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Abstract 

Rigid E-Unification is a special type of unification which arises naturally when 
extending Andrew's method of matings to logic with equality. We study the rigid E- 
Unification problem in the presence of subsorts. We present an order sorted method 
for the computation of order sorted rigid-E-unifiers. The method is based on an un- 
sorted one which we refine and extend to handle sort information. Our approach is to 
incorporate the sort information within the method so as to leverage it.We show via 
examples how the order sorted method is able to detect failures due to sort conflicts 
at  an early stage in the construction of potential rigid E Unifiers. The algorithm pre- 
sented here is NP-complete, as is the unsorted one. This is significant, specially due to 
the complications presented by the sort information. 
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Order Sorted Rigid E- Unification 

1 Introduction 

Rigid E-Unification is a special type of unification that occurs when extending Andrews 

[And811 method of matings to include equations. It was first introduced by Gallier, Raatz 

and Snyder [GItS87]. Gallier, Narendran, Plaisted and Snyder [GNPSSO] show that the 

problem is NP-complete and they present a method for finding rigid E-unifiers. We extend 

their work to order-sorted logic [Gog78, GM87bl. This is of interest because the order-sorted 

framework can be utilized to provide a formal framework for the treatment of such important 

concepts as inheritance and overloading. The results we present in this paper are significant 

from two different perspectives. Firstly, we improve upon the unsorted rigid E-unification 

method by simplifying it and secondly, we construct an inherently order-sorted method which 

takes sort information into consideration in each one of its phases; and produces order-sorted 

unifiers. 

The concept of an Order-Sorted Algebra was introduced by Goguen in [Gog78]. Goguen 

and Meseguer [GM87b] present order-sorted algebras as the natural seiilantics for order-sor- 

ted logic. Order-sorted algebras are based on an approach similar to many-sorted algebra 

where families of functions are associated with each function symbol. Ecllog [GMS4] is 

a programming language with built-in overloading and inheritance that has a clean mathe- 

matical semantics based on order-sorted algebra. Inheritance is achieved via subsorts. There 

are other similar semantic approaches to subsorts, e.g. Smolka [Smo86], Walther [Smo86] 

among others. The principal differences lie in the treatment of overloaded operators in the 

underlying algebraic structure. 

A significant advantage of the order-sorted approach over the unsorted one lies in the 

efficiency of computations. Sort information can be embedded within the algorithms. For 

example, there is an order-sorted unification algorithm that is able to trim the searcli space 

by taking sort information into consideration. These order-sorted algorithms are not just 

simple extensions of their unsorted counterparts; they require original approaches to the 

issues at stalk. 

The problem of rigid-E-unification arises when extending Andrews' method [And811 of 

matings to first order logic with equality. Extending matings to order-sorted matings 
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Order Sorted Rigid E-Unification 3 

implies an order-sorted version of rigid E-unification. Thus, the work we present here adapts 

and extends the unsorted methods to the order-sorted case. 

Rigid Unification involves finding a solution 0 to a term equation using only a limited 

resource of axioms. The number of times the axioms in E are used is not restricted, what is 

restricted is the number of variations of such axioms. This is done by freezing the variables 

in 0(E)  a.nd treating them as constants as if E were a set of ground equations. It can be 

stated as the following problem. 

Problem. Given a finite set E = {ul = vl, , , . , u, = v,) of equations and a pair (u, v) of 

terms, is there a 
* 

equations, 0(u) 0(v), tlmt is, 0(2c) and 0(v) are congruent niodulo 8 (E)  (by con- 

gruence closure)? 

The substitution 0 is called a rigid (C, E)-unifier of u and v. 

Example 1.1 Let E = {g( f (21)) = f ('I), g( f (22)) = q(z2)) and u = q(z3) and v = f ( ~ 4 ) .  

Then any substitution 0 unifying < zl, z2, z3, z4 > is a rigid-E-unifier of u and v because 

where z is the common value of O'(zl) = 0r(z2) = . . .. 

Only a single instance of each equation in E can be used, and in fact, these instances 

O(ul = vl), . . . ,O(u, = v,) must arise from the same substitution 0. Also, once these 

instances have been created, the remaining variables (if any) are considered rigid, tliat is, 

treated as constants, so that it is not possible to further instantiate these instances. 

Example 1.2 Let E = { f  (x)  = x}, consider rigid E-unifying u = y( f (a) ,  f (b) )  and v = 

g(a, b). The simple solution of substituting a for x to rewrite g( f (a) ,  f (b)) to g(a,  f ( b ) )  and 

then using f (x) = x again with b for x does not work out because we are using two different 

instances of f (x) = x. 

Notice that there is no way f (a)  can be rewritten to a without binding x to a.  Similarly, in 

order for an equality step to be applicable to f (b), x has to be bound to b. This is precisely 

why the two terms are not rigid E-unifiable. However, if we consider E' = { f  (x)  = x, f (y)  = 

9 )  then 0 = [xla,  ylb] is a rigid E-unifier of u and v. 
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Order Sorted Rigid E- Ui~ification 4 

Hence rigid (I=, E)-unification differs from (I=, E)-unification in that in the latter a proof 

of O(u) = O(v) from E might involve the use of different instantiations of the same equation 

in E. In the rigid case however, only the instances O(E) (regarded as ground) can be used. 

It is interesting to  observe that the solution to the rigid unification problem involves the 

use of the congruence closure, rewriting and term unification. We develop an order-sorted 

method for finite signatures which is also in NP. Since this type of unification forms the core 

of equational matings, it sets a precedent for the development of an extension to Andrews' 

rnethod of Matings to the order-sorted equational case. Gallier, Narendran, Plaisted and 

Snyder in [GNPS90] provide an N P  procedure to generate complete sets of unsorted rigid 

E-unifiers. Our task is to provide a method that produces order-sorted rigid E-unifiers 

(rigicl (C, E)-unifiers where C is an order-sorted signature.) We could take the following 

approach: 

1. Run the unsorted algorithm to produce an unsorted rigid E-unifier 0, and then 

2. using sort information try to produce for each unsorted 8 obtained in step 1, a family 

of sort assignments that results in a family of C-substitutions for 8. 

The disadvantage of this approach is that it does not make full use of the sort informa- 

tion. For example, if u and v have no common subsort, then u and v can not have a 

rigid (Z,  E)-unifier. However, the rnethod described above would first run the NP  unsorted 

algorithm; then try to compute a family of sort assig~iments and finally, upon discovering 

that the family of sort assignments is empty, return failure. 

The approach we take here lio~vever, differs in that the rnethod itself is intrinsically or- 

der-sorted. IVe modify the unsorted method for finding rigid E unifiers to a metliod that 

builds order-sorted substitutions. Since the sort information is used a t  each and every step 

of the order-sorted algorithm, it is more effective than the method described above because 

it is able to detect failure due to sort conflicts at an earlier stage. Our method uses an 

algorithm for finding order-sorted unifiers in triangular form presented in [Isat391 based on 

work by Meseguer, Goguen and Sinolka IMGSt391. 

Order assignments constitute a significant component of the unsorted rigid E-unification 

method presented by Gallier, Narendran, Plaisted and Snyder in [GNPSSO]. Without en- 
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Order Sorted Rigid E- Unification 5 

tering into too much detail, order assignmelits represent guesses on the ordering a ground 

rigid E-unifier will impose on terms. This ordering is used t o  guess other aspects of the 

solution. Although this concept is quite interesting, it complicates the method and its proof. 

By extending a procedure by Snyder [SnySg] that finds interreduced sets of rewrite rules 

equivalent to  a system E of equations, we manage to eliminate order assignments from the 

method (this works as well for the unsorted version of rigid E-unification). 

Thus, there are significant differences between the unsorted and the order-sorted versions 

of the rigid E-unification method such as: 

o Use of sort information at  each and every step of the algorithm. 

Use of general equations to avoid hitting ill-typed terms. 

At the heart of the method we use an order-sorted unification algoritliln which does not 

return an mgu, but a member of a complete farnily of C-unifiers. Since we are restricting 

ourselves to finite signatures, this family is finite. The order-sorted unification niethocl 

is an extension of the one in [MGSSS] as described in section 4. Even though C- 

unification with no equations is NP-complete, we manage to obtain an NP algorithm 

for rigid (C, E)-unification. 

As described above we avoid using order assignments. This requires a different i~iethod 

and different proofs which axe simpler. 

0 We show that a rigid E-unifier caa be obtained by a sequence of guesses. This is a 

coilsequence of the removal of order assignments. 

Thus, our method solves the rigid E-unification problem for order-sorted general equation 

systems and also represents substa~itial improvements over the unsorted method. 

This paper is organized as follows. In section 2 we provide some backgrouncl on order- 

sorted algebras. We describe general equations, the particular class of equations to ~vhicli 

our results on rigid (C, E)-unification do apply, in section 3. The concept of unification for 

order-sorted terms is reviewed in section 4 where we also present sollie interesting results 

on triangular forms for both unsorted and order-sorted unifiers. In section 5 we forrnally 

describe the rigid E-unification problem and give some general remarlcs about the method, 
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which is developed in sections 6 through 9. Complete sets of rigid (E,  E)-unifications are 

explored in section 6, and minimal sets of rigid (C, E)-unifications are studied in section 7. 

An important aspect of our method is that sets of order-sorted equations can be transformed 

into reduced sets of rewrite rules in polynomial time. These results are exhibited in section 

8. The actual method and its correctness proof are given in section 9. Section 10 proves 

that the method given is in fact in NP. In section 11 we summarize our results and discuss 

directions for further research. 

2 Order-Sorted Algebra 

Order-Sorted Algebras are presented by Goguen and Meseguer [GM87b] as the natural se- 

mantics for Order-Sorted logic. There are other approaches, e.g. Smolka [Smo86], VValther 

[Smo86] among others. The principal difference lies in the treatment of overloaded operators 

and the underlying algebraic structure. 

Order-Sorted Algebras are based on an approacll similar to h4aliy-sorted Algebra where 

families of functions are associated with each function syriibol. Tlie principal idea is to 

interpret the subsort relation as inclusion of domains. That is, if s is a subsort of s' then the 

domain of discourse A, assigned to s is a subset of A,,, the do~nain of s'. Similarly, function 

symbols are interpreted as functions between the domains of discourse, and certain natural 

relations hold between the interpretations of an overloaded fr~nction symbol. 

2.1 Signatures 

MTe shortly review the elements of many-sorted algebra. Given an indez set S, an S-sorted 

set A is just a family (As)sES of sets, one set A, for each s E S. Similarly, given two S-sorted 

sets A and B, an S-sorted function f : A I-+ B is an S-indexed family (f, : A, ++ Bs) ,ES  

of functions f, : A, I---+ B,, and an S-sorted relation R is an S-indexed family (Rs)sES of 

relations R, 2 A, x B,. Let us assume a fixed set S called the sort set, with a partial order 

<. 

Defi~lition 2.1 A many-sorted signature is defined as a triple (S, E, p), where S is a sort 

set and p : C -+ is a rank filnction assigning a set p( f )  of ranks (w, s) to ea,ch symbol 
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in C. The elements of the sets C are called ~pera~tors  or function symbols. The set C can be 

viewed as an indexed family if for every (w, s )  E S* x S we let C,,, = {f E C I (w, s )  E p( f ) ) .  

Note that C,,, and C,t,,t are not necessarily disjoint, since a symbol in C may have sev- 

eral ranks. Whenever convenient, we omit the function p, and view C as family of sets 

( C w , s ) ( w , s ) E ~ X ~ * .  

Definition 2.2 An order-sorted signature is a quadruple (S, <, C, p) ,  such that (S, C, p )  is 

a many-sorted signature and (S, <) is a partially ordered set. 

In addition the following monotonicity condition is imposed to rule out bizarre models : 

if f E Cwl,sl fl C, ,,,,, a.nd if 201 < w:! then s l  < sz. 

When the sort set S is clear, ~ 7 e  write (C, p )  or C for (S, C, p) .  Similarly when the partialy 

ordered set is clear, we write (C, p )  or C for (S, <, C, p).  

For function symbols, we may write f : w t-+ s when (w, S )  E p ( f )  to emphasize that f 

denotes a function with arity to and co-arity s.  An important case occurs when w = A, the 

empty string; then f denotes a constant of sort s. When (w, s )  E p ( f )  we will also say that 

f has arity w and co-arity s. 

Example 2.3 Let the set of sorts be S = {zero, Q', $1, and let the partial order be: 

zero  < Q, Q+ < Q .  

The following is an order-sorted C-signature which we denote by Rationals:  

Figure 1 graphically depicts this signature. The constant 0 is of sort zero. Notice tliat 

the second argument of / is of sort QS,  which is intended to exclude zero. Hence we are 

formalizing the idea of disallon~ing a division by zero. 
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Figure 1: The Ra t iona l s  signature 

In order for a number of useful properties to  hold, restrict our attention to a special 

class of signatures called regular. Essentially, regularity asserts that overloaded operations 

are consistent under restrictions to subsorts. Note that the ordering < on S extends to  

an ordering on strings of equal length in S* as follows: sl . . . s, < s', . . . s: iff si 5 s: for 

1 < i < n . Similarly, < extends to pairs in S* x S by stating that (20, s) 5 (w', st) iff w < w' 

and s < sf. 

Definition 2.4 An order-sorted signature S is regular iff for every f E C, every w0 E S*, 

and every (w, s) E p(f),  if w0 < w, then the set {(w', st) E p(f) [ w0 < w') has a least 

element. 

When the set of sorts is finite (or well founded), regularity is captured by a combinatorial 

condition (see the paper by Goguen and Meseguer [GMS'ib]). 

Lemma 2.5 An order-sorted signature C over a finite (or well founded) sort set S is regular 

iff for every every f E C, every w0 E S*, and every pair of ranks (w, s ) ,  (w', s f )  E p(f), if 

w0 5 w, w', then the set {(w, s), (zu', st)) has a lower bound (wl, sl) such that (wt, sl) E p( f ) ,  

and w0 5 WI. 

Let - = (< U <-')+ be the least equivalence relation containing the  partial order 

<. We say that two sorts s and s' are connected if s G st. The equivalence classes of 
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are called connected cornpone71,ts. The concept of connected sorts is important for defining 

quotient algebras. Indeed, in order for the usual construction of the quotient of an algebra 

by a congruence to hold, we need a condition on signa,tures called coherence. 

Definition 2.6 A regular order-sorted signature is coherent if every connected conlponent 

has a greatest element called the top sort of the connected component. 

In this paper we limit our attention to finite coherent signatures. 

2.2 Algebras 

For any string w = sl , .  . . ,s, (n > l), let A, = A,, x . , . x A,,, wit11 AX = { A )  (a  one 

element set). 

Definition 2.7 Let (S, 5,  C, p) be an order-sorted signature. An order sorted (S, <, C, p)- 

algebra A is a pair (A, I) consisting of an S-sorted family A = (As)sES called the carrier 

of A, and a function I called the interpretation function of A, where I assigns to every 

f E C an indexed family of functions I(f) = (fZWs : A, -+ 111 particular, ~vhen 

w = A,  fi"" is an element of A,. For each sort s ,  A, is the carrier of sort s. Note tltat the 

carrier of sort s may be empty. Moreover, the follo~ving col~ditions hold: 

1. A, C A,! whenever s < s', and 

2. If (w ,  s) E p(.f) and (w', sf) E p(f), s < sf, and w < wf, then fZ-" : Aw I-+ A, is equal 

to  the restriction of f21w"1 : Awl I-+ A,, to A,. That is, for any ~r E A,, ~AW'-"'(S) = 

By abuse of notation, we may denote an algebra and its carrier by the same name unless 

confusions arise. For example in the the previous definition we might use A for both the 

carrier (which is A) and for tlie algebra (which is A). ?\re may also drop some of the 

components in (S, 5,  C, p)  wlieli talking a,bout order-sorted algebras, or drop tlie superscript 

(w, s) when referring to  a function fzws. 
Example 2.8 Consider the signature presented of exalnple 2.3, an order-sorted C-algebra 

A is: 
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AQ = Q ( the set of rational numbers), 

A + - Q - (0) ( the set of non-zero rationals), and Q - 

The functions have their natura.1 int,erpretations: 

e OA = 0; 

+A is addition of rational numbers; 

/A is division of rational numbers. 

For any w = SI . . . s, f: X a,nd = (al,  . . . ,a,) E A,, let h,(si)=(h,, (al) , .  . . ,hs,(an)). 

Definition 2.9 Let (S, <, C, p) be an order-sorted signature, and let A and B be (S, 5,  C, p)- 

order-sorted algebras. A (S, 5, C, p)-homomorphism h : A I--+ B is an S-sorted functioli such 

that 

1. for every constant c of sort s, h , (c j )  = ca, 

2. for every f E C, every ( t o ,  s) E p(f),  and every Z E Aw, 

When the partialy ordered set is clear, (S, <, C, p)-homomorphisms are called order-sor- 

ted C-homomorphisms. We lnay also drop some of the components in (S, <, C, p) when 

talking about order-sorted liornomorphis~l~s. 

2.3 Order-Sorted term algebra 

Following [GM87b], we now define the order-sorted C-term algebra lc as the least family 

{7c,sls E S) of sets satisfying the following conditions: 

1. Ex,, L Tc,, for s E S; 
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2. I=,, 2 7z,s~ whenever s 5 s f ;  

3. i f f  E Cw,s, and if t; E Iz,Wl where w = wl, .  . . ,w; + A, then the string f t l . .  . t ,  is in 

7z.s 

In addition, the function symbols are interpreted as string constructors as follotvs: for f E 

W H S  
C ,,,, fit ( t l , ,  , . , t,) = f t l  . . . t,. Regular signatures have a number of desirable properties. 

Fbr example, unique sorts can be assigned to  terms in 7= as the following theorem form 

[GM87b] states. 

T h e o r e m  2.10 Let Il be a regula,r order-sorted signature. Then every term t in Ic has a 

least sort denoted by LS(t).  

For the rest of this paper we assume that all signatures are regular. In order to define 11011- 

ground terms, we enlarge the sigllature C with variables. The variables form a11 S-sorted 

set X = {xs)sEs which is assumed to be disjoint from C such that each variable belongs to 

exact,ly one X',, i.e. it has a uniclue sort. The extended signature is deiloted by C(X),  it is 

regular provided C is regular. The term algebra 7c(x) is denoted also by IS(X), and it is 

the free C order-sorted algebra on S ([GM87a]), i.e. 

Tl ieorem 2.11 Let A be an order-sorted C-algebra and let a : X H A be an ,S-sorted func- 

tion (an assignment from X to  A). Then there exists a unique order-sorted C-homomorphism 

a* : 7z(X) I-+ A that extends a. 

2.4 Order-Sorted deduct ion 

A fundamental cornponellt of deductive systems is the s~otion of a substitution which provides 

a tool for the instantiation of terms. Since order-sorted srtbstitutions have to  procluce well 

typed terms, their clefinition has to take sort information into account. We follow [MGSSS] 

in the defining substitutions as homomorphic extensions of well-sorted assignments, thus 

departing from T'lialther [WalS7] who defines them as being endomorphisms of a fixed term 

algebra. 
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Definition 2.12 Given an S-sorted assignment O : X t-+ I c (Y)  such that Q(z)  = n: almost 

everywhere (i.e. the set {x I O(x) f x) is finite), its homomorphic C-extension 0* : TE (X) t-., 

TE(Y) is an order-sorted substitution. 

We will write "C-substitution" for "Order-Sorted substitution" when tlie signature in con- 

sideration is C, even though this is somewhat ambiguous because we are not specifying the 

set of variables involved. I3y allowing a slight abuse of notation, we will denote O* by 8. 

Note tabat since an assignment is an S-sorted map we have that B(x) E Iz(17), whenever 

x E X',. Therefore if the signature is regular, LS(O(x)) < LS(x). We will clenote substitu- 

tions as association lists of the form [xl/tl , .  . . , x,/t,]. If we drop the sort information from 

a signature C, we obtain an unsorted signature I C I. Clearly, every order-sorted substitution 

is an unsorted one, i.e. every orcler-sorted signature is a 1x1-substitution. The contrary 

however, is false as we show i ~ i  the nest esaniple. 

Example  2.13 Consider the signature Rationals,  let zrat be a variable of sort r a t  and let 

zrat+ be a variable of sort rat+. Consider tlie mapping B sucli that O(rrat+ ) = 0. Altliougli 

0 is an unsorted substitution, it is not a C-substitution because the sorts of zrat+ and 0 are 

incomparable. 

Ho.vvever, the mapping 8' such that Of(zrat) = 0 is a C-substitution ancl LS(Oi(zrat)) < 
LS(zrat  1. 

We now turn orlr attention to order-sorted ecjuational cleduction. First, we point out that 

in order for an ecluation to malie sense, the terms equated must have a common supersort. 

Then, we can think of the two terms as being equal in that sort. Recall that in a coherent 

signature each connected component of the sorts poset has a greatest element. Since tlie 

signatures considered here are colierent, it is enough to restrict ecluations to terms with sorts 

in the same connected component 

Definition 2.14 Given a coherent order-sorted signature C ,  let u and v be terms in Tc(IY) 

such that their least sorts are connected, and let X be a superset of tlie set of all variables 

occurring in u or v (notice X C IT). Then (VYju = v is an equation. If I/ = {yl,.  . . , y,), 

we might write \dyl . . . Vyn u = v instead of (VY)u = v .  
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The concept of validity of an equation is defined using the freeness of Tc(X). 

Definition 2.15 An equation (VX)u = v is valid in some order-sorted C-algebra A (denoted 

A /= (VX)u = v) if and only if for every assignment a : X u A, atscu,(u) = atscv,(v). 

A C-algebra A satisfies a set E of equations if it satisfies every equation in E. A set E of 

equa,tions semantically entails an equation (VX)u = v, written E /=r (VX)u = v,  if (VX)u = v 

is valid in every model of E. 

We now provide a set of decluction rules for equations involvillg vaxiables. Given an 

order-sorted signature C and a set E of C(X)-equations, the following is a complete set of 

deduction rules for order-sorted equational logic ([hlGS89]): 

1. reflexivity. Ea.ch equa,tion (VX)t = t is derivable. 

2. Symmetl-y. If (VX)t = t' is derivable, then so is (VX)tt = t. 

3. Transitivity. If (VX)t = t' a~nd (b'X)tl = t" are derivable, then so is (VX)t = t". 

4. Congruence. Given t E TE(X) and C-substitutions 0,O' : X I-+ Tc(lf) such that for each 

x E X ,  tlie equation (VP)O(x) = Ot(x) is derivable, then the equation (\dY)O(t) = Ot(t). 

5. Substitz~tivity. If (VX)t = t' E E, and if 0 : X I--+ Tc(Y) is a Z=-srtbstitution, then 

(VY)O(t) = O(tl) is derivable. 

We denote the clerivability relation by kc as usual. T;Vhen tlie order-sorted signature is clear 

from the contest, we might sirnply write t. 

Theoreln 2.16 [Soundness and Completeness Theorem [GM87b]] Given a coherent orcler- 

sorted signature C, a set E of C(X)-equations, and terms t ,  t' E Tz(X), the followiilg are 

equivalent: 

E tc t = t'. 
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3 General Equations 

Given the complexity of E-unification in the case of arbitrary equational theories, it inakes 

sense to restrict the kind of equations and to study the problem under those restrictions. 

We focus our attention to a special class which we call General equations. 

The study of rigid (C, E)-unification for equation systems which are not general, although 

of interest, is beyond the scope of this paper. 

General equations are sort preserving in a very strong sense: not only are both ternis 

involved of the same sort, but this property is stable under variable renamings. 

A variable renaming C-substitution is a I=-substitution 0 : X H where IT is a set of 

variables, i.e. 0(x) is always a variable. Notice that the sort of 0(x) has to be below that of x. 

Thus, talking about variable renarnings is equivalent to tallii~ig about tlie set of sorts below 

a given one. If the signature is finite (as in our case), then, lnoclule alphabetic variants, there 

is only a finite number of possible variable renamings for a term t .  

Definition 3.1 Given an equation e = (b'X)t = t' over C, we say tliat e is general pro\~icled 

2. for any variable renaming p, LS(p(t)) = LS(p(tf)). 

In particular, LS(t)  = LS(tt). A system E = {t ,  = t l , i  E I) is said to be general if cach 

ecluation is general. 

Int,uitively, we make sure that every illstance of the equation is sort preserving. This will 

ensure that no ill-typed terms can be generated when rewriting. We illustrate via an example 

what is not general. 

Exaxnple 3.2 Consider the signature MGI shown in figure 2. 

Let e = (Vx : s,) f (x) = $(x ). Although LS( f (x )) = LS($(x)) = sl, there is a problem when 

.we apply the variable reliaming ~( , r )  = z : s4 because LS(f(z))  = s3 but LS(g(z)) = sz .  

This shows that e is not general. Thus when using e to  make deduction special attention to 

the sorts has to be drawn. For example, even though f (z) = ~ ( z )  is a valid consequelice of e, 
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Figure 2: The MG1 signature 

h(f ( z ) )  = h(g(z) )  is not only invalid, but h(g(z) )  is ill-typed. Hence replacement of equals 

by equals cannot be used with equations which are not general. 

The previous example shows that some unsorted theorem proving methods are not sound 

for order-sorted deduction. However as we will see, congruence closure, can be safely applied 

to systems of frozen equations. This will be come a key issue in our algorithm for rigid 

(C, 3)-unification. 

Lemma 3.3 Let I = r  be a general equation and let a  be a C-substitution, then a(b) = a ( r )  

is also general. 

Proof: 

1. Clearly Var(a(1)) = Var(o( r ) ) .  

2. To show that renamings of a(1) = a ( r )  are sort preserving. Notice that the sort of 

such a renaming can be characterized by renamings of the original equation. This is 

so because one can define a renaming p s.t. 

This is done as follows: for x  E Var(1) let x,(,) be a variable of sort LS(a(x ) ) .  Let 

( x )  = x .  The least sort of any renaming of a ( x )  can then be realized by an 

appropriate renaming of x. 
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Figure 3: E = {(V(xl) f (xl)  = g(xl)) is no t  most general. 

The class of general equations is less restrictive than the class of most general equations 

defined by Meseguer, Goguen and Smolka in [MGSSS]. They require an equation to be sort 

preserving under arbitrary renamings (not just C-substitutions). For example, consider the 

signature of figure 13 and the equation E = {(b'(xl) f(q) = y(xl)).  Clearly E is general. 

Since f (x2) = g(x2) is not covered by E, the system is not ?nost general. 

The focus in [MGSSS] is on utilizing unsorted theorem methods which at a second pass are 

transformed into order-sorted ones. In that context it is important to preserve the unsorted 

deducibility relation. Notice that E IfI: (Vxz) f (32) = g(x2). 

4 Order-Sorted Unification 

Unification basically amounts to finding values for the variables appearing in terms so as 

to make them equal. Given two terms t and t', a substitution 0 is a unifier of t and t f  if 

Q(t) = 8(t1). Thus a unifier can be seen as a solution of the equation t = t'. Given a system 

T of term equations, tve say that a substitution Q is a unifier of the system T if Q unifies 

every term equation in T. General unification, commonly called E-unification amounts to 

solving a system T of term equations mod~rlo a set E of equations. 

4.1 Term unification 

The order-sorted rrnification problem has been addressed by different researchers [I<irSS, 

MGSS9, SS87, WalS7, tValS41. Orcler-Sorted Unification differs from its unsorted version. In 
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the simple case of unifying two variables x : sl and y : s 2  the existence of an order-sorted 

unifier of x and y depends on the sort structure. If there is no lower bouiid to the set {sl,  s2} 

there is no unifier. If however, the set LBd({sl,s2}) = {s E S j s 5 s1 and s < sz) is not 

empty, any element of it represents a order-sorted unifier. That is, for any s E LBd((s1, s2}), 

let z, E X, be a variable of sort s ,  then the substitution [x/z,, ylz,] is an order-sorted unifier 

of x and 3. 

In the unsorted case Robinson [Rob651 shows the existence of a most general unifier for 

a set of unifiable terms. There exist several algorithms to compute a most general unsorted 

unifier IHue76, PW78, MM821. The Martelli-Montanari approach, by abstracting over the 

control structure, provides a good method for proving existence of unifiers in more general 

settings [Sny88]. In contrast to the unsorted case, most general unifiers do not exist in the 

order-sorted case. Complete families of unifiers can be defined as in the case of E-unification. 

Definition 4.1 Given a set T of terms, a. set of C-substitt~tions CSU(T)  is a complete set 

of I=-unifiers for T iff 

( i )  each a E CSU(T)  sa,tisfies D(a )  C Var(T) and D(a) n I(a) = 0 (a is idempotent); 

(ii) if cr E CSU(T)  then it is a unifier of S; 

(iii) For every C-unifier 0 of T, there exists a E CSU(T)  such that a 5 8. 

Example 4.2 Consider the signature NMGU shown in figure 4. 

Let 21,. . . ,zq be variables of sort sl, . . . , s4 respectively. The C-substitution 8 = [zl/z3, zg/z3] 

is an order-sorted unifier of zl and z2, and so is 8' = [zl/z4, z2/z4]. Notice however, that 

neither does 0 subsume 0', nor does 0' subsume 0. Furthermore, it is easy to see that there 

does not exist a C-substitution 4 such that 4 5 0 and 4 5 0'. Therefore, no mgu exists for 

the term pair < 21.22 >. However, {0,01) is a complete set of C-unifiers for {zl, 22). 

Isakowitz [Isa89] presents a non-deterministic algorithm t,o compute CSU(T).  
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Figure 4: The NMGU signature 

In this section we clefine the notion of Order-Sorted E-Unification (f= - E Unification), we 

briefly review and comment on some of the results presented by Xleseguer and Goguen and 

Smolka in [hIGSS9]. The system of equations which are studied there are called most general. 

Our notion of general equational system is weaker than the notion of most general equations 

which is used in [htIGSSS]. Hence our results do apply to a larger class of equations. 

Definition 4.3 Given a set E of equations and C- te rm t and t', we say that a C-substitution 

6 is a (C, E )  unijer oft  and t' iff 

By considering the unsorted signature ICI obtained by forgetting the sorts from C and 

the unsorted system of equations \El obtained from E ,  one can compare unsorted and order- 

sorted E-unification. In [MGSSS], the relationship between these is studied. A number of 

characterization theorems are presented which show that for reasonable signatures, families 

of order-sorted E-unifiers can be obtained from unsorted E-unifiers. The method consists 

in first computing an unsorted E-unifier and then finding sort assignments for the variables 

to construct order-sorted unifiers. However, such sort assignments might not always exist, 

in which case there is not order-sorted version of the E-unifier, As we shall see later, our 
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Figure 5:  f (c) = g(c) 

method detects that a potential substitution can not become a C-unifiers earlier and can 

therefore present signifiant efficiency gains over the unsorted method. 

E x a ~ n p l e  4.4 Consider the signature of figure 4.2 and the equation f ( c )  = g(c ) .  The 

Z-terms f (z l )  a.nd g(zl)  are not (C, E)-unifiable. Ho\vever, the method described above 

would first discover the unsorted E-unifies [c/xl]. Any attempt to come up with an oscler- 

sorted version of this unifier is deemed to failure. 

4.3 Unifiers in Triangular Form 

In order to show that our decision procedure for rigid order-sorted unification is in NP, we 

will need the fact that members of CSU(u,  v)  can be represented concisely in triangular form 

(the size of this system is linear in the number of symbols in u and v) .  We will clenote a 

complete family of C-unifiers in triangular form by CTU(T).  When T consists of a single 

pair (u, v), CTU(S)  is also denoted by CTU(u,  v). 

An algorithm for finding a complete family of C-unifiers in triangular form for arbitrary 

finite coherent signatures is described by Isakowitz in [IsaS9]. This method is obtained from 

the fast method using multiequations of Martelii and Montanari [MM82] adapted to the 

order-sorted case as presented by Meseguer, Goguen and Smolka in [MGSSS] by utilizing a 
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non-deterministic version of the IP algorithm ([hfGSSS]). Thus, this method is nondeter- 

ministic, and it computes elements of CTU(T) in nondeterministic quasi-linear time. 

In addition to the fact that complete families of triangular C-unifiers do exist, we will 

use some properties of triangular forms in the proof of the soundness of our method. We 

develop an abstract view of triangular forms. First, we define triangular forms. 

Definition 4.5 Given an idempotent C-substitution a with domain D(a )  = {xl, .  . . , xk}, a 

trian,gularform for a is a finite set T of pairs (x, t) where x E D(a) and t is a term, such that 

this set T can be sorted (possibly in more than one way) into a sequence ( (XI ,  t l ) ,  . . . , (xk, tk)) 

satisfying the following properties: for every i, 1 < i < k, 

(1) 21,. . . , x i  n Var(t;) = 0, and 

The set of variables 1x1,. . . , xk)  is called the domain of T. Note that in particular 

x; 6 Tfar(t;) for every i ,  1 < i < k ,  but variables in the set { x , + ~ ,  . . . , xk)  may occur in 

t l ,  . . . , t i .  It is easily seen that a is an idempotent mgu of the term system T. 

Example 4.6 Consider the C-substitution a = [f (f (x3, x3), f (x3, x3))/x1, f (x3, x3)/x2]. The 

system T = {(XI, f (x2, x2)), (x2, f (x3,  x3))) is a triangular form of a since it can be ordered 

( ( X I ,  f ( ~ 2 ,  ~ 2 ) ) ,  ( ~ 2 ,  f ( ~ 3 ,  ~ 3 ) ) )  and a [f ( ~ 2 ,  x ~ ) / x I ]  ; [f ( ~ 3 ,  ~ 3 ) / ~ 2 ] .  

The triangular form 7' = {(XI ,  t l ) ,  . . . , (xk,  tk))  of a C-substitution a also defines a C-substitution, 

namely a~ = [tl/xl, . . . , tk/zk].  This C-substitution is usually different from a and not idem- 

potent as can be seen from example 4.6. 

The method for computing C-unifiers returns triangular forms, i.e. given E-terms t and 

t', the method returns either failure or a triangular form T = {(zl, t l ) ,  . . . , (zk, tk)) for a 

C-unifier O o f t  and t'. The substitution sigmaT associated with this triangular form plays a 

crucial role in our decision procedure by providing a succinct representation of a C-unifiers. 

'In fact, this result can be strengt,hened: our method works for finitnry signatures while the one presented 
in [MGS89] works for tinztary signatures. 
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Figure 6 

This reduces the complexity of the algorithm. Notice however that even though aT is asso- 

ciated to 0 (which unifies t ancl t ' ) ,  

1. as is well known that a~  might not unify t and t J  2; and 

2. L S ( a T ( t ) )  and L S ( a T ( t l ) )  might differ. 

This last observation presents a problem to our development. 

Example 4.7 Consider the signature presented in figure 6. Given C-terms t = f ( r c ,  y, z )  

and t' = f ( y , g ( z ) ,  h (c ) ) ,  the X-substitution 0 = [ g ( h ( c ) ) / x , g ( h ( c ) ) / y ,  h ( c ) / r ]  is a C-unifier 

of t and t'. The following is a C-substitution associated with a triangular form for 0: 

CT = [ Y / x ,  g ( z ) / y ,  h (c )  / z ) ] .  However, 

2For example, a  in example 4.6 is a triangular form of a unifier of t = f(x1,xz) and t' = 
f(f (x2, x2), f (t3, 13)). However, as the reader is invited to check, a ~ ( t )  # ~ ( t ' )  
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Not only do aT(t)  and aT(tt) differ in structure, but also in sorts: LS(aT(t))  = sl while 

L S ( c ~ ~ ( t l ) )  = ~ 2 .  

In order to force cT(t)  and aT(tt) to have the same sort, we observe that since t and tt  are 

unifiable, there has to exist a variable renaming p such that LS(p(aT(t))) = LS(p(aT(tl))) = 

LS(B(t)). Tn fact, by reading a triangular form from right t o  left, such a variable assignment 

can be obtained. New variables are utilized to  represent the renaming. In the case of the 

previous example, y will get the sort of g(zt) which is s 2 ,  and x will also be pushed to have 

sort s2. 

Definition 4.8 Given a C-substitution O with triangular form T = {(zl, t l) ,  . . . , (xk, tk)). 

Let pk+1 = id, ancl for j = 0, .  . . - 2, let 

where each y; is a different variahle of sort srt; not appearing in the original system (for 

i = 1, ... ,k). 
The special triangular form T* is defined by T* = ( ( X I ,  pz(tl)), . . . , ( z k ,  pk+l(tk))). Its asso- 

ciated substitution will be denoted by a:. 

By construction, we have the following result: 

Lernina 4.9 If 0; is a special triangular form for a C-sul>stitution a, then for every z E 

Dorn(o), LS(a:(z)) = LS(a(a)) .  

From this we have the follo~ving import ant corollary: 

Corollary 4.10 Let 0 be a C-unifier of the C-terms t and t', and let a; be a specid triangular 

form for 0, then LS(a$(t))  = LS(a:(tt)). 
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Example 4.11 Recall from example 4.7, 0~ = [y/z, g(z)/y, A(c)/z)]. Then 

Thus a; = [ys2/e, g(ys3)/y, h.(c)/z)]. Let us compute a;(t) and a;(tl): 

We still have a>( t )  rf a;(t1). FIowever, LS(a>(t))  = s2 and LS(a$(tl)) = sa! 

Special triangular forlns play an important role in the algorithm for rigid (C, E)-unification. 

In what follows, all triangular fornis and associated C-substitutions are assumed to  be in 

this special form and will be denoted by T ancl LTT instead of T* and a;. We now develop 

a series of lemmas which will be utilized in the proofs of the soundness and completeness of 

our rigid (C, E)-unification metliocl. First, we adapt a tecl~nical lemma from [GNPSSO]. 

Lemma 4.12 Given a triangular form T = {(zl,  t l ) ,  . . . , (xk, t k ) }  for a C-substitution a and 

the associat,ed C-substitution a T  = [ t l /z l , .  . . , tk /zk] ,  for every C-unifier @ of T ,  0 = a~ ; 0. 

Proof: Since 0 is a C-unifier of T ,  we liave O(x,) = O(t,) = Q(ar(x,)) for every i,  1 5 i < k. 

Since aT(y) = y for all y 4 {e l , .  . . , xk}, O = a~ ; 0 holds. 

Another important observation ahout 0~ is that even though it is usually not idempotent, 

at least one variable in 1x1,. . . , xk} does not belong to I (aT)  (otherwise, conditioli (1) of 

the triangular form fails). 

The following results from [IsaSS], 'ivhich also hold in the unsorted case, shed some liglit 

on the relationship between a C-unifier and its triangular form. Interestingly enough, the 
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results are developed algebraically, as opposed to concentrating on the methods to  obtain 

triangular forms. Although a and a~ are different substitutions, the following lemma sl~o\\rs 

that composing a T  with itself enough times yields a. 

Lemma 4.13 Given a term system S; a an idempotent C-unifier of S; and T = {< XI, tl > 

, . . . < x,,t, >) a triangular form for a, let a* = [xl / t l , .  . . , x,/t,] be the C-substitution 

associated with 2". Then aT(n) = a. 

The proof is given in appendix A.2. 

Based on the previous lemma we ca,n state a result similar to lemma 4.12. 

Lemma 4.14 Given T a triangular form of an idempotent C-unifier a of a system S, if 0 

unifies T, then 0 = a; 0. 

Proof: By lemma 4.12, D = 4 ~ ;  0, and hence for any i > 0, B = a$); O. By the previous 

lemma a!$) = a. Therefore, B = a ;  6'. CI 

\lie can now prove the follo\vivlg result: 

Lemma 4.15 Given T, a triangular form for an idempotent C-unifier a of a term system 

S; every I=-unifier of T is also a I=-unifier of S. 

Proof: Let 0 be a C-unifier of T. By lemma 4.14 0 = a ;0 .  Since a unifies S, so does B 

because given any < t ,  t' >E S, O(t) = B(a(t)) = O(a(tr)) = O(tf). 

Eelnnla 4.16 If a is an idernpotelit C-unifier of S and T is a triangular form for a ,  then a 

unifies T. 

The proof is given in appendix A.3. 

5 Rigid-E-Unificat ion 

In this section we give the formal definition of rigid (C, E)-unification and we provide some 

intuition for the methocl we are about to develop. Our approach is based on the nlelliod 
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given by Ga.llier, Narendran, Plaisted and Snyder in [GNPSSO]. Our accomplishments are 

twofold. 

Firstly, we significantly simplify the unsorted method and its correctness proofs, thereby 

presenting an improved unsortecl rigid E-unification method. The niajor silnplification is 

the removal of order assignments from the transformation which is an important colnpiiient 

of the unsorted method as presented in (GNPSSO]. Order assignments represent guesses of 

portions of the final solution. Their role in the rigid E-unification method is difficult to 

understand and their presence complicates the proofs. We incorporate the guessing within 

another component of the method: the reduction procedure. By doing so, we manage to 

reduce the numl~er of components of the method, thereby simplifying it. We also moclify 

the reduction procedure by incorporating a reduction rnetllocl by Snyder [SnySS]. We then 

provide new soundness ancl completeness proofs which show the correctness of the order-sor- 

ted algorithm and also apply to the unsorted method. 

Secondly, our method is intrinsically order-sorted. We utilize an order-sorted unification 

algorithm to ensure that at each step of our method, the sort illfor~nation is taken into 

account. This makes for an efficient algorithm which is able to discard ruifit substi t~~tions as 

these are built, by identifying sort conflicts. 

We begin with some formal clef nitions. 

Definition 5.1 Let E 2 TE(X) x Tc(X) be a binary relation on terms. We define the 

relation +-+E over TI:(X) as follows: Given any two terms t l ,  t2  E TE(X),  then tl  H E  t2 

iff there is some variant3 ( s , t )  of a pair in E U E-l,  some tree address a in t l ,  aiicl some 

substitution 0 ,  such that 

(In this case, we say tliat 0 is a matching substitution of s onto t l / a .  Tlie term t l / a  is called 

a redex.) Note that the pair (s ,  t )  is used as a two-way rewrite rule (that is, non-oriented). 

In such a case, we denote the pair (s, t )  as s = t ancl call it an equatiotz. tl H E  t2, 

we say that we have an equality step. When we want to fully specify an equality step, we 

3A pair ( s , t )  is a variant of a pair ( u ,  v) E E iff there is some renaming p wit11 domain Vccr(u) U V o v ( v )  
such that  s = p(u) and t = p(v).  
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use the notation 

t l  -cu,s=~t,cr t2 

(where some of the arguments may be omitted). A sequence of equality steps 

is ca,lled a proof of u A E v .  

Definition 5.2 Given a finite set E of equations (ground or not), we say that E is treated 

as a set ofground eq.t~atio~?s iff for every pair of terms u, v (ground or not), for every proof of 

u & ~ v ,  t,hen for every ecluality step s H ~ , ~ = , , ,  t in this proof, a is the identity substitution 

and 1 = r E E U E-I (no rellalllillg of the equations in E U E-' is performecl). This means 
* 

that variables are treated as constalits. We use the notation u CE v to  express the fact 
* 

that u f-r-fE v, treating E as a set of ground equations. Equivalently, u gE v iff u and v 

can be shown congruent from E by congruence closure (I<ozen [I<oz76],[I<oz77], Nelson and 

Oppen [NOSO], Downey, Sethi, and Tarjan [DSTEIO]) again, treating all variables as constants 

- they are consiclered rigid. 

The results in [ha891 on congruence closure show that the method is s o u ~ ~ d  for order-sor- 

ted deduction when the equations are general. More formally, if u and v are 3-terms and E 
* 

is general then u gE v implies E kc u = v. This is the reason why we require the eclualions 

to be general! 

NTe give the clefinition of a rigid (C, E)-unifier. 

Definition 5.3 Let E = {(sl = tl), . . . , (s, = t,)) be a finite set of ecluations, and 

let V a r ( E )  = Ufs=t)EE Var(s  = t )  denote the set of variables occurring in Given a 

E-substitution 0, we let 0(E)  = {0(s, = t,) I s, = t, E E ,  @(st) f 8(t,)). Give11 any 

two terms u and v , ~  a C-substitution 0 is a rigid (C, E)-unifier of u and v modulo E (for 

short, a rigid (3 ,  E)-unifier of u and v) iff 0(u) AE H(v), treating 0 (E)  as a set of ground 
* 

equations i.e., 0(u) O(z)). 

41t is possible that equations have variables in common. 
51t is possible that u and v have variables in common with the equatiolls in E. 
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Note that if E is general then a rigid (C, E)-unifier is a (C, E)-unifier. (This follows from 

the soundness of congruence closure.) The converse, as shown in example 1.2, is not true. 

Our method for rigid (C, E)-unification can be described in terrns of a single transformation 

on pairs of the form (S, E), where S is a unifiable set of pairs and E is a set of general 

equations. Starting with an initial pair (8, Eo) initialized using E and u, v, one consiclers 

sequences of transformations (8, Eo) ++ (Sk, Ek) consisting of at most k < ?n steps ~~~~~~~e n2 
is the number of variables in E. It will be shown that u and v have some rigid ( S ,  E)-unifier 

iff there is some sequence of steps as above such that 1) the special equations involving the 

markers appear in Ek, and 2) Sk is unifiable. Then, any C-unifier of Sk is a rigid (C, E)-unifier 

of u and v. 

6 Complete Sets of Rigid (C, E)-Unifiers 

As in the case of general E-unification, we are interested in complete families of rigid (E, E)-unifiers. 

The contents of this section are aclapted frorn [GNPSSO] to  deal with subsorts. Tlie missing 

proofs are essentially the same as in the unsorted case. We need soIne definitions regarding 

complete sets of rigid (C, El-unifiers. First, we define some preorders on C-substitutions. 

Defiilition 6.1 Let E be a (finite) set of equations, and IT; a (finite) set of variables. For 
L 

any two E-substitutions a and 0, a =E 0[TY] iff a (x )  EE 0(x) for every x E TT17. Tlie relatioil 

LE is defined as follows. For any t\vo C-substitutions a and 0, a LE 0[1V] iff a = q ~ )  0[1;1/]. 

Tile set 117 is omitted when IY = X (where X is tlie set of variables), and similarly E is 

omitted when E = 0. 

Intuitively speaking, a LE 0 iff a can be generated frorn 0 using the ecl~at~ions in O(E). 

Clearly, C E  is reflexive. FIowever. it is not symmetric as shown by the Sollo\ving example. 

Exainple 6.2 Let E = {f(x) = x), g = [f(a)/x] and 0 = [a/x]. Then 0 ( E )  = {f(a)  = a )  

and a ( z )  = f (a)  a = 0(x), and so a fZE 0. On the other halid tr(E) = { f (f ( a ) )  = 

f (a)), but a and f ( a )  are not congruent from {f (f ( a ) )  = f (a)).  Thus 0 a does not 

hold. 
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Some positive facts about the relation CIE are shown in the following lemma from [GNPSSO]. 

These results easily adapt to the order-sorted case. 

Lelnnla 6.3 For a,ny two C-substitut.ions a, 8, 

* 
(i) if a =*(El O, then a (u)  O(U) for any term u. 

* * 
(ii) If a =*(E)  0, then for all terms ZL, v, if u v then u v. 

(iii) LE is transitive. 

* * 
(iv) For any two terms u, v,  and any C-substitution 8, if u gE v then 8(u) 8(u). 

This lemma shows tha.t LE is specia,l rela,tionship, a preorder as defined below. 

Definition 6.4 A preorder 5 on a set A is a binary relation 5 C A x A that is reflexive 

and transitive. A partial order 5 on a set A is a preorder that is also antisymmetric. The 

converse of a preorder (or partial order) 5 is denoted as h. A strict 01-derilzg (or strict o r d e ~ )  

4 on a set A is a transitive and isreflexive relation. Given a preorder (or partial order) 5 on 

a set A, the strict ordering 4 associated with 5 is defined such that s 4 t i f f  s 5 t and t ;z4: 5. 

Conversely, given a strict ordering 4,  the partial ordering 5 associated with 4 is defined 

such that s 5 t iff s 4 t or s = t .  The converse of a strict ordering 4 is denoted as k. C' riven 

a preorder (or partial order) 5,  we say that 5 is well founded iff k is well founded. 

from (i) and (ii) it follows that if a lIE 0 and a is a rigid (C, E)-unifier of u and v, so is 

8. We also need an extension of gE defined as follows. 

Definition 6.5 Let E be a (finite) set of ecluat,ions, and T/V a (finite) set of variables. The 

relation <E is defined as follotvs: for any two C-substitutions a and 8, a <E 0[147] iff a ; 7 E E  

O[W] for some C-substitution 7 (that is, a ;  7 =s(E)  0[W] for some 7 ) .  The conventions for 

omitting [TV] and E are those of definition 6.1. 

Intuitively speaking, a S E  0 iff a is more general than some C-substitution that call be 

generated from 6' using 0(E).  Clearly, _<E is reflexive. It can also be  sho\vn that it is 

transitive. 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-91-40 



Order Sorted Rigid E- Unification 29 

Thus, S E  is a preorcler, and it is clear that it estelids LE. When a <E 0[1;17], we say 

that a is rigid more general than O over bV. By the remark followilig lemma 6.3 and part 

(iv) of lemma 6.3, it is immediately verified that if a is a rigid (C, E)-unifier of u axid v and 

a S E  O, then 0 is a rigid (C, El)-unifier of u and v. However, the converse is false. 

In the next definition, the concept of a complete set of (C, E)-unifiers is generalized to 

rigid (C, ,!?)-unifiers, 

Definition 6.6 Given a (finite) set E of equations, for any two terms u and v, letting If = 

V a r ( u ) ~ V n r ( v ) ~ l / a r ( E ) ,  a set U of C-substitutions is a complete set of rigid (2=, 23)-unifiers 

for u and v iff: For every a E U ,  

(i) D(a)  C V and D(a)  n I(a) = 0 (idempotence), 

(ii) a is a rigid (C, E)-unifier of u and v, 

(iii) For every rigicl (C, E)-unifier 0 of zt and v, there is some a E U, such that, a LE 0[1/]. 

Condition (i) is the purity condition, condition (ii) the consistency condition, and colidition 

(iii) the completeness condition. 

It should be clear that if U is a complete set of rigid E-C-unifiers for 21 and v, a E U, and 

a S E  0, then 8 is a rigicl (C, E)-unifier of u and v. 

A rigid E-unification method that only uses the co~lstant and fiinction syi~ibols already 

present in E , u  and v, is called pure. The substitutions generated by a pure method 

do not introduce new symbols. As demonstrated in [GNPSSO], pure methods are of in- 

terest because their completeness proof can be simplified. Instead of having to consider 

arbitrary rigid (23, E)-unifiers, it is enough to  show completeness with respect to ground 

rigid (C,E)-unifiers whose domains contain V. That is, clalise (iii) of definition 6.6, is re- 

placed by 

(iii') for every ground rigid (C, E)-unifier 0 of u and v such that V C L)(0) ,  there 

is some a E l T  s ~ ~ c h  that a LE O[V] (where 11 = Var(23) U Ifar(u, v)) .  
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7 Minimal Rigid (C, E)-Unifiers 

The concepts and results of this section have been adapted to the order-sorted case from 

[GNPSSO]. Although most results look similar, they involve new techniques aiid subtleties 

related to  the sorts. We prove some useful lemmas about general equations that are funda- 

mental to  our method, and we prove some new results which are interesting in themselves 

and do not appear in [GNPSSO]. 

Given a finitle or countably infinite order-sorted signature C, i t  is always possible to define 

a total simplification ordering 5 on 7~ (the set of all ground terms). F'or instance, we can 

choose some total well-founded ordering 5 on C and extend 5 to lc as follows: s 4 t iff 

either 

3. size(s) = size(t),  Root(s) = Root(t), and letting s = fsl . . . s, and t = f t l  . . . t,, 

( ~ 1 ,  . . . , s,) +lez ( t l ,  . . . , tn), where 41ez is the lexicographic ordering incluced by 4. 

Notice that t 4 t' does not imply LS(t )  < LS(tt). In the rest of this paper, we assunie that 

5 is a fixed simplificatio~i ordering ~vliicli is total on 7 ~ .  Given a set E of equations, for assy 

ground substitution 0, we let < O(E), s> denote the set (O(1) = O(r) 1 O ( 2 )  + O(r), 1 = 1- E 

E U E-' } of oriented instances of E. Tlius, we can also view O(E) as a set of rewrite rules. 

When 5 is clear from concept, we might simply write O(E) instead of < O(E), 5> . Some 

ambiguity rniglit arise froin slot knotving when O(E) denotes a set of rewrite rules or a set of 

equations. In general we mean tlle former. 

Siiice we restrict o~srselves to t,he case ~vliere E is general, tlie equatiosls are sort-preserving 

and we obtain a sort-preserving rewrite system. Tlius, we do not have to worry about 

generating ill-typed terms when rewriting. That is wliy tlie ordering 5 can disregard sort 

information. 

We shall use the total simplificatioil ordering 4 on 7 Z  to defiiie a well-founcled partial 

order + on ground C-substitutions. For this, it is assusnecl that tlie set of variables X is 

totally ordered as ,Y = (xl,  az , .  . . , x,, . . .). 
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Definition 7.1 The partial order 4 is defined on ground E-substitutions as follows. Given 

any two ground C-srtbstitutions a and 0 such that D(a)  = D(O), letting (yl . . . , yn) be the 

sequence obtained by ordering tlie variables in D(a)  according to their order in X, tlieli 

a + O i f f  

( ~ ( Y I ) ,  + , ~ ( y n ) )  5lez ( ~ ( Y I ) ,  . - + 7 o ( ~ n ) ) ,  

where 51e, is the lexicographic ordering on tuples induced by 5. 

Since 5 is well-founded and 4 is induced by the lexicographic ordering -ire, which is well- 

founded, -;' is also well-founded. In fact, given any finite set 17 of variables, note tliat -: is a 

total well-founded ordering for the set of ground Z=-substitutions with domain V. 

We utilize a total simplification ordering 5 on ground terms, to define a notion ~llillirnal 

rigid (C, ,!?)-unifiers. F'ollowing [GNPSSO], we define an ordering among ground C-unifiers 

in which minimal elements do exist. 

Definition 7.2 Let E be a set of general equations (over Tx(X)) arid u, v E Ts(X) ally two 

terms. For any ground rigid (C, E)-unifier 0 of u and v,  let 

Obviously, 0 E SE,tl,V,~, SO SE,u,V,o is not empty. Since -: is total and well-founcled on ground 

C-substitutions with domain D(0) ,  the set SE,,,,,,e contains some least elelnerit a (w.r.t. +). 

We define tlie notion of rigid equivalency. 

Definition 7.3 Given two sets E and El of equations, we say tliat E and E' are rigid 
* * 

equivale?zt iff for every two terlils 21 and v ,  u ZE v iff u ZE1 v (treating E and El as sets 

of ground equa,tions) 
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Lernrna 7.4 If E and El are rigid equivalent then SE,u,v,~ = SEf,u,v,~. 

Proof: Since E and E' are rigid equivalent, so are p(E) and P(EI) for ally C-substitution p. 

Hence for any terms u and v, p(u)  g p ( ~ )  p(v) iff p(u) G,,(E~) p(v). CI 

We shall now state a result from [GNPSSO], but first we define degenerate equations. 

Definition 7.5 A degenerate equation is an equation of the form x = t ,  where x is a variable 

and x $ V n r ( t ) ,  and a nondegenerate equation is an equation that is not degenerate. 

Lemma 7.6 Let E be a set of equations (over Tj(X)) and u, v E Tj(X) any two terms. 

For any ground rigid (I=, E)-unifier 0 of ti and v,  if cr is the least element of the set SE,u,V,~ 

of definition 7.2, tallen the follo~ving properties hold: 

1. every term of the form cr(x) is irred~~cible by every oriented instance a(1) -+ a(i-) of a 

nondegenerate equation 1 = r E E U E-l, and 

2. every proper srtbterm of a term of the form a (x)  is irreducible by every oriented instance 

a(!) -+ a(r) of a degenerate equation 2 = r E E U E-l. 

In view of lemma 7.6, it is convenient to introduce the following definition. 

Definition 7.7 Given a set E of ecluations, a total simplification ordering 5 on ground 

terms, and any two terms u, v, a ground rigid E-unifier 0 of u and v is redziced w.7-.t. O(E) 

iff 

1. every term of the form 0(x) is irreducible by every oriented instance O(1) -+ O(r) of a 

nondegenerate equation 1 = r E E U E-I, and 

2. every proper subterm of a term of the form 0(x) is irreducible by every oriented instance 

O(I) -+ O(r) of a degenerate equation 1 = r E E U E-l. 

VCTe have the following lemma as a combination of lemmata 7.4, 7.6 and the existence of 

minimal elements in SE,2L,V,~. 
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Eernina 7.8 Let E be a set of general equations (over 7x(1Y)) axid u, v E I x ( X )  any t~vo 

terms. For any ground rigid (C, E)-unifier O of u and v, if a is the least element of the 

set SE,,,,,e of definition 7.2, then a is reduced with respect to a(E') for any set E' rigid 

equivalent to E. 

Given this and the remark on pure methods at the of section 6, we will assume for the rest 

of this chapter that 

rigid (C, &')-unifiers are ground and reduced. The next lemma shows why reduced substitu- 

tions are interesting. 

Leinnia 7.9 Let t E Tx, 1 = r E E ,  and let O be a ground C-substitution that is reduced 

w.r.t. O(E). Suppose that O(t)-.tn,e(r=r)t". Let t' = t [ P  t- r]. Then 

1, ,l? occurs inside t ,  i.e. /? E Dom(t), and 

2. t' f 7j and t" = O(tt). 

The proof is given in appendix -4.4. 

This lemma is important because it shows that pieces of a rigid (C, E)-unifier of u ancl v 

can be tracked down to the terms in {E, u, v). By an inductive argument on the length of 

rewrite proofs, we obtain the following corollary. 

Corollary 7.10 Consider a rewrite proof of the form 

O ( ~ O )  +,,@(E) 91: C f - t i 3 2 , ~ ( ~ )  ui &&,@(E) . . . &P~,@(E)  uL'  

For 1 5 i 5 12 let U ;  = u;-~[/?; t- li] = u o [ P ~  t- Y I , .  - .  Pi t- ri]. The11 

Furthermore, for 1 < i < n, u: = O(u;) and Pi E Dom(u;). 
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8 Finding Reduced Sets of Rewrite Rules 

Rewrite systems are like equations except that they clearly specify a left and a right hand 

side. Rewriting specifies an operational semantics that can be used for equality steps. As 

opposed to equations, rewrite rules specify direction which can be used to define normal 

forms. These normal forms are interesting because they state a type of jinalising condition 

which we need to ensure progress at  each step of the rigid E-unification method we present 

in section 9. 

We formally define sorne of these concepts before presenting the results. 

Definition 8.1 Let - be a binary relation ---t C T c ( X )  x T c ( X )  on terms. The relation - is monotonic iff for every two terms s, t and every function synibol f ,  if s ---i t the11 

f ( .  . . ,s , .  . .) - f ( .  . . , t , .  . .). The relation - is stable (under substitution) if s ---7. t 

implies a(s) - a ( t )  for every substitution a. 

Definitioil 8.2 When a pair (s, t )  E. E is used as an oriented equation (from left to right), 

we call it a rziEe ancl denote it as s - i t .  The I-eduction relation -+E is the smallest stable 

and monotonic relation that contains E. We can define tl -g t2  explicitly as above the 

only difference being that ( s , t )  is a variant of a pair in E (and not in E U E-I). IVllen 

tl --+E t2, we say that tl re~oi-ites to t2, or that we have a rewrite step. When we want to 

fully specify a rewrite step, we use the following notation. 

Some of the argrlrnellts a,  s -i t or a n ~ a y  be omitted. Tkis notation means tliat tree t is 

rewritten at adclress a using rewrite rule s -i t and substitution a to obtain tree t2.  

Mihen Tfnr(r) 2 Tfar(l), then a rule I -i I* is called a rewrite rule; a set of such rules is 

called a rewrite system. 

Definition 8.3 Consicler a ground term rewriting system R. R is noethei-inn iff there esists 

no infinite sequence of terms t l ,  t2, t3,.  . . such that t l -*Rt2~Rt3*R.  . ., and it is C O I Z ~ U ~ I Z ~  

iff whenever tl AR t2, there exists a term t3 SLIC~I that tl AR t3 RA t2. R is caizoi-t.icn1 
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iff it is noetherian and confluent. 

A term t is irreducible by R (or in normal form) if there exists no t' such that t -+~t '  

A system R is lefi-reduced iff for every 1 -% r E R, 1 is irreducible by R - (1  -A I* ) ;  R is riglit- 

reduced iff for every 1 -i r E R, r is irreducible by R. R is called reduced iff it is left-reduced 

and right-reduced, 

8.1 Ground Equations 

Snyder [SnySS] presents an O(n  log n )  method for compiling ground equations into reduced 

sets of rewrite rules. For example, if E = { f 3 ( a )  = a ,  f2(cl)  = a ,  g ( c )  = f ( a ) ,  g ( l z (a ) )  = 

g ( c ) , c  = h ( a ) ,  b = r n ( f ( a ) ) )  then R = ( f ( a )  -+ a ,  g ( c )  -+ a ,  112(u) --+ b, h ( u )  -+ c )  is 

reduced equivalent to E. 

Snyder's method computes R by first computing the congruence closure of E ,  rewriting 

some terms using congruent subterms and selecting representatives for each congruence class. 

Since general equations are sort preserving, term rewriting modulo E is sound since 

it does not violate sort constraints. Similarly rewriting must preserve the set of variables 

and satisfy the zwrinble renaming property hence given a set E of general equations, ally 

ecluivalent set R of rewrite rules produced by Snyder's algorithm is also general. 

We expand the method to systems which contain variables when we regard these as frozen. 

Hence if the equations are order-sorted and general, so is the resulting reducecl set of rewrite 

rules. This justifies the use of an unsorted algorithm to interreduce sets of C-ecluations. The 

complexity of Snycler's algoritllrn is 0(nlog12)  where 11 is the size of the system of ecluatiolls 

in DAG format. The method is nondeter~llinistic in that it produces some reduced set of 

ground rewrite rules. If we denote the reduction procedure by +z we can state the ibllo~ving 

results. 

Leinlna 8.4 If E is a set of general equations and E +R R', then R' is also general. In 

particular all terms in R' are C-terms. 
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Theorem 8.5 [Soundness (Snycler)] For any set of ground equa,tions E,  if Ei =SR R', then 

AR' = * 
- E .  

Theorem 8.6 [Completeness (Snyder)] For any set E and for any reduced ground term 

rewriting system R' equivalent to E, E =+R R'. 

8.2 Non-ground Equations 

Snyder's method handles only the ground case. live are interested in extending the reduction 

procedure to systems of equations containing variables, but we regard those variables as 

frozen, i.e. as constants over an extended signature. Tlie metkod and all the res~ilts adapt 

themselves without clifficulty to this case. We restate some of the results in these terms. 

Let us recall the notion of rigid equivalence given in definition 7.3 on page 31. 

Given two sets E and E' of equations, we say that E and E' are rigid equivalent iff 
* * 

for every two terms ti and v,  ti ZE v iff u v (treating E and E' as sets of grottild 

equations). 

It is clear that if E and E' are rigid equivalent, then for every C-substitution 0, O(E) and 

B(E') are rigid equivalent. The so~~ndness result now reads as follows. 

Theoreill 8.7 If E =+R R' then viewing R' as an equation system, E and R' are rigid 

equivalent. 

Definition 8.8 A strict ordering 4 llas the subierm propert9 iff s 4 f (. . . , s ,  . . .) for every 

term f (. . . , s, . . .) (since we are considering symbols having a fixed rank, the deletion property 

is superfluous, as noted in Dersho-cvitz IDer871). A simplification ordering 4 is a strict 

ordering that is monotonic and has the subterm property. A reduction ordering 3 is a strict 

ordering that is monotonic, stable, and such that + is well founded. With a slight abusc of 

language, we will also say that the converse % of a strict ordering 4 is a sirnplification ordering 

(or a reduction ordering). It is slio\vn in Dershowitz [Der87] that there are sisnplification 

orclerings that are total on ground terms. 
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We are interestccl in obtaining a reduced system which is compatible with respect to a 

given ordering. That is, where the rules are oriented such that if 1 -+ r E R, then r 2 1. We 

develop this now. First we notice that although we do not know exactly how to produce a 

reduced system compatible with a given ordering, such a reduction does exist, 

Theorem 8.9 [Completeness witoh respect to 1 Let E be a set of C(X)-equations (i.e. the 

terms in the equations are in Tz(S)), and let 5 be a total simplificatioli ordering on I c (X) .  

Then there exists a reduced set R' of C-rewrite rules compatible with 5 such that E =+R R1. 

Proof: Gallier, Narendran, Plaisted, Raatz and Snyder [Gh'P+92] present tlie desired rigid 

equivalent set of rewrite rules R1. By theorem 8.6 E =+R R'. 

We now show Iiow to obtain total simplification orderings on terms with variables. The 

following clefinition is an extension of one appearing in [GNPSSO]. There, a total siniplifi- 

cation ordering is defined on tlle set of subterms of an equation system. We extend this by 

defining a total si~nplificatioli orcleri~ig on the whole tern1 algebra IX(X).  This orclerillg he- 

comes crucial when showing the completeness of the metliocl for finding rigicl ( S ,  E)-unifiers. 

In [GNPSSO], portions of this orderilig are guessed and then extended. Although our ap- 

proach deals with an infinite ordering, our method never has to  guess ally portion of it. We 

simply need to know its existence. 

Definition 8.10 Given a grouncl C-substitution 8 and a total simplification orderilig 4 on 

ground C-terms, the total simplification ordering 40 on T2(X) is defined as follo>vs. 

First, arbit,rarily define a total ordering on the set of variables X .  For example pick some 

enumeration of the variables, if S = {xl , .  . . , x,, . . . } define 

xt 5' xJ if i 2 j. 

Extend 5' by stating that a variable is less than any non-variable term: 

x 5' t whenever x E X and t @ X. 

Now, we define 4; recursively as follows: given C-terms u and v, u +/B v iff either 

(1) 0(u) -4 0(v), or 
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(2) 0(u) = O(v), and either 

(2a) u is a varia,ble and u 4' v, or 

I lex (2b) u = f  PI^,. . . ,21n), v = f (q,. . . , vn), and (ul , .  . . , ~ n ) ( 4 @ )  ( ~ 1 , .  . . , vn) ,  where 

(_iL)'ex is the lexicographic extension of 4;. 

Consider the reflexive transitive closure of 4; and denote it by so. 

We claim that i@ is a total ordering on Tx(X) that is monotonic and has the subterm 

property. The only problem is in showing that so is total, as the other conditions are then 

easily verified. The proof is given in the appendix A.5. 

in view of theorem 8.9 we have tlie following corollary: 

Corollary 8.11 Let E be a set of equations and 0 a ground Z=-substitution. There exists a 

rigid reduced Rewrite System R' compatible with se such that E =+n R'. Furthermore, R' 

can be computed in non-deterministic nlog(n) time. 

9 Finding Complete Sets of Rigid (C, E)-Unifiers 

In this section we clevelop an orcler-sorted method to  find rigid (2 ,  E)-unifiers for systenis E 

of general eqt~ations. The ~netliod is intri~isically orcler-sorted in that each of its compo~ients 

is order-sorted and the celitral component of the method, namely the reduction of peaks, is 

performed in such a way that a piece of an order-sorted rigid (C, E)-unifier is created. We 

compare our approach to the one taken by Meseguer, Goguen and Smolka in [h/lGSS9] where 

an unsorted algorithm is used to come up with a complete set of unsorted E-unifiers. Then 

a complete set of order-sorted (C, E) unifiers is produced by using the sort information. We 

could take a similar approacli here by using tlie algorithm presented by Gallier, Narenclran, 

Plaisted and Snyder in [GNPSSO]. They present an NP procedure to  generate coiiiplete sets 

of unsorted Rigid E-Unifiers. NTe could first run the unsorted algorithm and then use tlie sort 

information to produce a complete family of order-sorted rigid E-unifiers. The disadvantage 

of this approach is that it does not make full use of the sort information. If 21 and v are rigid 

(C, ..!?)-unifiable then O(E) kc O(u) = 0(v). Since E is general, so are O(E), O(21) and O(v). 
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Hence LS(O(u)) = LS(B(v)). Since H is a C-substitution, LS(O(u)) 5 LS(u) and LS(O(v)) < 
LS(v). Therefore, unless u ancl v have a common subsort, they have no rigid (C, E)-unifier. 

The method described above would first run the NP  unsorted algorithm and then, upon 

discovering that the family of sort assignments is empty, return failure. 

Our method is intrinsically order-sorted. We modify the unsorted method for finding rigid 

E unifiers to a method that builds order-sorted substitutions. Since the sort illformation 

is used a t  each and every step of the order-sorted algorithm, it detects failure due to sort 

conflicts at  an earlier stage. At the heart of our method is the algorithm for finding families 

of order-sorted unifiers in triangular form described in section 4 which produces complete 

families of order-sorted unifiers in triangular form. Those C-unifiers have two properties that 

are needed for our method to work: they are idempotent and variable decreasing. 

We have also improved upon the unsorted algorithm of [GNPSSO] by providi~lg all al- 

ternative way of dealing with the problem of orienting the equations. \We sliow that it is 

possible t o  simply guess an orientation. Thus we manage to remove order assignme~zts from 

the unsorted method. This improvement also applies to the unsorted case, it substantially 

clarifies the methocl and places tlie role of the orientation of rewrite rules in its proper place. 

IVithout entering into too much detail, order assignments are guesses of finite portions of 

a simplification orclerislg on Z=(X)-terms. They provide an orientation t o  the ecluations in 

E so that by looking at them as rewrite rules one can, via overlaps, discover pieces of a 

rigid (C, E)-unifier. By using the procedure to find reduced sets of rewrite rilles ecluivalent 

to E presented in section S and by imposing a total simplification ordering on the algebra 

I c ( X )  we rnanage to clo ~ ~ i t h o l i t  guessing any portion of the ordering. We simply use the 

fact that such an ordering exists and that the reduction procedure is complete (corollary 

8.11). Our method uses the reduction procedure of section S and a single tra~lsformatio~i on 

certain systems defined next. Recall that we are assuming E to be a set of general ecluations. 

The following definition is needed. 

Definitioil 9.1 Given a set E of general equations and some equation l  = r ,  the set of 

equations obtained from E by deleting I = r and r = 1 from E is denoted by (E - { l  = r } ) i .  
Formally, we let (E - { l  = r})i = {u = u 1 u = v E E, u = v # l  = r, and t~ = v # r = l } .  

Notice that if E is general so is (E - { I  = r})i .  
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Intuitively, the method we present works on three different issues simultaneously. First one 

tries to find a peak-free proof of 6(u) 6(v) by applying some transformations to 

E: in order to obtain an equivalent system E' which is reduced in which there is a valley 

proof O(u) w B ( E l ) z  O(v). Then one tries to reduce u in the guessed system E', or 

alternatively, one tries to reduce v in E'. If a common element is obtained as a reduction 

from u and v we are done, otherwise the system E' is transformed by guessing a piece of 

the rigid (C, E)-unifier of u and v into another equivalent system E" with fewer variables. 

However, the proof 0(u) C ; B ( E l t )  0(v) might not be a valley proof, hence the process restarts. 

The reason it terminates is because in each iteration the number of variables in the systelll 

decreases. There is an N P  procedure [I<oz76, Koz771 for the base case with no variables, i.e. 

6(E) = E. 

In order to  avoid having three different types of transformations (on E ,  on u and on v) the 

method combines all these into one single apparatus by adcling special equations involvi~lg 

u and v. These allow for the recluctions of 1~ and v to be done as part of the transformations 

on the system E and they also act as markers to determine when the method has been 

successful. We extend the signature C of E to include function names for these ~narliers and 

the new equations. The markers are the function symbols eq, T and F .  The equations are 

eq(u ,  v )  = F ( u ,  v) and eq(z, s )  = T(z). The idea is that at  some point eq(u, v) and eq(s, s) 

will unify and this will result in a rigid (C, E)-unifier of u and v. We face the question of 

assigning sorts to the new symbols. 

We explained previously that if u and v have no common subsort there can be no 

rigid (C, E)-unifier for 26 and v. If we denote by LBd(S) the set of lower bounds for the 

elements of a poset S ,  the last sentence states that LBd({LS(u), LS(v))) cannot be empty. 

The first step of the order-sorted method is to determine whether LBd(jLS(u) ,  LS(v)))  is 

empty. If it is then it returns failure, otherwise a member s of LBd({LS(u), LS(v))) is 

guessed. This sort s is a guess of the solution's sort, i.e. LS(B(z6)) = LS(H(v)). Notice that 

failure can be detected due to sorts conflict at this early stage 7. Given s one defines the 

order-sorted signature SS by adding to E the following 

61ie use F(u, v)  ancl T ( z )  instead of F and T as in [GNPSSO] in order to keep tlle set of equations general. 
7 ~ l ~ i s  can be strengthened by replacing u by IP(~, s)(u) slid v by IP(v, s)(v). 
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1. a new sort EQ, 

2. a new function symbol T : s H EQ,  

3. a new function symbol F : LS(u) . LS(v) H EQ,  and 

4. a new function symbol eq : LS(t1) + LS(v) r--$ EQ.  

Given E, a set of equations over I c ( X )  , let z E Xs be a variable not occurring in E .  MTe 

consider finite sets of equations of the form 

E,,, = E u {eq(u, v) = F(u ,  v ) ,  eq(z, 2) = T(z))  

where u, v E 'Tx(X). Notice that eq(u, v) = F(u ,  v) and eq(z, z )  = T(z) are general. tcom- 

nlent because (for eq(u, v )  = F(11, TI)), 

1. LS(eq(z1, v)) = E Q  = LS(F(u ,  v)), 

2. Var(eq(u, v)) = Var(F(u,  v)), and 

3. for any varia,ble renaming p, LS(p(eq(u, v))) = EQ = LS(p(F(z1, v))). 

Similarly, eq(z, z) = T(z)  is general. Hence, if E is general, so is E,,,. Notice that the 

choice of CS is nondeterministic because s is not unicluely specified. As long as every member 

of LBd(LS(u), LS(v)) can be picked in polynolnial time, our algorithm will remain in NP. 

For C finite this is, of course, the case. 

The next leinma shows that one call use the system E,,, to find rigid (C, E)-unifier of u 

and v provided no estraneous terins are introduced in the process. 

Le~nina 9.2 A C-substitution 0 is a rigid (I=, E)-unifier of u and v iff there is some sort s 

and some Cs-~ubstit~ution 0' such t,hat 

1. 8' is over Ts(X), i.e. none of the new symbols are used in Of ,  

2. 8 = 8'JD(el)-(Z> and 

3. 0' is a rigid (CS, Eu,,)-unifier of T(z)  and F ( 2 1 ,  v). 

The proof is given in a,ppenclis A.G. 
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We are now ready to present the method. It is based upon a single transformatiosi wliich 

is similar to the one presented in [GNPSSO] but does without the order assignment and uses 

a different reduction procedure. 

Definition 9.3 l i e  define a nondeterministic transformation on systems of the form (S, E ) ,  

where S is a term system a,nd E is a set of equations as a,bove: 

where 11 = r l ,  12 = r 2  E E U E-l ,  either Z1/P is not a variable or l2 = 7-2 is degenerate, 

11/P # 12, TU(ll/Pq 12) represents a member of CSUEs(ll/P, 12), which is a Xs-substitution 

over T c ( X ) ,  in special triangular form, a~ = [ t l /xl , .  . . , tp/xp] where TU(lI/P, 12) = 

= { ( ~ l , t l ) ,  . . . , (xp,tp)), 

The tr iang~la~r form TU(ll/P, 1 2 )  is obtained by running the non-deterministic quasi-linear 

algorithm CTU described in section 4.3 which returns either a triangulax form or fails. If 

it fails, the transfor~nation fails. Notice that, due to the nature of the equations, one can 

restrict CSUcs(ll//3, 12) to a set of substitutions over TE(.X) instead of Tcs(-Y), and obtain 

a set ~vhich is complete for all Cs-unifiers over Tc(X). Therefore, a~ satisfies conditioll 1 of 

lemma 9.2. 

Also note that the rigid reduced system Et is obtained nondeterministically from El'. The 

non-determinism is introduced by tllie CTU procedtire as explained above and by the norr- 

deterministic nature of reduction ~xocedure R. The idea is that some E' will be compatible 

with the orientation imposed by 0. In essence, this is a guess of the orientation ie imposed 

by 0 on E. 

Notice that we clo not apply a unifier a in the transformation, but its associated C-substitution 

a - T .  This guarantees that the size of the system being transformed does not grow too 

much. As a matter of fact, since a* only uses terms already appearing in the system, it can 

sNote that we are recluiring that l l / P  and l2 have a nonfrzvzal C-unifier. The triangular form of C-uiiifiers 
is important for the NP-completeness of this method. 
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be implemented by moving pointers in a DAG, hence the system which results from applyirtg 

a;r is a t  worst as large as the original one. This plays a significant role in placing our method 

in NP. 

Although aT(ll[P t- r2] = r l )  looks like a critical pair of equations in E U E-l ,  it is 

not. This is because a critical pair is formed by applying the order-sorted unifier of l l /P  

and l2 to ll [P t r2] = r1, but [tl/xl,  . . . , tp/xp] is usually not a unifier of l l /P and lz. It is 

the composition [tl/xl] ; . . . ; [t,/x,] that is a unifier of I1/P and 12. In addition note that in 

general, a / T associated with the triangular form of a unifier of l l /P  and l2 does not have 

to preserve sorts, i.e. LS(r(lI /P) and LS(r(l2)  do not necessarily have t o  agree. The reason 

for using special triangular forms is to take care of this problem. 

Lemma 9.4 Let E be a system of general C-equations and S a set of pairs of the form 

< x, t > with t E '&(Xi) and LS(t)  LS(2). 

Suppose that (S, E)=+ (S', E'), then 

1. all pairs in Sf are of the form < 2, t > with n: a variable, t E Ix(X) and LS(t)  5 LS(x). 

2. E' is a set of general equations, in particular its terms are well sorted, and 

3. for any C-unifier y of S', y ( E )  and y(E') are rigid equivalent. 

See the proof in appendix A.7. 

By iterating lemma 9.4 we can prove by induction the following. 

Lemma 9.5 Suppose that (0, E) =++ (Sf,  E'), then, 

1. St consists of pairs of the form < n:, t > with x a variable, t E Ic(X) and L,S(t) < LS(x) 

(in particular S' consists of 2-terms). 

2. E' is a set of general equations, in particular of order-sorted equations, a,nd 

3. for a,ny C-unifier 9 of S', 9(E) and y(E')  are rigid equivalent. 

For the previot~s lemma to hold it is f~~ndamental  that the evolving equation syste~li re- 

mains general, because that guarantees that all terms are order-sorted hence the substitution 

being built in S is a C-s~~bstit~ntion. 
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Figure 7: The signature C. 

Given a finite coherent order-sorted signature 2, a set.E of general X-equations and two 

2-terms 11 ancl z ~ ,  the method to find rigid (C,  E)-unifier for u and v is the following. 

M e t h o d  

If Lbd(LS(u), LS(v)) is empty announce failure. Otherwise non-deterministically pick 

s f Lbd(LS(u), LS(v)). Construct the signature CS and the set ,5",,, of general Ss-equations. 

Find a reduced set Eo of general rewrite rules equivalent to E,,, by running the noncle- 

terministic procedure R, i.e. E+r,Eo. Let m the total number of variables in Eo, and 

V = Var(E)  U Vnr(u, v). For any sequence (0, Eo) ++ (Sk, Ek) consisting of at most 

m transformation steps, where k 5 rn, if the non-deterministic algorithm for CSUc.(Sk) 

(over TC(,Y)) produces a C-unifier Os,, and I; is the first integer in the sequence such that 

F(w, w) = T(zu') E EX- for some IU, wt E TZ(X) of sort s, return the C-substitution Bs, Jv .  

We shall prove that the finite set of all C-substitutions returned by our method forms a 

complete set of rigid (C, E)-unifiers IL and v. In particular, the method provides a decision 

procedure that is in NP. But first let us show how the method works via an example. 

Consider the coherent signature C of figure 7. 

In order to facilitate the notation we will denote the variables by the letter z with a 
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subscript to indicate its sort. For example 23 is a variable of sort s3. 

Let E = {g( f (27)) i f (z7), g(f (z2)) = q(z2)). Consider the question of fillding a 

rigid (C, E)-unifier of the C-terms u = q(26) and v = f (21). 

First we guess a sort below the least sorts of u and v. Let s3 be our guess. We construct 

the set of general equations E,,, over CS3 as follows: 

1) The reduction procedure does not change the set, it just orients it as the equatio~is 

are written above. \lie obtain Eo: 

2) There is an overlap between the first two rules at the root. Let a1 = [z~/zz],  then 

TU(g( f (z7)), g(f(z2))) = [< z7, z2 >] and O T , ~  = al. By applying OT,l to the system resulting 

from the overlap we obtain: 

3) We reduce the second equa.tion to obtain 
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4) There is an overlap between the fourth and the first rules. A unifier of f ( z l )  and f ( 2 2 )  

is chosen: ol = [ z1 / z5 ,  z2 /z5] .  The resulting set of equations is already reduced: 

and S2 = {< z2,25 >, < Z I ,  z5 >, < ~ 7 ~ ~ 2  >). 

5 )  TVe overlap the last two rewrite rules using the unifier a2 = [ z ~ / ~ ( z ~ ) ,  z s / z i ,  ~ g / ~ i ] .  We 

need to compute a triangular form TU(eq( z3 ,  z3) ,  eq(q(z6);  ~ ( 2 5 ) ) ) .  One such triangular form 

is given by {< z3, ~ ( 2 ; )  >, < z5,  z; >, < z6, z i  >) where z; is a new variable of sort s3. We 

obtain 

This system is already reduced, thus we have 

TVe have S3 = {< z3, q(z;) >, < Z S ,  z i  >, < z6,z; >, < z2,25 >, < z1, zs >, < 27, z2 >). 

Now, we managed to obtain all ecjuatioll of the form T( tu l )  = $'('LO, w ) ,  thus the metl~ocl 

stops. We can find a C-unifier 191 of S3, B1 = [ z 1 / z i ,  z2/z; ,  z3 /q ( z i ) ,  z5 / z$ ,  z6/z; ,  zT /z ;] .  Re- 

stricted to the variables in Eu,, we obtain: 
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And indeed: 

shoxvs that 0' is a rigid (El E)-unifier of u and v. 

If instead of choosing s = ss at the very first step, when constructing E,,,, had we chose~l 

s = SF;, we would have obtained a different rigid (C, E)-unifier, for example: 

There is also choice in the selection of al and 02, all of which lead to different rigid unifiers. 

We now show the soundness of the method. 

Theorem 9.6 [Soundness] Let Eo be a reduced form of E,,,,, i.e. E,,,=+REo; So = 8; ~n the 

total number of variables in Eo; ancl I/ = Var(E)  U Tfar(u, v). If 

if Os, is a Cs-unifier in CSUES(Sk) over '&(X) ,  F(w,  w) = T(zu') E Elk, for 20.20' E Tz(X) of 

sort s and F(t,t ')  = T(tt') $ E; for all i ,  0 5 i < k < rn, then Osklv is a rigid E-unifier of ZL 

and v. 

Proof: We shall prove the follotving claim by induction on k .  

Claim. Given any set of the form E,?, = E U {eq(.ts, v) = F(u ,  v), eq(z, z )  = T(z)) ,  with E 

a set of general C(X)-equations and u, v E Tc(X), for any pair (So, Eo) where So is any set 

of pairs of the form < z , t  > with t E Tc(X) and LS(t)  2 L,S(z), ancl Eo is rigid reclucecl 

and rigid equivalent to E,,,, if 

(So, Eo) *+ ( S k ,  E k )  , 

if O s k  is a Cs-unifier in CSUcS ( S k )  over Tc(X), F ( t u ,  w) =I: T(zu f )  E Ek for some t E TE(X), 

and F ( t ,  t') = T(1") $ E; for any Cs-terms t ,  t', t", for all i ,  0 < i < F rn, then Osk is a 

rigid (Cs, E,,,)-unifier of T (z )  and F ( u ,  v), where Bsk E CSfis(Sk) and OSk is over Tz(X). 

Proof of cln im . 
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I11 the base case, .we rnust have k = 1 because F(w,  w) = T(tuf) @ Eo U Ecl. 111 orcler 

that F(w,  w) = T(wt) be in El ,  the transformation step rnust be 

where Ei = o((Eo - {eq(z, z) = T(z)))  U {F(zL, V )  = T(z)}), E ~ = + R E ~ ,  

TU(eq(z, z), eq(u, 27)) is a triangular form of a Cs-unifier of eq(z, z) and eq(u, 21) (over Ic(X)) ,  

a is the Cs-substitution (over Tc(X)), associated with TU(eq(z, z), eq(u, v)) and 0' = Os, is 

in CSUcs(S1) over TE(X). 

By lemma 4.12 a; 8' = Of,  hence B1(F(u, v)) = O1(T(z)) E: Q1(E1). Since by lemma 9.4, 
* 

O1(Eo) and O1(El) are rigid equivalent, Ot(F(u, v)) ZBt(Eo) O1(T(z)). This shows that 8' is a 

rigid (Cs, Eo)-unifier of F ( u ,  v) and T(z). The soundness of the reduction procedure R (see 

theorem 8.7) implies that 8' is a rigid (Cs, E,,,)-unifier of F(u ,  v) and T(z). 

For the induction step, a.ssume that 

(So, Eo) * (SI, El) *+ (Sk, E k ) ,  

where S1 = So U TU(11//3, 12), E ; = s ~ E ~  with 

if 8' = Os, is a Cs-unifier in CSUp(Sk)  over TE(X), F(w,  w) = T(wl) E Ek, F ( t ,  t') 2 

T( tU)  $ E; for all i ,  0 < i < k 5 rn, TU(ll/P, 1 2 )  represents a Cs-unifier over Tz(X) of I1/P 
and 12 in triangular form, a = [ t l /a l , .  . . ,tP/x,] where TU(ll/P, 12) = {(x l , t l ) ,  . . . , (x,, t,)}. 

Thus the induction hypothesis applies to (S1, El), and the Ss-unifier 8' of Sk (over I c ( X ) )  

is a rigid (CS, El)-unifier of T(s) and F(zi, v) (over I c ( S ) ) .  Since S1 2 Sk and 0' unific-s 

Sk ,  by lemma 9.5, O1(Eo) and Hf(E1) are rigid equivalent. Hence 0' is a rigid (CS, Eo)-unifier 

of T(z) and F ( u ,  v) (over TC(X)). This concludes the induction step and the proof of the 

claim. 

Applying the claim to So = 0 and an Eo such tliat E , , , = J ~ E ~ ,  we have that 8' is a 

rigid (Cs, E,,,)-unifier of T(z )  ancl F ( u ,  v) over IE(X),  wliere 8' = Qs, is in CSUce(Sk) and 

is over Tc(X), and by lemma 9.2, Bs,IV is a rigid (C, E)-unifier of u a,nd v. 0 
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The main technique in the proof of the completeliess part is the removal of peaks by 

the use of critical pairs (Bachmair [BacSS], Bachmair, Dershowitz, and Plaisted (BDPS7], 

Bachmair, Dershowitz, and I-Isiang [BDHSB]). 

Theorem 9.7 [Completeness] Let E be a set of general C-equations over T3(S)  and u, v two 

terms in T c ( X ) .  Let 8 be a rigid (Y,  E)-unifier of u and v and let s = LS(O(zi)) = LS(@(v)). 

Consider the order-sorted signature CS and the set of general axiom E,,, as described above. 

Then, there is a reduced set Eo of general axioms rigid equivalent to E,,, and letting So = 0, 

m the number of variables in Eo, and V = Var(E)  U Var(u, v) ,  there is a sequence of 

transformations 

(So, Eo) *+ (Sk, El,), 

and there exists Qs, E CSU(Sk) over T z ( X ) ,  where k < m, F(tu, to) = T(wl )  E Eli, F ( t ,  t') = 

T(tfl) 4 Et for all i ,  0 < i  < I;. Furthermore, Osk I v  is a rigid ( 2 ,  E)-unifier of u and v. 

Proof: First, since it is clear that the method is pure, thus i t  can be assumed that 8 

is a ground substitution and that V C D(0). By lemma 9.2, 0 call be extended to a 

Cs-substitution 0' over Tc(X) such that 0 = O'lD(Bt)-Iz) and 0' is a rigid (CS, E,,,)-rtnifiel. of 

T(z) and F ( u ,  v) over 73(X). By lemma 7.6, there is a minimal element O1 E S E , , , , ~ , ~ , ~ ~  that 

is a ground Cs-substitution satisfying 

2. O1 is a rigid (Cs, E,,,)-unifier of T ( z )  and F ( u ,  v), 

3. 0% is reduced w.r.t. O1(E,,,), 

4. since D(0) = D(O1) and 17 5 D(O), we also have V C: D(O1) and 

5. since O is over Tc(X), so is 0%. 

Let 581 be the total simplification ordering on Tc(X) induced by O1 and 5 as in definition 

8.10. By theorem 8.9 there exists Eo reduced with respect to -ie, such tliat E,,, =+r, Eo. 

Since Eo and E,,, are rigid equivalent, by lemma 7.8 0% must he reduced w.r.t. O1(&). \tie 

shall prove the following claim. 

Claim. Given a ground Cs-substitution 0% such tliat Tf 5 D(O1), letting Jl;b be a set of general 
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axioms such that E,,, =+R Eo and E;b is reduced with respect to 5@,, if O1 is reduced with 

respect to  O1(Eo), is a Cs-unifier over Tz(X) of So and is a rigid (CS, Eo)-unifier of T(z)  and 

F (u ,  v ) ,  then there is a sequence of transformations 

where k < m, Sk is unifiable, F ( t , t l )  = T(tl') E Ek, F( t , t l )  = T(tl') f Ei for all i ,  0 < i < k, 

and 01 unifies SE, (over Ix (X)). 

Proof of claim. Let 

be a proof that O1 (T(z)) OL(F(u, 21)). We proceed by induction on the pair (m,  {uo, . . . , u,)), 

where m is the number of variables in Eo and {uo, . . . , u,} is the multiset of terms occuri~ing 

in the proof. We use the well-fonnded ordering on pairs where the ordering on the first corn- 

ponent is the ordering on the natural numbers, and the ordering on the second component is 

the multiset ordering 4, extending 4. First, observe that since T 4 F 4 r 4 eq(s, t )  for all 

r ,  s, t E Ic, the above proof must have some peak because oriented instances of tlie equations 

eq(u, v) = F ( u ,  v) and eq(z, z)  = T(z)  are of the form eq(s, t )  t F(s ,  t )  and eq(s, s)  --+ T(s). 

Thus, in the base case, we have rn = 1, 72 = 2, and ul = Ol(eq(u, v)) = Bl(eq(z, 2)). Hence, 

6'1 is a unifier of eq(z, z )  and eq(u,v). Let a be an idempotent and variable decreasing 

Cs-unifier over Is(X) such that a 5 O1 (guaranteed to exist by conipleteness of the CiSU 

procedure), and let TCI(eq(z, z), eq(u, v ) )  be a triangular form of a .  By lemma 4.16, since 01 

unifies eq(z, z) and eq(u, v), it unifies TU(eq(z, z) ,  eq(u, v)). Let El = or((& - {eq(z, z) = 

T(z)))  U {F(u,  21) = T ( z ) ) )  where a~ is associated with TU(eq(z, z), eq(u, v)). We have 

(So, Eo) =$ (S1, El), 

with S1 = So U TU(eq(z, z), eq(.n, v)) and E: +R El .  

Since O1 unifies So and TlJ(eq(z, s), eq(u, v)),  it unifies S1 and the claim holds. 

For tlie induction step, consider a peak u,-1 t-----~,(g,) ut +el (EO E;o) 'LL,+~.  Note that 

U ,  t- z i t - l  and u, t- Assume that 
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and 

ui T-)p2,01 (l2=T2) ui+l, 

where 11 = r l ,  l2 = 7-2 f Eo U Eil and P1 a,nd P2 are addresses in u;. By lemma 7.9, we have 

that u j  = Ol(u$) for j = i - 1, i, i + 1 and PI, f Dom(u:). We need to  examine overlaps 

carefully. There are two cases. 

Case 1. and P2 are independent. Then, letting v = u;[P1 t- Ol (rl),  p2 c- Ol (r2)], we have 

ui-1 'BI(EO) V -B~(EO)  ui+l a.nd ui 5 v. We obtain a proof with associated sequence 

(uO,. . . ,24-1, v,  ui+l, . . . , un). Since u; 5 v, 

and we conclude by a~pplying the induction hypothesis. 

Case 2. is an ancestor of p2 (the case where P2 is an ancestor of pl is similar), and 

letting P2 = PIP, we see that 

Hence 01(11)-+[P,01(12=T2)1 G1(ll)[P t-- 01(r2)]. Since O1 is reduced with respect to So we have 

again by lemma 7.9 that P f Dom(ll) hence by (1) O1(ll/P) = @(I2). Therefore, El//? and 

12 are unifiable. Since I I  4 rl and 12 t rz are in Eo with tohat orientation because & is 

reduced with respect to 5@, , it must be tlie case that ll/P .f 12. Not only is it iniportant 

that Eo is interreduced, but that tlie orientation of the rules is as in 0(E,,,). 

Let a 5 be at1 idempotent a i d  variable decreasing Cs-unifier (over I= (X)) in CSUcB (11 I@, l z ) ,  

let TU(11//3, 12) be a triangular form of a and let a~ be the associated Cs-substitution. Notice 

that a~ is over Ic(X).  Thus we have 

Since O1 is ground, it is idempotent, and since it unifies l l /P  and 12, by lelnnia 4.16, B1 unifies 

TU(ll/P, 12) as well. Hence O1 unifies S1. Siiice O1(Eo) and &(El)  are rigid equivalent, 01 

is also a rigid (CS, El)-unifier of T ( z )  and F ( u ,  v). Since B1 is is lniiiimal in SE,,,,~,~,ot, 

Center for Digital Econotny Research 
Stern School of Business 
Working Paper IS-91-40 



Order Sorted Rigid E- Uilification 52 

O1(E,,,), 01 (Eo), and 01 (El) are rigid equivalent, and O1 LEU,, O', as argued previously, O1 is 

also reduced w.r.t. O1(F1). Also note that since a is variable decreasing, so is a ~ ,  lielice at  

least one variable in the set {xl , .  . . , x,} does not occur in I(aT)-  Thus, tliis variable cloes 

not occur in El, and m' < m where m' is the number of variables in E l .  Therefore. we can 

apply the induction hypothesis to 01, S1 and El ,  and obtain a sequence 

where I; < m', Sk is unifiable, F (w ,  to) = T(wl) E Ek,  F ( t ,  t') = T ( t N )  $! E; for all i ,  

0 < i < I;, and 01 is a CS-unifier of Sk over '&(XI). This concludes the incluctioli step and 

the proof of the claim. 

Let us apply tliis claim to prove the theorem. Let So = 0 and Eo be a rigid reduced set 

\vith respect to SQ1 such that E,,, =+n Eo. 13y the claim, there is a sequence of at most 

112 transformations as stated in the theorem, and O1 is a Cs-unifier of Sk over TE(X). Since 

the set CSUx;.(Sk) restricted to sulxititutions over Tx(X) is a complete set of 3"-unifier over 

Is (X), there exists some Os, E C S b S  (Sk) such that Bs, < O1 [V]. We know that 01 CIE,,v O', 

so we have Os, LEU,, Ot[V]. Therefore, Bs, l v  I E  O[V]. Finally, by theorem 9.6, we see that 

OskIv is a rigid (C, E)-unifier of u and v. 0 

Theorem 9.7 also slio~vs tliat orcler-sorted rigid-unification is decidable for general axioms. 

Corollary 9.8 For S a finite coherent order-sorted signature, E a set of general axioms, 

Rigid (C, E)-unification is deciclable. 

Proof: By tlieorern 9.7, a (grouncl) rigid (C, E)-unifier 0 of and v esists iff there is some 

sort s E C, a set E,,, of general over CS obtained as described above, a rigid reduced form 

Eo of E ,  i.e. E *r, Eo and some sequence of transformations 

of at  most E 111 steps where 171 is the number of variables in Eo, ancl such tliat Sk is CS 

unifiable (over Ts(X)), F(to, to) = T(w') E Ek for some w E 'Tx(X'), aiid F ( t ,  t') = T(tl1) $ 

Ei for all i ,  0 < i < k ,  all t ,  t', t" E Tx(X). Clearly, all these conditio~is are finitary and can 

be tested. Thus, order-sorted rigid E-unification is deciclable. 0 
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Figure S: f (c) = g(c) 

Combining the results of theorem 9.6 and 9.7 we a.lso obtain the fact that for any set E of 

general axioms, any S-terms t i ,  LJ, there is always a finite complete set of rigid ( 2 ,  E)-unifiers. 

Theore in  9.9 Let E be a set of general equations over T2(,Y), 21, v two terms in T2(X), 

m the number of variables in E U {.n,v), and V = Var(E)  U Var(u, v). There is a finite 

complete set of rigid (C, E)-unifiers for u and v given by the set 

{OS, / V  I Osh f C s u x ~ ( S k )  is over T2(X), and (0, Eo) =++ (Sk, Ek), I; < m ) ,  

with E,,, =+r, Eo, ancl where Sk is unifiable, F ( t u ,  W) = T(zul) E Ek, F ( t ,  ti) = T(ti') @ Ei 

for all i, 0 < i < E .  

Let us now iIIustrate via two examples how the method takes advantage of sort information. 

Example 9.10 Consider the problem presented at the end of section 4.2. Tile signature is 

shown in figure 9.10. Consider the equation system E = (f (c) = g(c)}, and let us try to  

find a rigid (C,E)-unifier for u = f (z l )  and v = g(zl). In this case LS(u) = LS(v) = s 2 .  

Let us pick s E LBcl({s2)). The choices are sl and s 2 .  Clearly, no solution can have sort sl 

because for any C-substitution 0, LS(O(u)) = s 2 .  Let us therefore pick s = s z .  We construct 

the system E,,, as follows: 
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By interreducing we obtain the system Eo: 

There is no overlap possible between the last two equations because f ( z l )  and g(xl)  are not 

unifiable. An overlap between the first and the last equations leads to a dead end. Therefore, 

the only possibility involves overlapping the first and second equations. This entails finding 

TU( f (xl),  f (c)). However, \c/zl] which is not well sorted! Therefore the algorithm returns 

failure. Hence 21 = f (z l )  and v = g(xl) are not rigid (C, E)-unifiable. 

This is indeed correct. Notice that an unsorted algorithm would return the substitution 

[c/xl] as a solution. A further attempt to obtain a C-substitution from it  would fail. Thus, 

the order-sorted is more efficient because it detects failure at an earlier stage. 

Example 9.11 AC (Adapted from [MGSSS].) 

Let tlie set of sorts be S = (El t ,  ~1lult)witli E l t  5 Mult,  ancl let C consist of a binary oper- 

ator . : Mt~EtAlzllt +-+ A!lztlt with the syntax of juxtaposition. The equations are associativity 

and commutativity: 

Consider the terms u = x . s and 1.7 = y . t ,  with x, s, y and t variables of sort Elt .  

The system has the following covering of unsorted E-unifiers: 
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However only the first two are well sorted. Also, the first two are rigid ulisorted E-unifiers. 

The third one is not, I~ecause its proof requires two instances of associativity. However, by 

expanding the systern E to a system El which includes an additional instance of associativity, 

the third substitution represents an unsorted rigid El-unifier. 

Let us see how our method computes the first rigid (C, E)-unifier. The systern of equations 

EUqv is: 

After reducing, we obtain Eb: 

There is an overlap between the first and third rewrite rrtles, with a~ = T U ( x  . s ,  zl - z2 )  = 

[zl/x, s/z2]. After rewriting and applying aT we obtain Ei: 
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After reducing we obta,in El: 

Next, the last two rules are overlapped. One can then obtain TU(eq (s . zl, y Vt), eq(z, z)) = [s . 

zl/z, s ly ,  t/zl]. The system E2 is obtained by applying the transformation and interreducing: 

Thus the method terminates ancl produces the rigid (C, Ej-unifier [ t lx ,  s ly ,  t/zl,  s/zz]. 

It is interesting to  see how the sort information can be used to discard a substitution at an 

early stage. For example, the suhstitutioll [(y . q)/s, (x - q )It] is not well sorted because s 

and t are of sort El t  while the co-arity of a term containing has to be kfz~lt .  Let us see 

how this is witnessed by our methocl. First, the system E,,, now contains an extra instance 

of the associativity equation: 

zl - z2 = Z2 ' 21 

201 - (w2 . 203) = (POI w2) . w3 

I I 
211; . (w2 . w,) = ( 2 u ;  . w;) . w; 

eq(x - s, y t )  = F ( x  s, y . t )  

eq(z, z )  = T(z)  

On attempting to overlap the second and fourth rule (as a matter of fact ally of the two 

associativity rules with the fourth one), we have to  compute TU(x .  s, zl . (z2 . z3)) .  There is 

no such C-unifier since s and (z2 . 23) clo not unify (by virtue of s being a variable of type 

Elt.) As a matter of fact, due to this reason, none of the other E-unifiers is well sorted. 
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Again, out method stops before computing an ill-typed unsorted unifier. This explains the 

sense in which the order-sorted method is more eficient than the unsorted one. 

10 NP-Completeness of Rigid (C, E)-unification 

First, recall that rigid E-unifica.tion is NP-hard. This holds even for sets of ground unsorted 

equations, as shown by I<ozen [I<oz76, I<oz77]. 

Tlleorem 10.1 Rigid (C, E)-unification is NP-complete. 

Proof: By corollary 9.8, the pl-ohlem is decidable. It remains to show that it is in NP. From 

corollary 9.8, u ancl v have some rigid E-unifier iff there is some sequence of transformations 

(So, la) =+' (Sk, l k )  of at most I; 5 m steps where m is the number of variables in Eo, and 

a there is a C-unifier Qs, of Sk such that F(zo, W )  = T(wt) E Ek and F ( t ,  tl) = T(t1I) 6 £, for 

all i, 0 5 i < k .  We neecl to verify that it is possible to check these conditions in polynomial 

time. 

We first show that each =+ step takes time polynomial on its input. Let n, = size(< 

S,, E, >) = IS,I + I£,/ where IS,/ is the size of the DAG representing all terins in S, and 

I£,I is defined similarly. The first part of =+ consists of picliing the equations 11 = rl and 

l2 = 1-2; choosing an address /3 in lI; checking that eitlier I1/P is not a variable or l 2  = 1-2 

is degenerate; and finally making sure that ll/P # 12.  These steps can all be done in time 

linear on n,. Next, TU(ll/P, 1 2 )  is obtained by running the CTU algorithm which is quasi- 

linear on its input. The next two steps involve a) adding TU(lI//3, 1 2 )  to S, ~rliich takes 

at most time O(n,) and then finding a reduced set via the recluction procedure =+R which 

runs in time O(IE,llog(/E,I) < O(n,log(~z,)). Thus it takes at  most time O(lz,log(~z,)) to 

do the transformatioli (St,  E,) =+ (Sttl, EZS1). After applying tlie transformation we run the 

non-deterministic unification algorith~n to compute elements of CSU(S,). This procedure 

runs in quasi-linear time. Providccl we obtain Bs, E CSU(S,),  we still have to  check wlietl~er 

F(w, zo) = T(zul) E E,. This is linear 011 the size of E,. Therefore, tlie transformation 

together with the guessing of a C-unifier for S, and checliing for the halting condition still 

takes 0(72,log(?2,)) time. 
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Since the transformations are applied in sequence, in orcler to gtlaraiitee polynomial time 

for k transformation steps, we shollld make sure that the size of the system does not grow too 

much. Since TU(EI/P, 1 2 )  is constructed using elements of It exclusively, its size is at most 

)£; I ,  and since is obtained by adding TU(Z1/P, 1 2 )  t o  S,, it follows that IS,\ < IS,I + \ £ , I .  
Since So = 0, we see that IS,] < i x lIol = i x no. The equational part of the system, 

I, is obtained in three steps. First rewriting an equation, which does not increase the size 

of I since it involves changing pointers in a DAG. Then, a~ is applied, .vvhich again can 

be  implemented by rearranging pointers. Finally the =+-n is applied which as explained in 

section 8 does not increase the size of I,. Thus for O < i ,  11, I = lIol and 12, < ( i  + 1) x no. 

Therefore, the total time for k transformation steps is bounded by 

n x log(7zt)) < 2=0 2 O(C"'" 

~ ( C : = t ( i  x no) x log(i x no))  = 

O(no x ~ : z t i  x Zog(i) + ?ao x log(nO) x ~ i ~ t i )  L: 

O(no x k4 + no x 2q(no)  x k2) = 0 ( 7 z 0  x k4). 

Since k < no we have that the total time for k transformations along wit11 the chec1;s for 

the halting conclitio~~ is at most O(lz;), hence polynomial on the size of E. Tlius we have an 

NP-algorit hm. 

E7 

11 Conclusion and Further Research 

The contribution of this paper is the presentation of an Order-Sorted method for Rigid 

(C, E)-unification. We show that the problem is decidable, furthermore that it is in NP. 

The method is intrinsically orcler-sorted and uses the triangular forms produced by a non- 

deterministic order-sorted unification algorithm presented in [IsaS9]. The fact that orcler-sor- 

ted rigid unification remains in NP is quite impressive given the intricacy of the procedures 

involved. Not only do we present an order-sortecl method, but we propose irnprovernents 

to the original unsorted algorithm [GNPSSO] which substantially simplify it. A significant 

improvement of our method over the unsorted rigid E-unification one is that we clo riot use 

orcler assignments to guess the right orientation of the rewrite rules. We have managed to 
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include the guessing into the reduction procedure. 

I t  is important to  note that the order-sorted method is more eficient than the ulisorted 

one because i t  is able to  weed out unfit substitutions as these are built, as oposed to doing 

this after the fact, when the substitution has already been generated. 

The method presented only works for general axioms. In the future, we plan to extend 

our results to  larger classes of axioms. Let us point out that the main difficulty lies in tlie use 

of congruence closure to build up C-unifiers. If tlie equations are not general, ill-typed terms 

might be formed thereby infecting the method. An alternative is to refine the reduction 

procedure of section 8, so as to keep the systems order-sorted. 

The authors would like to tlianli Joseph Goguen, Josk Meseguer, \[a1 Brezau-Tannen, Carl 

Gunter and Wayne Snyder for their valuable comments. 
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A Appendix of Proofs 

A. l  Proof of lemma 4.12 

Since 0 is a C-unifier of T ,  we have O(xi) = O(ti) = 0 ( a T ( x i ) )  for every i ,  1 L: i < k .  Since 

o T ( y )  = y  for all y 4 { x l , .  . . , x k ) ,  0 = CTT ; 0 holds. 

A.2 Proof of l e ~ n ~ n a  4.13 

By the definition of triangula,r forms we have tha,t a = [ x l / t l ] ;  . . . ; [xn / tn] .  The proof relies 

upon the following claim: 

For 1 < i 5 n, 

Suppose the claim llas been proven then 

( n )  (i-1) (,+I-i) CT ( x ; )  = aT (aT ( x i ) )  = a$- l ) (a(x i ) )*  

Since a is idernpotent, t,he variables x l ,  . . . , xn do not appear in a ( x ; ) ,  therefore 
( i -1)  

aT(a(x ; ) )=a(x i ) ,  hence aT ( a ( x i ) )  = a ( x ; ) .  Therefore from 3 we obtain for 1 5 i 5 n: 

aI."'(x;) = .(xi). (4) 

Since 11, .  . . , x ,  are all the variables in D ( a )  and D ( a T ) ,  we have op) = a as wanted. 

The proof of the claim proceeds by descending induction. First, it is clear that uT(x,) = 

t ,  = a(x,).  Suppose the claim is true for i + 1 then 

By the definition of a triangular form, the only variables in ti tlmt can be affected by aT are 

x;+1,. . . , xn. By the inductive hypothesis, we have that for i + 1 < k 2 n, 
(n+l-(i+l)) 

UT ( x k )  = u ( x k ) .  Therefore 

(ni-1-(ii-1)) 
*T ( t i )  = a( t i ) .  

This completes the proof of the claim and of the lemma. 
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A.3 Proof of leillilla 4.16 

By lemma 4.13, cr = OF).  Since cr is idernpotent, none of the variables in the domasin CTT 

(n)  appear in c r ~  (z;). Therefore uF) (x i )  = o$+')(zi). Thus, 

A.4 Proof of lemma 7.9 

By hypothesis O ( t ) / P  = O ( I ) ,  and t" = O(t)[P c O(r)]. 

Suppose that P is an address not in Dom(t),  since P E Don-r(O(t)), it has to be below the 

address PI of a variable x in t .  That is, P = PIP' with t/P1 = z.  We tlierefore have 

This means that O(x)-+pl,O(l=T) O ( T ) ~ '  t O(r)j which contradicts the assumption that 0 is 

reduced with respect to < O(E), 5>. Therefore it must be the case that /3 E Dom(t). This 

proves part 1. As a consequence we have that O(t)/P = O(t/P) hence 

That t' E Tc follo~vs from the fact tha~t E is general, hence LS(1) = L S ( r ) ,  thus L S ( t )  = 

LS(t1). This proves part 2. 

A.5 Proof that d o  is a total ordering 

We claim that S o  1s a total ordering on Tc(S)  tliat is monotonic and has the subterrn 

property. The oillly problem is in shelving tliat d o  is total, as tlie other condit,ions are then 

easily verified. Tl-te proof is similar to one given in [GNPSSO]. 

Notice that 0 defines an equivalence relation ~0 on T c ( X )  as follows: 

u ~0 v if and only if O(u) = O(v). 

Due to clause (1) of the definition of +/B, it is enough to show that for any two distinct 

elements u, v in some nontrivial class C modulo ~ 0 ,  either u d o  v or v u ,  but not 

both. Note that the set of classes modulo ~0 is totally ordered: C << C' iif O(C) 4 B(Cr), 
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where O(C) denotes the common value of all terms O(t) where t E C. We proceed by 

induction on this well-ordering of the classes. Consider the least class C. It cannot contain a 

composite term t = f ( ~ 1 , .  . . , 21,)  because by the subterm property of 4, O(z1,) 4 O(t) lience 

[u;] < [t] = C contradicts the minilnality of C. Therefore C contains some variable and at  

most one constant. But then, it is already totally ordered by 4'. Given any other nolitrivial 

class C, if u and v are both variables, we already know by (2a) that either u 4' v or v 4' u, 

but not both. If u is a variable and v is not, by (2a) we can only have u 4' v. If both u and 

v are not variables, then they must be of the form 21 = f (ul , .  . . , u,) and v = f (vl , .  . . , v,), 
since C is unified by 0. Since 21 # v, there is a least i such that u, f v,, and since 0 unifies 

u and v,  0 unifies u, and v,. But then, because -: has the subterm property, u,, v, belong to 

some class C, such that C, << C. Therefore, either 21, SQ v, or v, Se u,, but not both, and 

thus by (2b), either u 5 2  v or v u, but not botli. 

Denote by 4 0  the irreflexive portion of 5, i.e. ~ Q = S ~  \{(t,t)lt E 'TE(X)). Clearly, 40 is 

a simplification ordering on Tc(_Y). We will be somewhat ambiguous in not differentiating 

between 40 and S e ,  and we will say that 4 0  is a total simplification ordering on TX(X). 

(The nuance is that a simplification ordering is strict, lience irreflexive, llelice it caiillot be 

total.) 

A.6 Proof of leinma 9.2 

If a C-substitution 0 is a rigid E-unifier of u and v then O(u) &s(g) O(v), let s = LS(O(u))', 

construct CS and E,,,, as describecl above, with z : s. Extencl 0' such that O1(z) = O(71). Since 

LS(O1(z)) = LS(O(u)) = s = L S ( z ) ,  0' is order-sorted. Since O(eq(u, u)) eq(O(u), @(ti)), 

clearly 

'Since E is general LS(B(v)) = s as well. 
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Conversely, if there is some Cs-substitution 0' over Ic(X) such that 

B1(T(z)) I ,  Oi(F(u, v)), because eq, T, F are not in C, from the way congruence closure 
* 

works, it must be the case that Bt(eq(z,z)) Ee,(Eu,vl O'(eq(z~,v)). Letting 0 = 0'jn(sl)-(4, 

since the terms in the range of 0' are in Ic(X) and eq, T, F are not in C, we must also 

have Bt(z) &I(E) 0(u) and O'(z) 0(v). Thus 0(u) 0(v), showing that 0 is a 

rigid (C, E)-unifier of 21 and v. 

A.7 Proof of lemma 9.4 

Let lI = rl and l2 = r:! be the equations in E involved in the transformation, ,L? the address 

in Dorn(ll) such that Z1/P and Z2 are C-unifiable via a C-unifier a .  Let TU(Z1/P, 12) be the 

triangular fo r~n  usecl in the transformation with associated C-substitution O r .  

Point 1. This follows from the fact that TU(ll//3, 12) and '5' are of the desirecl form; and 

S' = S U TU(lI/P, 12). 

Point 2. R,ecall that E' is obtained as follows: 

E" = aT((E - {ll = U {I1[@ t 7-21 = rI)), and 

t By lemma 3.3, ar((E - {11 = r l ) )  is general. To show that aT(ll[/3 t- r2] = rl) is 

a general equation we first realize that,  by the way a~ was chosen (a special triangu- 

lar form), aT(ll[P t- 1-21 is a C-term. Indeed, LS(aT(lI/P)) = L S ( a ~ ( l z ) ) ,  and since 

l2 = 7-2 is general, LS(aT(E2)) = LS(aT(r2)) .  Therefore the result of replacing a~(12)  

by aT(r2)  does not violate sort constraints hence aT(ll[P t- r2]) is a C-termlo. Clearly 

Ifar(aT(ll[P t- 7-21)) = Ifa7-(aT(7-1)). Similarly, LS(p(aT(I1[/3 t- 7-21))) = LS(P(OT(I'~))) for 

any variable renaming. Hence aT(11[/3 t- 7-21 = r l )  is a general equation. Therefore, E" is 

general. Since the reduction procedure preserves general axioms (see lemina S.3), E' is also 

general. 

10Actually tile reason why we push tlle terms aT( l l /P)  and uT(lz)  to  he of the same sort is preciselly to 
guarrantee that the term resulting from rewriting one by the other be well typed. 
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3) We only use the fact that y unifies TU(ll /P,  12), which is true because TU(ll//?, 12) C Sf. 

First, notice that since y unifies TU(I1/P, 12) and o ~  is the E-substitution associated with 

TU(ll/,8, 12), by lemma 4.12, o ~ ;  y = y, hence 

?Ve now show that y ( E )  and y(E") are rigid equivalent. By the above, it is enough to show 

that 

(a) y(El = r l )  can be deduced from p(I1[P t- r2] = r l )  and y(12 = r2);  and vice versa, that 

(b) y(El[/3 t- r2] = r l )  can be deduced from ~ ( 1 1  = r l )  and 412 = 7-2). 

By lemma 4.15, since v unifies TU(ll/P, 12), it unifies l l /P and 12. To show (a), notice that 

To see that (b) holcls, notice tha,t 

By the soundness of the reduction procedure (theorem 8.7) Elf and Ef are also rigid equiv- 

den t ,  hence for any C-substitution y ,  y(Eil) and y(E1) a,re rigid equivalent. Since we just 

showed that y ( E )  a,nd v(E1f) are rigid equivalent, we have tha,t y ( E )  a.nd y(Ef) are rigid 

equivalent. 
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