive power of the DCs is informally examined by applying them in a varied set
of examples and relating them to their lower level counterparts, namely
implementation dialog models like augmented transition networks or context-free
grammars. The usable power of the DCs has been examined empirically through a
qualitative study of their actual use by system designers. The Dialog Char t models
were found by dialog designers t o be a useful conceptual design tool, which exhibit the
essential at tr ibutes identified for conceptual models.

Ken Clarr's comments on an earlier version of this paper are gratefully acknowledged

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

08 1 7 88 Page 1

1. Conceptual Models of Dialogs

T h e intensifying discussion of conceptual dialog models is an inevitable result of the recent

consolidation of a dialog management paradigm. This paradigm partitions a system'user dialog

into three linked generic functions: the handling of syntax, the handling of control and the

handling of the applications (Figure 1-1). This conceptualization essentially underlies a wide

ar ray of contemporary dialog models, expressed in various terminologies (e.g., [37:, , Iqj, . . j34', , ;18]. .

[I; , 1381, [19] 1351, 1141 and [16;). The set of dialog concerns is parcelled out as follows: the

s y n t a z defines the valid set of user inputs and captures presentation aspects, including the

delivery of outputs to the user; the handling of the applicationa entails the definition of the

interface t o the required application modules and the passing of information to and from these

modules; finally, the control aspect of dialog management is concerned with the maintenance and

enforcement of the dialog structure, practically defining the set of interaction contexts and the

permissible sequences of user-system activities.

User - System

I
Dialog PiIanagement

Figure 1-1: The Generic St ructure of Dialog Management

Syntax
handling

One implication of the three-partite model of dialog management is t ha t the design of the

dialog structure of a system can be handled somewhat independently of both the design of the

application as well as the interaction style o r implemented appearance of the user interface. A

model of t h e control structure of the dialog is, therefore, a stable abstraction of the dialog: i t

outlines possible sequences of system/user interactions without being bound to a specific

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

- Control
handling

- Application
handling

implementation Con rtely, such a conceptual model of the dialog captures the essential

decisions about the nature of the dialog, decoupled from related dec~sions about, say, the variety

or scope of data management services, or the provision of specific facilities for users'

input output . These models therefore guide the actual implementation of the dialog component,

and allow the examination of dialog designs for correctness, consistency and simplicity prior to

(expensive) implementation [12].

This paper presents and examines a n approach for the specification of conceptual models of

dialog. Although several methods have been suggested for modeling and specifying

humanicomputer interactions, they are generally oriented towards programmers. These methods

typically address implementation aspects of dialog design, and furthermore, they do not directly

support the process of dialog design. The general state of the a r t of conceptual modeling of

dialogs is rather problematic: "While there is nearly universal agreement tha t [conceptual design]

is the most critical point in the process, there is also a nearly universal lack of adequate tools and

iormalisms t o aid the designer a t t ha t taskn (p.314 in [36]).

In developing the elusive notion of conceptual models of dialogs, analogous concerns in the

area of database design provide some useful insights. The contemporary view of database design

clearly differentiates among three types of d a t a models 1461: the conceptual model (e.g., Enti ty

Relationship Model), the implementation model (e.g., Network Model), and the physical model

(e.g., file organization and access method> The essence of a proper database design process is

the gradual refinement of system specifications through the development of a consistent set of

corresponding models (Figure 1-2). Conceptual models capture users' views and outline

fundamental system requirements; these models are ideally expressed in ways which are directly

examinable by users. Implementation models add formality and thereby disambiguate, within the

framework established by the conceptual model, any implementation issues. Xfoving closer to the

realm of computing, physical models further ascertain the feasibility of the system by translating

the implementation model into concrete d a t a and software structures, relating them to available

hardware options. The analogy, it seems, can form a useful agenda for the discussion of proposed

methods for constructing conceptual dialog models.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

08 17 88 Page 3

Figure 1-2: Model Hierarchy in Database Design Processes

By far the most influential conceptual data model is Chen's Entity/Relationship Model

(ERM) 181. Date's critical remarks concerning this model (pp.611-612 in [lo]) anticipate the likely

criticism of conceptual dialog models. In particular, ERM is said to be vague, imprecise, loose

and not well-defined, its definition may not meet all the requirement considered necessary t o

qualify as "true" data model; it is said to be a .thin layer on top" of the much more rigorous

relational data model; tha t i t leaves crucial modeling aspects implicit; and tha t its popularity

could be attributed to the diagraming technique, rather than to the ERM "per s e n . One can

plausibly argue that precisely these deficiencies make the ERM so useful: They directly

correspond to the quintessential attributes of the early stages of the analysis and design of

database applications. The Dialog Charts discussed in this paper were conceived to facilitate

similarly the early stages in the design of dialog structures, and critiques like the above can be

rightly leveled a t them. Nevertheless, the charts seem to provide an effective vocabulary for the

specification of conceptual dialog models and for solving dialog design problems.

-b

The Dialog Charts (abbreviated henceforth as "DCs"), are introduced in Section 2. One

manifestation of the'early formative stage which characterizes the area of conceptual modeling of

dialogs is the lack of commonly accepted criteria for assessing different modeling approaches. In

this paper the DCs are examined with respect to their descriptive power - in Section 3 - and

usable power - in Section 4. The deecriptive power of a conceptual modeling notation, to

paraphrase [16], is the set of dialog situations that can be modeled by the notation, and in turn

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

+
implementation
model

, conceptual
model

physical
model

_,

08 17 88 Pagr t

the set of implementation models of dialog that can be described by the notation. "The larger

this set is, the more powerful the notation" (p.215). Specifically, we study a range of dialog

examples as they are modeled by the DCs, and examine their implementation oriented

counterparts. The usable power of a conceptual modeling notation, in a similar paraphrase,

captures the ease of applying the notation -- it identifies a subset of the describable dialog

situations which are conveniently modeled by the notation. Section 4 describes an empirical

investigation of the usable power of the DCs and their usefulness, as indicated by actual user

experience. The discussion in Section 5 highlights our findings in the context of contemporary

conceptual dialog design issues and relates them t o a n alternative approach explicitly aimed a t

conceptual dialog modeling (UIDE [12]).

2. Dialog Charts -- Notation

Dialog Char ts constitute a tool for solving dialog design problems. The concepts formulated

as the framework for the Command Language Grammar [31] are used in the DCs to identify the

structural elements of human/computer interactions. The design discourse assumed and

supported by the DCs is made of cycles among the basic design activities of goal elaboration,

design generation and design evaluation, until a satisfactory specification is found : 2 6] . Finally,

the types of control flows in the DCs and their diagramatic nature correspond to some key

notions of the Syntax Char ts [23]. A more complete discussion of the DCs viz. its underlying

"ideologies" is included in (21.

The principles t h a t define the adequacy of a conceptual data model seem relevant in the

discussion of conceptual dialog models. Specifically, a conceptual model in our context should

facilitate the identification, examination and discussion of concepts t h a t are useful in an informal

discourse about the world surrounding the application. I t should provide a set of corresponding

symbolic object representations; a set of rules which define proper composition and linkage of

these notations; and a set of operators for manipuiating those symbolic objects and their

compositions [lo]. The DCs a re correspondingly made of diagramatic elements tha t are

structurely linked together, and in their development they are subjected to a set of permiss~ble

manipulations, i.e., the rules t h a t govern the refinement and decomposition of a chart .

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

Page 5

Six distinct constructs make up the DC notation. In order t o facilitate reference and

manipulation of these const,ructs, they are associated with sets of graphic symbols (Figure 2-1)

Specifically, the constructs are:

1. A decomposable user activity, i.e., a composite gesture (indicated by a box)

2. A non-decomposable user activity, i.e., "terminaln (an oval).

3. X decomposable system activity, i.e., a program (a double box).

4. X n o n - d e ~ o m ~ o s a b l e system activity, i.e., a reasonably "closed* and well-defined
subroutine (a double oval).

5 . An activity tha t combines user activities and system activities, i.e., a task or a method
tha t involves user and system interaction. Such tasks could be either user-led or
system-led (indicated by different combinations of a half single, half double box).

6. Direction of flow (indicated by a n arrow). The basic flows permissible are selection,
iteration, sequence and case. These can be combined arbitrarily.

The arrows represent the directions of the sequences, and thereby play a critical role in the

DCs' capacity to explicate structure. By limiting the repertory of flows to those commonly

associated with structured programming approaches, a measure of desired quality is enforced on

the result of the design. Specifically, structured flows can aid in identifying robust dialog logic

and modular dialog design. Similar arguments have motivated the inclusion of these constructs

in lower levels of dialog modeling (e.g., 131). Junctions in the diagrams represent decision points.

and are resolved by whomever holds the initiative a t t ha t point. T h e party (i.e., either user or

system) whose range of actions is specified in the routes tha t branch o u t of the junction holds the

dialog initiative and selects the a c t u ~ Aalog path to be followed. This approach requires the

adherence to homogeneity const ra in t , namely tha t all the paths tha t emanate from a junction

will be either all user-led o r all system-led. I t also brings ou t the fundamental decision on the

assignment of dialog initiative, and explicitly calls for its resolution.

The major manipulation in dialog charting is the transformation of a n element in a DC into

a detailed chart. T h e range of these manipulations and the associated rules have been kept

intentionally limited, t o preserve simplicity. Specifically, any box can be further decomposed. It

can be decomposed into more boxes o r into boxes and ovals, o r in to ovals. However, once a box

is either "all user" (i.e., single-lined box), or "all system* (i.e., double-lined box), it can only be

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

Page 6

C o n n e c t ~ o n s y n o o ~ s a r e itnes with arrows: -+

COiu7F;Ci S'RUCTURES, given I:: user-Gnry W D o l S

s e c u e n c e iterailon ,-,

____*(F-+ -

Figure 2-1: Dialog Charts notations and icons

decomposed into more boxes and ovals of the same kind. Ovals are atomic and can't be further

decomposed. An additional restriction, the homogeneity constraint, applies to the choice of the

first ("left-most") element in the decomposition of user/system activities or "mixed par tyn tasks.

Specifically, this leading element has to reflect the definition of the original task as either user-led

or system-led. Therefore, for instance, the decomposition of a user-led task should be led by (i.e.,

"start with") only user activities (either boxes or ovals), o r other user-led mixed-party tasks. The

purpose of this constraint is to facilitate the inheritance, consistency and homogeneity of dialog

initiative among the various levels of specification and decomposition.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

0 8 17 88 Page 7

T h e specification of error handling procedures within the general structure of a dialog tends

to obfuscate designers' and programmers' views of the underlying structure. T o avoid this

confusion, the DCs follow the notions embedded in the Syntax Char ts of Jensen and Wir th

'23; and support the concept of designing only the permissible dialogs. Only the accepted,

proper flows through a dialog are considered. Error handling procedures are added to the DCs as

annotations a t the appropriate system level. If a procedure applies throughout the system it is

stated a t t he highest level of specification, and if i t applies only t o a specific junction it is noted

a t t h a t junction only.

A classical issue in design, and especially in conceptual design, is how deeply should the

structure be decomposed. A related issue is when a n element is declared as a terminal rather

than as a further decomposable. There is no clear stopping rule for the elaboration process.

Design common sense, however, indicates tha t the process should stop either when further

decomposition does not offer new relevant insights, or when there are no more decomposable

dialog elements (i.e., "no more boxesu).

The Dialog Char ts belong primarily to t h e category of analytic methods for dialog design,

namely those methods which employ an abstract and somewhat formal representation of an

interaction. The DCs focus exclusively on conceptual dialog modeling, and address its essential

aspects by integrating simple visual concepts, structured flows, hierarchical decomposition and

distinguishable dialog parties. While no single tenet of the DCs is in itself novel (as clearly

indicated by the citations earlier in this section), their integration in the context of dialog design

is. The Char ts were initially developed in 1982 and were used since then in dozens of system

development projects where interactive decision support systems and online database systems

were designed. The DCs are typically taught and demonstrated in about an hour of class

instruction, during which sufficient proficiency is gained. T h e work of selected teams of designers

has been studied more carefully as par t of an ongoing research project on the patterns of actual

use of the DCs [6] . .4 summary of this research is included in Section 4 below.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

Page 8

3. The Conceptual Descriptive Power of the DCs

The descriptive power of a notation for the conceptual design of dialogs ultimately relates

to the range of dialogs situations which can be described by the notation. Obviously complete

enumeration of dialog situation is a formidable task, if a t all feasible, so current discussion of

descriptive power has to resort to illuminating examples. In Section 3.1 two common dialog

situations ar- modeled, demonstrating primarily the variety of conditions in which the DCs are

applicable.

A conceptual model should also be the broad generalization of "allM of its corresponding

implementation models, and ideally generalized to the point that it is independent of any specific

implementation model. At the same time, it should provide a concrete but semantically rich

framework upon which the implementation models will be defined -- in principle the result of the

conceptual design should directly provide the basis for the "first iteration* in the subsequent

implementation design. Evaluation of this aspect of the descriptive power of the DCs can

therefore be accomplished through a critical examination of the mapping between a conceptual

model and corresponding candidate implementation models. This is the subject of section 3.2

below.

3.1. DC Models of Dialog Situations

The two cases in this section demonstrate the use of the DCs in the design of new dialogs or

the analysis of existing ones. First, the DCs are applied to the conceptual design of a LOGIN

command in a Military Message System (Section 6.4 in [21]). In a second example the DCs are

used to model and describe the structure of basic dialog of the popular Lotus 1-2-3 product. For

demonstration purposes this section deliberately focuses on simple examples.

In the LOGIN task a user enters into a dialog with a computer in order to establish a

session 1211. The specific scenario is as follows: The user enters his or her name. If the system

doesn't recognize the name, the user is prompted to try again. When the user enters a valid

name, the system prompts for a password. The user gets two tries to enter a correct password

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

08,17 88 Page 9

and proceed. If an incorrect password is entered twice, the user must begin the whole command

again. On receipt of a correct password, the user must select a security level for the session,

which must be no higher than the user's security clearance. 'If he enters a level that is too high,

he is prompted to reenter it, until he enters an appropriate level. If he does not enter an

appropriate security level, he is given the default level unclassified.' (p.44 in [21]). Note that the

specification is somewhat ambiguous with respect to the dialog logic - there are two consequences

of entering an inappropriate security level.

Figure 3-1: MMS LOGIN Session, Topmos t level DC

The DCs for this scenario are provided in Figures 3-1 through 3-3, with each figure

representing a different level of system elaboration. Figure 3-1 represents the topmos t view of

the session. It allows the designer to partition clearly the overall flow into well defined concerns.

get a valrd
user name ,

In some cases, the first level of elaboration may be enough. However, in order to gain more

insight into the LOGIN procedure a further elaboration should be worked out. Figure 3-2

includes two successive levels of elaboration for the box numbered 2 in Figure 3-1. In another

example, Figure 3-3 represents a second and third level *explosion* of the box numbered 3 in

Figure 3-1.

- level 3

1

get a valrd
password

2
'

Note how the use of the structured DCs forces the designer to disambiguate the verbal

description of the session. Ln the DC, the interpretation is explicit: The user is either allowed to

indicate no security clearance, or is allowed to enter a valid security clearance level.

establish
secur~ty session

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

08 17 88 Page 10

' i i ~ncorrect, t ry
one more time

-+

enterand check

Figure 3-2: Levels 2 and 3 DCs for "Password Getting" subtask

i

enter and cneck
password

The complete set of DCs for the LOGIN session shows which system modules and

subroutines need to be programmed, those in double-lined symbols. The collection of the double

boxes and ovals therefore serves as a preliminary blueprint for the detailed design of the

applications and the application processor. If, however, all double boxes and ovals are removed

from the charts, the remaining set of connected user actions (i.e., the single-lined elements)

constitutes a broad definition of the user interface syntax, as i t practically identifies the complete

valid user-generated syntax.

I 4 +

A (partial) description and analysis of the popular spreadsheet package 1-2-3 (by Lotus

Development Corporation) is conducted in Figures 3-4 through 3-6. In Figure 3-4 the top level of

interaction is specified, indicating clearly the extent of choices available to the user. Figure 3-5 is

an explosion of the user-led task labeled Commands in Figure 3-4, highlighting the choices

available to the user a t that stage. Figure 3-6 further elaborates on the structure of the function

Copy that has been offered to the user a t the Commands level dialog.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

Page 11

/ request an

L3 A / I valldate the 1 /
security level y 3.3 1"

/ request 1 set security 1 '(unclassified level unclassified +

/ entera \ _+I(checklevel / / , +
tor valldlty

a lower security

Figure 3-3: Levels 2 and 3 DCs for 'Security Establishing* subtask

This analysis of an existing dialog highlights some interesting observations about the DCs.

Gs far as the explication of the extent of control goes, the three figures are visibly different - the

taller the figure, the looser is the structure, and the user has to confront a wider set of choices.

This in itself is neither 'good' nor *badm, but rather indicates instances in the design where

tradeoffs between freedom and confusion should be evaluated. The structure of the Copy

command is markedly different from the other two - i t is closer to a linear, tightly controlled

sequence, with relatively limited extent of user choices in carrying out the task involved. The

DCs also render explicit the lack of 'structuredness' in the sequence of activities that leads to

quitting the session (the *extrae exit from the bottom box in Figures 3-4 and 3-5). Again, the

DCs bring the unstructured sequences to the designers attention, adding it to the design agenda.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

Enter
+ Information

4 thr0;gh the - - spreadshee! , -
7 I

Select a
-+ function key -

Commands -

Figure 3-4: DCs for Top Level Lotus 1-2-3 Dialog

'-c wonsheet - ,.-. I DISP~Y 1' : 2

- / ,, command '
u , I chores 1 1 -' Range

' 3

- Move I-
I 5 5 1

Figure 3-5: DCs for Lotus 1-2-3 Command Dialog

The final decision whether t o retain t h a t structure or "correct" i t is a question the designer has

to ultimately decide upon.

Center for Digital Economy Research
Stem School of Business
\Vorking Paper IS-88-8 1

Page 13

Figure 3-6: DCs for Lotus 1-2-3 Copy Dialog

Another comment relates to the wide range of implementation possibilities addressed with a

DCs-based model. As it turns out, each of the three dialog models in Figures 3-4 through 3-6 is

implemented in a different interaction style: the toplevel dialog is implemented as an

unprompted interaction, the Command follows primarily a menu-style interaction, with an

alternate unprompted and abbreviated style, while the Copy command is implemented in a

Question/Answer style, with direct manipulation being an optional type of user's gestures. The

actual decision about interaction style is probably affected somewhat by the fundamental

properties of the dialog as they are picked-up by the DCs, but the determining factor is a set of

assumptions about the user. Otherwise, the sharp difference between the implementation of the

toplevel and the Command dialogs cannot be easily explained.

i

5 3 21
t +

A more rigorous examination of the DCs is obviously called for. In the following section the

issue of descriptive power is further discussed with respect to the correspondence between

conceptual and implementation models of dialog.

From
range.

5 3 1

3.2. Relating Conceptual and Implementation Modele

In this section we reflect on the extent to which a conceptual model expressed as DCs

provides a generalized description of its semantically corresponding implementation models. The

core of the discussion is a critical examination of the mapping between a conceptual model and

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

08, 17 188 Page 14

corresponding candidate implementation models. Such an examination may indicate any

limitations on the extent of correspondence between the two levels of modeling involved. This

"correspondence criteria* is clearly only a necessary condition for a conceptual modeling tool, b u t

the examination in this section also addresses the complementary issues of communication

effectiveness and description efficiency. The discussion further highlights the visible differences in

the way conceptual and implementation models express the same dialog situation.

A single example is featured in this section, adopted from [16], for which four models are

formulated, using in turn a contextfree grammar (BNF-based), an ATN, an event model and the

DCs. Methodologically we use Green's article 1161 as the broad definition of the realm of

currently acceptable methods for describing dialog control. The task in this example is the

"rubber band" drawing of a line on the screen. This example is particularly interesting since it

takes the issue of conceptual dialog modeling deep into the *territoryu of user interface

implementation - the task is an exercise in direct manipulation that is typically described in

terms of specific user gestures. In this type of drawing, a line is anchored a t one point, and

extends to the current position of the cursor. I t moves with the cursor until a user gesture nails

i t down and fixes it. Figure 3-7 includes a DC model for the rubber-band dialog. It only

provides a toplevel view of the interaction, which seems to fit the level of complexity (or the lack

of i t) in this specific user/system exchange.

adiust line
to cun-ent

Figure 3-7: A DC Model of the Rubber Band Line Task

-*

Backus-Naur Form (BNF) is an example of a contextfree, production rule grammar

end the line
and the
sequence 3

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

-+

i

initiate
rubber-bmd
sequence 1

I

r + 4
C J

anchor first
point in line

2 A

08'17 88 Page 15

Languages are described with this grammar as a set of rules, each specifying a substitution of a

composite term by its constituent terms. The chain of substitutions eventually results in a fully

specified string in the language [21]. Since dialogs are carried out through preordained

expressions ("languages" of sorts), this type of grammar h~ an obvious appeal in the modeling of

dialogs.

Reisner's Action Language Grammar (ALG) [39] is a characteristic methodology for analytic

dialog modeling. It uses a BhT notation to define a formal grammar that describes actions taken

by the user while interacting with the system. ALG could not serve as an implementation model

for DC-based conceptual model since they are fundamentally incompatible - ALG only deals with

one par t of the dialog. The Multiparty Grammar [43] extends the Action Language Grammar,

and allows the designer to explicitly identify human actions and computer actions. The model in

Figure 3-8 is an implementation model of the rubber-band dialog, expressed through a multiparty

dialect of BNF.

line + b u m oldgoint

Context-fm grammu for rubber band line cumpie.
mdgcnnt -b move adqolnt

1 buuon

e n d p n t 4 move d2 endpint
I button d3

Rubber h n d line example with pmgnrm d o n s . dl -+

{ record fint point }

Figure 3-8: BNF Models for Rubber Band Line Task (from [16])

State transition $diagrams are used for describing finite state machines, and have been used

for quite some time to model dialogs 1371. When defining an interface with these diagrams, the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

08 17,88 Page 16

nodes of thk network correspond to different states or modes of the interaction. .Arcs linking

nodes have one or more input events, output events, or application actions associated with them

'19:. This basic form of transition networks has been augmented in a number of different ways

wi th a variety of additional features, forming what is referred to as augmented transition

networks (ATN). For instance, the nodes in ATNs may also represent subnetworks, recursion

and calls to other nodes [21j [22], Super etates [9], and uubconvereattonu 1481. Figure 3-9

represents the rubber-band drawing task as an ATN-based dialog model.

n move

2. record f~rst potnt
3 draw line lo curren: postlion
4 record SeCOnG point

Exampie rransit~on diagram with progrsm actions.

acl~onl . record f~rst po~ni
action2: draw l~ne to current position
actton3: rpcord second point

Exarnpie transitton dragram with aNons on arcs.

Figure 3-9: An A T N Model for Rubber Band Line Task (from [16])

The event model of dialogs decomposes the interaction into independent descriptions, each

of which encapsulates a single, somewhat self-contained activity of the user (e.g., a gesture), the

control processor, or the application [16]. As befits an implementation model, the event model is

strongly associated with a UlMS approach in which active event handlere are responding to

identified events by invoking the associated procedures to mprocess the eventm. Such event

processing can compute, generate events, and activate o r deactivate other event handlers. An

event handler is defined by the set of events i t can handle, so activation and deactivation of a

handler practically determines the set of permissible events - all the events recognized by the

concurrently active handlers a t a given point in time.

The event handler in Figure 3-10 outlines an event model for our running rubber band line

example. The TOKEN section in i t associates external events with event handling procedures,

Center for Digital Economy Research
Stem School of Business
\Vorking Paper IS-88-8 1

08/17/88 Page 17

the V-AR section defines the local variables, the repeating section EVENT defines the event

handling procedures themselves, and the N T section sets up initial conditions. The disjoint

nature of an event model makes it a natural choice for modeling a concurrent processing

environment, or multithreaded dialogs [16].

T O E . ,; E W auaon 30 {
3unon 3uaon: :n! 8 2 ~ ' :

- ,- sue -- J -ZY
move 3tove: ~ m z 6.-;f I;uc k c - c * m c w s ~ o o n :

E v E ? ; T Move 90 {
3: suu -- i T i v

y a w ime h r n &I a c z m r miuon:
Elw IF:

2 .

- - - - -- -

Figure 3-10: An Event Model for Rubber Band Line Task (from 1161)

In general i t seems that BNF, ATN and event models address the implementation design of

dialog control, and therefore do not directly compete with the DCs in the 'conceptual arena.'

They rather complement each other in the overail process of interface design. Nevertheless,

contrasting the DCs with the three other modeling approaches illuminates some key concerns in

the conceptual modeling of dialogs. The following comments highlight two of them, specifically

the explication of dialog semantics and dialog control structure, and the formulation of models

with varying levels of detail.

BNF-based models describe all possible grammatically valid dialogs. As noted by [21],

BNF-based representations can not explicitly represent control structure. BhT-based models,

hence, do not differentiate among meaningful dialogs and dialogs tha t are meaningless to the

system or user [39] - the meaning of the dialog, i.e., its semantics, have to be handled elsewhere

This is resolved most naturally within a DGbased conceptual model: with their explicit

specification of interaction context the DCs constrain the dialog description beyond solely

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-81

Page 18

grammatic validity. Although the control structure is explicit in an ATN, it is nevertheless

obscured by implementation-related details and large numbers of arcs that can form an

unconstrained network (as opposed to a structured network). The augmentations in the ATNs

are efforts to use them to capture more of the semantics and complexities of the various dialog

components. The event model explicitly manages these aspects of dialog control, but the details

of the control structure itself are U b ~ r i e d Y disjointly in the actual event handling code. Event

handling approaches result in descriptions of :lalog that are difficult t o examine observed, and

input/output languages that cannot readily be determined without inspecting the actual code of

the event-handler itself. The dialog's control structure is not directly observable and has t o be

pieced together outside the model. The conceptual design, as expressed in Dialog Charts, makes

the control structure of the interaction explicit. It is important to notice that the basic flow,

structure and connectivity of the design are apparent even before any particular interaction

syntax is specified. Moreover, as we saw in the Military Message System example in the previous

section, a detailed specification of interaction syntax can easily be derived from the DCs.

The Dialog Charts also directly address the issue of high level modeling of the control

structure by allowing the designer to defer decisions about specific interaction sequences and

applications interface issues. Approaches that emphasize formal accuracy cannot easily

accommodate such deferment. Both the problems of obscured control structure and of

overwhelming implementation details become more acute when a more complex task is analyzed.

Consider a slightly more complex example, extending the line drawing into a rubber-band

polyline drawing with cancel and backspace options. The rubber-band polyline drawing itself is a

collection of individual lines that are created as rubber-band lines and connected end-point to

end-point. Figure 3-11 presents functionally equivalent DC and ATN models for this task (the

ATN model is directly quoted from 1161). The DCs are more abstract than the ATNs and

therefore they incorporate the options easily in a higher level abstraction. As has been shown,

this structured diagram can be decomposed to specify any particular interaction syntax that is

desired.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

Page 19

action* record first point
act1on2 o r w tine to current wsltion
act1on3 recora next mlnt
action* erase lasit polnt
action5 erase mlyline
act1on6 return poryline

tnl . count -1 : return(true):
tn2: munt:-counttl : returytrue);
tn3: tf munt - i men

rerum(fa!se),
else

mum :- munt-1;
retrrrn(nw):

Polyline dialogue with 0u)eeL

sequence ! IJ
i-

d ll

/ record

Draw segment I -

3 to current
cursor 2.1

record first'
i' point

1

Figure 3-11: ATN and DC Models for 'Polyline' Task

I sequence

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

I

Page 20

4. T h e Conceptual Usable Power of the DCs

Against the backdrop of the conceptual descriptive power of the DCs, this section explores

the ease with which designers can employ the charts in conducting system design activities.

Although the DCs appeared to be well received by their users in varied design situations and a

wide range of applications, there was no methodical basis for substantiating this anecdotal

evidence. Apparently this is not an unusual situation: "Most people who have built tools for

interface development claim that these tools enhance designer performance. The authors are not

aware of any empirical evidence to support these claims* (p.233 in 1201).

The empirical investigation reported in this section was explicitly aimed a t answering the

questions of h o w des igners a c t u a l l y u s e c o n c e p t u a l des ign t o o l s and therefore w h a t

m a k e s d ia log des ign too l s useful. In the absence of existing firm theory of the use of

conceptual dialog leling tools, the immediate need was the development of a more concrete set

of research "concerns* or quehbions that operationalized the notion of usefulness or the essence of

"usable power* [16]. The corresponding questions that eventually guided our study were:

1. For what meaningful design purposes are the DCs used?

2. In what stages of system development do designers find the DCs to be helpful?

3. W h a t are the perceived effects of the DCs on the p r o d u c t s or results of the design
effort?

4. What are the perceived effects of the DCs on the nature of the design process?

5. How do designers feel about the DCs and about using them? Have any a t t i t u d i n a l
patterns developed towards the DCs?

These questions are meant to encapsulate the notion of the tool's usefulness [6]. The overall

vantage point is that of the designer, and therefore subjective terms such a s 'meaningful,"

useful, *perceived,* or *atti tudew are to be interpreted from the perspective of a designer who

actually uses the tool, the DCs in this case.

The research strategy adopted in this exploratory study has been qualitative, as outlined in

Section 4.1. In seeking valid responses t o the above questions our approach draws primarily on

concepts of grounded theorv :15], [27], qualitative analysis methods [30], and qualitative content

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

analysis [25]. In Section 4.2 we present the results of applying this methodology in studying a

team of designers who had just concluded a system development project in which they used the

Dialog Charts.

4.1. R e s e a r c h Methodology

The overall research design was a field experiment [28], which occurred over a period of

about three months. The experimental task was the analysis, design, development and

demonstration of an interactive database application. The application's scope, complexity and

development mode were realistic -- a team-based development setting of a system of about 1000

lines of high-level code. The team was made up of 4 undergraduate students in their senior year,

all Information Systems majors, who were enrolled in a course on the analysis and design of

interactive systems. The course included a review of various methodologies (including the DCs)

for disciplined design of information systems and databases, and design teams were generally

expected to apply these tools. Participants' inexperience (relative to practicing information

systems professionals) does not seem to limit the generalizability of the results. In the era of

end-user computing many designers of interactive systems, especially those engaged in specifying

the decomposition of the task, are not thoroughly trained in systems design. As it turned out,

most of the participants took up jobs tha t required them to participate immediately in designing

interactive systems.

The basic premise of our approach to da ta collection and analysis is that to be "usefulw to

the designer, a tool and/or methodology must be used, aid the designers in achieving their goals

and objectives, and finally be perceived as being useful. If i t is not perceived as useful, there is

no re&n to suspect that i t will be used again regardless its actual benefit [I l l . This translates

into the assumption that inferences can be made from "revealed perceptionsw about the usefulness

of the target tool as they surface in the designers' retrospective reflection on the design and

building of their system -- after the tool has been actually used.

The main objective while capturing the da ta was t o solicit designers perceptions of the DCs

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

Page 22

in an unobtrusive fashion. Following the completion of the development of their system, the

team participated in an open-ended, semi-structured and funneled interview with a hidden-agenda

:7!, [17], [45]. In such an interview questions are prespecified, but the answers are not, and the

broad range of questions masks the identity of the actual topic under study. The funneled

interview begins by asking questions about a general area or domain, and then pursues areas that

have been mentioned by the interviewed team more specifically. The results of this approach are

tha t each issue on the interview's hidden agenda is approached with the broadest and most open

questions first. These are followed by more specific questions, often rephrased according to the

specific language used by the informants.

The interview provided, therefore, a loose structure within which the designers related to

their system development experiences. The first segment of the interview established the overall

context (i.e., What does the system do?), and then focused on the work tha t the team

accomplished in the various stages of system development -- from conceptual design all the way

to actual coding. The second segment of the interview raised two issues. It started with a

discussion of the ~ r o b l e m s encountered in specifying, designing and implementing the dialog. It

then brought up the topic of design tools, and future intentions regarding tools tha t have been

used. Throughout the interview no direct focus was placed on the DCs in order to preserve the

hidden agenda, and to guarantee that information about how the designer used the DCs was, to

the extent possible, voluntary. The interviewer was an outsider who did not participate in any of

the previous stages of the experiment itself.

The audio-taped interviews provided the archival raw data for analysis. Basically,

qualitative analysis consists of progressively reducing and categorizing raw da ta into various

forms of display, i.e., "an organized assembly of information that permits conclusion drawing*

[30]. The analysis is an iterative process of da ta reduction, display, and conclusion refinement.

In this way, the data which a t first seems vague and inchoate gradually becomes more explicit

and "grounded" [IS]. Initial da ta reduction of the taped interview was achieved through a

structured content analysis; i.e., semi-mechanical tracking, extraction, transcription and

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

08117~8% Page '73

categorization, of explicit "mentions" of the DCs [24]. A ment ion, the basic unit of analysis in

this study, is a group of utterances made by the designers about the tool, within a design context

and categorization. A change in the broad context or major category signals the end of the

mention. Mentions occurred in sequences, i.e., one or more mentions that are contiguous. If a

sequence arises spontaneously, i t is an unsolicited sequence of mentions, while if i t is triggered by

a follow-up probe, it is a solicited sequence, and all its mentions are therefore solicited as well.

The mentions were encoded by studying their relationship to the concept of usable power,

as operationalized by the set of five research concerns listed earlier. These concerns were further

differentiated into a set of seed categories, representing a concrete contextual framework for

categorizing the empirical data. The initial set of categories used in this study is summarized in

Figure 41. The formal statement of seed categories makes explicit assumptions and expectations

about the nature of the researched phenomena [30]. The seed categories in this study were

adopted from the "parent disciplinesR of systems design and software engineering.

Q1. Purpose
Gathering intelligence, goal elaboration, design generation, design evaluation,
communicat ion

Q2. Stage
Documentation and analysis, logical/conceptuaf design, implementat ion design,
programming/coding, tecrting

Q3. Product
Modularity, control structure, data structure/architecture

Q4. Process
Design philosophy, constraints

.,
QS. Attitudinal Patterns
Learning, task performance, subjective sat is faction, retention, errors

Figure 4-1: The Original Seed Categories

Seed categories are further differentiated during the da ta analysis, as categories and data

are subjected to constant coinparison with new information [15]. The encoded mention frames

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

Page 21

either fit in any of the existing categories or a new category is declared. In the process, the initial

categories are partitioned or combined, new ones are added, and new properties and value sets are

noted as suggested by the mentions that are encountered during data collection, reduction and

analysis [30]. A mention can relate to more than one question or category. Such an overlap

might represent a complex perception or a link among the categories. As far as possible, the

findings are articulated by formulating the data-context relationships so that the data appear as

independent variables and the context targets appear as the dependent variables [25].

The basic assumption is that mentions, because of the unobtrusive and free-response

interview form, faithfully represent and reveal the perceptions of the designer. Making inferences

from mentions about actual use is problematic, though -- the linkage between mentions of use

and actual usage is not directly observable. For example, i t is possible tha t some users will not

voluntarily mention using the DCs. In this case we assume that although the DCs were used, it is

unlikely that they were perceived as either useful or as a significant part of the development

process.

The empirical research reported here is in a sense a case study of a single dialog design tool

and a single team of designers. Even though a case study is scientifically "weaker", it

nevertheless rich and unconstrained, as befits the preliminary state of understanding dialog design

processes.

4.2. The Usability of the DCs

The summary of the findings is presented in three complementary fashions. Following a

brief discussion of the broad distribution of mentions into categories, we consider the observations

category by category. Finally, we comment about the observed relationships among the

categories indicated by the data.

In all, there were 49 mentions of the Dialog Charts throughout the interview. Ideally, we

wanted mentions to fit unambiguously into only one category. It turned out that the

identification of such mentions often led to mentions of very few words tha t were stripped of

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

Page 25

meaningful-context. Therefore, we operated under a more relaxed guideline that a mention

should provide enough context to be understandable in itself, and yet should fit, i.e., be coded,

primarily into not more than two categories. The 49 mentions received 80 such codings. We

considered a mention as "reliably coited" if there was no disagreement about the applicability of

the codings, although there might be other codings that could apply. A "coding consensus*

among the researchers was sought in the cases where mentions could be interpreted in more than

one way.

Figure 4-2 summarizes the mentions of the DCs by the team and underscores the richness of

the information that is under study. Although no major categories had to be added (c.f. Figure

4-I), some new secondary categories have emerged (marked with an asterisk in Figure 4-2); Ln

particular, the DCs were mentioned in connection to system maintenance, a system development

stage that was originally thought to be far removed from a conceptual design tool; user

orientation was identified as another characteristic of dialog design products, and task clarity

and comprehensibility was added to attitudinal patterns. All third-level categorizations have

been suggested by the empirical data. They basically refine their corresponding categories and

give them a more precise and concrete interpretation. Since the analysis reflects a single site, no

categories are being dropped, although some are currently 'empty." For instance, there was no

mention of the use of the DCs for the purpose of intelligence gathering.

The 49 mentions occurred in 23 sequences (Figure 4-3). Counter to our expectations, the

extent of mentioning the DCs in the two segments of the interview was similar. The total

number in the first segment -- largely unsolicited mentions -- were 27 mentions and 14 codings, in

11 sequences. During the second segment, in which somewhat more direct questions were posed,

there were 22 mentions in 12 sequences, which were coded into 35 categories. Figure 4 3 shows

the mentions, sequences and codings grouped according to whether or not they were solicited.

Interestingly, Figure 4-3 does not reveal substantive disparity with respect to codings in

each segment, or along the solicited/unsolicited dimension. Our original emphasis was on the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-81

08 '17,'88 Page 26

Prrcose -
Intelligence
Goal elaboration

Goals Into sub-goals
9es:gn generation

DCs as step before pseudocode
Queries and prompts
Menus
Des:gn:ng the 'user :nterfacem
User 0rlentat:on In Interface design
Error processing
Codrng

Design eva1uat:on
For completeness
Menu structures
Fiow of control

Communication
To later stages
iogrcal to physical
Logical to coding
Logical to maintenance

Staqe
Documentation and analysis
ioglcal or Conceptual design
Phys~cal/Implementation design
coding
Testlng
*Maintainance

Products structures
General modulu/hlerarch~al

DCs as a map, diagram
*User orientation to product
Control structure
Data structure/data flow

Process Of design --
Constraints on design

Thoughts forced into something concrete
Help maintain strong control

Philosophy of design
Distlngulsh the parties
Top-down decomposition
Iteration

Attltudlnal patterns
Learning

Dialog Chuts/should have learned value earlier
Recall/retentlon
Tank performance

Time to do m*nus/llttle
Time to do DCs/lots because 'had' to re-do them

*Task comprehensibilrty
Saw all levels of depth
Saw control structure

Subfectzve satisfaction/dlssatlsfact~on
Intend to use Dcs
Surprased. because tool useful
AdJectlves valuable. rmportant. etc
Confident In code

totals by sub-category
Unsol Sol:c

0 2
2

6 9
2
1
3
2
4
2
1

1 3
1
2
1

5 4
2
4
2
1

Figure 4-2: Tabulation of Mention Codings

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

Page 27

Sequences Mentions Ccodings
------------------.--.-----.--

Segment I probed 2 13 18

unprobed 9 14 26
- - - - - - - - - - - - - - - - - - - * - - - - - * - - - -

Segment11 probed 4 14 25

unprobed 8 8 11
------------------.-----------

Totals 23 49 80

Figure 4-3: Tally of sequences, mentions and codes by interview segment

authenticity of unsolicited mentions. At least for this team i t seems that the intensity and nature

of reference to the DCs were not sensitive to the solicitation or the lack of it. One possible

interpretation is that the team has formed fairly stable opinion about the DCs, and therefore

related t o them consistently across the different modes of evidence gathering. An alternative

interpretation is that the unobtrusive funneling was not actually so unobtrusive. The wide

dispersion of the mentions through the conversation and abundance of references to other tools

and aspects of the design process make the latter interpretation rather implausible. Asking for

clarification of the information by soliciting with a probe led though to relatively longer

sequences of mentions, which is not unexpected.

Distribution of Codings

By far, the majority of the mentions related to purpose (29 mentions) and sttitudinal

patterna (30). With respect to the purpose of use category, Dialog Charts were mentioned

most frequently in the context of deeign generation (15 mentions). While this could be expected,

somewhat unexpected was the intensity of mentioning the use of the tool for the communication

of design information (9 mentions). Although communicating is a characteristic of a usable

development methodology 1471, there was no requirement that the team use DCs as a

communications vehicle.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

08/17/88 Page 23

The 30 mentions categorized under a t t i t u d i n a l p a t t e r n s came as a surprise: subjectitre

s a t i ~ faction was the context for 17 of the mentions. Eight of these referred to the DCs as

valuable and important, while 4 referred to the surprise of the team and the usefulness of DCs.

Needless to say, no such information was requested in the interview.

Category by C a t e g o r y S u m m a r y of M e n t i o n s

In the following paragraphs, the content of mentions in each category is summarized and

illustrated by examples. The mentions are reproduced in their entirety in [6] , and the numbers in

the parentheses following mention quotations refer to the mention sequence number in the format

of (team-id.Mention-seq).

P u r p o s e : Goal elaboration includes decomposing goals into potential sub-solutions or

subgoals. The team did not mention their process of Coal Elaboration until late in the interview,

when asked explicitly about dialog design. There they described using DCs to *differentiate

between system -- response or function, and user response or function, or something that 's a

combination of both* ((3.29). The products of goal elaboration are the functional requirements of

the system, as paraphrased in the following mention:

- And you s tar t out with the very simplest, the hightest level ... break tha t
down, and you go down and down and down until you hit the lowest level.
You hit every possible situation.

- You can't explode anymore.
- Until you don't need to prompt the user for anymore information.
- ... and you can just perform the necessary functions. (C.30)

Design generation was the most frequent context in which the team mentioned the DCs.

More specifically, the DCs were mentioned in the context of designing queries and prompts,

menus, the "user interface*, the control structure, the code, and error handling.

Early on the team mentioned designing queries and prompts in conjunction with a user

orientation towards eliciting necessary details from a user during system operation:

- ...y ou have to set up queries, or question answer things, whether its menus or

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

Page '39

whatever. Somehow, the system has to egg-on the user, know what I mean?
Lead them into what the system means.

- How the system will prompt you into getting to what you want.
- That 's the whole idea behind the Dialog Charts. (C.3)

This context of user orientation surfaced elsewhere in the interview, particularly in

reference to the design generation of the dialog. In response to the question "how did you go

about specifying and designing your interface?* the team answered,

- How you would most feel comfortable if you would put yourself in the user
role.

- That basically came out of the Dialog Charts too. .. (C.28)

One recurring theme in the interview was the surprise expressed a t the usefulness of the

DCs. It surfaced while discussing menu design, in the logical design phase of the interview: 'We

really did use them [the DCs] as far as designing menus* (C.12) and "The menus really came out

of that [the DCs] . * (C.25)

It is interesting to note tha t the team extended the DC design vocabulary to designing error

processing. One mention in particular described how the team had integrated error processing

with general control structure design:

- Because you have t o diagram where things are comming in from and going
through. And you can see right where to check, and where to direct the flow
of control to.

- If i t was wrong, you can direct i t back to one particular point. I mean if
you have something, wrong, some wrong input, and you direct i t to the
wrong place back, you may--

- you may crash the whole system.
- or else you may change something that--
- should we go back to the very beginning menu? Or should we go back to
where they got to tha t point, where they made the mistake. (C.33)

As indicated in Section 2 above, the DCs avoid cluttering the description of the dialog with its

entire collection of alternative paths of error handling. The team's response t o a question related

to the issue of error routines is therefore somewhat surprising:

- ... I dont know whether it's supposed to include it or not, bu t we included the
error, because-- well I dont know, to be quite honest with you, but we got
very familiar with it [dialog charting, and, you know, we just took to i t , you know. I

mean we just thought that i t was just a logical extension of i t , (C.43)]

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

Apparently the team felt free to change the tool to suit their purposes, an interesting statement

indicative of the team's familiarity and comfort with the DCs.

Finally, the team mentioned using the DCs, among other design products, in coding their

system:
- ... We took our Dialog Charts, and our files, and our menus tha t we designed,

and we. .. actually started to code them. Coded the record layouts, coded the
file description statements.

- Set up the user interface.
- Coded the menus, yes. (C.27)

The mentions of the DCs in the context of design evaluation seem to re-emphasize the

familiarity that the team found with the charts, because they could use them in a flexible fashion,

and even comment on suggested improvements to the design process. They mentioned using

Dialog Charting in an iterative fashion to evaluate their designs for completeness:

- ... What we found was the Dialog Charts really needed to be an interactive
process. Because as you go through them and through them and through
them--

- You realize things tha t you havent thought about before, or different ways.
(C. 20)

The team also commented tha t DCs were used to re-evaluate their menu hierarchy. First,

they asked when the user makes an error, *...Should we go back to the very beginning menu? Or

should we go back to where they got to tha t point - where they made the mistake?" (C.33).

Their response was, *...we had originally gone back to the original menu, and then decided that

that's boringm (C.34). They were apparently satisfied with their restructuring, because as the

mention continues, they note tha t the control structure of the system had become "more flexible"

and 'efficient * .

The DCs were often mentioned in the context of communication from task to task. The

DCs were used to derive menus, as input to the coding phase, and in determining how to prompt

the user. Succinctly: "They really gave us a basis for so many of the next steps." (C.37). As

one member commented in a voluntary mention, when there was a question of the value of the

different design tools (i.e., dataflow diagrams, flow charts and dialog charts), the DCs "seemed to

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

081 17/88 Page 31

be the most helpful, though, because when we did get into the later stages, we did actually use

them. Much to my surprise." (C.10). Similar comments were repeated later in the conversation.

Interestingly, one team member, while indicating his intention to use the DCs in the future,

focused on using them to communicate with users and in system maintenance:

-... In terms of helping them maintain their system, I do keep in the back of
my mind the Dialog Charts, which I thought were great. In terms of helping
explain myself to them, what ideas I had. Whereas before maybe it was just
kind of haphazard. Now I have some structure for explaining, and why I'm
thinking what I'm thinking. (C.48)

Stage: References in that category were particularly scant. Nevertheless, three of the four

mentions related to communicating information among the various system development stages;

for example, after the team commented on realizing the value of the DCs, they were asked "What

was the value?" and the responses were "Just for the later stage, and actual physical design."

(C.22), and "It helped in the implementation. How we were going to prompt the user." (C.23).

A third mention related to communicating to system maintainers (C.48), and the last indicated

confidence in the coding stage (C.36).

Product: Mentions in this category link the use of the DCs to the structure of the

resulting system architecture and dialog structure. The DCs were described by the team as *like

a sketch of coding* (C.4), " a beefed up data flow diagram with the user in i t" (C.7), and " a map

of the system" (C.24). The team made an interesting comparative comment:

- ... we never used those data flow diagrams because they were all disjointed.
- You know. This [the DCs] is a t least connected and you could see different

levels ... (C.6).

Reference to the Control Structure was made in response to the probe: "What were these

Dialog Charts tha t you mentioned?"

- It's like diagrams of how the system should work. A t what point you would
intercept the user t o get a response. And based on tha t response what would

T be the next step. (C.5)
- You kinda see the flow of everything.
- ... And try to get an idea of what information you did have to prompt the

user for ... (C.6).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

Page 32

- ...y ou saw all the levels of depth. You saw all things that you would really
have to do and ask for to perform the functions that you proposed. (C.31).

The DC vocabulary is not intended t o be used as a language for modeling data structure

and architecture. Nevertheless, the folIowing mention indicates that they helped in conceiving

data structure as well as the general hierarchical and modular structure of the system:

- [you saw] which information you needed to determine which file you had to
access, what calculations needed to be done on the data. (C.32)

Process : References to how using Dialog Charts put constraint8 on the design noted how

"You were forced to put all the ideas you had into something concrete* (C.17), and how the

charts helped the team " t o keep a very strong control over what was going on." (C.35).

Comments about the direction and philosophy of decsign were made in mention fC.30), where the

DCs were brought up in the context of the functional decomposition of the system until .you hit

every possible situationw, and also tha t i t is decomposed according to party (C.29). Recapping

mention (C.2) in design evaluation, the team put forth the idea tha t the specification of the DCs

really needed to be an Iterative process.

A t t i t u d i n a l Patterns: The main theme tha t cut through the mentions in this category is

that the DCs were found to be surprisingly valuable. I t is interesting to note tha t the value was

not discovered until the charts were used during stages subsequent to the conceptual/logical

design. The team mentioned that the DCs allowed them t o feel "confident in our code* and

made them feel tha t the tasks of implementation went fast. Specifically, all of the Learning

mentions point out t h a t the usefulness of the DCs was not apparent to the team until the later

stages of the development process, where they were actually used, e.g.,

- I think we would have concentrated more on getting those right the first
time, instead of going back and having t o re-do them, not knowing the value
of them the first time ... cause we did, we went back and did them, like
twice. (C.16).

Three more mentions express the view in a similar fashion. It looks as though the team

experienced the value of the DCs when they learned tha t the tool would concretely guide them in

building their system.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

Page 33

 doin in^ Dialog Charts and some record descriptions was credited with positive Task

performance in the following mention:

- ... after we had gone back the physical worked out very well.
- Very well, see how fast i t went though.
- Yea, but if we hadn't gone back we would have been stuck
- I think we would have really trudged through that one, so i t paid off.
- Yea, that's for surem.
probe: and what did you redo again?
- The Dialog charts. That was the main one. And some record descriptions.
(c.441.

The team related to the ease in which menu design is derived from dialog charts (C.26), and also

mentioned the DCs in the context of Task clarity and comprehensibility. For example:

- Because, you saw all the levels of depth. You saw all the things that you
would really have to do and ask for t o perform the functions that you
proposed. (C.31).

- The main thing is that i t helped us to- see the control. (C.35).

Clearly, the team members derived Subjective satia faction from using the Dialog Charts.

It was expressed in the intent to use the Dialog Charts in the future, in their happy surprise a t

their usefulness, and in the perception of the DCs as valuable

The idea tha t the DCs proved to be useful surprised and pleased the team, and they

mentioned i t four times. One mention is interesting in particular:

- probably the best way to show the contrast is that in the beginning, like
when you first starting programming, they made you do flow charts. and
you were supposed to do a flow charts before you programmed, and most
people programmed and then drew the flow charts afterwards

- So, I mean, this was totally the opposite.
- ... thats why it's so surprising. For once, we actually used it further on.

(C.41).

They were also surprised tha t the Dialog Charts functioned as a mapping tool for system

structure: *And it really is a true map, which is-surprising.' (C.24). The value and importance

of the dialog charts were mentioned three times, twice in connection with the learning process.

For example:

- But I think, when we went to the next step, we realized how valuable they
were.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

- Right.
- And then we redid them. (C.17).

Page 34

Rela t ionsh ips A m o n g Categories

Generally speaking, a link is some co-occurrence of categories within a mention. As

indicated earlier, mentions were categorized with the minimal number of categories, but in some

cases more than one category adequately keyed the mention. Figure 4-4 summarizes the co-

occurrence of categories in coded mentions. In the following paragraphs we briefly comment on

some interesting double-coded mentions in the current set of data.

purpose

s t a g e

p roduc t

p r o c e s s

a t t i t u d e

purpose s t a g e p r o d u c t p roces s a t t i t u d e

25,27 22,23 20,29 10,17
2 8 4 8 26,38

F i g u r e 44: Tally of Multiple-Coded Mentions, by Category

Purpolue of using the DCs linked to Stage with respect to communicating information

among stages of design. In particular, one mention indicates that the DCs 'helped in the

implementationD (C.23). Another mention linked P r o d u c t to Purpose in reference to the

results of designing the control structure: 'It's like a diagram of how the system should work'

(C.5). Yet another evidenced a user orientation while designing the queries: '...you have to know

the kind of user you're dealing with and formulate those queries accordingly.' ((3.3).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

Page 35

Co-mentions of purpose with attitudinal patterns occurred 4 times, which interestingly

centered on communication. Two such multiple-coded mentions indicate surprise because the

DCs were helpful or useful in later stages of system implementation (C.lO) and (C.38). One used

the term "valuable" about the role of DCs in "so many* following steps. A fourth mention

related DCs to the ease of menu design (C.26).

Product linked to process in a mention that expressed the constraint that the DCs forced

them to put their ideas into "something concrete" (C.14). It also linked to attitudinal

patterns in three mentions. In (C.241, the team expressed surprise by the idea that the DCs are

a " t rue map" of the system, and (C.31) relates similarly to clarity of the structure and functions.

User orientation in designing the product is expressed in (C.49), along with the intention to use

DCs in the future: "No doubt about that." (C.49). One Process mention linked with

attitudinal patterns. The DCs "helped us t o see the control" as well as " to keep a strong

control over what was going on* (C.35). Four Attitudinal patterns mentions linked to other

aspects in that category. All four are learning mentions, three of which are linked to the value

and importance subcategory, and the fourth mention was linked with task performance.

By now the richness of the data gleaned from this single team's experience is apparent.

What do all these observations really mean? In the following discussion section we attempt to

interpret our findings and relate them to issues currently on the evolving agenda of conceptual

dialog modeling.

5. Discussion: Conceptual Dialog Modeling in Perspective

The sections above examine -- from a number of complementary perspectives - a

methodology for the conceptual design of dialogs. There is actually a dearth of such studies not

only in the domain of dialog design, but in the entire field of information system design.

Without a clear guiding tradition, this section focuses on three questions, namely whether

conceptual modeling of dialogs is a t all relevant, whether the pervasive notion of direct

manipulation defies conceptual modeling and therefore undermines its validity, and lastly how do

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

Page 36

the DCs contrast with another contemporary approach to conceptual dialog modeling. Through

this discussion the examination of the DCs is related to contemporary concerns in dialog design.

5.1. T h e Relevance of Conceptua l dialog models

Is the conceptual structure of interaction specifiable? Some argue that there is no

meaningful way to abstract an interaction, and that any attempt to strip it of application or

implementation detail renders such description worthless. The question has not been dealt with

directly so far; in this section the case for conceptual modeling is informally reviewed. Key

sources for observations are the recent debate around User Interface Management Systems (UIhIS)

and our own empirical study reported above.

User interface implementation is concerned with syntactic and lexical levels of design,

command names, screen and icon design, menu organization, sequencing rules, and interaction

techniques. It is being increasingly recognized that UIMS's postulate is that the syntactical

aspects of the dialog can be ex t r ac t ed from its ultimate realization, thereby separating the user

interface from the application's functionality [41]. SucS a separation, so claim UIMS supporters,

promises a clearer and more modular system architecture, as well as a more *consistentu

interface. Conceptual design of dialogs in general, and the DCs in particular, share the same

premise, but treat the s t r u c t u r e of the interaction as a prime target of an independent design

effort. Conceptual dialog design, therefore, refines the UIMS postulate by separating dialog

structure from any of the application details as well as the syntactical aspects.

The conviction that interaction style design can be meaningfully discussed independently of

the specific application context is widely held among user interface designers. Nevertheless, it is

being recognized more and more clearly that the user interface design problem and the

application design problems evolve together from the initial task analysis all the way to the

implementation, and an effective design tool has to address them in an integrated way. UIMS's

emphasis on the user-visible, syntactical issues instead of broader concerns for system or dialog

functionality has been criticized recently. Jim Miller in [41] identifies the following difficulties as

the "real bottlenecks" in the areas of interface design and development:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

Page 37

1. The portrayal of the application's semantics in a way that allows users to carry out
their tasks.

2. Support for the activities of design, "If the role of interfaces is t o help users
understand and work with the semantics of a task domain, we nee4 tools that will let
interface designers represent these domains and make their important properties
explicit in the interface." (p.199).

In its core, the conceptual *modeling of dialogs directly addresses these concerns.

The above comments are somewhat theoretically motivated, but does conceptual modeling

actually work? Although it relates to a single team only and is necessarily preliminary, the

empiricai :,ortion of this study does support the case of conceptual design of dialogs. Specifically,

designers have addressed, in their reference to the DCs, the fundamental attributes of conceptual

models and their use.

Conspicuously, a frequent -- and unsolicited -- reference was made by the team to the DCs

in the context of communicating between the logical and the physical stages. This idea relates

directly to the essential role of conceptual modeling, namely guiding the design by establishing

the conceptual framework within which the dialog is to be implemented. Furthermore, the

general recognition of the value of the DCs was tied to using the tool as a vehicle for iearning --

"going back and modifying" - and "growing" a system description and specification. The team's

reference to the use of the DCs as a tool for evaluation is also interesting, since evaluation per se

was not part of the project, and was therefore completely motivated by the team itself. The

team also indicated a number of times that the DCs brought in the users as a focus of the

modeling process, making them an un-ignorable part of the deliberation. There is, as already

noted in Section 1 of this paper, wide agreement that the support for the above activities is the

ultimate purposes of conceptual dialog modeling.

Modeling in general, and conceptual modeling of computer based implementations in

particular, are typically "disturbingY in the sense that constructing such models involves a series

of decisions about what details to neglect. Dealing with abstraction can easily create

dissatisfaction and frustration. In this light designers' emotional responses to the DCs are very

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

Page 38

relevant and rather interesting -- seventeen mentions reflected various forms of subjective

satisfaction with the DCs. The team, members of which took part in a number of system

development efforts before, expected the DCs to be "ritualistic* like other conceptual design

tools. In fact, they expressed surprise that the DCs were actually advantageous and valuable, and

that they actually used them during later stages of design.

In light of the earlier discussion of UIMS, i t is interesting that another frequent comment of

the team was with respect to the relationship between the implementation and conceptual designs.

It occurred to the team that the DCs capture the essence of the menu in a convenient fashion --

captured in three unsolicited mentions. In fact, two are categorized under design generation in

the logical stage.

One area where conceptual modeling has become the norm is database design -- sound

database design begins with a logical data model. Experiences tha t can fuel similar development

in the area of dialog design are still under-reported. An interesting exception: according to its

developer, Fredrik Brooks, IBM System/360 job control interface (the notoriously unfriendly

JCL) has assumed such a bad reputation because i t lacked a clear conceptual basis [5]. Although

the analogy between database design and dialog design is appealing, its limits should be explored

-- how literally can i t be taken? For example, data modeling focuses on capturing the underlying

static structure and typically fails t o portray dynamic constraints and relationships, while dialog

modeling must address the dynamic essence of the dialog process. Are these differences between

data modeling and dialog modeling significant?

The idea of separating logical, implementation and physical models, which has become a

cornerstone of da ta modeling seems t o be directly relevant to dialog modeling, probably due to

the fact that both apply t o the process of system development in computerized environments.

Could a more dialog-idiosyncratic yet generic model, like the Seeheim Model 1381 (essentially

Figure 1 - l) , be useful in dialog design? The following section is dedicated to the discussion of this

matter.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

Page 39

5.2. The Direct Manipulation Benchmark

The Seeheim model (Figure 1-I), which underlies both UmIS and conceptual modeling, has

recently become a target for critical discussion (e.g., in 1411). I t has been argued that the

partitioning of the dialog task suggested by this view raises more problems than it solves in

dealing with direct manipulation interfaces, concurrent processing and multiple input output

channels. Since direct manipulation is probably the most pervasive concept in the contemporary

scene of dialog design, i t serves here as a benchmark. In this section we examine the "threat"

that direct manipulation presents for conceptual modeling of dialogs in general and the DCs in

particular.

By way of introduction it should be noted that the notion of "conceptualm can be

interpreted in a number of different ways. One possible interpretation is that i t is an abstract

representation of the dialog which corresponds to the central element in the Seeheim model. A

conceptual model in that sense is then realized in a particular syntactical form. A different

interpretation is in line with the multi-layered modeling approach commonly used in database

design procedures [46]. According to this interpretation the conceptual or logical model captures

the structure of the dialog as as close as possible to the user's functional view of it. Such a

conceptual model is then translated into a more detailed and more formal implementation

model, which is translated in turn into a concrete physical model. These two interpretations are

closely related and commonly used as interchangeable, but there are also subtle differences

between them.

Direct manipulation [44] is a principle of dialog design and it cannot be interpreted in a

narroweense in either of the above approaches. As far as the Seeheim model is concerned, direct

manipulation addresses all three aspects of dialog design, namely it suggests direct gestures, i t

defines the range of actions available, and it defines the relationship between the visible

availability of dialog "items' and the applications that they could be subjected to. From the

database-inspired perspective direct manipulation conceptually fosters a dialog which centers

around manipulable objects and identifies what can happen to these objects. At the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

Page 40

implementation level it entails the formal identification of objects and the formal specification of

procedures that can be applied to them, while in the physical level it implies the design of

mechanisms for depicting and picking visible objects.

The role of the DCs in the database-inspired interpretation is somewhat easier to

understand. From a more theoretical perspective, Section 3.2 demonstrated the clear

correspondence -- as well as the apparent distinction -- between the DC-model and its related

implementation models. Moreover, it should be noted that the examples in Section 3.2 are all

dealing with direct manipulation interactions. The empirical observations, as reported in Section

4.2, clearly support that view. One amply supported observation is that the DCs indeed provide

a means for effectively communicating information from one phase of the design process to the

next -- a quintessential service of conceptual modeling.

The same empirical evidence could be equally construed as supporting the other, Seeheim-

inspired role of conceptual modeling a s the guidance for the actual syntactical realization of the

interface. A directly relevant observation is the correspondence tha t designers found between the

DC-based model and the menus, the actual syntax of interaction, tha t "came out" of i t .

However, the separation assumption in the core of the Seeheim model is in conflict with the

reality of direct manipulation. Direct manipulation rests on "semantically rich" application

dependent feedback, and may suggest therefore a very tight coupling between the syntactical and

the application aspects of the dialog. Is i t too tight for meaningful separation? Does direct

manipulation unveil, therefore, the fundamental limitations of conceptual dialog modeling?

These somewhat more theoretical problems with direct manipulation persist only if the

Seeheim model is interpreted too literally and too narrowly. The model can mislead in the sense

that the user-visible interface is indeed inseparable from the application, and artificial decoupling

of these two intimately coupled elements may hinder implementation, rather than help it. A

clear linkage between the syntactical aspects and the application is needed, in terms of bridging

application requirements and system's appearance. Stated from the vantage point of

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

Page 11

implementation, for a UGLfS to be able to handle the dialog's syntactical aspects, it necessarily

depends on the "flow of semantics" from the application. Actually the Seeheim model can be

looked upon from a different perspective, namely that it explicitly c o n n e c t s the application and

the user-visible interface, but suggests that for design purposes (e.g., a 'cleaner* design), they

should be discussed independently as part of the design agenda, but not in an unrelated fashion.

Figure 5-1 depicts this perception. There is a rather compelling argument for the importance of

the dialog structure (i.e., the "conceptual modeIn) as the intermediate entity.

I Application I Appl ica t ion
I I
I
I I Dlalog I I The D C ' s focus ------------------ I

I I
I Presen ta tLon I U I M S
....................

F i g u r e 5-1: An Alternative Depiction of the Seeheim Model

The essence of this argument is tha t the Seeheim model is a des ign f r a m e w o r k , and the

actual construction of the dialog may call for differing levels of integration or decoupling. It

provides a relatively clear and valid agenda for thought about the problem of dialog design, and

as such i t entails some partitioning of the overall problem into manageable sub-problems. There

should be a clear distinction between des ign -- the clear identification of the environment of the

system, its role and its functional components, and c o n s t r u c t i o n or implementation -- resource

allocation and the arrangement of working modules that together fulfill the role and functional

requirements set forth during the design. Such a view identifies very clearly the role of

conceptual modeling as a design discipline which focuses designers' attention on semantic and

functional aspects of the interactive system under consideration.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

Page I f !

6.3. Different Disciplines of Conceptual Modeling of Dialogs

Generally, there seem to be three typical approaches for designing dialog structures,

specifically those which focus on a "properu design process, those which prescribe a *properm set

of dialog attributes, and finally those which provide tools for dialog modeling and analysis.

Procedural approaches describe sequences of activities that dialog designers should follow. These

approaches sometimes use formal or informal representations, but the emphasis is on how to

approach the design and on how to decompose the task (e.g., [9], and [29]). Guidelines sets are

loose collections of principles, policies and rules to be used in dialog design (e.g., [49], 1131, [32],

[33], [40] and [42]). A HguidelineY advises about the proper conduct for the dialog; for instance,

"Control should always remain with the user." Analytic methods employ an abstract and

somewhat formal representations of the interaction, along with rules for manipulating these

representations. The Dialog Charts and the User Interface Design Environment (W E)

1121 belong primarily to this category.

The UIDE has been presented as a candidate approach for the conceptual design of user

interfaces. Its intended use -- and for that matter of any conceptual model -- is to represent

conceptual design, to provide an abstract representation of dialogs (i.e., be a basis for a set of

functionally equivalent interface implementations), provide a specification for a UIMS, a means to

ascertain correctness and completeness, a means to evaluate the design with respect to speed of

use and ease of learning, and provide run time help to the user [12].

ULDE is the conceptual analog for the event model of interaction discussed in Section 3.2

above. Its basic approach is to decompose the description/specification of the dialog into

autonomous but linked frames which describe:

1. Objects and properties,

2. Actions which can be performed on these objects,

3. Information required by these actions, and

4. Pre- and post- conditions for the actions.

The overall approach is of formal specification, actually formal enough t o be eventually accessible

to a Ub1S.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

Page 43

UIDE-includes all information and context needed to carry out operations, as contrasted

with lower level specification syntaxes (such as BhT and ATN), where such knowledge cannot be

explicitly represented, and therefore cannot be used in interface design and implementation.

Specifically, p r e and post conditions schemas are UIDE's means for capturing application

semantics and represent the evolution of context in system's use. Such a specification is the basis

for context management, context sensitivity in menu presentation and help functions. UIDE

decomposes the essence of the dialog flow into paired sets of pre and post conditions of actions.

UIDE and DCs represent different approaches to the conceptual design of dialogs. UIDE is

aiialytic -- it focuses on the details, and its general design philosophy is *bottom-up.* The DCs

are synthetic -- they focus on "holisticu description, following a "top-down* design process. The

two approaches maintain the notion of transformation, or the manipulation of dialog

representations. More formally, a trans formation is a gradual or marginal modification of a

consistent set of schemas into another consistent set of schemas. Specialization and generalization

transformations correspond to the refinement of DC "boxes" into their underlying elements and

regrouping DC elements into an aggregate dialog element, respectively.

In the current state of conceptual dialog modeling a more rigorous comparative assessment

of these two conceptual design schemes is rather difficult. If one applies superficially the criteria

of descriptive and usable power as a tentative agenda for evaluation, i t seems t h a t the two

approaches are compatible with respect t o their descriptive power, while the DCs seem to provide

more usable power, i.e., how convenient is UIDE for end-users specification or inspection of

dialog design? Further study and research is obviously called for, and some pertinent questions

are therefore highlighted in the following concluding section.

6. Conclusion and Further Research

The Dialog Charts yield high-level dialog description that is abstract enough t o be useful for

more than one implementation technique or strategy. The DCs also combine two types of

decompositions in the same hierarchy, namely a functional decomposition, which is a common

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

Page 11

design pr-actice, and a decomposition of parties, which is a distinct dialog modeling requirement.

They model the functional requirements of the system, capture the sequencing and control of the

interaction, while clearly differentiating between user gestures (i.e., the inputs) and system

responses (i.e., the outputs). The DCs are simple and complement other design tools like DFDs,

ERM in their respective areas of applicability.

The examination in this paper is comprehensive but rudimentary. Unfortunately, there is

no well-defined, validated theory to guide the evaluation of the various methodologies and tool

vocabularies that are used for designing conceptual dialog models. Further research questions are

clearly raised by this paper, and few key issues are highlighted in these concluding comments.

First and foremost are fundamental questions with respect to the assessment of conceptual

design tools. The links in the design chain that are addressed by this paper are delineated in

Figure 6-1. In Section 3 the notion of descriptive power has been mainly applied to the outcome

of the conceptual design, and the DCs were assessed viz. their implementation counterparts. In

Section 4 the complementary notion of usable power was applied mainly in the context of the ease

of translating user requirements into a conceptual dialog model. Ideally, both criteria should

have been applied a t both ends of the conceptual design activity. Nevertheless, assessing the

descriptive power of a conceptual design tool with respect to the universe of user and application

requirement is a perplexing task -- i t is premised on the existence ot ,dme "complete*

classification of user and application requirement. UsabIe power, representing a proper subset of

the descriptive power, is therefore a close surrogate measure of quality.

I User /Appl ic . I \ I Conceptual I \ I Implementation I
I Requirements I / I Design 1 / I Deslgn I

U s a b i l i t y
Power

D e s c r i p t i v e
Power

-

Figure 6-1: Process Environment of Conceptual Dialog Modeling

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

Page 43

As far-as the step of moving from a conceptual design to implementation design, one can

argup that given the somewhat mechanical nature of the transformation, assessment of the

descriptive power at that juncture is conceivably straight forward. Although usable power is

bounded by the descriptive power, discovering which types and forms of conceptual models

translate easily into implementation models is an interesting question, which calls for further

empirical inquiry.

A related topic is the relationship between use juiness and usability of a conceptual design

tool in general and the DCs in particular. A study of a single situation addresses usability,

especially in it somewhat more formal sense, in a rather limited fashion. Not all situations are

"amenabie* to the DCs, so the essence of the question is in ascertaining the limits of the tool's

applicability, e.g., what type of design situations are more *pronem to dialog charting, or which

range of applications calls for DC use. It has been commented that "traditional" data processing

systems are probably more amenable to the DCs technique. There is a need for a rigorous

assessment of the relationship between the variety of tasks and contexts in which tools are used

and the perceived usefulness of tools. Such an examination will allow the prediction of a tool's

behavior in a particular design environment, and also allow the designer to select appropriate

design situations for using the tool. The empirical part of this study is currently being repeated

with more teams [6]. Ultimately, i t is going t o address the concept of usable power more directly.

Upon analysis of more and varied cases it will become clearer in which situations the DCs are

perceived as most valuable.

Although the target tool in this study is the Dialog Charts, the research is an in-depth

study of the dialog design process. How do people go about dialog design? What are the

requirements for designing dialog structure and control processor components? Ultimately these

insights will form the basis for a set of assessment criteria to guide the development and

evaluation of dialog design methodologies, and the development of sounder and more robust

human/computer interaction.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

References

Page 46

ilsiav, G. and Ginzberg, M.
DSS Design: A Systemic View of Decision Support.
Communicat ions of the A C M 38:1015--1052", 1985.

Ariav, G. and Calloway, L.
A .Vormatiue Analysis o f Approaches to the Conceptual Modeling of Human/Computer

Dialogs.
Technical Report, New York University, N.Y., 1988.

Benbasat, Izak and Wand, Yair.
A structured approach to designing human-computer dialogues.
International Journal of ~Vlan-Machine Studies 21:105--126, 1984.

Britton, K.H., Parker, R.,4., and Parnas, D.L.
A procedure for designing abstract interfaces for device interface modules.
R o c . 5th Int . Conference Software Engineering , 1981.

Brooks, Jr., Frederick P. .
Grasping Reality Through Illusion: Interactive graphics serving science.
In Conference on H u m a n Factors i n Computing Sys tems , pages 1-11. Washington,

D.C., May, 1988.

Calloway, L.
A n Approach for Assessing Tools for Designing Dialog Structures: A Study of the

Dialog Charts.
PhD thesis, New York University, 1988.
(In progress).

Campbell, D.T. and Stanley, J.C.
Experimental and Quasi-experimental designs for research.
Rand McNally, Chicago, 1963.

P. P.-S. Chen.
A Preliminary Framework for Entity-Relationship Models.
ACM TY3DS 1, No. I:, March, 1976.

Cheriton, D.R.
Man-Machine Interface Design for Timesharing Systems.
In Roceedings: Annual Conference of the Association for Comput ing Machinery, pages

362-366. Houston. Texas, October 20-32, 1976.

Date, C.J.
An Introduction to Database Sys tems, Volurnn 1, #ed.
Addison-Wesley, Reading, Massachusetts, 1986.

Davis, Fred D. and Olson, Judith Reitman.
Integrating User &lotivatton and Task Performance Theories o f In formation Sys tems

Design.
Technical Report, The University of Michegan, April, 1986.
Private correspondence.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

08: 17 88 Page 47

12' Foley, James, Gibbs, Christina, Kim, Won Chul. Kovacevic, Srdjan.
A Knowledge-Based User Interface hlanagement System.
In C h i '88 Conference Fkoceedings: H u m a n Factors i n Computing Sys tems, pages 67--72.

Washington, D.C., Xfay 15-19, 1988.

[13j Gaines, B.R. and Facey, P.V.
Some experience in interactive system development and application.
In Fkoceedings of the I E E E LTo163(6), pages 894-911. June, 1975.

i l l] Gaines. Brian R. and Shaw, Mildred L.G.
From timesharing to the sixth generation: the development of human-computer

interaction. Part 11.
International Journal of Man-Machine Studies 24:101-123, 1986.

j15] Glaser, B. and Strauss, A.L.
The Discotiery of Grounded Theory: Strategies for Qualitative Research
Aldine, Chicago, 1967.

j16j Green, M.
A Survey of Three Dialogue Models.
ACM Transactions on Graphics 5, No. 3244-275, 1986.

[17] Dunnette, Marvin D. (editor).
Handbook of Industrial and Organizational Psychology.
Rand McNally, 1976.

[183 Hartson,H.R., Johnson, D., and Ehrick, R.W.
A Human-Computer Dialogue Management System.
In Proceedings of I h T E R A C T '84, First IFIP Conjerence on Human-Computer

Interaction, september, 1984.

[19] Hayes, P.J . , Szekely, P.A., Lerner, R.A.
Design Alternatives for User Interface Management Systems Based on Experience with

Cousin.
In C H I '85 Roceedings. ACM, April, 1985.

[20] Hix,D.andHartson,H.R.
An Interactive Environment for Dialogue Development: Its design, use and evaluation-or-

Is AIDE useful?
In CHI '86 Roceedings. ACM, April, 1986.

[21] Jacob, R.J.K.
Survey and Examples of Specification Techniques for User-Computer Inter faces.
Technical Report NRL Report 8948, Naval Research Laboratory, Washington, D.C., ,4pril,

1986.

1221 Jacob, R.J.K.
A Specification Language for Direct-Manipulation User Interfaces.
ilCiZf Transactions on Graphics 5, No. 4:283-317, 1986.

1231 Jensen, K. and Wirth, N.
Pascal User Manual and Report, Second Edi t ion.
Springer-Veriag, New York, 1978.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

08!17:/88 Page 48

Kelley, John F.
Videotex Information Packagers: X field study aimed a t tomorrow's videotex authoring

interface.
S I C C H I Bulletin 19.3:37--47, 1988.

Krippendorff, K.
Content Analysis: A n Introduction to i t s 12.lethodology.
Sage, Beverly Hills, CA., 1980.

Malhotra, A., Thomas, J.C., Carroll, J.M. and Miller, L.A.
Cognitive Processes in Design.
International Journal of ,tian-hlachine Studies 12 no 2:119-140, February, 1980

Martin, Patricia Yancey and Truner, Barry A.
Grounded Theory and Organizational Research.
The Journal o j Applied Behavioral Science 22, No. 2:141--157, 1986.

McGrath, J., hlartin, Joanne, Kulka, Richard A.
Judgement Calls in Research.
Sage, Beverly Hills, 1982.

Mehlmann, M.
When People Use computers: A n Approach to Developing a n Interface.
Prentice Hall, Inc., Englewood Cliffs, N.J., 1981.

hliles, Matthew B. and Huberman, A. Michael.
Qualitative Data Analysis, A sourcebook of new methods.
Sage, Beverly Hills, CA., 1984.

Moran, T.P.
The Command Language Grammar: A Representation for the User Interface of Interactive

Computer Systems.
International Journal o f 12lan-illachine Studies 15:pages 3-40, 1981.

Morse, A.
Some Principles For the Effective Display of Data.
Computer Graphics 13(2):94-101, August, 1979.

Nickerson, R.S.
Why interactive computer systems are letimes not used by people who might benefit

from them.
International Journal of Man-h4achine Studies 15:469-483, 1981.

Norman, D.A.
Design principles for human-computer interfaces.
In CHI '83 Roceedings, pages 28-34. ACM, December, 1983.

Olsen, D.R., Jr.
Presentational, Syntactic and Semantic Componenets of Interactive Dialogue

Specifications.
User Inter face A4anageme: Sys tems.
Springer-Verlag, Germany, 1985, pages 125--136.

Olsen, D.R., Jr.
Whither (or wither) UMS?
In C H I '87 f i oceed ing~ , pages 31 1-314. XCM, April, 1987

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

08 17 88 Page 49

~ a r n k , D.L.
On the use of transition diagrams in the design of user interface for a interactive computer

system.
In Proceedings of the 24th National A C M Conference, pages 379-3235, ACbi. New York,

1969.

Pfaff, G.E., Ed.
User Interface hfanagement Sys tems.
Sprinter-Verlag: Berlin, 1985.

Reisner, P .
Formal Grammar and Human Factors Design of an Interactive Graphics System.
I E E E transactions on Software Engineering S E 7 , No. 2229-240, March, 1981.

Reitms.1. J.O.
Expanded Design procedures for learnable, usable interfaces.
In C H I '85 R-oceedings. ACM, San Francisco, April, 1983.

Rosenberg, Jarrett, Hill, R., Miller, J., Shewmake, D.
UIMSs: Threat or Menace? (Panel).
In C h i '88 Conference Boceedings: H u m a n Factors i n Computing Sys tems, pages 197.

Washington, D.C., May 15-19, 1988.

Shneiderman, B.
Software Psychology: H u m a n factors i n computer and i n formation sys tems.
Little Brown and Co., Boston, MA., 1980.

Shneiderman, B.
Multiparty Grammars and Related Features for Defining Interactive Systems.
I E E E transactions on Sys tems: h i a n and Cybernetics smc-12, no 2:148-154, March--4pri1,

1982.

Shneiderman, B.
The Future of Interactive Systems and the Emergence of Direct hlanipulation.
In Vassiliou, Y. (editor), H u m a n Factors and In t~rac t i ve Computer Sys tems , pages 1-27

Ablex Publishing Co., Norrwood, New Jersey, 1984.

Spradley, James P .
The Ethnographic Interview.
Hold, Rinehart and Winston, 1979.

Teorey, T.J. , and Fry, J.P.
The logical record access approach to database design.
ACM Computing Surveys 12, 1980.

Wasserman, A.I. and Shewmake, D.T.
Rapid Bototyping of Interactit~e I n formation Sys tems.
Technical Report, Medical Information Science: UC, San Francisco, 1982

Wasserman, A.J., Pircher, P.A., Shewmake, D.T., and Kersten, L.
Developing Interactive Information Systems with the User Software Engineering

Methodology .
I E E E Transactions on Software Engieering se-12 No. 2, February, 1986.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

[49] Williges, B.H. and Williges. R.C.
Dialog design considerations for interactive computer systems.
Human Factors Review: 1984.
Human Factors Society, Santa Monica, California, 1984.

Page 50

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-8 1

