
DESIGNING OBJECT-ORIENTED
REPRESENTATIONS FOR REASONING

FROM FIRST-PRINCIPLES

Michel Benaroch
Information Systems Department

Leonard N. Stern School of Business
New York University
40 West 4th Street

New York, New York 10003

July 1991

Center for Research on Information Systems
Information Systems Department

Leonard N. Stern School of Business
New York University

Working Paper Series

STERN IS-91-19

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91- 19

Abstract

Modeling expert knowledge using "situation-action" rules is not always feasible in knowl-
edge intensive domains involving volatile knowledge (e.g., trading). The explosive search
space involved in such domains and its dynamic nature make it extremely difficult to setup
a rule base and keep it accurate. An alternative approach suggests that in some domains
many of the rules expert use can be derived by reasoning from "first-principles". That ap-
proach entails modeling experts' deep knowledge, and emulating reasoning processes with
deep knowledge that allow experts to derive many of the rules they use and justify them.
This paper discusses the design and implementation of an object-oriented representation
for the deep knowledge traders utilize in a business domain called hedging, which is knowl-
edge intensive and involves volatile knowledge. It illustrates how deep knowledge modeled
using that representation is used to support reasoning from first-principles. The paper also
analyzes features of that representation that we have found to be extremely beneficial in
the development of a knowledge-based system called INTELLIGENT-HEDGER. Based on
our experience we feel that, with minor modifications, this representation can be used in
other managerial domains involving financial reasoning.

Center for Digital Economy Research
Stern School of Business
W o r h g Paper IS-91- 19

Contents

1 Introduction 1

2 Hedge Design Complexities 2

. 2.1 Configuring by the Payoff-Profile Constraint 2

. 2.2 Problem Definition 3

3 An Object-Centered Representation 4
. 3.1 An Object-Oriented Semantic Network 5

. 3.2 Network Implementation 6
. 3.3 Reasoning with the Network 7

4 Constructing Generic Hedge Vehicles 7
. 4.1 Qualitative Simulation 8

. 4.2 Producing Payoff-Profiles 9

5 Constructing Compounded Hedge Vehicles 10

. 5.1 Qualitative Synthesis 10
. 5.1.1 Operator STRETCH 11

. 5.1.2 The STEEPEN Operator 11

. 5.2 Producing Compounded Payoff-Profiles 12

6 Discussion 14

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91- 19

1 Introduction

Financial hedging is concerned with the design of hedge vehicles that protect against losses
due to uncontrollable events. A hedge vehicle involves the purchase andlor sale of financial
securities such as bonds, stocks, and options. It allows a trader to control the balance
between risk and rewad. This balance is a function of a trader's prediction of economic
variables' future behavior and its effect on the market value of securities.

Hedge design can be conceptually formulated as a multi-objective optimization problem
that can be shown to be NP-complete. This problem involves several complexities. The two
major ones are the need for a number of constraints that can be only specified qualitatively,
and more importantly the explosive search space whose elements (i.e., hedge vehicles) are
constantly changing due to the increasing globalization and dynamics of today's capital
markets. These complexities make the problem extremely difficult to formulate and solve
using quantitative techniques.

Benaroch and Dhar (1991b) suggest that hedge design could be solved using a knowledge-
based approach, These authors argue that a knowledg-based approach that uses situation-
action rules to model the knowledge of hedging traders is not likely to work exactly because
of the two above complexities (Benaroch & Dhar, 1991a). They also propose that in order
for a knowledg-based system to work well in hedge design, it should reason greatly based
on the way traders' reason in hedge design.

Experienced traders deal with the above complexities by reasoning mainly based on
"first-principles". In such reasoning traders derive much of the knowledge needed in hedge
design by making infrences based on deep knowledge about atomic relationships between
objects in the domain (i.e., relationships between fundamental economic variables and fi-
nancial securities). This kind of reasoning allows traders to make good decisions even in
situations they have never encountered, that is, new situations that are constantly being
created by the dynamics of capital markets. It also allows them to justify most of their de-
cisions intuitively. Traders also reason qualitatively with abstracted knowledge about types
of similar securities, rather than about each security separately. This kind of reasoning
helps them avoid much of of the complexity involved in reasoning about certain parts of the
design process.

This paper discusses the object-oriented representation used in a knowledge-based sys-
tem called INTELLIGENT-HEDGER that we have developed to assist hedging traders
(Benaroch & Dhar, 1991b). This representation is designed to accommodate special knowl-
edge requirements of the domain, and to facilitate reproduction of the kinds of reasoning
traders use in hedging. It provides a number of important features. One is the ability to
capture traders' deep knowledge about hedging, and to support direct reference to the basic
objects of the domain in reasoning from first-principles. This allows for the derivation of
many situation-action rules one might elicit from traders, if one were trying to develop a
rule-based system. A second feature facilitates abstraction of knowledge about financial
securities and economic variables to support reasoning qualitatively about parts of the de-
sign. The third feature is the use of inheritance properties via specialization relationships,
something that can reduce the amount of knowledge one needs to elicit and store in a knowl-
edge base. Finally, the representation organizes knowledge in a modular fashion to provide
maximum flexibility and to minimize the amount of effort needed to keep a knowledge base
current.

The rest of this paper is organized as follows. Section 2 first explains the purpose of hedg-

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91- 19

ing using two examples, and then illustrates the knowledge and computation complexities
involved in one problem that deals with the configuration of hedge vehicles early in the de-
sign process. This problem is complex and requires reasoning from first-principles. Section 3
discusses the design of the object-oriented representation we have used in INTELLIGENT-
HEDGER, and its implementation in C++. Sections 4 and 5 explain why features of this
representation make the configuration of hedge vehicles feasible, and demonstrate how these
features are used in the configuration part of the design. Section 6 concludes with the cons
and pros of the use of our object-oriented representation in hedge design.

2 Hedge Design Complexities

A hedge vehicle can be defined as the purchase and/or sale of financial securities. We
distinguish between two types of hedge vehicles - generic and compounded. A generic
hedge vehicle involves selling or buying securities of one type, while a compounded hedge
vehicle involves selling and/or buying securities of more than one type.

Like many other design problems, hedging can be viewed as a two-phase process. In
the first phase, the configuration phase (Williams, 1990), the space of all hedge vehicles is
searched to identify vehicles that satisfy some feasibility constraints. In the second phase,
the refinement phase (Mittal St Araya, 1986), design parameters associated with feasible
hedge vehicles (e.g., liquidity and setup cost) are constrained to identify one hedge vehicle
that satisfies best some optimality constraints.

Conceptually, the configuration phase can be viewed as involving a series of subproblems,
each entailing a search for all vehicles that satisfy only one feasibility constraint. Since a
subproblem for any given constraint can be solved independently from the other subproblem,
it requires its own specific knowledge items about elements in the search space and its own
specific reasoning process to determine which elements satisfy that constraint. The rest of
this paper concentrates on the solution of one feasibility constraint in the configuration part
of the design process. It is used to illustrate few of the knowledge modeling and computation
complexities involved in hedge design, and to explain how the use of a customized object-
oriented representation can avoid these complexities.

2.1 Configuring by the Payoff-Profile Constraint

One major feasibility constraint used in the configuration of hedge vehicles is the payoff-
profile constraint. A payoff-profile is the "internal" option strategy a trader underwrites
to specify what he is willing to pay and risk based on his assessments of the effects of the
predicted future behavior of economic variables on the value of securities. To derive a payoff
from such assessments, a trader invariably wants to use a hedge vehicle that provide the
payoff-profile he specifies.

Consider for example a firm that plans to issues bonds to raise capital. The firm believes
that interest rates are likely to increase prior to the issuance date. In such a case the firm
will have to offer a higher rate on its bonds, something that will increase the issuance cost.
The firm wants to protect itself against an increase, while preserving the ability to benefit
from a decline, in interest rates. It therefore defines a "cap" payoff-profile (see Figure la).
One generic hedge vehicle that provides a "cap" payoff-profile is the purchase of put options

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91- 19

Hedged Value of
lssuance Buy one put option Hedged Sell two cal l options

Post iron

- - - - - - - - - - -

Payof f -prof i le
P

interest I I
s7 s2 ', Stock

Rates Pr ice

(a) A "cap" payof f-profi le (b) A "ratio-spread" payof f -prof i le

Figure 1: Two payoff-profiles

on some bond B with exercise price b1.l An increase in interest rates will cause the price of
B to decline below bl, which will allow the firm to sell bonds at the higher price bl and make
a profit to offset the extra cost of issuing bonds at a higher rate. Alternately, a decline in
interest rates will make the put valueless, but will allow the firm to issue bonds at a lower
rate and make a profit to offset, and more, the cost paid for the put.

Traders often define complex payoff-profiles that are provided only by compounded
hedge vehicles. For example, if a trader believes that the price of stock S will increase above
s l , but not above 32, that trader can define a "ratio-spread" payoff-profile (see Figure lb).
One compounded hedge vehicle that provides that payoff-profile is called a ratio-spread. It
involves two generic vehicles. One is the purchase of a call option on S with exercise price
s1,2 which in case of a price movement above sl will allow to profit from buying stocks a t
the lower price sl to offset: and more, the cost paid for that call. The other vehicle is the
sale of two calls on S with exercise price s2, which allows to profit from the cost paid for
the calls sold to another party that believes the price of S will move above s 2 . Note that a
ratio-spread payoff-profile is in effect a synthesis of the payoff-profiles provided by the two
above generic vehicles.

These examples show that early in the design process traders specify a payoff-profile
qualitatively as a two-dimensional piecewise linear function. A payoff-profile can be sym-

pdir, HV E qvall
bo l i ca l lyexpres sedasw= { , where HVis the variable being hedged

qdir,, HV E p a l ,
(e.g., interest rates), VIZP is the value of a trader's hedged position, qdir; E {-1,0,1} (i.e.,
{decreasing, steady, increasing)) is the qualitative direction of change of V H P over qval;,
a qualitative range of values of ZV.

2.2 Problem Definition

One problem hedging traders face can be summarized as follows. Given, a goal payoff-
profile that is specified qualitatively by a trader, configure all hedge vehicles that provide
that goal payoff-profile. Configuring one hedge vehicle entails identifying types of securities
and associating each one of them with a buy or a sell action, ordering their exercise prices,

'A put gives its buyer the right to sell, and obligates its seller to buy, the underlying security at an agreed
exercise price at some future expiration date.

2~ call givesits buyer the right to buy, and obligates its seller to sell, the underlying security at an agreed
exercise price at some future expiration date.

Center for Digital Economy Research
Stern School o f Business
Working Paper IS-91- 19

and indicating the number of securities necessary from each identified type.

This configuration problem can be formulated as a process of searching the space of all
payoff-profiles of every possible hedge vehicle against a goal payoff-profile. However, the
search space involved in this problem is explosive. A generic hedge vehicle may provide a
different payoff-profile under a different market situation (i.e., a different combination of
values of economic variables). Furthermore, while the number of generic vehicles is large,
the number of compounded vehicles (i.e., permutations of generic vehicles) is theoretically
infinite. Thus, it is not feasible to prestore all payoff-profiles of every vehicle for selection,
especially since new securities are constantly introduced to the market and matured ones
are eliminated.

The previous examples demonstrate how traders handle the combinatorial nature of
the configuration problem. They construct configurations whenever necessary by reasoning
from first-principles. They construct a generic vehicle by deriving its payoff-profile using
a qualitative causal analysis of atomic relationships between objects in the domain, and a
compounded vehicle by synthesizing its payoff-profile from payoff-profiles of generic vehicles.
In addition, they reason qualitatively with abstracted knowledge. This allows them to
analyze whole classes of vehicles (e.g., a call on security S with exercise price sl), rather
than each specific vehicle separately (e.g., a January call on 100 IBM shares with $45
exercise price).

Constructing configurations of hedge vehicles, rather than prestoring them for selection,
entails the use of a representation that can capture the deep knowledge traders use, and
facilitates the emulation of first-principles reasoning processes traders use to construct con-
figurations of hedge vehicles. In the following section we explain the principles that guided
the design and implementation of one such representation.

3 An Object-Centered Representation

Our analysis of guides to hedging (e.g., Baecher & Goodman, 1958; Sutton, 1988) suggests
that much of the deep knowledge traders use in hedge design centers around two types of
structural entities and atomic relationships between them. These structural entities are
financial securities and fundamental economic variables to which the value of securities is
sensitive. A. security can be generic (e.g., stock) or compounded (e.g., swap). A generic
security can be either a basic one (e.g., bond) or a derivative one (e.g., option on bond).
X compounded security is made from a number of generic securities. There are many
thousands of securities that traders must look at while designing hedge vehicles.

We have identified two types of atomic relationships between structural entities. One is a
specialization relationship between securities (e.g., T-bills, T-notes, and T-bonds are types
of Treasury securities). Indeed, our analysis of the attributes used to describe securities
shows many similarities among securities. The other type includes correlation and causal
relationships between domain entities. The value of a basic security is determined by the
behavior of fundamental variables via correlation relationships (e.g., bond prices goes up
when interest rates go down). The value of a derivative security is, in addition, determined
by the value of its underlying security via a causal relationship we term the ON relationship
(e.g., call ON stocks). Correlation and causal relationships determine the payoff-profile a
hedge vehicle will provide under any given market situation.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91- 19

Figure 2: An ON-ISA semantic network

3.1 An Object-Oriented Semantic Network

We store knowledge about securities in an object-oriented semantic network to which we
s h d refer to as the ON-ISA network (see Figure 2). Since the number of compounded
securities is very large and since knowledge about a compounded security can be derived
from knowledge about the generic securities used to create it, we store in this network only
knowledge about generic securities. Nodes in the ON-ISA network are organized in an ISA
hierarchy to reflect the speciahation relationship between securities. Each node ih this
network can represent either a class of generic securities or an instance of a generic security.

A node can be linked to other nodes by three types of links. The first is an ISA link
that connects a node to another node representing one of its super classes. A node can be
connected to more than one other node via ISA links to support multiple inheritance. The
second type is called an ON link. It connects a node representing a derivative security to the
node representing its underlying security. The third type is called a CONFIGURATION
link. It connects a compounded security to one of the generic securities used to create it.
This kind of link is useful in the derivation of knowledge about compounded securities. We
shall illustrate the use of this type of link in Section 5 ,

Every node stores a large number of deep knowledge items that describe, or can be used
to derive other knowledge that describe, attributes of the type of security it represents. The
items of knowledge we choose to store in a node are determined by the kind of reasoning
required with that node. For example, for every given feasibility constraint we identify the
items of knowledge about a hedge vehicle that a trader needs to analyze to determine if
that vehicle satisfies that given constraint. Let us explain what are the knowledge items we

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91- 19

store for the payoff-profile constraint.

In every node representing a class of securities we store as an attribute the structural
equations used to derive the pricing model of that class. A correlation/causal relationship
between domain entities is modeled in Finance by a structural equation. The analytical
solution of a set of structural equations describing the major relationships between the value
of securities in a certain class and the variables to which it is sensitive (hereafter, structural
model) is called the pricing model of that class (Elton & Gruber, 1988). A pricing model is
used to derive the fair price of securities in the same class. The structural model used for
a certain class of securities can be a specialization of the structural model for securities in
a super class. For example, the structural model for bond options is a specialization of the
Black-Scholse model, which is used to derive the pricing model for other option types.

We store structural equations for the pricing model of a class of securities rather than use
physical links to represent correlation relationships for two reasons. Structural equations can
be used with qualitative causal reasoning techniques to derive the payoff-profile provided
by a generic hedge vehicle under various market situations (see Section 4). In addition,
the pricing models that every trader has developed for himself over time can be directly
plugged into the knowledge base. This can reduce the amount of effort needed for knowledge
elicitation, especially since these models are subject to modifications.

The ON-ISA network has the characteristics that we have suggested are needed in a
domain such as hedging. It captures trader's deep domain knowledge in the form of atomic
relationships between structural domain entities. It also provides inheritance properties
of the ISA hierarchy to facilitate abstraction of knowledge and to minimize the amount of
stored knowledge. Finally, i t uses object-oriented concepts to provide maximum modularity
and flexibility, in support of the notion of an open KB architecture.

3.2 Network Implementation

We have implemented the ON-ISA network in C++. Recall that a node in the network can
represent a class of securities or an instance of a security. Object oriented programming
languages such as Ct+ provide inheritance only of attributes from a class to its derived
classes (Rumbaugh et. al., 1991). Defining in Cf + a hierarchy of objects similar to the
one in Figure 2 would therefore require storing redundantly the value of attributes that is
identical for all securities in the same class (e.g., structural model). The kind of inheritance
needed in the ON-ISA network is of attributes and their value. In other words, we want all
nodes that are instances of a certain node, say C, to inherit via an ISA link the value of
an attribute, say A, in node C , without having to store attribute A in every instance of C.
This kind of inheritance reduces the need to store knowledge redundantly.

The hierarchy of object classes we have defined in C++ is presented in Figure 3. Note
that this hierarchy is different from the one in Figure 2. The highest object class in this
hierarchy is called SECURITY. It is described by attributes (i.e., data members) that are
common to all securities, such as the security spot price and an array of pointers to an
object of the same class that are each used as an ISA link. One derived class is called
DERIVATIVE-SECURITY. It has an attribute that is a pointer to an object of class SECURITY
that is used as an ON link. Another derived class is called SECURITY-CLASS. It is described by
attributes such as the structural model of a class of securities and the transactions involved
in setting up a security of that class as a hedge vehicle. All other subclasses are mainly
derived from these three classes.

Center for Digital Economy Research
Stern School of Business
W o r h g Paper IS-91- 19

EXCHANGE-TRADED-SECURITY SECURITY

DERIVATIVE-SECURITY SECURITY-CLASS

t
COMPOUNDED-SECURIN

PUT CALL

EXT-PUT OTC-PUT T-BOND CORP-BOND.

Figure 3: P a t of the hierarchy of object classes defined in C++

3.3 Reasoning with the Network

Given a goal payoff-profile that is specified by a trader and given an ON-ISA network
storing knowledge about the structural model of every class of generic securities, we need
to construct every type of generic hedge vehicle that provide that goal payoff-profile. If no
type of generic vehicles provides the goal payoff-profile, we need to construct every type of
compounded vehicles that provides the goal payoff-profile.

Each C++ object has methods (i.e., function members) that allows it to reason with
knowledge about itself and to communicate with other objects. We next describe two
methods that can emulate the first-principles reasoning process traders use to configure
hedge vehicles. One method called Produce-Payof f -Prof ile is of class SECURITY-CLASS. It is
used to derive the payoff-profile of a hedge vehicle involving generic securities in a certain
class using the structural model stored in the node representing that class. The other
method called synthesize-Payoff-Prof ile is of class coHPo~DED-sEcURIrr-CLAss. It is used
t o synthesize compounded hedge vehicles from generic ones. In the following two sections
we explain when these methods are invoked and how each one of them operates. -

4 Constructing Generic Hedge Vehicles

Given an ON-ISA network storing knowledge about generic securities, i t is necessary to
construct every possible generic hedge vehicle, to produce the payoff-profile it provides
under a trader's previewed market situation, and to compare the produced payoff-profile
against the goal payoff-profile. The first example in Section 2 shows that the payoff-profile
of generic vehicles of the same type can be produced by a qualitative causal analysis of the
structural model of the class of generic securities involved in that vehicle. That analysis is
actually a qualitative simulation that derives the value of a trader's hedged position under
the specific previewed market situation.

Center for Digital Ecol lol~~y Research
Stern School o f Business
W o r h g Paper IS-91- 19

Table 1: The qualitative structural model for a put option on bonds

4.1 Qualitative Sirnulation

Explanation

WIC = UIC + PT. The hedged issuance cost (H I C) is the sum of the
unhedged issuance cost (UIC) and the gain from the hedge vehicle (P) .

P = PT - Pt The gain from the hedge vehicle is its terminal value (PT)
less the cost paid for it (P,).

P = max(B-X, 0). A major structural equations used to derive the Black-
Scholse pricing formula for put options (Smith, 1979). Extracted from node
representing put options in ON-ISA network.

R cc- B. The relationship between the risk-free interest rate and the value
of a bond, which is the put's underlying security. Extracted from node
representing bonds in the ON-ISA network.

No

1

2

3

4

,4 qualitative causal analysis that is similar to the one traders use can be done using an
algorithm called QSIM (Kuipers, 1986). Given a qualitative structural model of a system
and the initial state of parameters in that model, QSIM can be used to describe the quali-
tative states that system will go through. QSIM propagates the effects of the initial state
of parameters through structural connections according to various laws from calculus (i.e.,
limit analysis) to produce the next qualitative state of each parameter, and of the system
as a whole. The qualitative state of a parameter is described by a pair (qdir,qval), where
qdir is the qualitative direction of change of the value of that parameter (i.e,, -1, 0, 1
or decreasing, steady, increasing) over qval, which is a qualitative point or region on the
real-line. QSIM describes the qualitative behavior of a system by the transitions each of its
parameters makes from one qualitative state to another. The transitions of every parame-
ter from one state to another are described by a sequence of pairs (qdir, qval) that can be
graphically plotted as a two-dimensional piecewise linear function.

Qualitative
Structural Equation

ADD(HIC, UIC, P)

ADD(PT,P,P~)

ADD(B, P, X) for
9 E (X, 4

M-(R, B)

To produce the payoff-profile that the purchase or sale of securities in a certain class
provides under a given market situation, we can use QSIM with the structural model stored
in the node representing that class. Let us use an example to explain how this can be done.

Suppose we are trying to determine if the purchase of a put option on bonds provides
a payoff-profile that caps the cost of issuing bonds in case that the risk-free interest rate
goes up (see example in Section 2). The input to QSIM includes the set of qualitative
equations in Table 1. Equations 1 and 2, in general, model the value of a trader's hedged
position. Equation 3 is extracted from the structural model stored in the class of the node
representing put option securities in the ON-ISA network. Equation 4 is extracted from
the structural model stored in the node representing the underlying bond securities in the
ON-ISA network. The input to QSIM also includes the initial state of parameters in these
equations, which in this case specifies that the risk-free interest rate, R, is 'increasing7 as
previewed by the risk manager, and that all other parameters are 'steady'. QSIM's output
is a description of the transitions that every parameter makes. The payoff-profile provided
by the purchase of put options on bonds is actually described by the transitions of two
parameters - the economic variable being hedged (i.e., risk-free interest rate, R) and the
value of the trader's hedged position (i.e., hedged issuance cost, HIC).

Ceuter for Digital Ecol lol~~y Research
Stern School o f Business
W o r h g Paper IS-91- 19

OF1 OF? 0 F3 OF4 OF5 OF6 OF7

HV

Figure 4: Generic payoff-profiles

4.2 Producing Payoff-Profiles

Since QSIM can produce the payoff-profile provided by a hedge vehicle, we have implemented
i t as a method of class SECURITY-CLASS. It is called Produce-Payoff - P r o f i l e . In the rest of
this section we shall refer to this method as QSIM,

To produce the payoff-profile of every generic hedge vehicle, each class node in the ON-
ISA network is massaged to do the following: (1) extract the structural equations necessary
to run QSIM; (2) run QSIM twice, once for a "buy" action and once for a "sell" action, to
produce the payoff-profiles it provides under the previewed market situation; (3) store the
two produced payoff-profiles in an attribute called sell-buy-prof i l e s ; (3) compare the goal
payoff-profile against the two stored payoff-profiles; and (5) if a match is not found, mark
yourself as a non-feasible hedge vehicle.

Thought a hedge vehicle may provide a different payoff-profile under each different
market situation, the payoff-profiles QSIM produces for any type of vehicles is always one
of seven payoff-profiles to which we shall refer to as generic payoff-profiles (see Figure 4).
Remember, however, that it is the use of QSIM that allows us to determine which generic
payoff-profile every type of vehicles provides under the market situations being hedged.

Running QSIM for every class of securities in the ON-ISA network can require a lot
of computation. We therefore use two heuristics to reduce the number QSIM runs. One
heuristic is based on the notion that the salelpurchase of securities whose structural model is
not sensitive to the economic variable being hedged provides generic payoff-profile 7, which
is meaningless from a hedging stand point. Accordingly, every class node in the ON-ISA
network is first massaged to check if the structural model i t stores is sensitive to the variable
being hedged. If it is not, the node marks itself as a non-feasible hedge vehicle, otherwise
it is massaged to run QSIM. The other heuristic is based on the notion that trading is a
zero-sum game, which implies that the payoff-profiles for a "buy" and a "sell" action are
symmetrical. Therefore, a class node in the network is massaged to run QSIM only for a
"buy" action, and then to convert the produced payoff-profile to derive the payoff-profile
for a "sell" a ~ t i o n . ~

It is possible that at this point in the configuration phase no generic hedge vehicle
provides the goal payoff-profile. In such a case it is necessary to construct compounded
hedge vehicles.

31t converts a payoff-profile simply by changing the qdir in every qualitative state of the parameter
representing the value of the hedged position, VHP, from 1 (increasing) to -1 (decreasing) and vise versa.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91- 19

5 Constructing Cornpounded Hedge Vehicles

The only knowledge stored in the ON-ISA network that can be used to configure com-
pounded vehicles is the payoff-profile of every type of generic vehicles. We can use this
knowledge in the same way traders use i t to configure compounded payoff-profiles (see ex-
ample in Section 2). A compounded payoff-profile can be created by permuting a number
of generic payoff-profiles. Creating permutations of payoff-profiles that match some goal
payoff-profile is a synthesis problem. It is a combinatorial generate-and-test search problem
that can be showed to be NP-complete. To solve this problem one must therefore use good
heuristics to constrain the generator. To solve this synthesis problem we have developed a
technique called qualitative synthesis.

5.1 Qualitative Synthesis

Qualitative synthesis uses an algorithm called QSYN (Benaroch & Dhar, 1991~). QSYN
considers a payoff-profile to be a two-dimensional qualitative piecewise linear function (here-
after, qfunction). It receives as input a goal qfunction (i.e., goal payoff-profile), G, and a set
of generic functions (i.e., generic payoff-profiles), F. It creates one compounded qfunction
at a time by algebraically adding two different qfunctions in 3. A newly created qfunctions
is then compared against G for a match. If i t matches part, or all, of G, that qfunction is
added to B with a reference to the two qfunctions in 3 that were used to create it. I t does
the same thing for every pair of different qfunctions in 3, including ones containing qfunc-
tions newly added to F. By doing so QSYN finds all possible configurations of compounded
payoff-profiles that match the goal payoff-profile.

We define the algebraic sum of two qfunctions as follows. A qfunction is a set of qual-
itative states of variable VRP as a function of variable VR. An element of a qfunction is
described symbolically as ((RV (qdir, qval))(VHP (qdir, qval))), where qdir E {-1,0, 1)
(i.e., {decreasing, steady, increasing)) and qval is a qualitative point or range on the real-
line. Assume the existence of two qfunctions QF, and QFi, each with n elements, and
assume that every pair of corresponding elements in QF; and QFj is over the same HV-
qval. The algebraic sum Q E + QFj is a new qfunction Qfij with the same n elements in
QF;, except for the VHP-qdir in every element which is the sum of VHP-qdirs in every pair
of corresponding elements in Q F and QFj. For example, the sum of the following pair of
corresponding elements k in Q F; and Q Fi is

QFi (k) =I ((HV (1 (hl,h2))) (VHP (1 (~1,~2))))
QFj (k) = ((HV (1 (hl,h2))) (VHP (-1 (~1,~2))))
QFi(k) + QFi(k) = ((HV (1 (hl,h2))) (VHP (0 (~1,~2)))).

Saying that the sum of two qfunction QFi + QFj matches part, or all, of a qfunction G
means that QF, +&I;;. is equivalent to part, or all, of G. QSYN tests for such equivalence by
iteratively checking if QFi(k) + QFj(k) is equivalent to G(k) for triplet k of corresponding
elements. We say that QF;(k) + QF'(k) is equivalent to G(k) for triplet k of elements if:
(1) the HV-qval in G(k) is contained or equal to the HV-qvaks in QF;(k) and in QFj(k);
and (2) the VHP-pdir in G(k) is equal to the sum of VHP-qdirs in QF;(k) and QFj(k).

Suppose we are trying to synthesize the ratio-spread payoff-profile denoted G in Figure 5.
It is clear from the example in Section 2 that G can be synthesized from generic payoff-
profiles 3 and 4 denoted QF3 and QF4 in Figure 5. Yet, the sum QF3 + QF4 is not
equivalent to G. This is because both QF' and QF4 are each representing a whole class

Center for Digital Ecol lol~~y Research
Stern School o f Business
W o r h g Paper IS-91- 19

Figure 5: Synthesizing a ratio-spread payoff-profile

of qfunctions with the same general shape. For example, QF4 represents a whole class of
qfunctions whose first element is over an arbitrary range of HV values, (0, h;) E (0, -m),
and whose second element slope is in the range (0, -m). What is therefore necessary is to
find one qfunction in each class of qfunctions that should be used to synthesize G. Rather
than try every qfunction in each of these infinite classes of qfunctions, QSYN can apply
heuristic operators to find the specific qfunction needed from each class. We have defined
two synthesis operators on qfunctions that help QSYN to narrow down the search space of
permutations of qfunctions. These are called STRETCH and STEEPEN.

5.1.1 Operator STRETCH

Suppose QSYN attempts to synthesize qfunction G in Figure 6a. QSYN coIllpares the sum
of the second pair of corresponding elements in Q F3 and Q F4 against the second element
in G. Clearly, G(2) is not equivalent to QFs(2) f QF4(2) because the VHP-qdir in G(2) is
not equal to the sum of the VHP-qdirs in QF3(2) and QF4(2). The fact that the VHP-qdir
in G(2) is equal to the sum of VHP-qdirs in QF3(2) and QF4(l), however, suggests that a
modified version of QF4, denoted QF; in Figure 6b, in which the first element is stretched
over the HV-qval (0, hz) , is more likely to contribute to the synthesis of G. QSYN has the
ability to stretch a qfunction element in such a way using operator STRETCH.

Operator STRETCHreceives two parameters - a qfunction, Q F , and an integer, k, des-
ignating the number of an element in Q F - and works as follows. Assume three qfunctions
QF,, QFj, and G such that G(k) is equivalent to QF;(k) + QFj(k) for triplet k of corre-
sponding elements. Assume also that G(k + 1) is not equivalent to QF;(k + 1) -+ QFj(k + 1)
for triplet k f 1 of elements only because the VHP-qdir in G(k f 1) is not equal to the sum
of VHP-qdirs in QF;(k f 1) and QFj(k + 1). If the VHP-qdir in G(k + 1) is equal to the
sum of VHP-qdirs in QF,(k) and QFj(k + I), operator STRETCH(QF;; k) can be used to
stretch element k in Q F; over a HV-qval which is the union of the HV-qvals in elements k
and k f 1 of G. Operator STRETCHcan do that by duplicating element k i n QF;, changing
its HV-qval to be the HV-qval in G(k + I) , and inserting it after dement k in QF;. For
euample, STRETCH(Q F4, 1) inserts the new element ((HV (1 (hl ,h2) 1) (VHP (O Cv31))) right
after the first element in QF4 to create QF; in Figure 6b.

5.1.2 The STEEPEN Operator

Suppose QSYN continues with the synthesis of G in Figure 7a. QSYN compares G(3)
against Q F3(2) f Q.Fi(3) and concludes that G(3) is not equivalent to QF3(2) f Q Fi(3)
because the VHP-qdir in G(3) is not equal to the sum of VHP-qdirs in &F3(2) and QFi(3).

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91- 19

However, if QSYN could modify the VHP-qdir in QF'(3) from -1 to -2 to create a new
version of QF;, denoted QF: in Figure 7b, it can conclude that G(3) is equivalent to
Q F3(2) + QFt(3). QSYN has the ability to modify the slope of a qfunction element in such
a way using operator STEEPEN.

Operator STEEPEN receives three parameters - a qfunction, Q F , an integer, k, des-
ignating the number of an element in QF, and an integer, s , designating the slope of a
qfunction element - and works as follows. Assume three qfunctions QF;, QF', and G such
that G(k) is not equivalent to QF;(k) + QFj(k) only because the VHP-qdir in G(k) is not
equal to the sum of VHP-qdirs in QF,(k) and QFi(k). If the VHP-qdir in QF;(k) is not
zero and if the difference, s, between the VHP-qdir in G(k) and the VHP-qdir in QF'(k) is
not zero, operator STEEPEN(QF;, k, s) can be used to increment the VHP-qdir of element
k in Q E by s. For example, STEEPEN(QFi,3, -1) changes the third element in QFi to
be ((HV (1 (h2 ,inf 1)) (VHP (-2 (minf ,v3)) to create Q Fl in Figure 7b.

In summary, the use operators STRETCHand STEEPEN allows QSYN to avoid search-
ing the space of all permutations of generic qfunctions exhaustively. When these operators
are used under applicable conditions, they can narrow down the search space significantly.
For example, Figure 8 shows the search tree only for permutations of one pair of qfunctions.
The emphasized branches in the tree are the ones QSYN chooses to explore. AIl other
branches are readily pruned by operators STRETCH and STEEPEN.

5.2 Producing Compounded Payoff-Profiles

Since QSYX can use the generic payoff-profiles in Figure 4 to synthesize compounded payoff-
profiles that match a goal payoff-profile, we have implemented it in C++ as a method of
class COMPOUNDED-SECURITY-CLASS. It is called Synthesize-Payoff-Prof ile. In the rest of this
section we shall refer to this method as QSYN.

Whenever we start to design a new hedge vehicle, the ON-ISA network has a node
called compounded, which represents the class of all compounded securities and that has
no instances (see Figure 2). That class node is the only instance of the C++ object class
COMPOUNDED-SECURITY-CLASS. It can access the method that implements QSYN.

The creation of compounded vehicles that provide the goal payoff-profile is initiated
by massaging node compounded in the ON-ISA network to: (1) synthesize the goal payoff-
profile from generic payoff-profiles 1 - 6; (2) create a class node called compounded-class;
as an instance of node compounded for every synthesized configuration of the goal payoff-
profile, and store that configuration in an attribute called configurat ion in that instance
node; and (3) message a newly created instance class node to create its own instances.

A compounded-class; node, denoted C, proceeds to create its own specific compounded
vehicle instances as follows. Node C messages every other class node representing generic
securities in the network to indicate its location, if one of the payoff-profiles stored in its
attribute sell-buy-prof iles has the same general shape of one of the generic payoff-profiles
stored in attribute configuration of node C. Assuming that class nodes A and B have
responded to that message, node C connects itself to both nodes using a CONFIGURATION
link, and creates for itself one instance node representing a specific compounded hedge
vehicle for every combination of instance nodes of A and B representing an instance security
(see Figure 9).

Synthesized configurations are actually made from generic payoff-profiles that were pos-

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91- 19

(a) Before stretching (b) After stretching

Figure 6: Applying the STRETCH operator

VHR

(a) Before steepening (b) After steepening

Figure 7: Applying the STEEPEN operator

QF4 . - - - - - - - -
QF3+QF4 -
Match -
applicaole leaos to a rnatcn

not s o n ~ l c s o ~ e

stretchfQFA1
s~OIICaO1.

match-:!

s teeoenf QF3
dOOllC#Ole

not aooIIcsoIe

not s ~ o l l c s o l e 1 stretchfQF4, 'r
not aoorlcs0le

steeoen(QF3) p---,,,
nor a00110aole

I not ~ O O I I C ~ O I ~ -+
nor a o o l l ~ s o l e

not aooIlcaoIe t ' ~ s

i i

Figure 8: Part of QSYN's search tree for a ratio-spread payoff-profile

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91- 19

-

Figure 9: An ON-ISA network with compounded securities

sibly modified by operators STRETCH and STEEPEN. These modified payoff-profiles pro-
vide important information about the nature of a type of compounded hedge vehicles that
was created according to a specific configuration. For example, consider the ratio-spread
payoff-profile QSYN synthesizes from generic payoff-profiles QF3 and QFf, the modified
version of QF4, which look as follows:

QF3 = (((HV l (0 ,hl)) (VHP 0 [vl] 1 1
((HV 1 (h1,inf)) (VHP 1 (v1,inf))))

QF4" = (((HV 1 (0 ,hl)) (VHP 0 Cv2] 1)
((HV 1 (hl,h2 1) (VHP 0 Cv21 1)
((HV 1 (h2,inf)) (VHP -2 (minf ,v2))))

These two have the same general shape of a buy call option on S and a sell option on
S, respectively. & F3 and Q Ff tell us two other things. Firstly, the exercise price of the
purchased call option, hl, should be smaller than the exercise price of the sold call option,
h2. Secondly, the absolute value of the VHP-qdir of QF: (i.e., 2) means that we must sell
two or more call option on S to provide the ratio-spread payoff-profile.

6 Discussion

A representation that is designed based on knowledge requirements of the problem domain
is more likely to work better than some general purpose representation, such as the rule-
based one. Though the design and implementation of a specialized representation involves
additional effort in the early part of the development process, it can offer benefits that
usually outweigh the additional effort.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91- 19

While developing INTELLIGENT-HEDGER we have realized that an object-oriented
representation such as the one described in this paper offers some extremely valuable fea-
tures. These features are especially important when the problem domain involves a lot
of knowledge that is constantly changing, and requires reasoning with deep knowledge.
The major features we have already discussed can be summarized as follows. Firstly, the
support of direct reference to basic domain entities and structural relationships between
them enables reasoning from first-principles. Secondly, the use of inheritance minimizes
the amount of effort needed to set up a KB and to keep it up-to-date. Thirdly, the use of
object-oriented concepts provides increased modularity and flexibility in support of an open
KB architecture.

There are other features of the object-oriented representation that were not discussed
in this paper, but are no less important the ones above. Based on our experience so far,
three of these features can be summarized as follows:

Knowledge modeling and acquisition: modeling deep knowledge using the object-
oriented paradigm appears to be natural and intuitive to an expert and to a knowledge
engineer. It can therefore reduce the amount of effort needed to elicit knowledge,
especially in domains where much of the deep domain knowledge can be elicited from
documented sources.
Transferability of knowledge: the deep knowledge involved in solving a specific prob-
lem is often applicable with other related problems in the domain. Deep knowledge
that is stored in an object-oriented representations is encapsulated, and therefore more
portable. This feature can be extremely critical in determining the ability of a system
to share its knowledge with other related systems.
Ease of control: the development of large knowledge-based systems can often involve
complex control issues. In an object-oriented representation the ability of an object
to communicate in an almost natural way with other related objects, and the natural
hierarchies that are often found between types of objects in a domain can eliminate
many of the control issues encountered in other representations.

The object-oriented representation used in INTELLIGENT-HEDGER has one major
limitation. Most domains involve, to one extent or another, expert knowledge in the form of
situation-action rules that can not be derived by reasoning from first-principles. Integrating
such surface knowledge into our representation can be complex. We are currently exploring
a number of solutions to this problem. One that seems to be the most promising for domains
such as trading, where we often find experts that specialize only in one type of securities,
can be summarized as follows. It may be feasible to encode surface knowledge about every
type of securities in a 'small' knowledge base that is stored as an attribute of the object
representing that type of securities, and to implement a specialized inference engine with
that type of surface knowledge as a method of the object. Accordingly, whenever an object
cannot derive the response to another object from deep domain knowledge about itself,
that object can invoke its specialized inference engine to try and derive a respond using the
surface knowledge it stores.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91- 19

References

[I] Baecher, E., and Goodman, S.L., The Goldman Sachs Guide to Hedging Corporate Debt
Issuance, Financial Strategies Group, Goldman Sachs, 1988.

[2] Benaroch, Michel, and Dhar, Vasant, 1991a, "An Intelligent Assistance for Financial
Hedging," Proceedings of the 7th IEEE Conference on A I Applications.

[3] Benaroch, Michel, and Dhar, Vasant , 1991b, "A Knowledge-Based Approach to Solving
Hedge Design Problems," IEEE Proceedings of the First International Conference on
A I Applications on Wall Street, Forthcoming.

[4] Benaroch, Michel, and Dhar, Vasant , 1991c, "Qualitative Synthesis of Configurations
of Two-Terminal Systems Based on Desired Behavior," CRIS Working Papers Series,
New York University.

[j] Elton, J.E. and Gruber, J.M., Modern Portfolio Theory and Investment Analysis (3rd
edition), John Wiley & Sons, Inc., 1987.

[6] Kuipers, B., "Qualitative Simulation," Artificial Intelligence, 29:289-338, 1986.

[?I Mittal, Sanjay, and Araya, Agustin, "A Knowledge-Based Framework for Design,"
Proceedings of the 5th International Conference on AI, AAAI-86, Philadelphia, 1986.

[8] Rambaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W., Object-Oriented
Modeling and Design, Prentice Hall, Englewood Cliffs, NJ, 1991.

[9] Smith, W.C., "Applications of Option Pricing Analysis," In James L. Bicksler, eds.,
Handbook of Financial Economics, North-Holland, New York, 1979.

[lo] Sutton, William, Trading in Currency Options, New York Institute of Finance, 1988.

[ll] Williams, Brian, C., "Interaction-Based Invention: Designing Novel Devices from First
Principles," AAAI Proceedings, 1990.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91- 19

