
ORDER-SORTED
RIGID E-UNIFICATION

Jean H. Gallier
Computer Science Department
Moore School of Engineering
Univeristy of Pennsylvania

Philadelphia, PA 19104

and

Tom& Isakowitz
Information Systems Department

Leonard N. Stern School of Busi~less
New York University

New York, New York 10003

December 1991

Center for Research on Information Systems
Information Systems Department

Leonard N. Stern School of Business
New York University

Working Paper Series

STERN IS-91-40

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Abstract

Rigid E-Unification is a special type of unification which arises naturally when
extending Andrew's method of matings to logic with equality. We study the rigid E-
Unification problem in the presence of subsorts. We present an order sorted method
for the computation of order sorted rigid-E-unifiers. The method is based on an un-
sorted one which we refine and extend to handle sort information. Our approach is to
incorporate the sort information within the method so as to leverage it.We show via
examples how the order sorted method is able to detect failures due to sort conflicts
at an early stage in the construction of potential rigid E Unifiers. The algorithm pre-
sented here is NP-complete, as is the unsorted one. This is significant, specially due to
the complications presented by the sort information.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unification

1 Introduction

Rigid E-Unification is a special type of unification that occurs when extending Andrews

[And811 method of matings to include equations. It was first introduced by Gallier, Raatz

and Snyder [GItS87]. Gallier, Narendran, Plaisted and Snyder [GNPSSO] show that the

problem is NP-complete and they present a method for finding rigid E-unifiers. We extend

their work to order-sorted logic [Gog78, GM87bl. This is of interest because the order-sorted

framework can be utilized to provide a formal framework for the treatment of such important

concepts as inheritance and overloading. The results we present in this paper are significant

from two different perspectives. Firstly, we improve upon the unsorted rigid E-unification

method by simplifying it and secondly, we construct an inherently order-sorted method which

takes sort information into consideration in each one of its phases; and produces order-sorted

unifiers.

The concept of an Order-Sorted Algebra was introduced by Goguen in [Gog78]. Goguen

and Meseguer [GM87b] present order-sorted algebras as the natural seiilantics for order-sor-

ted logic. Order-sorted algebras are based on an approach similar to many-sorted algebra

where families of functions are associated with each function symbol. Ecllog [GMS4] is

a programming language with built-in overloading and inheritance that has a clean mathe-

matical semantics based on order-sorted algebra. Inheritance is achieved via subsorts. There

are other similar semantic approaches to subsorts, e.g. Smolka [Smo86], Walther [Smo86]

among others. The principal differences lie in the treatment of overloaded operators in the

underlying algebraic structure.

A significant advantage of the order-sorted approach over the unsorted one lies in the

efficiency of computations. Sort information can be embedded within the algorithms. For

example, there is an order-sorted unification algorithm that is able to trim the searcli space

by taking sort information into consideration. These order-sorted algorithms are not just

simple extensions of their unsorted counterparts; they require original approaches to the

issues at stalk.

The problem of rigid-E-unification arises when extending Andrews' method [And811 of

matings to first order logic with equality. Extending matings to order-sorted matings

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E-Unification 3

implies an order-sorted version of rigid E-unification. Thus, the work we present here adapts

and extends the unsorted methods to the order-sorted case.

Rigid Unification involves finding a solution 0 to a term equation using only a limited

resource of axioms. The number of times the axioms in E are used is not restricted, what is

restricted is the number of variations of such axioms. This is done by freezing the variables

in 0(E) a.nd treating them as constants as if E were a set of ground equations. It can be

stated as the following problem.

Problem. Given a finite set E = {ul = vl, , , . , u, = v,) of equations and a pair (u, v) of

terms, is there a
*

equations, 0(u) 0(v), tlmt is, 0(2c) and 0(v) are congruent niodulo 8 (E) (by con-

gruence closure)?

The substitution 0 is called a rigid (C, E)-unifier of u and v.

Example 1.1 Let E = {g(f (21)) = f ('I), g(f (22)) = q(z2)) and u = q(z3) and v = f (~ 4) .

Then any substitution 0 unifying < zl, z2, z3, z4 > is a rigid-E-unifier of u and v because

where z is the common value of O'(zl) = 0r(z2) =

Only a single instance of each equation in E can be used, and in fact, these instances

O(ul = vl), . . . ,O(u, = v,) must arise from the same substitution 0. Also, once these

instances have been created, the remaining variables (if any) are considered rigid, tliat is,

treated as constants, so that it is not possible to further instantiate these instances.

Example 1.2 Let E = { f (x) = x}, consider rigid E-unifying u = y(f (a) , f (b)) and v =

g(a, b). The simple solution of substituting a for x to rewrite g(f (a) , f (b)) to g(a, f (b)) and

then using f (x) = x again with b for x does not work out because we are using two different

instances of f (x) = x.

Notice that there is no way f (a) can be rewritten to a without binding x to a. Similarly, in

order for an equality step to be applicable to f (b), x has to be bound to b. This is precisely

why the two terms are not rigid E-unifiable. However, if we consider E' = { f (x) = x, f (y) =

9) then 0 = [xla, ylb] is a rigid E-unifier of u and v.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Ui~ification 4

Hence rigid (I=, E)-unification differs from (I=, E)-unification in that in the latter a proof

of O(u) = O(v) from E might involve the use of different instantiations of the same equation

in E. In the rigid case however, only the instances O(E) (regarded as ground) can be used.

It is interesting to observe that the solution to the rigid unification problem involves the

use of the congruence closure, rewriting and term unification. We develop an order-sorted

method for finite signatures which is also in NP. Since this type of unification forms the core

of equational matings, it sets a precedent for the development of an extension to Andrews'

rnethod of Matings to the order-sorted equational case. Gallier, Narendran, Plaisted and

Snyder in [GNPS90] provide an N P procedure to generate complete sets of unsorted rigid

E-unifiers. Our task is to provide a method that produces order-sorted rigid E-unifiers

(rigicl (C, E)-unifiers where C is an order-sorted signature.) We could take the following

approach:

1. Run the unsorted algorithm to produce an unsorted rigid E-unifier 0, and then

2. using sort information try to produce for each unsorted 8 obtained in step 1, a family

of sort assignments that results in a family of C-substitutions for 8.

The disadvantage of this approach is that it does not make full use of the sort informa-

tion. For example, if u and v have no common subsort, then u and v can not have a

rigid (Z, E)-unifier. However, the rnethod described above would first run the NP unsorted

algorithm; then try to compute a family of sort assig~iments and finally, upon discovering

that the family of sort assignments is empty, return failure.

The approach we take here lio~vever, differs in that the rnethod itself is intrinsically or-

der-sorted. IVe modify the unsorted method for finding rigid E unifiers to a metliod that

builds order-sorted substitutions. Since the sort information is used a t each and every step

of the order-sorted algorithm, it is more effective than the method described above because

it is able to detect failure due to sort conflicts at an earlier stage. Our method uses an

algorithm for finding order-sorted unifiers in triangular form presented in [Isat391 based on

work by Meseguer, Goguen and Sinolka IMGSt391.

Order assignments constitute a significant component of the unsorted rigid E-unification

method presented by Gallier, Narendran, Plaisted and Snyder in [GNPSSO]. Without en-

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unification 5

tering into too much detail, order assignmelits represent guesses on the ordering a ground

rigid E-unifier will impose on terms. This ordering is used t o guess other aspects of the

solution. Although this concept is quite interesting, it complicates the method and its proof.

By extending a procedure by Snyder [SnySg] that finds interreduced sets of rewrite rules

equivalent to a system E of equations, we manage to eliminate order assignments from the

method (this works as well for the unsorted version of rigid E-unification).

Thus, there are significant differences between the unsorted and the order-sorted versions

of the rigid E-unification method such as:

o Use of sort information at each and every step of the algorithm.

Use of general equations to avoid hitting ill-typed terms.

At the heart of the method we use an order-sorted unification algoritliln which does not

return an mgu, but a member of a complete farnily of C-unifiers. Since we are restricting

ourselves to finite signatures, this family is finite. The order-sorted unification niethocl

is an extension of the one in [MGSSS] as described in section 4. Even though C-

unification with no equations is NP-complete, we manage to obtain an NP algorithm

for rigid (C, E)-unification.

As described above we avoid using order assignments. This requires a different i~iethod

and different proofs which axe simpler.

0 We show that a rigid E-unifier caa be obtained by a sequence of guesses. This is a

coilsequence of the removal of order assignments.

Thus, our method solves the rigid E-unification problem for order-sorted general equation

systems and also represents substa~itial improvements over the unsorted method.

This paper is organized as follows. In section 2 we provide some backgrouncl on order-

sorted algebras. We describe general equations, the particular class of equations to ~vhicli

our results on rigid (C, E)-unification do apply, in section 3. The concept of unification for

order-sorted terms is reviewed in section 4 where we also present sollie interesting results

on triangular forms for both unsorted and order-sorted unifiers. In section 5 we forrnally

describe the rigid E-unification problem and give some general remarlcs about the method,

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unification 6

which is developed in sections 6 through 9. Complete sets of rigid (E, E)-unifications are

explored in section 6, and minimal sets of rigid (C, E)-unifications are studied in section 7.

An important aspect of our method is that sets of order-sorted equations can be transformed

into reduced sets of rewrite rules in polynomial time. These results are exhibited in section

8. The actual method and its correctness proof are given in section 9. Section 10 proves

that the method given is in fact in NP. In section 11 we summarize our results and discuss

directions for further research.

2 Order-Sorted Algebra

Order-Sorted Algebras are presented by Goguen and Meseguer [GM87b] as the natural se-

mantics for Order-Sorted logic. There are other approaches, e.g. Smolka [Smo86], VValther

[Smo86] among others. The principal difference lies in the treatment of overloaded operators

and the underlying algebraic structure.

Order-Sorted Algebras are based on an approacll similar to h4aliy-sorted Algebra where

families of functions are associated with each function syriibol. Tlie principal idea is to

interpret the subsort relation as inclusion of domains. That is, if s is a subsort of s' then the

domain of discourse A, assigned to s is a subset of A,,, the do~nain of s'. Similarly, function

symbols are interpreted as functions between the domains of discourse, and certain natural

relations hold between the interpretations of an overloaded fr~nction symbol.

2.1 Signatures

MTe shortly review the elements of many-sorted algebra. Given an indez set S, an S-sorted

set A is just a family (As)sES of sets, one set A, for each s E S. Similarly, given two S-sorted

sets A and B, an S-sorted function f : A I-+ B is an S-indexed family (f, : A, ++ Bs) ,ES

of functions f, : A, I---+ B,, and an S-sorted relation R is an S-indexed family (Rs)sES of

relations R, 2 A, x B,. Let us assume a fixed set S called the sort set, with a partial order

<.

Defi~lition 2.1 A many-sorted signature is defined as a triple (S, E, p), where S is a sort

set and p : C -+ is a rank filnction assigning a set p(f) of ranks (w, s) to ea,ch symbol

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Uilification 7

in C. The elements of the sets C are called ~pera~tors or function symbols. The set C can be

viewed as an indexed family if for every (w, s) E S* x S we let C,,, = {f E C I (w, s) E p(f)) .

Note that C,,, and C,t,,t are not necessarily disjoint, since a symbol in C may have sev-

eral ranks. Whenever convenient, we omit the function p, and view C as family of sets

(C w , s) (w , s) E ~ X ~ * .

Definition 2.2 An order-sorted signature is a quadruple (S, <, C, p) , such that (S, C, p) is

a many-sorted signature and (S, <) is a partially ordered set.

In addition the following monotonicity condition is imposed to rule out bizarre models :

if f E Cwl,sl fl C, ,,,,, a.nd if 201 < w:! then s l < sz.

When the sort set S is clear, ~ 7 e write (C, p) or C for (S, C, p) . Similarly when the partialy

ordered set is clear, we write (C, p) or C for (S, <, C, p).

For function symbols, we may write f : w t-+ s when (w, S) E p (f) to emphasize that f

denotes a function with arity to and co-arity s. An important case occurs when w = A, the

empty string; then f denotes a constant of sort s. When (w, s) E p (f) we will also say that

f has arity w and co-arity s.

Example 2.3 Let the set of sorts be S = {zero, Q', $1, and let the partial order be:

zero < Q, Q+ < Q .

The following is an order-sorted C-signature which we denote by Rationals:

Figure 1 graphically depicts this signature. The constant 0 is of sort zero. Notice tliat

the second argument of / is of sort QS, which is intended to exclude zero. Hence we are

formalizing the idea of disallon~ing a division by zero.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unification

Figure 1: The Ra t iona l s signature

In order for a number of useful properties to hold, restrict our attention to a special

class of signatures called regular. Essentially, regularity asserts that overloaded operations

are consistent under restrictions to subsorts. Note that the ordering < on S extends to

an ordering on strings of equal length in S* as follows: sl . . . s, < s', . . . s: iff si 5 s: for

1 < i < n . Similarly, < extends to pairs in S* x S by stating that (20, s) 5 (w', st) iff w < w'

and s < sf.

Definition 2.4 An order-sorted signature S is regular iff for every f E C, every w0 E S*,

and every (w, s) E p(f), if w0 < w, then the set {(w', st) E p(f) [w0 < w') has a least

element.

When the set of sorts is finite (or well founded), regularity is captured by a combinatorial

condition (see the paper by Goguen and Meseguer [GMS'ib]).

Lemma 2.5 An order-sorted signature C over a finite (or well founded) sort set S is regular

iff for every every f E C, every w0 E S*, and every pair of ranks (w, s) , (w', s f) E p(f), if

w0 5 w, w', then the set {(w, s), (zu', st)) has a lower bound (wl, sl) such that (wt, sl) E p(f) ,

and w0 5 WI.

Let - = (< U <-')+ be the least equivalence relation containing the partial order

<. We say that two sorts s and s' are connected if s G st. The equivalence classes of

Center for Digital Economy Research
Stem School of Business
W o r h g Paper IS-91-40

Order Sorted Rigid E- Uiiifica.tion 9

are called connected cornpone71,ts. The concept of connected sorts is important for defining

quotient algebras. Indeed, in order for the usual construction of the quotient of an algebra

by a congruence to hold, we need a condition on signa,tures called coherence.

Definition 2.6 A regular order-sorted signature is coherent if every connected conlponent

has a greatest element called the top sort of the connected component.

In this paper we limit our attention to finite coherent signatures.

2.2 Algebras

For any string w = sl , . . . ,s, (n > l), let A, = A,, x . , . x A,,, wit11 AX = { A) (a one

element set).

Definition 2.7 Let (S, 5, C, p) be an order-sorted signature. An order sorted (S, <, C, p)-

algebra A is a pair (A, I) consisting of an S-sorted family A = (As)sES called the carrier

of A, and a function I called the interpretation function of A, where I assigns to every

f E C an indexed family of functions I(f) = (fZWs : A, -+ 111 particular, ~vhen

w = A, fi"" is an element of A,. For each sort s , A, is the carrier of sort s. Note tltat the

carrier of sort s may be empty. Moreover, the follo~ving col~ditions hold:

1. A, C A,! whenever s < s', and

2. If (w , s) E p(.f) and (w', sf) E p(f), s < sf, and w < wf, then fZ-" : Aw I-+ A, is equal

to the restriction of f21w"1 : Awl I-+ A,, to A,. That is, for any ~r E A,, ~AW'-"'(S) =

By abuse of notation, we may denote an algebra and its carrier by the same name unless

confusions arise. For example in the the previous definition we might use A for both the

carrier (which is A) and for tlie algebra (which is A). ?\re may also drop some of the

components in (S, 5, C, p) wlieli talking a,bout order-sorted algebras, or drop tlie superscript

(w, s) when referring to a function fzws.
Example 2.8 Consider the signature presented of exalnple 2.3, an order-sorted C-algebra

A is:

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted R,igid E- Unifica. tion

AQ = Q (the set of rational numbers),

A + - Q - (0) (the set of non-zero rationals), and Q -

The functions have their natura.1 int,erpretations:

e OA = 0;

+A is addition of rational numbers;

/A is division of rational numbers.

For any w = SI . . . s, f: X a,nd = (al, . . . ,a,) E A,, let h,(si)=(h,, (al) , . . . ,hs,(an)).

Definition 2.9 Let (S, <, C, p) be an order-sorted signature, and let A and B be (S, 5, C, p)-

order-sorted algebras. A (S, 5, C, p)-homomorphism h : A I--+ B is an S-sorted functioli such

that

1. for every constant c of sort s, h , (c j) = ca,

2. for every f E C, every (t o , s) E p(f), and every Z E Aw,

When the partialy ordered set is clear, (S, <, C, p)-homomorphisms are called order-sor-

ted C-homomorphisms. We lnay also drop some of the components in (S, <, C, p) when

talking about order-sorted liornomorphis~l~s.

2.3 Order-Sorted term algebra

Following [GM87b], we now define the order-sorted C-term algebra lc as the least family

{7c,sls E S) of sets satisfying the following conditions:

1. Ex,, L Tc,, for s E S;

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Ui~ification

2. I=,, 2 7z,s~ whenever s 5 s f ;

3. i f f E Cw,s, and if t; E Iz,Wl where w = wl, . . . ,w; + A, then the string f t l . . . t , is in

7z.s

In addition, the function symbols are interpreted as string constructors as follotvs: for f E

W H S
C ,,,, fit (t l , , , . , t,) = f t l . . . t,. Regular signatures have a number of desirable properties.

Fbr example, unique sorts can be assigned to terms in 7= as the following theorem form

[GM87b] states.

T h e o r e m 2.10 Let Il be a regula,r order-sorted signature. Then every term t in Ic has a

least sort denoted by LS(t).

For the rest of this paper we assume that all signatures are regular. In order to define 11011-

ground terms, we enlarge the sigllature C with variables. The variables form a11 S-sorted

set X = {xs)sEs which is assumed to be disjoint from C such that each variable belongs to

exact,ly one X',, i.e. it has a uniclue sort. The extended signature is deiloted by C(X), it is

regular provided C is regular. The term algebra 7c(x) is denoted also by IS(X), and it is

the free C order-sorted algebra on S ([GM87a]), i.e.

Tl ieorem 2.11 Let A be an order-sorted C-algebra and let a : X H A be an ,S-sorted func-

tion (an assignment from X to A). Then there exists a unique order-sorted C-homomorphism

a* : 7z(X) I-+ A that extends a.

2.4 Order-Sorted deduct ion

A fundamental cornponellt of deductive systems is the s~otion of a substitution which provides

a tool for the instantiation of terms. Since order-sorted srtbstitutions have to procluce well

typed terms, their clefinition has to take sort information into account. We follow [MGSSS]

in the defining substitutions as homomorphic extensions of well-sorted assignments, thus

departing from T'lialther [WalS7] who defines them as being endomorphisms of a fixed term

algebra.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unification 12

Definition 2.12 Given an S-sorted assignment O : X t-+ I c (Y) such that Q(z) = n: almost

everywhere (i.e. the set {x I O(x) f x) is finite), its homomorphic C-extension 0* : TE (X) t-.,

TE(Y) is an order-sorted substitution.

We will write "C-substitution" for "Order-Sorted substitution" when tlie signature in con-

sideration is C, even though this is somewhat ambiguous because we are not specifying the

set of variables involved. I3y allowing a slight abuse of notation, we will denote O* by 8.

Note tabat since an assignment is an S-sorted map we have that B(x) E Iz(17), whenever

x E X',. Therefore if the signature is regular, LS(O(x)) < LS(x). We will clenote substitu-

tions as association lists of the form [xl/tl , . . . , x,/t,]. If we drop the sort information from

a signature C, we obtain an unsorted signature I C I. Clearly, every order-sorted substitution

is an unsorted one, i.e. every orcler-sorted signature is a 1x1-substitution. The contrary

however, is false as we show i ~ i the nest esaniple.

Example 2.13 Consider the signature Rationals, let zrat be a variable of sort r a t and let

zrat+ be a variable of sort rat+. Consider tlie mapping B sucli that O(rrat+) = 0. Altliougli

0 is an unsorted substitution, it is not a C-substitution because the sorts of zrat+ and 0 are

incomparable.

Ho.vvever, the mapping 8' such that Of(zrat) = 0 is a C-substitution ancl LS(Oi(zrat)) <
LS(zrat 1.

We now turn orlr attention to order-sorted ecjuational cleduction. First, we point out that

in order for an ecluation to malie sense, the terms equated must have a common supersort.

Then, we can think of the two terms as being equal in that sort. Recall that in a coherent

signature each connected component of the sorts poset has a greatest element. Since tlie

signatures considered here are colierent, it is enough to restrict ecluations to terms with sorts

in the same connected component

Definition 2.14 Given a coherent order-sorted signature C , let u and v be terms in Tc(IY)

such that their least sorts are connected, and let X be a superset of tlie set of all variables

occurring in u or v (notice X C IT). Then (VYju = v is an equation. If I/ = {yl,. . . , y,),

we might write \dyl . . . Vyn u = v instead of (VY)u = v .

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unification

The concept of validity of an equation is defined using the freeness of Tc(X).

Definition 2.15 An equation (VX)u = v is valid in some order-sorted C-algebra A (denoted

A /= (VX)u = v) if and only if for every assignment a : X u A, atscu,(u) = atscv,(v).

A C-algebra A satisfies a set E of equations if it satisfies every equation in E. A set E of

equa,tions semantically entails an equation (VX)u = v, written E /=r (VX)u = v, if (VX)u = v

is valid in every model of E.

We now provide a set of decluction rules for equations involvillg vaxiables. Given an

order-sorted signature C and a set E of C(X)-equations, the following is a complete set of

deduction rules for order-sorted equational logic ([hlGS89]):

1. reflexivity. Ea.ch equa,tion (VX)t = t is derivable.

2. Symmetl-y. If (VX)t = t' is derivable, then so is (VX)tt = t.

3. Transitivity. If (VX)t = t' a~nd (b'X)tl = t" are derivable, then so is (VX)t = t".

4. Congruence. Given t E TE(X) and C-substitutions 0,O' : X I-+ Tc(lf) such that for each

x E X , tlie equation (VP)O(x) = Ot(x) is derivable, then the equation (\dY)O(t) = Ot(t).

5. Substitz~tivity. If (VX)t = t' E E, and if 0 : X I--+ Tc(Y) is a Z=-srtbstitution, then

(VY)O(t) = O(tl) is derivable.

We denote the clerivability relation by kc as usual. T;Vhen tlie order-sorted signature is clear

from the contest, we might sirnply write t.

Theoreln 2.16 [Soundness and Completeness Theorem [GM87b]] Given a coherent orcler-

sorted signature C, a set E of C(X)-equations, and terms t , t' E Tz(X), the followiilg are

equivalent:

E tc t = t'.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Uilification

3 General Equations

Given the complexity of E-unification in the case of arbitrary equational theories, it inakes

sense to restrict the kind of equations and to study the problem under those restrictions.

We focus our attention to a special class which we call General equations.

The study of rigid (C, E)-unification for equation systems which are not general, although

of interest, is beyond the scope of this paper.

General equations are sort preserving in a very strong sense: not only are both ternis

involved of the same sort, but this property is stable under variable renamings.

A variable renaming C-substitution is a I=-substitution 0 : X H where IT is a set of

variables, i.e. 0(x) is always a variable. Notice that the sort of 0(x) has to be below that of x.

Thus, talking about variable renarnings is equivalent to tallii~ig about tlie set of sorts below

a given one. If the signature is finite (as in our case), then, lnoclule alphabetic variants, there

is only a finite number of possible variable renamings for a term t .

Definition 3.1 Given an equation e = (b'X)t = t' over C, we say tliat e is general pro\~icled

2. for any variable renaming p, LS(p(t)) = LS(p(tf)).

In particular, LS(t) = LS(tt). A system E = {t , = t l , i E I) is said to be general if cach

ecluation is general.

Int,uitively, we make sure that every illstance of the equation is sort preserving. This will

ensure that no ill-typed terms can be generated when rewriting. We illustrate via an example

what is not general.

Exaxnple 3.2 Consider the signature MGI shown in figure 2.

Let e = (Vx : s,) f (x) = $(x). Although LS(f (x)) = LS($(x)) = sl, there is a problem when

.we apply the variable reliaming ~(, r) = z : s4 because LS(f(z)) = s3 but LS(g(z)) = sz .

This shows that e is not general. Thus when using e to make deduction special attention to

the sorts has to be drawn. For example, even though f (z) = ~ (z) is a valid consequelice of e,

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unification

Figure 2: The MG1 signature

h(f (z)) = h(g(z)) is not only invalid, but h(g(z)) is ill-typed. Hence replacement of equals

by equals cannot be used with equations which are not general.

The previous example shows that some unsorted theorem proving methods are not sound

for order-sorted deduction. However as we will see, congruence closure, can be safely applied

to systems of frozen equations. This will be come a key issue in our algorithm for rigid

(C, 3)-unification.

Lemma 3.3 Let I = r be a general equation and let a be a C-substitution, then a(b) = a (r)

is also general.

Proof:

1. Clearly Var(a(1)) = Var(o(r)) .

2. To show that renamings of a(1) = a (r) are sort preserving. Notice that the sort of

such a renaming can be characterized by renamings of the original equation. This is

so because one can define a renaming p s.t.

This is done as follows: for x E Var(1) let x,(,) be a variable of sort LS(a(x)) . Let

(x) = x . The least sort of any renaming of a (x) can then be realized by an

appropriate renaming of x.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unification

Figure 3: E = {(V(xl) f (xl) = g(xl)) is no t most general.

The class of general equations is less restrictive than the class of most general equations

defined by Meseguer, Goguen and Smolka in [MGSSS]. They require an equation to be sort

preserving under arbitrary renamings (not just C-substitutions). For example, consider the

signature of figure 13 and the equation E = {(b'(xl) f(q) = y(xl)). Clearly E is general.

Since f (x2) = g(x2) is not covered by E, the system is not ?nost general.

The focus in [MGSSS] is on utilizing unsorted theorem methods which at a second pass are

transformed into order-sorted ones. In that context it is important to preserve the unsorted

deducibility relation. Notice that E IfI: (Vxz) f (32) = g(x2).

4 Order-Sorted Unification

Unification basically amounts to finding values for the variables appearing in terms so as

to make them equal. Given two terms t and t', a substitution 0 is a unifier of t and t f if

Q(t) = 8(t1). Thus a unifier can be seen as a solution of the equation t = t'. Given a system

T of term equations, tve say that a substitution Q is a unifier of the system T if Q unifies

every term equation in T. General unification, commonly called E-unification amounts to

solving a system T of term equations mod~rlo a set E of equations.

4.1 Term unification

The order-sorted rrnification problem has been addressed by different researchers [I<irSS,

MGSS9, SS87, WalS7, tValS41. Orcler-Sorted Unification differs from its unsorted version. In

Center for Digital Eco~lomy Rerearch
Stem School of Business
W o r h g Paper IS-91-40

Order Sorted Rigid E- Unification 17

the simple case of unifying two variables x : sl and y : s 2 the existence of an order-sorted

unifier of x and y depends on the sort structure. If there is no lower bouiid to the set {sl, s2}

there is no unifier. If however, the set LBd({sl,s2}) = {s E S j s 5 s1 and s < sz) is not

empty, any element of it represents a order-sorted unifier. That is, for any s E LBd((s1, s2}),

let z, E X, be a variable of sort s , then the substitution [x/z,, ylz,] is an order-sorted unifier

of x and 3.

In the unsorted case Robinson [Rob651 shows the existence of a most general unifier for

a set of unifiable terms. There exist several algorithms to compute a most general unsorted

unifier IHue76, PW78, MM821. The Martelli-Montanari approach, by abstracting over the

control structure, provides a good method for proving existence of unifiers in more general

settings [Sny88]. In contrast to the unsorted case, most general unifiers do not exist in the

order-sorted case. Complete families of unifiers can be defined as in the case of E-unification.

Definition 4.1 Given a set T of terms, a. set of C-substitt~tions CSU(T) is a complete set

of I=-unifiers for T iff

(i) each a E CSU(T) sa,tisfies D(a) C Var(T) and D(a) n I(a) = 0 (a is idempotent);

(ii) if cr E CSU(T) then it is a unifier of S;

(iii) For every C-unifier 0 of T, there exists a E CSU(T) such that a 5 8.

Example 4.2 Consider the signature NMGU shown in figure 4.

Let 21,. . . ,zq be variables of sort sl, . . . , s4 respectively. The C-substitution 8 = [zl/z3, zg/z3]

is an order-sorted unifier of zl and z2, and so is 8' = [zl/z4, z2/z4]. Notice however, that

neither does 0 subsume 0', nor does 0' subsume 0. Furthermore, it is easy to see that there

does not exist a C-substitution 4 such that 4 5 0 and 4 5 0'. Therefore, no mgu exists for

the term pair < 21.22 >. However, {0,01) is a complete set of C-unifiers for {zl, 22).

Isakowitz [Isa89] presents a non-deterministic algorithm t,o compute CSU(T).

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unification

Figure 4: The NMGU signature

In this section we clefine the notion of Order-Sorted E-Unification (f= - E Unification), we

briefly review and comment on some of the results presented by Xleseguer and Goguen and

Smolka in [hIGSS9]. The system of equations which are studied there are called most general.

Our notion of general equational system is weaker than the notion of most general equations

which is used in [htIGSSS]. Hence our results do apply to a larger class of equations.

Definition 4.3 Given a set E of equations and C- te rm t and t', we say that a C-substitution

6 is a (C, E) unijer oft and t' iff

By considering the unsorted signature ICI obtained by forgetting the sorts from C and

the unsorted system of equations \El obtained from E , one can compare unsorted and order-

sorted E-unification. In [MGSSS], the relationship between these is studied. A number of

characterization theorems are presented which show that for reasonable signatures, families

of order-sorted E-unifiers can be obtained from unsorted E-unifiers. The method consists

in first computing an unsorted E-unifier and then finding sort assignments for the variables

to construct order-sorted unifiers. However, such sort assignments might not always exist,

in which case there is not order-sorted version of the E-unifier, As we shall see later, our

Center for Digital Economy Research
Stern School of Business
W o r h g Paper IS-91-40

Order Sorted Rigid E- Unifica.tion

Figure 5: f (c) = g(c)

method detects that a potential substitution can not become a C-unifiers earlier and can

therefore present signifiant efficiency gains over the unsorted method.

E x a ~ n p l e 4.4 Consider the signature of figure 4.2 and the equation f (c) = g(c) . The

Z-terms f (z l) a.nd g(zl) are not (C, E)-unifiable. Ho\vever, the method described above

would first discover the unsorted E-unifies [c/xl]. Any attempt to come up with an oscler-

sorted version of this unifier is deemed to failure.

4.3 Unifiers in Triangular Form

In order to show that our decision procedure for rigid order-sorted unification is in NP, we

will need the fact that members of CSU(u, v) can be represented concisely in triangular form

(the size of this system is linear in the number of symbols in u and v) . We will clenote a

complete family of C-unifiers in triangular form by CTU(T). When T consists of a single

pair (u, v), CTU(S) is also denoted by CTU(u, v).

An algorithm for finding a complete family of C-unifiers in triangular form for arbitrary

finite coherent signatures is described by Isakowitz in [IsaS9]. This method is obtained from

the fast method using multiequations of Martelii and Montanari [MM82] adapted to the

order-sorted case as presented by Meseguer, Goguen and Smolka in [MGSSS] by utilizing a

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unification 20

non-deterministic version of the IP algorithm ([hfGSSS]). Thus, this method is nondeter-

ministic, and it computes elements of CTU(T) in nondeterministic quasi-linear time.

In addition to the fact that complete families of triangular C-unifiers do exist, we will

use some properties of triangular forms in the proof of the soundness of our method. We

develop an abstract view of triangular forms. First, we define triangular forms.

Definition 4.5 Given an idempotent C-substitution a with domain D(a) = {xl, . . . , xk}, a

trian,gularform for a is a finite set T of pairs (x, t) where x E D(a) and t is a term, such that

this set T can be sorted (possibly in more than one way) into a sequence ((XI , t l) , . . . , (xk, tk))

satisfying the following properties: for every i, 1 < i < k,

(1) 21,. . . , x i n Var(t;) = 0, and

The set of variables 1x1,. . . , xk) is called the domain of T. Note that in particular

x; 6 Tfar(t;) for every i , 1 < i < k , but variables in the set { x , + ~ , . . . , xk) may occur in

t l , . . . , t i . It is easily seen that a is an idempotent mgu of the term system T.

Example 4.6 Consider the C-substitution a = [f (f (x3, x3), f (x3, x3))/x1, f (x3, x3)/x2]. The

system T = {(XI, f (x2, x2)), (x2, f (x3, x3))) is a triangular form of a since it can be ordered

((X I , f (~ 2 , ~ 2)) , (~ 2 , f (~ 3 , ~ 3))) and a [f (~ 2 , x ~) / x I] ; [f (~ 3 , ~ 3) / ~ 2] .

The triangular form 7' = {(XI , t l) , . . . , (xk, tk)) of a C-substitution a also defines a C-substitution,

namely a~ = [tl/xl, . . . , tk/zk]. This C-substitution is usually different from a and not idem-

potent as can be seen from example 4.6.

The method for computing C-unifiers returns triangular forms, i.e. given E-terms t and

t', the method returns either failure or a triangular form T = {(zl, t l) , . . . , (zk, tk)) for a

C-unifier O o f t and t'. The substitution sigmaT associated with this triangular form plays a

crucial role in our decision procedure by providing a succinct representation of a C-unifiers.

'In fact, this result can be strengt,hened: our method works for finitnry signatures while the one presented
in [MGS89] works for tinztary signatures.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unifica Lion

Figure 6

This reduces the complexity of the algorithm. Notice however that even though aT is asso-

ciated to 0 (which unifies t ancl t ') ,

1. as is well known that a~ might not unify t and t J 2; and

2. L S (a T (t)) and L S (a T (t l)) might differ.

This last observation presents a problem to our development.

Example 4.7 Consider the signature presented in figure 6. Given C-terms t = f (r c , y, z)

and t' = f (y , g (z) , h (c)) , the X-substitution 0 = [g (h (c)) / x , g (h (c)) / y , h (c) / r] is a C-unifier

of t and t'. The following is a C-substitution associated with a triangular form for 0:

CT = [Y / x , g (z) / y , h (c) / z)] . However,

2For example, a in example 4.6 is a triangular form of a unifier of t = f(x1,xz) and t' =
f(f (x2, x2), f (t3, 13)). However, as the reader is invited to check, a ~ (t) # ~ (t ')

Center for Digital Economy Research
Stem School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Ui~ifica tion 22

Not only do aT(t) and aT(tt) differ in structure, but also in sorts: LS(aT(t)) = sl while

L S (c ~ ~ (t l)) = ~ 2 .

In order to force cT(t) and aT(tt) to have the same sort, we observe that since t and tt are

unifiable, there has to exist a variable renaming p such that LS(p(aT(t))) = LS(p(aT(tl))) =

LS(B(t)). Tn fact, by reading a triangular form from right t o left, such a variable assignment

can be obtained. New variables are utilized to represent the renaming. In the case of the

previous example, y will get the sort of g(zt) which is s 2 , and x will also be pushed to have

sort s2.

Definition 4.8 Given a C-substitution O with triangular form T = {(zl, t l) , . . . , (xk, tk)).

Let pk+1 = id, ancl for j = 0, . . . - 2, let

where each y; is a different variahle of sort srt; not appearing in the original system (for

i = 1, ... ,k).
The special triangular form T* is defined by T* = ((X I , pz(tl)), . . . , (z k , pk+l(tk))). Its asso-

ciated substitution will be denoted by a:.

By construction, we have the following result:

Lernina 4.9 If 0; is a special triangular form for a C-sul>stitution a, then for every z E

Dorn(o), LS(a:(z)) = LS(a(a)) .

From this we have the follo~ving import ant corollary:

Corollary 4.10 Let 0 be a C-unifier of the C-terms t and t', and let a; be a specid triangular

form for 0, then LS(a$(t)) = LS(a:(tt)).

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unification

Example 4.11 Recall from example 4.7, 0~ = [y/z, g(z)/y, A(c)/z)]. Then

Thus a; = [ys2/e, g(ys3)/y, h.(c)/z)]. Let us compute a;(t) and a;(tl):

We still have a>(t) rf a;(t1). FIowever, LS(a>(t)) = s2 and LS(a$(tl)) = sa!

Special triangular forlns play an important role in the algorithm for rigid (C, E)-unification.

In what follows, all triangular fornis and associated C-substitutions are assumed to be in

this special form and will be denoted by T ancl LTT instead of T* and a;. We now develop

a series of lemmas which will be utilized in the proofs of the soundness and completeness of

our rigid (C, E)-unification metliocl. First, we adapt a tecl~nical lemma from [GNPSSO].

Lemma 4.12 Given a triangular form T = {(zl, t l) , . . . , (xk, t k) } for a C-substitution a and

the associat,ed C-substitution a T = [t l /z l , . . . , tk /zk] , for every C-unifier @ of T , 0 = a~ ; 0.

Proof: Since 0 is a C-unifier of T , we liave O(x,) = O(t,) = Q(ar(x,)) for every i, 1 5 i < k.

Since aT(y) = y for all y 4 {e l , . . . , xk}, O = a~ ; 0 holds.

Another important observation ahout 0~ is that even though it is usually not idempotent,

at least one variable in 1x1,. . . , xk} does not belong to I (aT) (otherwise, conditioli (1) of

the triangular form fails).

The following results from [IsaSS], 'ivhich also hold in the unsorted case, shed some liglit

on the relationship between a C-unifier and its triangular form. Interestingly enough, the

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Ui~ifica t ion 24

results are developed algebraically, as opposed to concentrating on the methods to obtain

triangular forms. Although a and a~ are different substitutions, the following lemma sl~o\\rs

that composing a T with itself enough times yields a.

Lemma 4.13 Given a term system S; a an idempotent C-unifier of S; and T = {< XI, tl >

, . . . < x,,t, >) a triangular form for a, let a* = [xl / t l , . . . , x,/t,] be the C-substitution

associated with 2". Then aT(n) = a.

The proof is given in appendix A.2.

Based on the previous lemma we ca,n state a result similar to lemma 4.12.

Lemma 4.14 Given T a triangular form of an idempotent C-unifier a of a system S, if 0

unifies T, then 0 = a; 0.

Proof: By lemma 4.12, D = 4 ~ ; 0, and hence for any i > 0, B = a$); O. By the previous

lemma a!$) = a. Therefore, B = a ; 6'. CI

\lie can now prove the follo\vivlg result:

Lemma 4.15 Given T, a triangular form for an idempotent C-unifier a of a term system

S; every I=-unifier of T is also a I=-unifier of S.

Proof: Let 0 be a C-unifier of T. By lemma 4.14 0 = a ;0 . Since a unifies S, so does B

because given any < t , t' >E S, O(t) = B(a(t)) = O(a(tr)) = O(tf).

Eelnnla 4.16 If a is an idernpotelit C-unifier of S and T is a triangular form for a , then a

unifies T.

The proof is given in appendix A.3.

5 Rigid-E-Unificat ion

In this section we give the formal definition of rigid (C, E)-unification and we provide some

intuition for the methocl we are about to develop. Our approach is based on the nlelliod

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- U~iifica tion 25

given by Ga.llier, Narendran, Plaisted and Snyder in [GNPSSO]. Our accomplishments are

twofold.

Firstly, we significantly simplify the unsorted method and its correctness proofs, thereby

presenting an improved unsortecl rigid E-unification method. The niajor silnplification is

the removal of order assignments from the transformation which is an important colnpiiient

of the unsorted method as presented in (GNPSSO]. Order assignments represent guesses of

portions of the final solution. Their role in the rigid E-unification method is difficult to

understand and their presence complicates the proofs. We incorporate the guessing within

another component of the method: the reduction procedure. By doing so, we manage to

reduce the numl~er of components of the method, thereby simplifying it. We also moclify

the reduction procedure by incorporating a reduction rnetllocl by Snyder [SnySS]. We then

provide new soundness ancl completeness proofs which show the correctness of the order-sor-

ted algorithm and also apply to the unsorted method.

Secondly, our method is intrinsically order-sorted. We utilize an order-sorted unification

algorithm to ensure that at each step of our method, the sort illfor~nation is taken into

account. This makes for an efficient algorithm which is able to discard ruifit substi t~~tions as

these are built, by identifying sort conflicts.

We begin with some formal clef nitions.

Definition 5.1 Let E 2 TE(X) x Tc(X) be a binary relation on terms. We define the

relation +-+E over TI:(X) as follows: Given any two terms t l , t2 E TE(X), then tl H E t2

iff there is some variant3 (s , t) of a pair in E U E-l, some tree address a in t l , aiicl some

substitution 0 , such that

(In this case, we say tliat 0 is a matching substitution of s onto t l / a . Tlie term t l / a is called

a redex.) Note that the pair (s , t) is used as a two-way rewrite rule (that is, non-oriented).

In such a case, we denote the pair (s, t) as s = t ancl call it an equatiotz. tl H E t2,

we say that we have an equality step. When we want to fully specify an equality step, we

3A pair (s , t) is a variant of a pair (u , v) E E iff there is some renaming p wit11 domain Vccr(u) U V o v (v)
such that s = p(u) and t = p(v).

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigicl E- Unification

use the notation

t l -cu,s=~t,cr t2

(where some of the arguments may be omitted). A sequence of equality steps

is ca,lled a proof of u A E v .

Definition 5.2 Given a finite set E of equations (ground or not), we say that E is treated

as a set ofground eq.t~atio~?s iff for every pair of terms u, v (ground or not), for every proof of

u & ~ v , t,hen for every ecluality step s H ~ , ~ = , , , t in this proof, a is the identity substitution

and 1 = r E E U E-I (no rellalllillg of the equations in E U E-' is performecl). This means
*

that variables are treated as constalits. We use the notation u CE v to express the fact
*

that u f-r-fE v, treating E as a set of ground equations. Equivalently, u gE v iff u and v

can be shown congruent from E by congruence closure (I<ozen [I<oz76],[I<oz77], Nelson and

Oppen [NOSO], Downey, Sethi, and Tarjan [DSTEIO]) again, treating all variables as constants

- they are consiclered rigid.

The results in [ha891 on congruence closure show that the method is s o u ~ ~ d for order-sor-

ted deduction when the equations are general. More formally, if u and v are 3-terms and E
*

is general then u gE v implies E kc u = v. This is the reason why we require the eclualions

to be general!

NTe give the clefinition of a rigid (C, E)-unifier.

Definition 5.3 Let E = {(sl = tl), . . . , (s, = t,)) be a finite set of ecluations, and

let V a r (E) = Ufs=t)EE Var(s = t) denote the set of variables occurring in Given a

E-substitution 0, we let 0(E) = {0(s, = t,) I s, = t, E E , @(st) f 8(t,)). Give11 any

two terms u and v , ~ a C-substitution 0 is a rigid (C, E)-unifier of u and v modulo E (for

short, a rigid (3 , E)-unifier of u and v) iff 0(u) AE H(v), treating 0 (E) as a set of ground
*

equations i.e., 0(u) O(z)).

41t is possible that equations have variables in common.
51t is possible that u and v have variables in common with the equatiolls in E.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unification 2 7

Note that if E is general then a rigid (C, E)-unifier is a (C, E)-unifier. (This follows from

the soundness of congruence closure.) The converse, as shown in example 1.2, is not true.

Our method for rigid (C, E)-unification can be described in terrns of a single transformation

on pairs of the form (S, E), where S is a unifiable set of pairs and E is a set of general

equations. Starting with an initial pair (8, Eo) initialized using E and u, v, one consiclers

sequences of transformations (8, Eo) ++ (Sk, Ek) consisting of at most k < ?n steps ~~~~~~~e n2
is the number of variables in E. It will be shown that u and v have some rigid (S , E)-unifier

iff there is some sequence of steps as above such that 1) the special equations involving the

markers appear in Ek, and 2) Sk is unifiable. Then, any C-unifier of Sk is a rigid (C, E)-unifier

of u and v.

6 Complete Sets of Rigid (C, E)-Unifiers

As in the case of general E-unification, we are interested in complete families of rigid (E, E)-unifiers.

The contents of this section are aclapted frorn [GNPSSO] to deal with subsorts. Tlie missing

proofs are essentially the same as in the unsorted case. We need soIne definitions regarding

complete sets of rigid (C, El-unifiers. First, we define some preorders on C-substitutions.

Defiilition 6.1 Let E be a (finite) set of equations, and IT; a (finite) set of variables. For
L

any two E-substitutions a and 0, a =E 0[TY] iff a (x) EE 0(x) for every x E TT17. Tlie relatioil

LE is defined as follows. For any t\vo C-substitutions a and 0, a LE 0[1V] iff a = q ~) 0[1;1/].

Tile set 117 is omitted when IY = X (where X is tlie set of variables), and similarly E is

omitted when E = 0.

Intuitively speaking, a LE 0 iff a can be generated frorn 0 using the ecl~at~ions in O(E).

Clearly, C E is reflexive. FIowever. it is not symmetric as shown by the Sollo\ving example.

Exainple 6.2 Let E = {f(x) = x), g = [f(a)/x] and 0 = [a/x]. Then 0 (E) = {f(a) = a)

and a (z) = f (a) a = 0(x), and so a fZE 0. On the other halid tr(E) = { f (f (a)) =

f (a)), but a and f (a) are not congruent from {f (f (a)) = f (a)). Thus 0 a does not

hold.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unifica tion 2 S

Some positive facts about the relation CIE are shown in the following lemma from [GNPSSO].

These results easily adapt to the order-sorted case.

Lelnnla 6.3 For a,ny two C-substitut.ions a, 8,

*
(i) if a =*(El O, then a (u) O(U) for any term u.

* *
(ii) If a =*(E) 0, then for all terms ZL, v, if u v then u v.

(iii) LE is transitive.

* *
(iv) For any two terms u, v, and any C-substitution 8, if u gE v then 8(u) 8(u).

This lemma shows tha.t LE is specia,l rela,tionship, a preorder as defined below.

Definition 6.4 A preorder 5 on a set A is a binary relation 5 C A x A that is reflexive

and transitive. A partial order 5 on a set A is a preorder that is also antisymmetric. The

converse of a preorder (or partial order) 5 is denoted as h. A strict 01-derilzg (or strict o r d e ~)

4 on a set A is a transitive and isreflexive relation. Given a preorder (or partial order) 5 on

a set A, the strict ordering 4 associated with 5 is defined such that s 4 t i f f s 5 t and t ;z4: 5.

Conversely, given a strict ordering 4, the partial ordering 5 associated with 4 is defined

such that s 5 t iff s 4 t or s = t . The converse of a strict ordering 4 is denoted as k. C' riven

a preorder (or partial order) 5, we say that 5 is well founded iff k is well founded.

from (i) and (ii) it follows that if a lIE 0 and a is a rigid (C, E)-unifier of u and v, so is

8. We also need an extension of gE defined as follows.

Definition 6.5 Let E be a (finite) set of ecluat,ions, and T/V a (finite) set of variables. The

relation <E is defined as follotvs: for any two C-substitutions a and 8, a <E 0[147] iff a ; 7 E E

O[W] for some C-substitution 7 (that is, a ; 7 =s(E) 0[W] for some 7) . The conventions for

omitting [TV] and E are those of definition 6.1.

Intuitively speaking, a S E 0 iff a is more general than some C-substitution that call be

generated from 6' using 0(E). Clearly, _<E is reflexive. It can also be sho\vn that it is

transitive.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unification 29

Thus, S E is a preorcler, and it is clear that it estelids LE. When a <E 0[1;17], we say

that a is rigid more general than O over bV. By the remark followilig lemma 6.3 and part

(iv) of lemma 6.3, it is immediately verified that if a is a rigid (C, E)-unifier of u axid v and

a S E O, then 0 is a rigid (C, El)-unifier of u and v. However, the converse is false.

In the next definition, the concept of a complete set of (C, E)-unifiers is generalized to

rigid (C, ,!?)-unifiers,

Definition 6.6 Given a (finite) set E of equations, for any two terms u and v, letting If =

V a r (u) ~ V n r (v) ~ l / a r (E) , a set U of C-substitutions is a complete set of rigid (2=, 23)-unifiers

for u and v iff: For every a E U ,

(i) D(a) C V and D(a) n I(a) = 0 (idempotence),

(ii) a is a rigid (C, E)-unifier of u and v,

(iii) For every rigicl (C, E)-unifier 0 of zt and v, there is some a E U, such that, a LE 0[1/].

Condition (i) is the purity condition, condition (ii) the consistency condition, and colidition

(iii) the completeness condition.

It should be clear that if U is a complete set of rigid E-C-unifiers for 21 and v, a E U, and

a S E 0, then 8 is a rigicl (C, E)-unifier of u and v.

A rigid E-unification method that only uses the co~lstant and fiinction syi~ibols already

present in E , u and v, is called pure. The substitutions generated by a pure method

do not introduce new symbols. As demonstrated in [GNPSSO], pure methods are of in-

terest because their completeness proof can be simplified. Instead of having to consider

arbitrary rigid (23, E)-unifiers, it is enough to show completeness with respect to ground

rigid (C,E)-unifiers whose domains contain V. That is, clalise (iii) of definition 6.6, is re-

placed by

(iii') for every ground rigid (C, E)-unifier 0 of u and v such that V C L)(0) , there

is some a E l T s ~ ~ c h that a LE O[V] (where 11 = Var(23) U Ifar(u, v)) .

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unificakion

7 Minimal Rigid (C, E)-Unifiers

The concepts and results of this section have been adapted to the order-sorted case from

[GNPSSO]. Although most results look similar, they involve new techniques aiid subtleties

related to the sorts. We prove some useful lemmas about general equations that are funda-

mental to our method, and we prove some new results which are interesting in themselves

and do not appear in [GNPSSO].

Given a finitle or countably infinite order-sorted signature C, i t is always possible to define

a total simplification ordering 5 on 7~ (the set of all ground terms). F'or instance, we can

choose some total well-founded ordering 5 on C and extend 5 to lc as follows: s 4 t iff

either

3. size(s) = size(t), Root(s) = Root(t), and letting s = fsl . . . s, and t = f t l . . . t,,

(~ 1 , . . . , s,) +lez (t l , . . . , tn), where 41ez is the lexicographic ordering incluced by 4.

Notice that t 4 t' does not imply LS(t) < LS(tt). In the rest of this paper, we assunie that

5 is a fixed simplificatio~i ordering ~vliicli is total on 7 ~ . Given a set E of equations, for assy

ground substitution 0, we let < O(E), s> denote the set (O(1) = O(r) 1 O (2) + O(r), 1 = 1- E

E U E-' } of oriented instances of E. Tlius, we can also view O(E) as a set of rewrite rules.

When 5 is clear from concept, we might simply write O(E) instead of < O(E), 5> . Some

ambiguity rniglit arise froin slot knotving when O(E) denotes a set of rewrite rules or a set of

equations. In general we mean tlle former.

Siiice we restrict o~srselves to t,he case ~vliere E is general, tlie equatiosls are sort-preserving

and we obtain a sort-preserving rewrite system. Tlius, we do not have to worry about

generating ill-typed terms when rewriting. That is wliy tlie ordering 5 can disregard sort

information.

We shall use the total simplificatioil ordering 4 on 7 Z to defiiie a well-founcled partial

order + on ground C-substitutions. For this, it is assusnecl that tlie set of variables X is

totally ordered as ,Y = (xl, az , . . . , x,, . . .).

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unifica.tion 3 1

Definition 7.1 The partial order 4 is defined on ground E-substitutions as follows. Given

any two ground C-srtbstitutions a and 0 such that D(a) = D(O), letting (yl . . . , yn) be the

sequence obtained by ordering tlie variables in D(a) according to their order in X, tlieli

a + O i f f

(~ (Y I) , + , ~ (y n)) 5lez (~ (Y I) , . - + 7 o (~ n)) ,

where 51e, is the lexicographic ordering on tuples induced by 5.

Since 5 is well-founded and 4 is induced by the lexicographic ordering -ire, which is well-

founded, -;' is also well-founded. In fact, given any finite set 17 of variables, note tliat -: is a

total well-founded ordering for the set of ground Z=-substitutions with domain V.

We utilize a total simplification ordering 5 on ground terms, to define a notion ~llillirnal

rigid (C, ,!?)-unifiers. F'ollowing [GNPSSO], we define an ordering among ground C-unifiers

in which minimal elements do exist.

Definition 7.2 Let E be a set of general equations (over Tx(X)) arid u, v E Ts(X) ally two

terms. For any ground rigid (C, E)-unifier 0 of u and v, let

Obviously, 0 E SE,tl,V,~, SO SE,u,V,o is not empty. Since -: is total and well-founcled on ground

C-substitutions with domain D(0) , the set SE,,,,,,e contains some least elelnerit a (w.r.t. +).

We define tlie notion of rigid equivalency.

Definition 7.3 Given two sets E and El of equations, we say tliat E and E' are rigid
* *

equivale?zt iff for every two terlils 21 and v , u ZE v iff u ZE1 v (treating E and El as sets

of ground equa,tions)

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unifica,tion

Lernrna 7.4 If E and El are rigid equivalent then SE,u,v,~ = SEf,u,v,~.

Proof: Since E and E' are rigid equivalent, so are p(E) and P(EI) for ally C-substitution p.

Hence for any terms u and v, p(u) g p (~) p(v) iff p(u) G,,(E~) p(v). CI

We shall now state a result from [GNPSSO], but first we define degenerate equations.

Definition 7.5 A degenerate equation is an equation of the form x = t , where x is a variable

and x $ V n r (t) , and a nondegenerate equation is an equation that is not degenerate.

Lemma 7.6 Let E be a set of equations (over Tj(X)) and u, v E Tj(X) any two terms.

For any ground rigid (I=, E)-unifier 0 of ti and v, if cr is the least element of the set SE,u,V,~

of definition 7.2, tallen the follo~ving properties hold:

1. every term of the form cr(x) is irred~~cible by every oriented instance a(1) -+ a(i-) of a

nondegenerate equation 1 = r E E U E-l, and

2. every proper srtbterm of a term of the form a (x) is irreducible by every oriented instance

a(!) -+ a(r) of a degenerate equation 2 = r E E U E-l.

In view of lemma 7.6, it is convenient to introduce the following definition.

Definition 7.7 Given a set E of ecluations, a total simplification ordering 5 on ground

terms, and any two terms u, v, a ground rigid E-unifier 0 of u and v is redziced w.7-.t. O(E)

iff

1. every term of the form 0(x) is irreducible by every oriented instance O(1) -+ O(r) of a

nondegenerate equation 1 = r E E U E-I, and

2. every proper subterm of a term of the form 0(x) is irreducible by every oriented instance

O(I) -+ O(r) of a degenerate equation 1 = r E E U E-l.

VCTe have the following lemma as a combination of lemmata 7.4, 7.6 and the existence of

minimal elements in SE,2L,V,~.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unification 3 3

Eernina 7.8 Let E be a set of general equations (over 7x(1Y)) axid u, v E I x (X) any t~vo

terms. For any ground rigid (C, E)-unifier O of u and v, if a is the least element of the

set SE,,,,,e of definition 7.2, then a is reduced with respect to a(E') for any set E' rigid

equivalent to E.

Given this and the remark on pure methods at the of section 6, we will assume for the rest

of this chapter that

rigid (C, &')-unifiers are ground and reduced. The next lemma shows why reduced substitu-

tions are interesting.

Leinnia 7.9 Let t E Tx, 1 = r E E , and let O be a ground C-substitution that is reduced

w.r.t. O(E). Suppose that O(t)-.tn,e(r=r)t". Let t' = t [P t- r]. Then

1, ,l? occurs inside t , i.e. /? E Dom(t), and

2. t' f 7j and t" = O(tt).

The proof is given in appendix -4.4.

This lemma is important because it shows that pieces of a rigid (C, E)-unifier of u ancl v

can be tracked down to the terms in {E, u, v). By an inductive argument on the length of

rewrite proofs, we obtain the following corollary.

Corollary 7.10 Consider a rewrite proof of the form

O (~ O) +,,@(E) 91: C f - t i 3 2 , ~ (~) ui &&,@(E) . . . &P~,@(E) uL'

For 1 5 i 5 12 let U ; = u;-~[/?; t- li] = u o [P ~ t- Y I , . - . Pi t- ri]. The11

Furthermore, for 1 < i < n, u: = O(u;) and Pi E Dom(u;).

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unification

8 Finding Reduced Sets of Rewrite Rules

Rewrite systems are like equations except that they clearly specify a left and a right hand

side. Rewriting specifies an operational semantics that can be used for equality steps. As

opposed to equations, rewrite rules specify direction which can be used to define normal

forms. These normal forms are interesting because they state a type of jinalising condition

which we need to ensure progress at each step of the rigid E-unification method we present

in section 9.

We formally define sorne of these concepts before presenting the results.

Definition 8.1 Let - be a binary relation ---t C T c (X) x T c (X) on terms. The relation - is monotonic iff for every two terms s, t and every function synibol f , if s ---i t the11

f (. . . ,s , . . .) - f (. . . , t , . . .). The relation - is stable (under substitution) if s ---7. t

implies a(s) - a (t) for every substitution a.

Definitioil 8.2 When a pair (s, t) E. E is used as an oriented equation (from left to right),

we call it a rziEe ancl denote it as s - i t . The I-eduction relation -+E is the smallest stable

and monotonic relation that contains E. We can define tl -g t2 explicitly as above the

only difference being that (s , t) is a variant of a pair in E (and not in E U E-I). IVllen

tl --+E t2, we say that tl re~oi-ites to t2, or that we have a rewrite step. When we want to

fully specify a rewrite step, we use the following notation.

Some of the argrlrnellts a, s -i t or a n ~ a y be omitted. Tkis notation means tliat tree t is

rewritten at adclress a using rewrite rule s -i t and substitution a to obtain tree t2.

Mihen Tfnr(r) 2 Tfar(l), then a rule I -i I* is called a rewrite rule; a set of such rules is

called a rewrite system.

Definition 8.3 Consicler a ground term rewriting system R. R is noethei-inn iff there esists

no infinite sequence of terms t l , t2, t3,. . . such that t l -*Rt2~Rt3*R. . ., and it is C O I Z ~ U ~ I Z ~

iff whenever tl AR t2, there exists a term t3 SLIC~I that tl AR t3 RA t2. R is caizoi-t.icn1

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unifica.tion

iff it is noetherian and confluent.

A term t is irreducible by R (or in normal form) if there exists no t' such that t -+~t '

A system R is lefi-reduced iff for every 1 -% r E R, 1 is irreducible by R - (1 -A I*) ; R is riglit-

reduced iff for every 1 -i r E R, r is irreducible by R. R is called reduced iff it is left-reduced

and right-reduced,

8.1 Ground Equations

Snyder [SnySS] presents an O(n log n) method for compiling ground equations into reduced

sets of rewrite rules. For example, if E = { f 3 (a) = a , f2(cl) = a , g (c) = f (a) , g (l z (a)) =

g (c) , c = h (a) , b = r n (f (a))) then R = (f (a) -+ a , g (c) -+ a , 112(u) --+ b, h (u) -+ c) is

reduced equivalent to E.

Snyder's method computes R by first computing the congruence closure of E , rewriting

some terms using congruent subterms and selecting representatives for each congruence class.

Since general equations are sort preserving, term rewriting modulo E is sound since

it does not violate sort constraints. Similarly rewriting must preserve the set of variables

and satisfy the zwrinble renaming property hence given a set E of general equations, ally

ecluivalent set R of rewrite rules produced by Snyder's algorithm is also general.

We expand the method to systems which contain variables when we regard these as frozen.

Hence if the equations are order-sorted and general, so is the resulting reducecl set of rewrite

rules. This justifies the use of an unsorted algorithm to interreduce sets of C-ecluations. The

complexity of Snycler's algoritllrn is 0(nlog12) where 11 is the size of the system of ecluatiolls

in DAG format. The method is nondeter~llinistic in that it produces some reduced set of

ground rewrite rules. If we denote the reduction procedure by +z we can state the ibllo~ving

results.

Leinlna 8.4 If E is a set of general equations and E +R R', then R' is also general. In

particular all terms in R' are C-terms.

Center for Digital Econotny Research
Stern School of Business
Working Paper IS-91-40

Order. Sorted Rigid E- Unifica,tion 3 6

Theorem 8.5 [Soundness (Snycler)] For any set of ground equa,tions E, if Ei =SR R', then

AR' = *
- E .

Theorem 8.6 [Completeness (Snyder)] For any set E and for any reduced ground term

rewriting system R' equivalent to E, E =+R R'.

8.2 Non-ground Equations

Snyder's method handles only the ground case. live are interested in extending the reduction

procedure to systems of equations containing variables, but we regard those variables as

frozen, i.e. as constants over an extended signature. Tlie metkod and all the res~ilts adapt

themselves without clifficulty to this case. We restate some of the results in these terms.

Let us recall the notion of rigid equivalence given in definition 7.3 on page 31.

Given two sets E and E' of equations, we say that E and E' are rigid equivalent iff
* *

for every two terms ti and v, ti ZE v iff u v (treating E and E' as sets of grottild

equations).

It is clear that if E and E' are rigid equivalent, then for every C-substitution 0, O(E) and

B(E') are rigid equivalent. The so~~ndness result now reads as follows.

Theoreill 8.7 If E =+R R' then viewing R' as an equation system, E and R' are rigid

equivalent.

Definition 8.8 A strict ordering 4 llas the subierm propert9 iff s 4 f (. . . , s , . . .) for every

term f (. . . , s, . . .) (since we are considering symbols having a fixed rank, the deletion property

is superfluous, as noted in Dersho-cvitz IDer871). A simplification ordering 4 is a strict

ordering that is monotonic and has the subterm property. A reduction ordering 3 is a strict

ordering that is monotonic, stable, and such that + is well founded. With a slight abusc of

language, we will also say that the converse % of a strict ordering 4 is a sirnplification ordering

(or a reduction ordering). It is slio\vn in Dershowitz [Der87] that there are sisnplification

orclerings that are total on ground terms.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unifica,tion 3 7

We are interestccl in obtaining a reduced system which is compatible with respect to a

given ordering. That is, where the rules are oriented such that if 1 -+ r E R, then r 2 1. We

develop this now. First we notice that although we do not know exactly how to produce a

reduced system compatible with a given ordering, such a reduction does exist,

Theorem 8.9 [Completeness witoh respect to 1 Let E be a set of C(X)-equations (i.e. the

terms in the equations are in Tz(S)), and let 5 be a total simplificatioli ordering on I c (X) .

Then there exists a reduced set R' of C-rewrite rules compatible with 5 such that E =+R R1.

Proof: Gallier, Narendran, Plaisted, Raatz and Snyder [Gh'P+92] present tlie desired rigid

equivalent set of rewrite rules R1. By theorem 8.6 E =+R R'.

We now show Iiow to obtain total simplification orderings on terms with variables. The

following clefinition is an extension of one appearing in [GNPSSO]. There, a total siniplifi-

cation ordering is defined on tlle set of subterms of an equation system. We extend this by

defining a total si~nplificatioli orcleri~ig on the whole tern1 algebra IX(X). This orclerillg he-

comes crucial when showing the completeness of the metliocl for finding rigicl (S , E)-unifiers.

In [GNPSSO], portions of this orderilig are guessed and then extended. Although our ap-

proach deals with an infinite ordering, our method never has to guess ally portion of it. We

simply need to know its existence.

Definition 8.10 Given a grouncl C-substitution 8 and a total simplification orderilig 4 on

ground C-terms, the total simplification ordering 40 on T2(X) is defined as follo>vs.

First, arbit,rarily define a total ordering on the set of variables X . For example pick some

enumeration of the variables, if S = {xl , . . . , x,, . . . } define

xt 5' xJ if i 2 j.

Extend 5' by stating that a variable is less than any non-variable term:

x 5' t whenever x E X and t @ X.

Now, we define 4; recursively as follows: given C-terms u and v, u +/B v iff either

(1) 0(u) -4 0(v), or

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unifica,tion

(2) 0(u) = O(v), and either

(2a) u is a varia,ble and u 4' v, or

I lex (2b) u = f PI^,. . . ,21n), v = f (q,. . . , vn), and (ul , . . . , ~ n) (4 @) (~ 1 , . . . , vn) , where

(_iL)'ex is the lexicographic extension of 4;.

Consider the reflexive transitive closure of 4; and denote it by so.

We claim that i@ is a total ordering on Tx(X) that is monotonic and has the subterm

property. The only problem is in showing that so is total, as the other conditions are then

easily verified. The proof is given in the appendix A.5.

in view of theorem 8.9 we have tlie following corollary:

Corollary 8.11 Let E be a set of equations and 0 a ground Z=-substitution. There exists a

rigid reduced Rewrite System R' compatible with se such that E =+n R'. Furthermore, R'

can be computed in non-deterministic nlog(n) time.

9 Finding Complete Sets of Rigid (C, E)-Unifiers

In this section we clevelop an orcler-sorted method to find rigid (2 , E)-unifiers for systenis E

of general eqt~ations. The ~netliod is intri~isically orcler-sorted in that each of its compo~ients

is order-sorted and the celitral component of the method, namely the reduction of peaks, is

performed in such a way that a piece of an order-sorted rigid (C, E)-unifier is created. We

compare our approach to the one taken by Meseguer, Goguen and Smolka in [h/lGSS9] where

an unsorted algorithm is used to come up with a complete set of unsorted E-unifiers. Then

a complete set of order-sorted (C, E) unifiers is produced by using the sort information. We

could take a similar approacli here by using tlie algorithm presented by Gallier, Narenclran,

Plaisted and Snyder in [GNPSSO]. They present an NP procedure to generate coiiiplete sets

of unsorted Rigid E-Unifiers. NTe could first run the unsorted algorithm and then use tlie sort

information to produce a complete family of order-sorted rigid E-unifiers. The disadvantage

of this approach is that it does not make full use of the sort information. If 21 and v are rigid

(C, ..!?)-unifiable then O(E) kc O(u) = 0(v). Since E is general, so are O(E), O(21) and O(v).

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unification 3 9

Hence LS(O(u)) = LS(B(v)). Since H is a C-substitution, LS(O(u)) 5 LS(u) and LS(O(v)) <
LS(v). Therefore, unless u ancl v have a common subsort, they have no rigid (C, E)-unifier.

The method described above would first run the NP unsorted algorithm and then, upon

discovering that the family of sort assignments is empty, return failure.

Our method is intrinsically order-sorted. We modify the unsorted method for finding rigid

E unifiers to a method that builds order-sorted substitutions. Since the sort illformation

is used a t each and every step of the order-sorted algorithm, it detects failure due to sort

conflicts at an earlier stage. At the heart of our method is the algorithm for finding families

of order-sorted unifiers in triangular form described in section 4 which produces complete

families of order-sorted unifiers in triangular form. Those C-unifiers have two properties that

are needed for our method to work: they are idempotent and variable decreasing.

We have also improved upon the unsorted algorithm of [GNPSSO] by providi~lg all al-

ternative way of dealing with the problem of orienting the equations. \We sliow that it is

possible t o simply guess an orientation. Thus we manage to remove order assignme~zts from

the unsorted method. This improvement also applies to the unsorted case, it substantially

clarifies the methocl and places tlie role of the orientation of rewrite rules in its proper place.

IVithout entering into too much detail, order assignments are guesses of finite portions of

a simplification orclerislg on Z=(X)-terms. They provide an orientation t o the ecluations in

E so that by looking at them as rewrite rules one can, via overlaps, discover pieces of a

rigid (C, E)-unifier. By using the procedure to find reduced sets of rewrite rilles ecluivalent

to E presented in section S and by imposing a total simplification ordering on the algebra

I c (X) we rnanage to clo ~ ~ i t h o l i t guessing any portion of the ordering. We simply use the

fact that such an ordering exists and that the reduction procedure is complete (corollary

8.11). Our method uses the reduction procedure of section S and a single tra~lsformatio~i on

certain systems defined next. Recall that we are assuming E to be a set of general ecluations.

The following definition is needed.

Definitioil 9.1 Given a set E of general equations and some equation l = r , the set of

equations obtained from E by deleting I = r and r = 1 from E is denoted by (E - { l = r }) i .
Formally, we let (E - { l = r})i = {u = u 1 u = v E E, u = v # l = r, and t~ = v # r = l } .

Notice that if E is general so is (E - { I = r})i .

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unification 4 0

Intuitively, the method we present works on three different issues simultaneously. First one

tries to find a peak-free proof of 6(u) 6(v) by applying some transformations to

E: in order to obtain an equivalent system E' which is reduced in which there is a valley

proof O(u) w B (E l) z O(v). Then one tries to reduce u in the guessed system E', or

alternatively, one tries to reduce v in E'. If a common element is obtained as a reduction

from u and v we are done, otherwise the system E' is transformed by guessing a piece of

the rigid (C, E)-unifier of u and v into another equivalent system E" with fewer variables.

However, the proof 0(u) C ; B (E l t) 0(v) might not be a valley proof, hence the process restarts.

The reason it terminates is because in each iteration the number of variables in the systelll

decreases. There is an N P procedure [I<oz76, Koz771 for the base case with no variables, i.e.

6(E) = E.

In order to avoid having three different types of transformations (on E , on u and on v) the

method combines all these into one single apparatus by adcling special equations involvi~lg

u and v. These allow for the recluctions of 1~ and v to be done as part of the transformations

on the system E and they also act as markers to determine when the method has been

successful. We extend the signature C of E to include function names for these ~narliers and

the new equations. The markers are the function symbols eq, T and F . The equations are

eq(u , v) = F (u , v) and eq(z, s) = T(z). The idea is that at some point eq(u, v) and eq(s, s)

will unify and this will result in a rigid (C, E)-unifier of u and v. We face the question of

assigning sorts to the new symbols.

We explained previously that if u and v have no common subsort there can be no

rigid (C, E)-unifier for 26 and v. If we denote by LBd(S) the set of lower bounds for the

elements of a poset S , the last sentence states that LBd({LS(u), LS(v))) cannot be empty.

The first step of the order-sorted method is to determine whether LBd(jLS(u) , LS(v))) is

empty. If it is then it returns failure, otherwise a member s of LBd({LS(u), LS(v))) is

guessed. This sort s is a guess of the solution's sort, i.e. LS(B(z6)) = LS(H(v)). Notice that

failure can be detected due to sorts conflict at this early stage 7. Given s one defines the

order-sorted signature SS by adding to E the following

61ie use F(u, v) ancl T (z) instead of F and T as in [GNPSSO] in order to keep tlle set of equations general.
7 ~ l ~ i s can be strengthened by replacing u by IP(~, s)(u) slid v by IP(v, s)(v).

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted R.igid E- Unification

1. a new sort EQ,

2. a new function symbol T : s H EQ,

3. a new function symbol F : LS(u) . LS(v) H EQ, and

4. a new function symbol eq : LS(t1) + LS(v) r--$ EQ.

Given E, a set of equations over I c (X) , let z E Xs be a variable not occurring in E . MTe

consider finite sets of equations of the form

E,,, = E u {eq(u, v) = F(u , v) , eq(z, 2) = T(z))

where u, v E 'Tx(X). Notice that eq(u, v) = F(u , v) and eq(z, z) = T(z) are general. tcom-

nlent because (for eq(u, v) = F(11, TI)),

1. LS(eq(z1, v)) = E Q = LS(F(u , v)),

2. Var(eq(u, v)) = Var(F(u, v)), and

3. for any varia,ble renaming p, LS(p(eq(u, v))) = EQ = LS(p(F(z1, v))).

Similarly, eq(z, z) = T(z) is general. Hence, if E is general, so is E,,,. Notice that the

choice of CS is nondeterministic because s is not unicluely specified. As long as every member

of LBd(LS(u), LS(v)) can be picked in polynolnial time, our algorithm will remain in NP.

For C finite this is, of course, the case.

The next leinma shows that one call use the system E,,, to find rigid (C, E)-unifier of u

and v provided no estraneous terins are introduced in the process.

Le~nina 9.2 A C-substitution 0 is a rigid (I=, E)-unifier of u and v iff there is some sort s

and some Cs-~ubstit~ution 0' such t,hat

1. 8' is over Ts(X), i.e. none of the new symbols are used in Of ,

2. 8 = 8'JD(el)-(Z> and

3. 0' is a rigid (CS, Eu,,)-unifier of T(z) and F (2 1 , v).

The proof is given in a,ppenclis A.G.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unification 42

We are now ready to present the method. It is based upon a single transformatiosi wliich

is similar to the one presented in [GNPSSO] but does without the order assignment and uses

a different reduction procedure.

Definition 9.3 l i e define a nondeterministic transformation on systems of the form (S, E) ,

where S is a term system a,nd E is a set of equations as a,bove:

where 11 = r l , 12 = r 2 E E U E-l , either Z1/P is not a variable or l2 = 7-2 is degenerate,

11/P # 12, TU(ll/Pq 12) represents a member of CSUEs(ll/P, 12), which is a Xs-substitution

over T c (X) , in special triangular form, a~ = [t l /xl , . . . , tp/xp] where TU(lI/P, 12) =

= { (~ l , t l) , . . . , (xp,tp)),

The tr iang~la~r form TU(ll/P, 1 2) is obtained by running the non-deterministic quasi-linear

algorithm CTU described in section 4.3 which returns either a triangulax form or fails. If

it fails, the transfor~nation fails. Notice that, due to the nature of the equations, one can

restrict CSUcs(ll//3, 12) to a set of substitutions over TE(.X) instead of Tcs(-Y), and obtain

a set ~vhich is complete for all Cs-unifiers over Tc(X). Therefore, a~ satisfies conditioll 1 of

lemma 9.2.

Also note that the rigid reduced system Et is obtained nondeterministically from El'. The

non-determinism is introduced by tllie CTU procedtire as explained above and by the norr-

deterministic nature of reduction ~xocedure R. The idea is that some E' will be compatible

with the orientation imposed by 0. In essence, this is a guess of the orientation ie imposed

by 0 on E.

Notice that we clo not apply a unifier a in the transformation, but its associated C-substitution

a - T . This guarantees that the size of the system being transformed does not grow too

much. As a matter of fact, since a* only uses terms already appearing in the system, it can

sNote that we are recluiring that l l / P and l2 have a nonfrzvzal C-unifier. The triangular form of C-uiiifiers
is important for the NP-completeness of this method.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unification 4 3

be implemented by moving pointers in a DAG, hence the system which results from applyirtg

a;r is a t worst as large as the original one. This plays a significant role in placing our method

in NP.

Although aT(ll[P t- r2] = r l) looks like a critical pair of equations in E U E-l , it is

not. This is because a critical pair is formed by applying the order-sorted unifier of l l /P

and l2 to ll [P t r2] = r1, but [tl/xl, . . . , tp/xp] is usually not a unifier of l l /P and lz. It is

the composition [tl/xl] ; . . . ; [t,/x,] that is a unifier of I1/P and 12. In addition note that in

general, a / T associated with the triangular form of a unifier of l l /P and l2 does not have

to preserve sorts, i.e. LS(r(lI /P) and LS(r(l2) do not necessarily have t o agree. The reason

for using special triangular forms is to take care of this problem.

Lemma 9.4 Let E be a system of general C-equations and S a set of pairs of the form

< x, t > with t E '&(Xi) and LS(t) LS(2).

Suppose that (S, E)=+ (S', E'), then

1. all pairs in Sf are of the form < 2, t > with n: a variable, t E Ix(X) and LS(t) 5 LS(x).

2. E' is a set of general equations, in particular its terms are well sorted, and

3. for any C-unifier y of S', y (E) and y(E') are rigid equivalent.

See the proof in appendix A.7.

By iterating lemma 9.4 we can prove by induction the following.

Lemma 9.5 Suppose that (0, E) =++ (Sf, E'), then,

1. St consists of pairs of the form < n:, t > with x a variable, t E Ic(X) and L,S(t) < LS(x)

(in particular S' consists of 2-terms).

2. E' is a set of general equations, in particular of order-sorted equations, a,nd

3. for a,ny C-unifier 9 of S', 9(E) and y(E') are rigid equivalent.

For the previot~s lemma to hold it is f~~ndamental that the evolving equation syste~li re-

mains general, because that guarantees that all terms are order-sorted hence the substitution

being built in S is a C-s~~bstit~ntion.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unification

Figure 7: The signature C.

Given a finite coherent order-sorted signature 2, a set.E of general X-equations and two

2-terms 11 ancl z ~ , the method to find rigid (C, E)-unifier for u and v is the following.

M e t h o d

If Lbd(LS(u), LS(v)) is empty announce failure. Otherwise non-deterministically pick

s f Lbd(LS(u), LS(v)). Construct the signature CS and the set ,5",,, of general Ss-equations.

Find a reduced set Eo of general rewrite rules equivalent to E,,, by running the noncle-

terministic procedure R, i.e. E+r,Eo. Let m the total number of variables in Eo, and

V = Var(E) U Vnr(u, v). For any sequence (0, Eo) ++ (Sk, Ek) consisting of at most

m transformation steps, where k 5 rn, if the non-deterministic algorithm for CSUc.(Sk)

(over TC(,Y)) produces a C-unifier Os,, and I; is the first integer in the sequence such that

F(w, w) = T(zu') E EX- for some IU, wt E TZ(X) of sort s, return the C-substitution Bs, Jv .

We shall prove that the finite set of all C-substitutions returned by our method forms a

complete set of rigid (C, E)-unifiers IL and v. In particular, the method provides a decision

procedure that is in NP. But first let us show how the method works via an example.

Consider the coherent signature C of figure 7.

In order to facilitate the notation we will denote the variables by the letter z with a

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unifica,tioi~

subscript to indicate its sort. For example 23 is a variable of sort s3.

Let E = {g(f (27)) i f (z7), g(f (z2)) = q(z2)). Consider the question of fillding a

rigid (C, E)-unifier of the C-terms u = q(26) and v = f (21).

First we guess a sort below the least sorts of u and v. Let s3 be our guess. We construct

the set of general equations E,,, over CS3 as follows:

1) The reduction procedure does not change the set, it just orients it as the equatio~is

are written above. \lie obtain Eo:

2) There is an overlap between the first two rules at the root. Let a1 = [z~/zz], then

TU(g(f (z7)), g(f(z2))) = [< z7, z2 >] and O T , ~ = al. By applying OT,l to the system resulting

from the overlap we obtain:

3) We reduce the second equa.tion to obtain

Center for Digital Econotny Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Uilification

4) There is an overlap between the fourth and the first rules. A unifier of f (z l) and f (2 2)

is chosen: ol = [z1 / z5 , z2 /z5] . The resulting set of equations is already reduced:

and S2 = {< z2,25 >, < Z I , z5 >, < ~ 7 ~ ~ 2 >).

5) TVe overlap the last two rewrite rules using the unifier a2 = [z ~ / ~ (z ~) , z s / z i , ~ g / ~ i] . We

need to compute a triangular form TU(eq(z3 , z3) , eq(q(z6); ~ (2 5))) . One such triangular form

is given by {< z3, ~ (2 ;) >, < z5, z; >, < z6, z i >) where z; is a new variable of sort s3. We

obtain

This system is already reduced, thus we have

TVe have S3 = {< z3, q(z;) >, < Z S , z i >, < z6,z; >, < z2,25 >, < z1, zs >, < 27, z2 >).

Now, we managed to obtain all ecjuatioll of the form T(tu l) = $'('LO, w) , thus the metl~ocl

stops. We can find a C-unifier 191 of S3, B1 = [z 1 / z i , z2/z; , z3 /q (z i) , z5 / z$, z6/z; , zT /z ;] . Re-

stricted to the variables in Eu,, we obtain:

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

01-der Sorted Rigid E- t7nifica.t ion

And indeed:

shoxvs that 0' is a rigid (El E)-unifier of u and v.

If instead of choosing s = ss at the very first step, when constructing E,,,, had we chose~l

s = SF;, we would have obtained a different rigid (C, E)-unifier, for example:

There is also choice in the selection of al and 02, all of which lead to different rigid unifiers.

We now show the soundness of the method.

Theorem 9.6 [Soundness] Let Eo be a reduced form of E,,,,, i.e. E,,,=+REo; So = 8; ~n the

total number of variables in Eo; ancl I/ = Var(E) U Tfar(u, v). If

if Os, is a Cs-unifier in CSUES(Sk) over '&(X) , F(w, w) = T(zu') E Elk, for 20.20' E Tz(X) of

sort s and F(t,t ') = T(tt') $ E; for all i , 0 5 i < k < rn, then Osklv is a rigid E-unifier of ZL

and v.

Proof: We shall prove the follotving claim by induction on k .

Claim. Given any set of the form E,?, = E U {eq(.ts, v) = F(u , v), eq(z, z) = T(z)) , with E

a set of general C(X)-equations and u, v E Tc(X), for any pair (So, Eo) where So is any set

of pairs of the form < z , t > with t E Tc(X) and LS(t) 2 L,S(z), ancl Eo is rigid reclucecl

and rigid equivalent to E,,,, if

(So, Eo) *+ (S k , E k) ,

if O s k is a Cs-unifier in CSUcS (S k) over Tc(X), F (t u , w) =I: T(zu f) E Ek for some t E TE(X),

and F (t , t') = T(1") $ E; for any Cs-terms t , t', t", for all i , 0 < i < F rn, then Osk is a

rigid (Cs, E,,,)-unifier of T (z) and F (u , v), where Bsk E CSfis(Sk) and OSk is over Tz(X).

Proof of cln im .

Center for Digital Econotny Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unification 4 8

I11 the base case, .we rnust have k = 1 because F(w, w) = T(tuf) @ Eo U Ecl. 111 orcler

that F(w, w) = T(wt) be in El , the transformation step rnust be

where Ei = o((Eo - {eq(z, z) = T(z))) U {F(zL, V) = T(z)}), E ~ = + R E ~ ,

TU(eq(z, z), eq(u, 27)) is a triangular form of a Cs-unifier of eq(z, z) and eq(u, 21) (over Ic(X)) ,

a is the Cs-substitution (over Tc(X)), associated with TU(eq(z, z), eq(u, v)) and 0' = Os, is

in CSUcs(S1) over TE(X).

By lemma 4.12 a; 8' = Of, hence B1(F(u, v)) = O1(T(z)) E: Q1(E1). Since by lemma 9.4,
*

O1(Eo) and O1(El) are rigid equivalent, Ot(F(u, v)) ZBt(Eo) O1(T(z)). This shows that 8' is a

rigid (Cs, Eo)-unifier of F (u , v) and T(z). The soundness of the reduction procedure R (see

theorem 8.7) implies that 8' is a rigid (Cs, E,,,)-unifier of F(u , v) and T(z).

For the induction step, a.ssume that

(So, Eo) * (SI, El) *+ (Sk, E k) ,

where S1 = So U TU(11//3, 12), E ; = s ~ E ~ with

if 8' = Os, is a Cs-unifier in CSUp(Sk) over TE(X), F(w, w) = T(wl) E Ek, F (t , t') 2

T(tU) $ E; for all i , 0 < i < k 5 rn, TU(ll/P, 1 2) represents a Cs-unifier over Tz(X) of I1/P
and 12 in triangular form, a = [t l /a l , . . . ,tP/x,] where TU(ll/P, 12) = {(x l , t l) , . . . , (x,, t,)}.

Thus the induction hypothesis applies to (S1, El), and the Ss-unifier 8' of Sk (over I c (X))

is a rigid (CS, El)-unifier of T(s) and F(zi, v) (over I c (S)) . Since S1 2 Sk and 0' unific-s

Sk , by lemma 9.5, O1(Eo) and Hf(E1) are rigid equivalent. Hence 0' is a rigid (CS, Eo)-unifier

of T(z) and F (u , v) (over TC(X)). This concludes the induction step and the proof of the

claim.

Applying the claim to So = 0 and an Eo such tliat E , , , = J ~ E ~ , we have that 8' is a

rigid (Cs, E,,,)-unifier of T(z) ancl F (u , v) over IE(X), wliere 8' = Qs, is in CSUce(Sk) and

is over Tc(X), and by lemma 9.2, Bs,IV is a rigid (C, E)-unifier of u a,nd v. 0

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unifica,tion 49

The main technique in the proof of the completeliess part is the removal of peaks by

the use of critical pairs (Bachmair [BacSS], Bachmair, Dershowitz, and Plaisted (BDPS7],

Bachmair, Dershowitz, and I-Isiang [BDHSB]).

Theorem 9.7 [Completeness] Let E be a set of general C-equations over T3(S) and u, v two

terms in T c (X) . Let 8 be a rigid (Y, E)-unifier of u and v and let s = LS(O(zi)) = LS(@(v)).

Consider the order-sorted signature CS and the set of general axiom E,,, as described above.

Then, there is a reduced set Eo of general axioms rigid equivalent to E,,, and letting So = 0,

m the number of variables in Eo, and V = Var(E) U Var(u, v) , there is a sequence of

transformations

(So, Eo) *+ (Sk, El,),

and there exists Qs, E CSU(Sk) over T z (X) , where k < m, F(tu, to) = T(wl) E Eli, F (t , t') =

T(tfl) 4 Et for all i , 0 < i < I;. Furthermore, Osk I v is a rigid (2 , E)-unifier of u and v.

Proof: First, since it is clear that the method is pure, thus i t can be assumed that 8

is a ground substitution and that V C D(0). By lemma 9.2, 0 call be extended to a

Cs-substitution 0' over Tc(X) such that 0 = O'lD(Bt)-Iz) and 0' is a rigid (CS, E,,,)-rtnifiel. of

T(z) and F (u , v) over 73(X). By lemma 7.6, there is a minimal element O1 E S E , , , , ~ , ~ , ~ ~ that

is a ground Cs-substitution satisfying

2. O1 is a rigid (Cs, E,,,)-unifier of T (z) and F (u , v),

3. 0% is reduced w.r.t. O1(E,,,),

4. since D(0) = D(O1) and 17 5 D(O), we also have V C: D(O1) and

5. since O is over Tc(X), so is 0%.

Let 581 be the total simplification ordering on Tc(X) induced by O1 and 5 as in definition

8.10. By theorem 8.9 there exists Eo reduced with respect to -ie, such tliat E,,, =+r, Eo.

Since Eo and E,,, are rigid equivalent, by lemma 7.8 0% must he reduced w.r.t. O1(&). \tie

shall prove the following claim.

Claim. Given a ground Cs-substitution 0% such tliat Tf 5 D(O1), letting Jl;b be a set of general

Center for Digital Econotny Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unification 50

axioms such that E,,, =+R Eo and E;b is reduced with respect to 5@,, if O1 is reduced with

respect to O1(Eo), is a Cs-unifier over Tz(X) of So and is a rigid (CS, Eo)-unifier of T(z) and

F (u , v) , then there is a sequence of transformations

where k < m, Sk is unifiable, F (t , t l) = T(tl') E Ek, F(t , t l) = T(tl') f Ei for all i , 0 < i < k,

and 01 unifies SE, (over Ix (X)).

Proof of claim. Let

be a proof that O1 (T(z)) OL(F(u, 21)). We proceed by induction on the pair (m, {uo, . . . , u,)),

where m is the number of variables in Eo and {uo, . . . , u,} is the multiset of terms occuri~ing

in the proof. We use the well-fonnded ordering on pairs where the ordering on the first corn-

ponent is the ordering on the natural numbers, and the ordering on the second component is

the multiset ordering 4, extending 4. First, observe that since T 4 F 4 r 4 eq(s, t) for all

r , s, t E Ic, the above proof must have some peak because oriented instances of tlie equations

eq(u, v) = F (u , v) and eq(z, z) = T(z) are of the form eq(s, t) t F(s , t) and eq(s, s) --+ T(s).

Thus, in the base case, we have rn = 1, 72 = 2, and ul = Ol(eq(u, v)) = Bl(eq(z, 2)). Hence,

6'1 is a unifier of eq(z, z) and eq(u,v). Let a be an idempotent and variable decreasing

Cs-unifier over Is(X) such that a 5 O1 (guaranteed to exist by conipleteness of the CiSU

procedure), and let TCI(eq(z, z), eq(u, v)) be a triangular form of a . By lemma 4.16, since 01

unifies eq(z, z) and eq(u, v), it unifies TU(eq(z, z) , eq(u, v)). Let El = or((& - {eq(z, z) =

T(z))) U {F(u, 21) = T (z))) where a~ is associated with TU(eq(z, z), eq(u, v)). We have

(So, Eo) =$ (S1, El),

with S1 = So U TU(eq(z, z), eq(.n, v)) and E: +R El .

Since O1 unifies So and TlJ(eq(z, s), eq(u, v)), it unifies S1 and the claim holds.

For tlie induction step, consider a peak u,-1 t-----~,(g,) ut +el (EO E;o) 'LL,+~. Note that

U , t- z i t - l and u, t- Assume that

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unifica.tion

and

ui T-)p2,01 (l2=T2) ui+l,

where 11 = r l , l2 = 7-2 f Eo U Eil and P1 a,nd P2 are addresses in u;. By lemma 7.9, we have

that u j = Ol(u$) for j = i - 1, i, i + 1 and PI, f Dom(u:). We need to examine overlaps

carefully. There are two cases.

Case 1. and P2 are independent. Then, letting v = u;[P1 t- Ol (rl), p2 c- Ol (r2)], we have

ui-1 'BI(EO) V -B~(EO) ui+l a.nd ui 5 v. We obtain a proof with associated sequence

(uO,. . . ,24-1, v, ui+l, . . . , un). Since u; 5 v,

and we conclude by a~pplying the induction hypothesis.

Case 2. is an ancestor of p2 (the case where P2 is an ancestor of pl is similar), and

letting P2 = PIP, we see that

Hence 01(11)-+[P,01(12=T2)1 G1(ll)[P t-- 01(r2)]. Since O1 is reduced with respect to So we have

again by lemma 7.9 that P f Dom(ll) hence by (1) O1(ll/P) = @(I2). Therefore, El//? and

12 are unifiable. Since I I 4 rl and 12 t rz are in Eo with tohat orientation because & is

reduced with respect to 5@, , it must be tlie case that ll/P .f 12. Not only is it iniportant

that Eo is interreduced, but that tlie orientation of the rules is as in 0(E,,,).

Let a 5 be at1 idempotent a i d variable decreasing Cs-unifier (over I= (X)) in CSUcB (11 I@, l z) ,

let TU(11//3, 12) be a triangular form of a and let a~ be the associated Cs-substitution. Notice

that a~ is over Ic(X). Thus we have

Since O1 is ground, it is idempotent, and since it unifies l l /P and 12, by lelnnia 4.16, B1 unifies

TU(ll/P, 12) as well. Hence O1 unifies S1. Siiice O1(Eo) and &(El) are rigid equivalent, 01

is also a rigid (CS, El)-unifier of T (z) and F (u , v). Since B1 is is lniiiimal in SE,,,,~,~,ot,

Center for Digital Econotny Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Uilification 52

O1(E,,,), 01 (Eo), and 01 (El) are rigid equivalent, and O1 LEU,, O', as argued previously, O1 is

also reduced w.r.t. O1(F1). Also note that since a is variable decreasing, so is a ~ , lielice at

least one variable in the set {xl , . . . , x,} does not occur in I(aT)- Thus, tliis variable cloes

not occur in El, and m' < m where m' is the number of variables in E l . Therefore. we can

apply the induction hypothesis to 01, S1 and El , and obtain a sequence

where I; < m', Sk is unifiable, F (w , to) = T(wl) E Ek, F (t , t') = T (t N) $! E; for all i ,

0 < i < I;, and 01 is a CS-unifier of Sk over '&(XI). This concludes the incluctioli step and

the proof of the claim.

Let us apply tliis claim to prove the theorem. Let So = 0 and Eo be a rigid reduced set

\vith respect to SQ1 such that E,,, =+n Eo. 13y the claim, there is a sequence of at most

112 transformations as stated in the theorem, and O1 is a Cs-unifier of Sk over TE(X). Since

the set CSUx;.(Sk) restricted to sulxititutions over Tx(X) is a complete set of 3"-unifier over

Is (X), there exists some Os, E C S b S (Sk) such that Bs, < O1 [V]. We know that 01 CIE,,v O',

so we have Os, LEU,, Ot[V]. Therefore, Bs, l v I E O[V]. Finally, by theorem 9.6, we see that

OskIv is a rigid (C, E)-unifier of u and v. 0

Theorem 9.7 also slio~vs tliat orcler-sorted rigid-unification is decidable for general axioms.

Corollary 9.8 For S a finite coherent order-sorted signature, E a set of general axioms,

Rigid (C, E)-unification is deciclable.

Proof: By tlieorern 9.7, a (grouncl) rigid (C, E)-unifier 0 of and v esists iff there is some

sort s E C, a set E,,, of general over CS obtained as described above, a rigid reduced form

Eo of E , i.e. E *r, Eo and some sequence of transformations

of at most E 111 steps where 171 is the number of variables in Eo, ancl such tliat Sk is CS

unifiable (over Ts(X)), F(to, to) = T(w') E Ek for some w E 'Tx(X'), aiid F (t , t') = T(tl1) $

Ei for all i , 0 < i < k , all t , t', t" E Tx(X). Clearly, all these conditio~is are finitary and can

be tested. Thus, order-sorted rigid E-unification is deciclable. 0

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order. Sorted Rigid E- Unification

Figure S: f (c) = g(c)

Combining the results of theorem 9.6 and 9.7 we a.lso obtain the fact that for any set E of

general axioms, any S-terms t i , LJ, there is always a finite complete set of rigid (2 , E)-unifiers.

Theore in 9.9 Let E be a set of general equations over T2(,Y), 21, v two terms in T2(X),

m the number of variables in E U {.n,v), and V = Var(E) U Var(u, v). There is a finite

complete set of rigid (C, E)-unifiers for u and v given by the set

{OS, / V I Osh f C s u x ~ (S k) is over T2(X), and (0, Eo) =++ (Sk, Ek), I; < m) ,

with E,,, =+r, Eo, ancl where Sk is unifiable, F (t u , W) = T(zul) E Ek, F (t , ti) = T(ti') @ Ei

for all i, 0 < i < E .

Let us now iIIustrate via two examples how the method takes advantage of sort information.

Example 9.10 Consider the problem presented at the end of section 4.2. Tile signature is

shown in figure 9.10. Consider the equation system E = (f (c) = g(c)}, and let us try to

find a rigid (C,E)-unifier for u = f (z l) and v = g(zl). In this case LS(u) = LS(v) = s 2 .

Let us pick s E LBcl({s2)). The choices are sl and s 2 . Clearly, no solution can have sort sl

because for any C-substitution 0, LS(O(u)) = s 2 . Let us therefore pick s = s z . We construct

the system E,,, as follows:

Center for Digital Economy Research
Stern School of Business
Worljrig Paper IS-91-40

Order Sorted Rigid E- Unifica,tiori

By interreducing we obtain the system Eo:

There is no overlap possible between the last two equations because f (z l) and g(xl) are not

unifiable. An overlap between the first and the last equations leads to a dead end. Therefore,

the only possibility involves overlapping the first and second equations. This entails finding

TU(f (xl), f (c)). However, \c/zl] which is not well sorted! Therefore the algorithm returns

failure. Hence 21 = f (z l) and v = g(xl) are not rigid (C, E)-unifiable.

This is indeed correct. Notice that an unsorted algorithm would return the substitution

[c/xl] as a solution. A further attempt to obtain a C-substitution from it would fail. Thus,

the order-sorted is more efficient because it detects failure at an earlier stage.

Example 9.11 AC (Adapted from [MGSSS].)

Let tlie set of sorts be S = (El t , ~1lult)witli E l t 5 Mult, ancl let C consist of a binary oper-

ator . : Mt~EtAlzllt +-+ A!lztlt with the syntax of juxtaposition. The equations are associativity

and commutativity:

Consider the terms u = x . s and 1.7 = y . t , with x, s, y and t variables of sort Elt .

The system has the following covering of unsorted E-unifiers:

Center for Digital Econotny Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Uilifica.tion

However only the first two are well sorted. Also, the first two are rigid ulisorted E-unifiers.

The third one is not, I~ecause its proof requires two instances of associativity. However, by

expanding the systern E to a system El which includes an additional instance of associativity,

the third substitution represents an unsorted rigid El-unifier.

Let us see how our method computes the first rigid (C, E)-unifier. The systern of equations

EUqv is:

After reducing, we obtain Eb:

There is an overlap between the first and third rewrite rrtles, with a~ = T U (x . s , zl - z2) =

[zl/x, s/z2]. After rewriting and applying aT we obtain Ei:

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unification

After reducing we obta,in El:

Next, the last two rules are overlapped. One can then obtain TU(eq (s . zl, y Vt), eq(z, z)) = [s .

zl/z, s ly , t/zl]. The system E2 is obtained by applying the transformation and interreducing:

Thus the method terminates ancl produces the rigid (C, Ej-unifier [t lx , s ly , t/zl, s/zz].

It is interesting to see how the sort information can be used to discard a substitution at an

early stage. For example, the suhstitutioll [(y . q)/s, (x - q)It] is not well sorted because s

and t are of sort El t while the co-arity of a term containing has to be kfz~lt . Let us see

how this is witnessed by our methocl. First, the system E,,, now contains an extra instance

of the associativity equation:

zl - z2 = Z2 ' 21

201 - (w2 . 203) = (POI w2) . w3

I I
211; . (w2 . w,) = (2 u ; . w;) . w;

eq(x - s, y t) = F (x s, y . t)

eq(z, z) = T(z)

On attempting to overlap the second and fourth rule (as a matter of fact ally of the two

associativity rules with the fourth one), we have to compute TU(x . s, zl . (z2 . z3)) . There is

no such C-unifier since s and (z2 . 23) clo not unify (by virtue of s being a variable of type

Elt.) As a matter of fact, due to this reason, none of the other E-unifiers is well sorted.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Uilification 5 7

Again, out method stops before computing an ill-typed unsorted unifier. This explains the

sense in which the order-sorted method is more eficient than the unsorted one.

10 NP-Completeness of Rigid (C, E)-unification

First, recall that rigid E-unifica.tion is NP-hard. This holds even for sets of ground unsorted

equations, as shown by I<ozen [I<oz76, I<oz77].

Tlleorem 10.1 Rigid (C, E)-unification is NP-complete.

Proof: By corollary 9.8, the pl-ohlem is decidable. It remains to show that it is in NP. From

corollary 9.8, u ancl v have some rigid E-unifier iff there is some sequence of transformations

(So, la) =+' (Sk, l k) of at most I; 5 m steps where m is the number of variables in Eo, and

a there is a C-unifier Qs, of Sk such that F(zo, W) = T(wt) E Ek and F (t , tl) = T(t1I) 6 £, for

all i, 0 5 i < k . We neecl to verify that it is possible to check these conditions in polynomial

time.

We first show that each =+ step takes time polynomial on its input. Let n, = size(<

S,, E, >) = IS,I + I£,/ where IS,/ is the size of the DAG representing all terins in S, and

I£,I is defined similarly. The first part of =+ consists of picliing the equations 11 = rl and

l2 = 1-2; choosing an address /3 in lI; checking that eitlier I1/P is not a variable or l 2 = 1-2

is degenerate; and finally making sure that ll/P # 12. These steps can all be done in time

linear on n,. Next, TU(ll/P, 1 2) is obtained by running the CTU algorithm which is quasi-

linear on its input. The next two steps involve a) adding TU(lI//3, 1 2) to S, ~rliich takes

at most time O(n,) and then finding a reduced set via the recluction procedure =+R which

runs in time O(IE,llog(/E,I) < O(n,log(~z,)). Thus it takes at most time O(lz,log(~z,)) to

do the transformatioli (St, E,) =+ (Sttl, EZS1). After applying tlie transformation we run the

non-deterministic unification algorith~n to compute elements of CSU(S,). This procedure

runs in quasi-linear time. Providccl we obtain Bs, E CSU(S,), we still have to check wlietl~er

F(w, zo) = T(zul) E E,. This is linear 011 the size of E,. Therefore, tlie transformation

together with the guessing of a C-unifier for S, and checliing for the halting condition still

takes 0(72,log(?2,)) time.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid El- Unifica,tiorl 58

Since the transformations are applied in sequence, in orcler to gtlaraiitee polynomial time

for k transformation steps, we shollld make sure that the size of the system does not grow too

much. Since TU(EI/P, 1 2) is constructed using elements of It exclusively, its size is at most

)£; I , and since is obtained by adding TU(Z1/P, 1 2) t o S,, it follows that IS,\ < IS,I + \ £ , I .
Since So = 0, we see that IS,] < i x lIol = i x no. The equational part of the system,

I, is obtained in three steps. First rewriting an equation, which does not increase the size

of I since it involves changing pointers in a DAG. Then, a~ is applied, .vvhich again can

be implemented by rearranging pointers. Finally the =+-n is applied which as explained in

section 8 does not increase the size of I,. Thus for O < i , 11, I = lIol and 12, < (i + 1) x no.

Therefore, the total time for k transformation steps is bounded by

n x log(7zt)) < 2=0 2 O(C"'"

~ (C : = t (i x no) x log(i x no)) =

O(no x ~ : z t i x Zog(i) + ?ao x log(nO) x ~ i ~ t i) L:

O(no x k4 + no x 2q(no) x k2) = 0 (7 z 0 x k4).

Since k < no we have that the total time for k transformations along wit11 the chec1;s for

the halting conclitio~~ is at most O(lz;), hence polynomial on the size of E. Tlius we have an

NP-algorit hm.

E7

11 Conclusion and Further Research

The contribution of this paper is the presentation of an Order-Sorted method for Rigid

(C, E)-unification. We show that the problem is decidable, furthermore that it is in NP.

The method is intrinsically orcler-sorted and uses the triangular forms produced by a non-

deterministic order-sorted unification algorithm presented in [IsaS9]. The fact that orcler-sor-

ted rigid unification remains in NP is quite impressive given the intricacy of the procedures

involved. Not only do we present an order-sortecl method, but we propose irnprovernents

to the original unsorted algorithm [GNPSSO] which substantially simplify it. A significant

improvement of our method over the unsorted rigid E-unification one is that we clo riot use

orcler assignments to guess the right orientation of the rewrite rules. We have managed to

Center for Digital Econotny Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Ui2ifica,tion 59

include the guessing into the reduction procedure.

I t is important to note that the order-sorted method is more eficient than the ulisorted

one because i t is able to weed out unfit substitutions as these are built, as oposed to doing

this after the fact, when the substitution has already been generated.

The method presented only works for general axioms. In the future, we plan to extend

our results to larger classes of axioms. Let us point out that the main difficulty lies in tlie use

of congruence closure to build up C-unifiers. If tlie equations are not general, ill-typed terms

might be formed thereby infecting the method. An alternative is to refine the reduction

procedure of section 8, so as to keep the systems order-sorted.

The authors would like to tlianli Joseph Goguen, Josk Meseguer, \[a1 Brezau-Tannen, Carl

Gunter and Wayne Snyder for their valuable comments.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unifica,tion

References

[AndSl] Peter Andrews. Theorem Proving via General Rlatings. Journal of the ACM,

28(2):193-214, 1981.

[BacSS] Leo Bacllmair. Canonical Equational Proofs. Wiley and Sons, 1989.

[BDHSG] Leo Bachmair, Nachum Dershowitz, and J . Nsiang. Orderings for equational

proofs. In LICS'86, Cambridge, Massachusetts, pages 346-357, 198G.

[BDPS7] Leo Bachmair, Nachum Dershowitz, and David Plaisted. Completion '~ritliout

Failure. In Proceedings of CREAS, Lakeway, Texas. Also submitted for publica-

tion., 1987.

[DerS7] Nachum Derslilowitz. Termination of Rewriting. .Journal of Symbolic Computa-

tion, 359-116, 1987.

[DSTSO] Peter J . Downey, Ravi Sethi, and Endue R. Tarjan. Variations on the Common

Subexpressions Problem. J.A CM, 276413758-771, 1980.

[GRl84] Joseph Goguen and Josi! Meseguer. Eqlog: Equality, Types ancl Generic h4od-

ules for Logic Programming. In Douglas DeGroot and Gary Linclstrom, editors,

Functional and Logic Programming, pages 295-363. Prentice- Wall, 1984.

[Gh487a] Joseph Goguen ancl Jos6 h4eseguer. Models and Equality for Logic Program-

ming. In Proceedings of the International Joint Conference on Tlzeory and Prac-

tice of Soft.cua~-e Development, Lecture Notes in Computer Science 250, pages

1-22. Springer-Tierlag, 1957.

[GRIIS7b] Joseph Goguen and .Josk Meseguer. Order-Sorted Algebra I: Partial and Over-

loaded Operations, Errors, Inheritance. Technical report, SRI Computer Science

Laboratory, 1987.

[GNPS92] Jean H. Gallier, P. Narendran, David Plaisted, Stan Raatz, and Wayne Snyder.

An Algorith~n for Fincling Canonical Sets of Ground Rewrite Rules in Polynomial

Time. Journal of t he AChf , ?, 1992.

Center for Digital Econotny Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unifica, tion 6 1

[GNPSSO] Jean EI. Gallier, P. Earendran, David Plaistecl, and Wayne Snyder. Rigid E-

Unification: NP-Completeness and Applications To Equational Matings. Infor-

mation and Computation, 87(1/2):129-195, July-August 1990.

[Gog7S] Joseph Goguen. Order-Sorted Algebra. Semantics and Theory of Colaput ation

Report 14, UCLA Computer Science Department, 1978.

[GRSS7] Jean II. Gallier, Stan Raatz, and Wayne Snyder. Theorem Proving using Rigid E-

Unification: Equational hlatings. In Proceedings of LICS787, Ithaca, New York,

pages 308-346, 1987.

[IIue76] G6rard TIuet. RLsolufion d'l3quation.s dnns le Lang~~nges d70rdre 1 ,2 , . . . , w. PhD

thesis, Universiti. de Paris VII, 1976.

[Isas97 Tomlis Isalio~~itz. Theorem Proving d4ethod.s for 01-der-Sorted Logic. PhD thesis,

University of Pennsylvania, Philadelphia, PA 19104, December 1989.

[I<ir8S] Claude Iz'irchner. Order-sorted equational unification. In Robert A. Kowalski

and Keneth A. Rowen, editors, Proceedings of the Fifth Inter~zatiorzal Conference

and Symposium in Logic Programming, Seattle 88, 1988.

[I<oz76] Dexter Kozen. Complexity of Finitely Presented Algebras. Technical Report

76-293, Department of Computer Science, Cornell University, Ithaca, NY, 1976.

[I<oz77] Dexter Icozen. Complexity of Finitely Presented Algebras. Ill 911z STOC Sympo-

sium, Boulder, Colorndo, pages 164-177, May 1977.

[MGS89] Josk Rleseguer, Josepli Goguen, and Gert Smolka. Order-Sorled Unification.

Journal of Symbolic Computation, S:383-413, 1989.

[MMS2] Alberto Rfartelli and CJgo hfontanari. A11 effcient Unification Algorithni. ACdf

Transnctions on Progmmming Languages and ,Systems, 4:158-282, 1982.

[NOSO] Greg Nelson and Derek C. Oppen. Fast Decisior? Procedures Based on Congruence

Closure. Journal of the ACh4, 27(2):356-364, 1980.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unifica,tion 62

h4. S. Paterson and h1. N. Wegman. Linear Unification. clou~.nal of Computer

and Svs fem Sciences, 16(1):158-167, 1978.

J. A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle.

Journal of the AChf , 12(1):23-41, 1965.

Gert Smolka,. Order-Sorted Horn Logic. SEIKI Report SR-SG-17, FB Informatik,

Universitat I<aiserslauten, West Germany, 1986.

Wayne Snyder. Complete Set of transformation for General Unificatio~z. PhD

thesis, University of Pennsylvania, Philadelphia, PA 19104, 1988.

Wayne Snyder. A fast algoritm for generating Reduced sets of Ground Rewrite

Rules equivalent to a set of Ground Equations E . In Proceedings of RTA-89, may

1989.

Manfrecl Schmidt-SchauB. Computational Aspects of an Order-Sorted Logic with

Term Decla7-ations. PhD thesis, Fachbereich Informatik, Ulliversitat Kaiser-

slauten, 1987.

Christoph Walther. U~lification in many-sorted theories. In Proceeclings of the 6th

European Conference on Artificial Intelligence (ECAI-84), 1984.

Christoph Walther. A Aifa?zy-Sorted Calculus based on Resolution and Pammod-

ulation. Research Notes in Artificial Intelligence. h~lorgan I<auf inan~~ Publishers,

Los Altos, California, 1987.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unification

A Appendix of Proofs

A. l Proof of lemma 4.12

Since 0 is a C-unifier of T , we have O(xi) = O(ti) = 0 (a T (x i)) for every i , 1 L: i < k . Since

o T (y) = y for all y 4 { x l , . . . , x k) , 0 = CTT ; 0 holds.

A.2 Proof of l e ~ n ~ n a 4.13

By the definition of triangula,r forms we have tha,t a = [x l / t l] ; . . . ; [xn / tn] . The proof relies

upon the following claim:

For 1 < i 5 n,

Suppose the claim llas been proven then

(n) (i-1) (,+I-i) CT (x ;) = aT (aT (x i)) = a$- l) (a(x i))*

Since a is idernpotent, t,he variables x l , . . . , xn do not appear in a (x ;) , therefore
(i -1)

aT(a(x ;))=a(x i) , hence aT (a (x i)) = a (x ;) . Therefore from 3 we obtain for 1 5 i 5 n:

aI."'(x;) = .(xi). (4)

Since 11, . . . , x , are all the variables in D (a) and D (a T) , we have op) = a as wanted.

The proof of the claim proceeds by descending induction. First, it is clear that uT(x,) =

t , = a(x,). Suppose the claim is true for i + 1 then

By the definition of a triangular form, the only variables in ti tlmt can be affected by aT are

x;+1,. . . , xn. By the inductive hypothesis, we have that for i + 1 < k 2 n,
(n+l-(i+l))

UT (x k) = u (x k) . Therefore

(ni-1-(ii-1))
*T (t i) = a(t i) .

This completes the proof of the claim and of the lemma.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-91-40

Order Sorted Rigid E- linifica tion

A.3 Proof of leillilla 4.16

By lemma 4.13, cr = OF). Since cr is idernpotent, none of the variables in the domasin CTT

(n) appear in c r ~ (z;). Therefore uF) (x i) = o$+')(zi). Thus,

A.4 Proof of lemma 7.9

By hypothesis O (t) / P = O (I) , and t" = O(t)[P c O(r)].

Suppose that P is an address not in Dom(t), since P E Don-r(O(t)), it has to be below the

address PI of a variable x in t . That is, P = PIP' with t/P1 = z. We tlierefore have

This means that O(x)-+pl,O(l=T) O (T) ~ ' t O(r)j which contradicts the assumption that 0 is

reduced with respect to < O(E), 5>. Therefore it must be the case that /3 E Dom(t). This

proves part 1. As a consequence we have that O(t)/P = O(t/P) hence

That t' E Tc follo~vs from the fact tha~t E is general, hence LS(1) = L S (r) , thus L S (t) =

LS(t1). This proves part 2.

A.5 Proof that d o is a total ordering

We claim that S o 1s a total ordering on Tc(S) tliat is monotonic and has the subterrn

property. The oillly problem is in shelving tliat d o is total, as tlie other condit,ions are then

easily verified. Tl-te proof is similar to one given in [GNPSSO].

Notice that 0 defines an equivalence relation ~0 on T c (X) as follows:

u ~0 v if and only if O(u) = O(v).

Due to clause (1) of the definition of +/B, it is enough to show that for any two distinct

elements u, v in some nontrivial class C modulo ~ 0 , either u d o v or v u , but not

both. Note that the set of classes modulo ~0 is totally ordered: C << C' iif O(C) 4 B(Cr),

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unification 65

where O(C) denotes the common value of all terms O(t) where t E C. We proceed by

induction on this well-ordering of the classes. Consider the least class C. It cannot contain a

composite term t = f (~ 1 , . . . , 21,) because by the subterm property of 4, O(z1,) 4 O(t) lience

[u;] < [t] = C contradicts the minilnality of C. Therefore C contains some variable and at

most one constant. But then, it is already totally ordered by 4'. Given any other nolitrivial

class C, if u and v are both variables, we already know by (2a) that either u 4' v or v 4' u,

but not both. If u is a variable and v is not, by (2a) we can only have u 4' v. If both u and

v are not variables, then they must be of the form 21 = f (ul , . . . , u,) and v = f (vl , . . . , v,),
since C is unified by 0. Since 21 # v, there is a least i such that u, f v,, and since 0 unifies

u and v, 0 unifies u, and v,. But then, because -: has the subterm property, u,, v, belong to

some class C, such that C, << C. Therefore, either 21, SQ v, or v, Se u,, but not both, and

thus by (2b), either u 5 2 v or v u, but not botli.

Denote by 4 0 the irreflexive portion of 5, i.e. ~ Q = S ~ \{(t,t)lt E 'TE(X)). Clearly, 40 is

a simplification ordering on Tc(_Y). We will be somewhat ambiguous in not differentiating

between 40 and S e , and we will say that 4 0 is a total simplification ordering on TX(X).

(The nuance is that a simplification ordering is strict, lience irreflexive, llelice it caiillot be

total.)

A.6 Proof of leinma 9.2

If a C-substitution 0 is a rigid E-unifier of u and v then O(u) &s(g) O(v), let s = LS(O(u))',

construct CS and E,,,, as describecl above, with z : s. Extencl 0' such that O1(z) = O(71). Since

LS(O1(z)) = LS(O(u)) = s = L S (z) , 0' is order-sorted. Since O(eq(u, u)) eq(O(u), @(ti)),

clearly

'Since E is general LS(B(v)) = s as well.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unifica,tion

Conversely, if there is some Cs-substitution 0' over Ic(X) such that

B1(T(z)) I , Oi(F(u, v)), because eq, T, F are not in C, from the way congruence closure
*

works, it must be the case that Bt(eq(z,z)) Ee,(Eu,vl O'(eq(z~,v)). Letting 0 = 0'jn(sl)-(4,

since the terms in the range of 0' are in Ic(X) and eq, T, F are not in C, we must also

have Bt(z) &I(E) 0(u) and O'(z) 0(v). Thus 0(u) 0(v), showing that 0 is a

rigid (C, E)-unifier of 21 and v.

A.7 Proof of lemma 9.4

Let lI = rl and l2 = r:! be the equations in E involved in the transformation, ,L? the address

in Dorn(ll) such that Z1/P and Z2 are C-unifiable via a C-unifier a . Let TU(Z1/P, 12) be the

triangular fo r~n usecl in the transformation with associated C-substitution O r .

Point 1. This follows from the fact that TU(ll//3, 12) and '5' are of the desirecl form; and

S' = S U TU(lI/P, 12).

Point 2. R,ecall that E' is obtained as follows:

E" = aT((E - {ll = U {I1[@ t 7-21 = rI)), and

t By lemma 3.3, ar((E - {11 = r l)) is general. To show that aT(ll[/3 t- r2] = rl) is

a general equation we first realize that, by the way a~ was chosen (a special triangu-

lar form), aT(ll[P t- 1-21 is a C-term. Indeed, LS(aT(lI/P)) = L S (a ~ (l z)) , and since

l2 = 7-2 is general, LS(aT(E2)) = LS(aT(r2)) . Therefore the result of replacing a~(12)

by aT(r2) does not violate sort constraints hence aT(ll[P t- r2]) is a C-termlo. Clearly

Ifar(aT(ll[P t- 7-21)) = Ifa7-(aT(7-1)). Similarly, LS(p(aT(I1[/3 t- 7-21))) = LS(P(OT(I'~))) for

any variable renaming. Hence aT(11[/3 t- 7-21 = r l) is a general equation. Therefore, E" is

general. Since the reduction procedure preserves general axioms (see lemina S.3), E' is also

general.

10Actually tile reason why we push tlle terms aT(l l /P) and uT(lz) to he of the same sort is preciselly to
guarrantee that the term resulting from rewriting one by the other be well typed.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unification 6 7

3) We only use the fact that y unifies TU(ll /P, 12), which is true because TU(ll//?, 12) C Sf.

First, notice that since y unifies TU(I1/P, 12) and o ~ is the E-substitution associated with

TU(ll/,8, 12), by lemma 4.12, o ~ ; y = y, hence

?Ve now show that y (E) and y(E") are rigid equivalent. By the above, it is enough to show

that

(a) y(El = r l) can be deduced from p(I1[P t- r2] = r l) and y(12 = r2); and vice versa, that

(b) y(El[/3 t- r2] = r l) can be deduced from ~ (1 1 = r l) and 412 = 7-2).

By lemma 4.15, since v unifies TU(ll/P, 12), it unifies l l /P and 12. To show (a), notice that

To see that (b) holcls, notice tha,t

By the soundness of the reduction procedure (theorem 8.7) Elf and Ef are also rigid equiv-

den t , hence for any C-substitution y , y(Eil) and y(E1) a,re rigid equivalent. Since we just

showed that y (E) a,nd v(E1f) are rigid equivalent, we have tha,t y (E) a.nd y(Ef) are rigid

equivalent.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

Order Sorted Rigid E- Unifica.tion

Contents

1 Introduction 2

2 Order-Sorted Algebra 6

2.1 Signatures . . , , , . . , 6

2.2 Algebras . 9

2.3 Order-Sortaedtermalgebra . 10

2.4 Order-Sorted deduction . 11

3 General Equations 14

4 Order-Sorted Unification 16

4.1 Term unification . 16

4.2 E-Unifica.tion . 18

4.3 Unifiers in Triangular Form . 19

6 Complete Sets of Rigid (I=, E)-Unifiers 27

7 Minimal Rigid (2, E)-Unifiers 30

8 Finding Reduced Sets of Rewrite Rules 34

8.1 Ground Equations . 35

8.2 Non-ground Ecluations , 36

9 Finding Complete Sets of Rigid (C, E)-Unifiers 38

10 NP-Coinpleteness of Rigid (C, E)-unification 57

11 Conclusioii and Further Researclz 58

A Appendix of Proofs 63

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-40

