
TOWARD A LOGICALIPHYSICAL THEORY OF SPEADSHEET MODELING

Tomas Isakowltz

Shimon Schocken

Henry C. Lucas, Jr

Department of Information Systems
Leonard N. Stern School of Business

New Uork University

October 23, 1992

Replaced by IS-93-24

Working P a ~ e r Series
STERN IS-92-28

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

Toward a Logical/Physical Theory of Spreadsheet Modeling

In spite of the increasing sophistication and power of commercial spreadsheet
packages, we still lack a formal theory of spreadsheets and a methodology that
aids their construction and maintenance. Using a new functional relational
language, this paper identifies four principal components that characterize any
spreadsheet model: Model, Data, Editorial, and Binding. We present a factor-
ing algorithm for identifying and extracting these components from conventional
spreadsheets automatically, and a synthesis algorit hm that assists users in the
construction of executable spreadsheets from reusable components. This ap-
proach opens new possibilities for applying object oriented and model manage-
ment techniques to support the construction, sharing, and reuse, of spreadsheet
models in organizations.

CR Categories and Subject Descriptors: H.4.1 [Information Systems
Applications] : Office Automation - Spreadsheets; H.4.2 [Information Systems
Applications]: Types of Systems - Decision Support; 1.6.4 [Simulation and Mod-
eling]: Model Validation and Analysis; 1.6.5 [Simulation and Modeling]: Model
Development; K.8.1 [Personal Computing]: Application Packages - Spread-
sheets.

General terms: Theory, Design, Languages

Additional Key Words and Phrases: Model Management

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

Introduction

Spreadsheet modeling represents one of the most successful applications of information

technology. The original Visicalc program transformed the notion of end-user computing

radically, creating a new computational paradigm which offered a unique combination of

ease of use, on the one hand, and unprecedented modeling power, on the other. As a

result, spreadsheet programs became the most widely used decision support tools in modern

business. Compared to their humble origins in the late 70's, today's spreadsheet programs

are extremely powerful, versatile, and user-friendly. Yet the basic practice of building a

spreadsheet model remains the same as it was a decade ago. Further, with the exception of

a few scattered efforts (e.g. Ronen, Palley and Lucas, [12]), a theoryof spreadsheet analysis

and design is yet to emerge.

The central theme of this paper is that spreadsheet models should be analyzed, if not con-

structed, at two separate levels: logical and physical. The logical level consists of a formal

and implementation-free description of the model's intrinsic structure. The physical level

concerns such details as storage, formatting, user interface, and other aspects that effect

the model's appearance, but not its underlying structure. This distinction is nonexistent in

the common practice of spreadsheet modeling, where logical, physical, and data elements

are intermingled and treated as one entity. We believe that until this built-in dependency

is resolved, it will be difficult if not impossible to develop intelligent model management

systems for spreadsheet models.

This paper identifies four principal components that characterize any spreadsheet: Model,

Data, Editorial, and Binding. Of the four components, the most important and interesting

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

one is the Model, which represents the spreadsheet's logical structure in a formal func-

tional relational language. We present a top-down factoring algorithm that extracts the

four components from conventional spreadsheets automatically, and a bottom-up synthesis

algorithm that constructs executable spreadsheets and spreadsheet ternplates from a repos-

itory of reusable spreadsheet components. Further, the paper defines clearly what is meant

by the logical and physical views of spreadsheet models, leading to a dual framework for

spreadsheet analysis and design. The tools and techniques that the framework has yielded

make it possible to apply a new object-oriented approach to building and maintaining

spreadsheet models. In addition, they transform the conceptual notion of a model manage-

ment system to a feasible undertaking, i.e. to a system that can be actually implemented

in the field.

The remainder of this section of the paper discusses software engineering and model man-

agement topics that pertain to this research. The next section defines and illustrates the

distinction between the physical and the logical views of spreadsheet models. The functional

relational language for representing spreadsheet models, whose formal syntax is covered in

a separate BNF appendix, is illustrated in the third section. The two sections following it

present the factoring and the synthesis algorithms, respectively. Lastly, we comment on the

implications of this research for the common practice of spreadsheet modeling, and points

at future research directions.

Software engineering a n d spreadsheets: Viewed as model generators, spreadsheet pro-

grams have both pros and cons.' In spite of their considerable ease of use and instant mod-

IThroughout the paper, the term spreadsheet programs refers to spreadsheet modeling environments
like Lotus, q u a t t r o , and Excell. The terms spreadsheet models, or simply spreadsheets, refer to specific
spreadsheets, e.g. P&L spreadsheets, inventory control spreadsheets, and the like.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

eling power, they suffer from several limitations which typically go unnoticed by novice

users: implicit logic, inaccessible model structure, data dependency, and lack of a unifying

model base. In many ways, the present state of spreadsheet modeling is reminiscent of the

state of data management in the pre-DBMS era. Just as application programs of the past

were permitted to define redundant and inconsistent file structures, today's spreadsheets

often contain overlapping and inconsistent models. Before data definition was elevated to

the DBMS level, file structures were fised in the program's code. Likewise, the logic and

documentation of spreadsheet models are often 'buried in the formulae,' and are largely

inaccessible to people other then the spreadsheet's creator. To complete the analogy, most

of these problems arise because spreadsheet programs lack high level means to support the

practice of building and maintaining models.

To illustrate some of these points, consider the spreadsheet example in Figure 1. There

are two ways to describe this example. Viewed from a logical, or a functional, perspective,

the spreadsheet represents a parameterized profit and loss projection model. Viewed from

a physical perspective, though, the spreadsheet amounts to two 'blocks' of cells (~ 2 . .E2

and B9. .Gl6) that are interrelated through a set of formulae2. Although the cell formulae

are not presented here, one can consult the appearance of the spreadsheet and common

sense to guess the following relationships: Sales are expected to grow 10% annually; Cost

of goods sold is assumed to be 60% of sales; Overhead is assumed to be fixed at $2,500;

Lease is fixed at $100 in the first two years and $500 thereafter; and tax is assumed to be

45% of gross income.

2Following common practice, coilti~luous blocks of cells are denoted by their top-left and bottom-right
coordinates.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

Put Figure 1 around here

As it turns out, however, spreadsheet models have more to them than appears on the

surface. For example, it is true that sales grow 10% annually, but only in the first four

years. In 1996 and 1997, sales are 20% greater than the average sales in the previous two

years. Similarly, although it is reasonable to assume that net income equals gross minus

tax, there is absolutely no reason to believe that this is actually the case in this particular

spreadsheet. The lesson is clear: the physical appearance of a spreadsheet can be deceiving,

as it is not necessarily consistent with the logical structure that it suggests. One obvious

way to validate the integrity of the spreadsheet is to print out the cell formulae and inspect

their definitions. However, even at this intimate layer of representation, the model's logic

is anything but readily available. For example, the tax of 1992 is computed through the

formula B14 : @ I F (B 1 3 > O , B13*E2,0). The logical equivalence of this expression is I F

net>O THEN tax=ne t* taxra te ELSE tax=O, but this useful documentation is external to

the spreadsheet model, and may not be available.

Currently, spreadsheet programs represent spreadsheets in a strictly physical fashion, treat-

ing them as collections of cell addresses and formulae with no underlying semantics. For

this reason, users of spreadsheet models are prone to many accidental mishaps. For ex-

ample, one can delete cells that impact other cells (which may be out of sight), override

generic formulae with fixed values, add a new 'cost' item without modifying the 'total cost'

formula, and the like. Since the spreadsheet program 'doesn't know7 what the user is trying

to do in the model's realm, there is no way to sense that such activities can corrupt the

logical structure of the spreadsheet. In a similar vein, spreadsheet programs make it diffi-

cult to isola.te the Data element of a given spreadsheet. Although one can separate 'data

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

cells7 from 'model cells' by focusing only on the cells that contain constant values, the data

will have no supporting structure. For example, what is the meaning of a cell definition

like c12 : loo? An inspection of tile spreadsheet image suggests that 100 is the value of

the lease item in the year 1992, but this interpretation is strictly in the eye of the user,

and is not a formal part of the spreadsheet model.

To a large extent, many of these problems resemble the kinds of problems that preceded the

development of structn~ed programming techniques. The first generation of high-level lan-

guages permitted certain practices that later led to long-term maintenance

problems. For example, no restriction was put on the use of GOT0 commands, resulting

in the infamous phenomenon of 'spaghetti code.' In a similar vein, spreadsheet programs

do not restrict the use of any cell and formulae pattern, allowing users to construct any

spreadsheet that they desire, including, of course, poorly-designed spreadsheets. One ob-

jective of this paper is to present a systematic approach to modeling that promotes the

construction of structured models, i.e. models that are easy to extend and maintain.

Model management and spreadsheets: According to Blanning et al. [I], model man-

agement systems (MMs) began with the realization that there is a need to insulate the users

of decision support systems from the physical aspects of the organization and processing

of decision models. One of the most comprehensive efforts to develop an MMS was under-

taken by Geoffrion [3], who argued for a generalized Structured Modeling (SM) framework

for representing management science and operations research models. For Geoffrion, a

model is specified independently of its data and of the programs that are used to execute

it. This modularity promotes a flexible model base that encourages consistency and reuse.

Recently, Geoffrion augmented his framework with a special modeling language - SML -

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

and a syntax-directed editor for developing structured models [4, 51.

Closer to the world of spreadsheets one finds IFPS [7]- a model generation package with a

special emphasis on financial applications. Like SM, IFPS supports reuse of different model

components by separating the model schema from the data on which it operates. Although

SM and IFPS are capable of producing spreadsheet-like outputs, they require the user to

learn a new modeling language in order to construct the initial model. This limitation was

addressed, to a certain extent, by advanced spreadsheet programs like J ave l in and Excell.

In both packages, one can build a conventional spreadsheet and then assign symbolic names

to selected rows and columns. This structure endows the spreadsheet with a certain degree

of logical independence and, in the case of Javel in , a clear separation between data cells

and model cells.

What kind of services should an idealized model management system provide in the context

of spreadsheets? One of the major benefits of spreadsheet modeling is the ability to change

assumptions and inspect the impact on some output criterion. Hence, a spreadsheet MMS

should facilitate the storage and retrieval of different data sets associated with different

sensitivity and 'what-if' analyses. In addition, the system should facilitate transparent

access to remote databases so that data can be piped to and from spreadsheets without

human intervention. Similarly, a spreadsheet MMS should facilitate access to a repository of

reusable models and model 'chunks,' or a model base. Ideally, the user should be able to

retrieve models according to a variety of search criteria such as functional purpose, generic

structure, and relationship to other models. Once retrieved, the system should allow the

user to combine these models with other models and databases across the organization.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

Today's spreadsheet programs lag far behind this idealized notion of a spreadsheet model

management system. Contrary to the objectives of model reuse and data independence,

present spreadsheets tend to be 'owned' by their creators, and the data that they operate on

are embedded in their underlying logic. Hence, before we begin to articulate the notion of a

spreadsheet MMS, we first have to demonstrate that data and structure can be extracted from

conventional spreadsheets and then treated formally as separate entities. This modularity

will also enable the reverse operation, in which data and structure modules are synthesized

into executable spreadsheets under the user's control. In order for any of these ideas to be

practically feasible, a new dual perspective on spreadsheet models is needed.

The Physical and Logical Views of Spreadsheets

A conventional spreadsheet is a collection of addressable cells, arranged in a 2-dimensional

matrix. Each cell has a definition that binds it to either a constant value or to a calculated

value, obtained through a formula. Taken as a whole, these definitions determine the

user's view of the spreadsheet, which is automatically updated whenever one or more of

the cell definitions is changed. In addition to this familiar 2-dimensional perspective, every

spreadsheet has a linear representatioq, denoted hereafter the spreadsheet map, which is

normally used for doc~lmentation and debugging purposes. For example, the map of the

P&L spreadsheet of Figure 1 is depicted in Figure 3. For each active cell in the spreadsheet,

the map contains an entry that gives the cell's address, formatting specifications (if any),

and definition. Spreadsheet maps can be printed out or stored in ASCI I files on demand by

all spreadsheet programs. For the purpose of this article, the physical view of a spreadsheet

is taken to be its respective map, as produced by the host spreadsheet program.

Center for Digital Economy Research
Stem School of Business
IX~ork'ing Paper IS-92-28

What then is the logical view of a spreadsheet? We observe that each spreadsheet can be

characterized by four principal components. Paraphrasing Wirth [14], this observation can

be summarized as: Spreadsheet = Model + Data + Editorial + Binding. The Model (M)

component is the logical structure of the spreadsheet. The Data (V) component is the

structured collection of constants on which M operates. The Editorial (I) component can

be defined as what is left over in the spreadsheet after M and V have been carved out:

titles, column and row headings, and documentation. Finally, the Binding (a) component

is the physical mapping that binds JM,V, and & to each other, and to the spreadsheet grid.

For example, the M and 2) component$ of the P&L spreadsheet are depicted in Figure 2,

which is discussed estensively in the next section.

Put Figure 2 around here

Although all four componellts are equally important on practical grounds, M and V are

far more interesting and challenging to deal with from a theoretical perspective. Ideally,

M and V should be (i) independent of the spreadsheet program; and (ii) independent of

each other. The Model component of the spreadsheet should be viewed as a mathematical

abstraction that can be described in terms of several different formalisms, of which cells

and formulae is only one, and certainly not the most effective, representation. Likewise, the

Data component should be treated as stand-alone entity that might be a subset, or a view,

of a remote database. Taken together, the 'sum' of the four components M + V + I + l3

forms the familiar notion of a conventional spreadsheet.

Practically all the problems that were alluded to earlier in the paper are related to the fact

that, in a conventional spreadsheet program, users are encouraged to weave these compo-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

nents together and treat them as one entity, forming a prime example of how a modular

system should not be constructed. As a result, the two most important principles of soft-

ware engineering- separation of logical design and physical implementation, and separation

of algorithms and data - are iviclely violated by conventional spreadsheet programs. The

first step to resolving these problems requires a precise definition of what is meant by the

logical view of a spreadsheet model.

In this paper we define the logical view of a spfeadsheet to be its underlying ikfodel com-

ponent, which is further implemented as a collection of functional relation schemas. A

functional relation is similar to a regular relation in that both data structures consist

of one or more attributes and of one or more tuples, the minimal case being a single-

attribute/single-tuple relation. Unlilie regular relations, though, functional relations have

two types of attributes: data attributes and functional attributes. Data attributes define

slots that store constants, whereas functional attributes are bound to functions that are

calculated 'when needed,' to borrow a term from object oriented programming.

We take the position that any spreadsheet, no matter how complex, can be viewed as a

(non-unique) collection of functional relations. To illustrate, consider the top part of Figure

2, which depicts an outlined version of the P&L spreadsheet. According to this figure, the

spreadsheet can be seen as involving' two functional relations, named assumptions and

proforma, or a and p for brevity. In each relation, some attributes (e.g. year and l e a se)

contain constant values, whereas other attributes (e.g. sales and cogs) are bound to

functions that relate them to attributes in the same relation as well as to attributes in

other relations. The union of all the functional relation schemas that make up a particular

spreadsheet is denoted the spreadsheet's schema or the iM component of the spreadsheet.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

The schema of the P&L spreadsheet is depicted at the bottom left of Figure 2. A complete

discussion of the syntax of spreadsheet schemas and the process through which they are

constructed is given later in the paper.

The Data component (V) of the P&L spreadsheet is depicted at the bottom right of Figure

2. The numeric values in the relations are user-supplied data, extracted from corresponding

cells in the spreadsheet. The special C symbols denote calculated values that correspond to

functional attributes in the spreadsheet schema. When these functions are 'evaluated,' the

C values become constant values, and the functional relations become data relations, i.e.

relations that contain only constant values. We see that each functional relation induces

an ordinary data relation in the database sense of the word.

The physical and the logical views of spreadsheets are independent of each other; the

physical characteristics of each functional relation, e.g. its location, column,~'row headings,

and spatial orientation, are external to, and independent of, the relation's schema. Likewise,

the physical arrangement of the relations on the spreadsheet grid (side-by-side, top-bottom,

etc.) is independent of the schema. Thus, a user may transpose the spreadsheet image of a

functional relation from a row-wise orientation to a column-wise orientation, and vice versa,

or simply move it to another area in the grid, leaving the spreadsheet's M component intact.

The distinction between the logical and the physical views of spreadsheets has significant

practical implica.tions. Suppose that spreadsheet programs were capable of recognizing

this modularity explicitly. That is, whenever a spreadsheet is loaded into such an extended

spreadsheet program, the program would also load a transparent image of its underlying

JM, D, l?, and & components. By continuously comparing the user's activities on the

10

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

physical spreadsheet grid to their implications for the four components, the program could

sense what the user is trying to do not only in the way of manipulating physical cells and

formulae, but also in the way of building logical models. This extension would endow

spreadsheet programs with the ability to understand the semantics of spreadsheet models,

something which is lacking in the present generation of spreadsheet modeling environments.

The Functional Relational Language

A spreadsheet data definition language must address two important aspects of spreadsheet

models. First, many spreadsheets have one or more repetitive patterns, e.g. the years

entity in the P&L example. Second, many spreadsheets are characterized by functional

interdependencies, e.g. the sales of this year are based on the sales of the previous year.

The first requirement - repetition - prompted us to base our language on the relational

approach to data definition. The second requirement - functional interdependencies - led

us to consider a functional extension of the relational model.

There have been several proposals to extend the standard relational model with functional

and object oriented capabilities. For example, Gehani [2] described a financial database in

which monetary values were expressed in terms of several international currencies. Using

currency conversion functions and the prevailing exchange rates, the system could auto-

matically revise monetary attributes to reflect their real values in terms of a given currency.

Taking a more fundamental approach, Maier [ll] presented a general computed relation for-

malism in which attributes could be expressed as functions of other attributes within the

same relation. The notion of computed attributes played a key role in several object ori-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

ented relational systems, e.g. Cac t i s (Hudson and King, 18, 9]), and OZ+ (weiser-lochovsky,

1131). In Cac t i s , functional attributes were implemented using attribute grammar tech-

niques [lo]. In OZ+, value dependencies were implemented through functions that operated

on objects. Coming from a different direction, Ginzburg and Kurtzman [6] provided a re-

lational view of spreadsheets through their Spreadsheet History Schemes, which once again

contained the distinction between 'given' attributes and 'evaluated' attributes.

The functional relational language that is described in this paper (denoted hereafter FRL)

differs from the above formalisms in several ways. First, it allotvs the functional attributes

of a certain relation to refer to attributes in other relations. Second, it offers both absolute

and relative tuple addressing, in line with the addressing style of spreadsheet formulae.

Finally, the language was designed in such a way that it will not require spreadsheet

users to change the way they normally construct spreadsheets. That is, we sought a data

definition language that will enable automatic conversions of conventional spreadsheets to

spreadsheet schemas, and vice versa.

The remainder of this section provides an overview of FRL as it unfolds in the context of

the PScL example. A complete description of the language syntax is given in a separate

BNF appendix.

F'unctional relations: A functional relation is a tabular data structure consisting of one

or more attributes and one or more tuples. For example, the assumpt ions (or a) relation in

Figure 2 consists of 4 at tributes and one tuple, whereas the prof orma (or p) relation consists

of 8 attributes and 6 tuples. Each relation has a mandatory name and an optional alias, or

abbreviated name. We distinguish between relations that normally contain many tuples,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

and relations that are designed to contain one tuple only. The latter data structures,

denoted vector relations, are uncommon in relational databases but occur frequently in

spreadsheet modeling. In the P&L spreadsheet, a is a vector relation designed to store a

single tuple of model parameters.

The attributes of a functional relation fall into two categories: data and functional. For

example, all the attributes of the a relation are of type 'data.' The p relation has two data

attributes - yea r and l e a s e - and six functional attributes: s a l e s , cogs, ovhead, inc, t ax ,

and ne t . For each data attribute, the relation schema specifies a data type which is either

numeric, s t r i n g , d a t e or l o g i c a l , consistent with the standard data types of spreadsheet

constants. For example, the definition of the lease attribute is lease : numeric, indicating

that l e a s e is a slot designed to store user-supplied data of type numeric. The definitions

of functional attributes, e.g. t a x : i f (inc>O, inc*a. t a x , O), are more involved, making

use of such constructs as functions, operators, and case structures. We now describe each

of these constructs in broad terms, leaving their precise definitions to the appendix.

Keys and orderings: Wit11 the exception of vector relations, each functional relation

must have a key in the database sense of the term. That is, for each relation schema

s, there is an attribute x such that all tuples in every relation r whose schema is s have

different x values. For example, the key of the p relation in Figure 2 is year , and the values

of that key are 1992, 1993, 1994, 1995, 1996, and 1997. For the sake of homogeneity,

FRL requires that all relation schemas have a designated key. If a certain relation schema

doesn't have a natural key candidate associated with it, a hidden surrogate key which is

essentially a tuple identifier is attached to the schema by default.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

The domains of the key attributes (the sets of values that the key attributes can attain)

are assumed to be totally ordered. That is, for each two key values k and kt, either k < kt

or kt < k, as is obviously the case with the year key of the p relation. When a total

ordering among key values is not natural, an arbitrary ordering is imposed, based on tuple

identifiers. The total order implies the existence of a minimal key value and a maximal key

value (within a particular relation), denoted min(key) and max(key), respectively. Given

any key value k, the function prev(k) returns the key value immediately preceding k, the

function succ(k) returns the key value immediately succeeding k, whereas prev(min(ke9))

and succ(max(key)) return the special value null. It's important to observe that the values

of prev(k) and succ(k) (as well as min(key) and max(key)) are relation-dependant. For

example, given the present contents of the p relation in Figure 2, we have succ(l996)=1997;

however, if the last two years in that relation were 1996 and 2000 instead of 1996 and 1997,

we would have had succ(l996)=2000.

Tuple addressing: Since a functio~lal relation always has a key, the relation's tuples can

be indexed, or referred to, by either absolute or relative key values. For example, let r

be a relation whose key attribute is named key. In that relation, the tuple whose key

value is k (i.e. key = I ;) is referred to by the notation r[k], whereas the symbolic notation

r[key] refers to the current tuple - the tuple that is presently being processed or defined.

For example, the absolute notation p C19941 refers to the p tuple whose key value is 1994;

plyear l refers to p's current tuple; p[prev(year)l refers to the tuple that precedes p's

current tuple; and p [min (year)] and p [max(year) I refer the first and last tuples in the

relation, respectively.

References to individual tuples can a.lso be implemented via tuple numbers. Since the tuples

Center for Digital Economy Research
Stem School of Business
Working Paper 19-92-28

of every functional relation r are always totally ordered by their respective key values, a

reference like "r's third tuple," denoted r[#3], can be interpreted without ambiguity as

r[succ(succ(min(key)))]. In general, then, the ith tuple in the relation is denoted r[#i],

whereas the tuple whose key value is k is denoted r[k]. The two types of references are

interchangeable through the following mapping:

The practice of referencing tuples by their tuple numbers is normally not used in building

new spreadsheet schemas in FRL. At the same time, it is useful in some situations when

schemas are extracted from existing spreadsheets, as discussed later in the paper.

Attribute Addressing: Spreadsheet formulae operate on physical operands. For example,

consider the formula B3+@SQRT(A15)/2, which operates on the cells B 3 and A15. Since

one of the objectives of the functional relational model is to convert physical formulae to

logical expressions that are independent of the host spreadsheet environment, FRL contains

several features to address operands logically, as opposed to physically.

In general, the value of an attribute x in the tuple whose key value is k in the relation r

is denoted r[k].x. Thus, pC19921 .sales refers to the sales value in the tuple of the p

relation whose key value is 1992. Similarly, r[#3].x refers to the value of the x attribute of

r's 3rd tuple (in the order of the relation's key). Two default rules are used to abbreviate

these attribute references. First, the value of x in the current tuple, i.e. r[Rey].x, is denoted

r.x. Second, when an attribute x is referred to within the schema of its own relation, the

relation prefix can also be dropped and one is left with the reduced attribute reference x.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

a t t r i b u t e : il < n < i2 H expl
i2 < n < i3 1--3 eXp2

im-l < n < im H exp,

This construct reads: "for tuples il , il + 1, . . . , i2 - 1, bind the attribute to expl ; for tuples

i2, i2 + 1, . . . , i3 - 1, bind the attribute to exp2;" and so on. Case structures are implicitly

used in spreadsheet modeling, where it is quite common to specify a model by providing

base values for the first few tuples and defining the formulae that control subsequent tuples

in an iterative fashion. In Figure 2, for example, this construction by cases is used to define

the p . s a l e s attribute.

We note in passing that all attribute definitions in FRL are in fact functions of key values.

To illustrate, recall that an attribute definition like inc : sales-lease-cogs is actually

a shorthand of p ear] . i n c : p [year] . sa les -p [year] . lease-p [year] . cogs. From a

functional standpoint, this is equivalent to the expression f (x) = p[x].sales - p[x].lease -

p[s].cogs. Thus, to obta.in the value of the i n c attribute of a certain tuple whose key value

is k, the function f is applied to the tuple's key, and i nc is bound to the value f (k) . In

a similar way, an espression like l e a s e : numeric is in fact equivalent to the functional

expression p ear] . l e a s e = 1 (numeric), where I (x) is the identity function and numeric

is whatever number the user chooses to enter for that year. We see that all the attributes

in FRL are bound to functions, thus the name functional relations.

To summarize this section, we revisit the schema of the p relation in Figure 2. The first

attribute, year, is the key of the relation, which is of type numeric. The sales attribute is

bound to a case structure. For the first tuple in the relation, the value of s a l e s is set to the

Center for Digital Economy Research
S t em School o f Business
IVorking Paper 19-92-28

constant 6000. For the second, third, and fourth tuples, it is set to the s a l e s value of the

previous tuple - p. Cprev(year)l . s a l e s - multiplied by the growth factor 1+ a .gra te ,

where a. g r a t e is the value of the g r a t e attribute in the single tuple of the a relation. For

the fifth tuple and thereafter, the value of s a l e s is set to the average s a l e s values in the

previous two tuples, multiplied by the constant growth factor 1.2. The next attribute -

l e a s e - is a data attribute of type numeric. Cost of goods is computed by multiplying

the COGS rate assumption - a . cogs - by the s a l e s value of the current tuple of p. Gross

income is obtained by subtracting the values of l e a s e and cogs from the value of sa les ,

all attributes values taken from p's current tuple. The t ax payable amount is set to the

i n c value of p's current tuple times the tax rate assumption a . tax , but only if p . inc is

positive. Finally, ne t income is obtained by subtracting the tax value from the inc value

in p7s current tuple.

It is instructive to compare the original spreadsheet model at the top of Figure 2 with its

respective schema at the figure's bottom left. In the former representation, the spread-

sheet's data, physical layout, and logical structure are intermingled in one format. In the

latter representation, the user's model is expressed in a platform-independent language,

resulting in a clear and succinct description of the model's underlying structure. It turns

out that there are two ways to construct such spreadsheet schemas in FRL. First, one can

define a new schema directly, using a text editor. Alternatively, one can extract a schema

from an existing spreadsheet through a factoring algorithm, which is the subject of the next

section.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

The Factoring Process: from Physical to Logical

This section describes the process through which a conventional spreadsheet can be fac-

tored into its four principal components: Illodel, Data, Editorial, and Binding. The process

is based on a minimal set of user-supplied specifications regarding the characteristics of

the one or more functional relations that make up the spreadsheet model. These specifica-

tions set the stage for a nine-step reduction algorithm that requires no additional human

intervention.

The outlining process: Any spreadsheet can be viewed as a collection of functional re-

lation candidates. A relation-candidate is a continuous block of cells that represents either

a singular or a repetitive entity in the model's realm. The block may be a rectangle, a

row, a column, or a single cell. In the P&L spreadsheet, for example, block CB2. .E2] is

a relation-candidate that records all the model's assumptions. Although each individual

assumption cell and subsets thereof are also relation candidates, it is reasonable to assume

that the entire assumptions block will be manipulated as one unit, as in moving it around

the spreadsheet or changing its spatial orientation from a row vector to a column vector. In

a similar vein, block CB9. . GI61 is also a relation-candidate, representing sales and expense

figures for several years - a repeating pattern in the model's realm. Clearly, the task of

identifying a 'good' set of relation candidates is semi-structured. Although several rules

may be used to guide the process, and even automate it to a certain extent, the final deci-

sion as to which relations to employ should be left to the discretion of a human designer,

as is normally done in designing ordinary data models.

For each relation that has been identified, the user has to specify a name, a spatial orienta-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

tion (horizontal or vertical), and a physical scope. Since each relation occupies a rectangular

subset of spreadsheet cells, the act of scope specification is essentially the same as defining

a block (range) in a conventional spreadsheet program, i.e. anchoring the cursor at the

block's origin and painting a rectangular area on the screen. If the relation's scope consists

of a single row or a single column, the user is asked to specify whether the relation is

deigned t o store a single tuple, in which case it is denoted a vector relation. For each of the

relations thus specified, the user is aslcecl to name the relation's attributes and designate a

key attribute. In the case of a vector relation, a lcey attribute is not necessary.

This process of superimposing a relational structure on the spreadsheet grid is denoted

hereafter dutlining. As i t turns out, the outlining process completes the human's role in

the spreadsheet factoring task. That is, once a spreadsheet has been outlined, its four

principal components can be estracted automatically by successive manipulations of its

respective map. Recall that the spreadsheet map is a linear list that gives the addresses

and definitions of all the active cells in the spreadsheet. For example, Figure 3 depicts

the map of the outlined P&L spreadsheet. The right hand side of the figure contains the

standard spreadsheet map, produced in this particular case by the Lotus program. The

left hand side of the figure contains entry labels, obtained from the spreadsheet's outline

through the following matching rule. If a cell falls inside the scope of a named relation

(e.g. C11, which is inside p's outline - see Figure 2), it must sit in the intersection of a

named attribute (l e a se) , and a keyed tuple (1992 - or tuple number 2 in p). In that case,

the respective map entry of the cell is labeled p C2l . l ease . If a spreadsheet cell doesn't

fall inside the scope of any relation outline, it's map entry is left unlabeled. A comparison

of the outlined spreadsheet from Figure 2 and its respective map in Figure 3 might help in

tracking the labels generation rule.

Center for Digital Economy Research
Stem School of Business
\Vork'ing Paper IS-92-28

Put Figure 3 around here

In general, then, the labels that identify the spreadsheet map entries have the form r[i].x,

where r is a relation name, i is a tuple index, and x is an attribute name. The map that

emerges from this labeling procedure conveys two types of information. First, it subsumes

all the information contained in the original spreadsheet. Second, it offers all the meta-

information necessary to factor the spreadsheet into its four principal components: model

(M), Data (V), Editorial (E), and Binding (B) . This partitioning is done through a series

of nine steps that may be described as follows: map; = stepi(mapi-l), i = 1, . . . ,9. The

input of the process - mapo - is the physical spreadsheet map, as produced by the host

spreadsheet program. The output of the process - mapg - is the spreadsheet's FRL schema.

In each step of this transformation, the map is reduced and rewritten in a gradual fashion,

extracting the components E, B , Z?, and il4, in that order, along the way.

Extracting the Editorial and the Biildiilg Coinponents: The extraction of the £ and

B components is straightforward. First, all the non-labeled entries are extracted from the

map and archived together under the name I . This list of cell definitions, which constitutes

the Editorial component of the spreadsheet, contains such information as titles, attribute

headings, and general documentation. .The labeled entries that remain in the map after £

has been extracted have the following general form:

r [i] .x cel l -address : [f ormatting-specs] cell-def i n i t ion

The f ormatting-specs are optional. In order to extract the Binding component from the

map, each of these map entries is split into two types of entries, as follows:

Center for Digital Economy Research
Stem School of Business
IVork'ing Paper IS-92-28

'Binding entry:' r [il . x : cel l -address [f ormatting-specs]

'Definition entry:' r [i] . x: cel l -def i n i t i o n cell-address

Taken together, the binding entries form the Binding component of the model, which is

essentially a list of instructions regarding the physical placement and formatting specifi-

cations of each of the mocje17s attributes. This list is archived under the name 17. The

remaining 'definition entries' are the11 passed on to the next stage in the factoring process.

Ext rac t ing t h e D a t a Component: The extraction of the Data component of the spread-

sheet is also a simple procedure, and therefore it will be discussed here only in broad terms.

The procedure involves building a set of relations to accommodate all the constant values

from the spreadsheet map. Note that at this point of processing, the map consists of two

types of entries: r [il . x : constant cel l -address and r [il . x: formula cell-address.

Since the entry labels r[i] .x provide all the relation names and attribute names (as defined

by the user), the construction of the relational structures that they imply is a straightfor-

ward task. Once these relations have been constructed, the constants and formulae that

correspond to each r[i].z label are pegged into their proper slots in the relations, using the

labels as pointers. The constants are copied verbatim, and the formulae definitions are

replaced with the special symbol C, denoting calculated values. The set of relations thus

constructed is then archived under the aggregate name V. If this procedure were applied

to the spreadsheet map in Figure 3, it would yield the two relations depicted at the bottom

right of Figure 2.

Ext rac t ing t h e Model Component: After the I , B, and V components of the spread-

Center for Digital Economy Research
Stem School of Business
\Vork'ing Paper IS-92-28

sheet have been extracted, several steps are taken to prepare the map for further processing.

First, the constants that were previously stored in 2, are removed from the map. Next,

physical cell addresses are substituted with their respective attribute labels. For exam-

ple, the map entry p [ll . cogs BiO: +B9*D2 (Figure 3) is rewritten as p [I] . cogs:
p [I] . sales*a[ll .cogs, because p [I1 . sales and aC11 . cogs are the entry labels of the

cells B9 and D2, respectively, in the spreadsheet map. Formally, we have the following steps:

Fl: Rewrite all entries of the form

r [il . x: constant cell-address as :
r [il . x : data-type cell-address
where data-type is the type of the constant.

F2: Rewrite all entries of the form

r [i] . x: formula cell-address as :
r [i] . x : formula' cell-address

where formula' is the same as formula, except that all physical cell ad-
dresses are replaced with their respective entry labels from the map. If a
physical cell address is fixed (preceded by a $ prefix), fix the tuple index
in its respective label as well.

F3: Rewrite all the entries that emerge from Fl-F2:

r x : definition cell-address as:
r[i] .x: definition

i.e. eliminate the cell-address from all the map entries.

F4: Sort the map by the entry labels r [il .x, as follows. Primary sort key:
relation name (r). Secondary sort key: attribute name (x). Ternary sort
key: tuple index (i).

Center for Digital Economy Research
Stem School of Business
\&lorking Paper IS-92-28

The data structure that emerges from F4 is denoted the spreadsheet's logical map. The

logical map of the P&L spreadsheet is shown in Figure 4, and the reader may want to

compare it to the physical map in Figure 3 in order to track the execution of steps F1-F4.

Put Figure 4 around here

Due to the sorting operation (~ 4) ~ the logical map becomes a sequence of attribute clusters,

each cluster being an ordered set of entries whose labels consist of the same relation prefix

r and the same attribute name x. In what follows, these sets of entries are denoted r.x -

clusters. For example, the a . t a x - c l u s t e r of the P&L spreadsheet map consists of one

entry, whereas the p . s a l e s - c l u s t e r consists of 6 entries, as f~ l lows:~

p [I] . s a l e s : numeric
p[2] . sa l e s : pC11 .sales*(l+aC$l] .grate)
p[3] . sa les : p[21 .sales*(l+a[$il .grate)
p[4] . sa l e s : p[31. sales*(l+a[$l] .grate)
p[5] . sa l e s : 0.5*(p[3] .sales+p[41 .sales)*1.2
p[6] . sa l e s : 0.5*(p [4] . sales+p[S] .sales)*1.2

Note that the cluster is made up of three sets of isomorphic entries - entries that convey

exactly the same mathematical relationship, albeit with different indices. The goal of the

next step in the algorithm is to discover and tag such isomorpliic entries, and, in the process,

replace absolute tuple references with relative references5.

4Due to space limitations, the maps in Figures 3 and 4 correspond only to years 1992-1994 in the
spreadsheet. At the same time, the p.sales-cluster described above is taken from the map of the entire
spreadsheet, i.e. for years 1992-1997.

5Notational comment: in what follows, i, j, and d represent numbers, whereas n is a textual tag, i.e.
the character 'n'.

Center for Digital Economy Research
Stem School of Business
IVork'ing Paper IS-92-28

F6: Each r.x-cluster in the nlap contains 0 or more sets of repetitive map
entries, i.e. entries that have exactly the same right hand side definition.
In each set of repetitive entries, eliminate all but the first entry in the set '

(the entry with the lowest index).

When step F6 is applied to the p . sa les -c lus te r , the third, fourth, and sixth entries of

the cluster are erased, leading to the following cluster:

pC11 .sales: numeric
pC2l.sales: p[n-ll.sales*(l+a[I].grate)
p C51 .sales : 0.5*(p Cn-21 . sales+p [n-11 . sales)*1.2

This cluster conveys the following information: In the first tuple of the p relation, the

attribute s a l e s is a numeric constant. In tuple numbers n = 2, n = 3, and n = 4, it should

be bound to the expression p Cn-11 , sa les* (I+aClI .grate) . In tuple number n = 5 and

thereafter, it should be bound to the expression 0.5* (p [n-21. sales+p [n-11 . sa les) * I . 2.

The next step in the algorithm makes this binding explicit through a series of cluster

rewriting rules.

F7: Comment: at this stage of processing, all the r.x clusters in the map
contain only unique entry definitions. Let the entry labels of a cluster
be r[kl].x,r[k2].x, . . . , r[k,].x. Rewrite these entry labels as r[kl 5 n <
k2].x, r[k2 5 n < k3].x,. . . , r[n 2 k,].x. If a rewritten entry label becomes
r[i 5 n < i -+ 1] .x for some i , rewrite it again as r[n = i] .x. Finally, if the
cluster consists of only one entry, rewrite it again as r[n].x

When step F7 is applied to the p . sa les -c lus te r , the cluster changes to:

26

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

p [n=ll . s a l e s : numeric
p [2<=n<5] . sa les : p[n-I] . sales*(l+a[l] .grate)
p [n>=5] . sa les : 0.5*(p[n-21 .sales+p[n-I] .sales)*1.2

If steps F6 and F7 were applied to all the attribute clusters in the entire P&L spreadsheet

map (Figure 4), they would yield the map in Figure 5. In the next and final two steps of

the algorithm, this map is transformed into a formal spreadsheet schema, consistent with

FRL's syntax:

F8: Use FRL's syntax conventions and default rules to abbreviate the attribute
references generated by F6-F7 as much as possible.

F9: Consult the original outline of the spreadsheet to obtain the following spec-
ifications for each relation: (i) the relation's full name; (ii) the relation's
cardinality (single tuple vs multiple tuples); and (iii) the relation's key.
Use these specificatiolls and the syntax rules of FRL to transform the map
obtained from F7 into a formal spreadsheet schema.

Put Figure 5 around here

When step F8 is applied to the map in Figure 5, the map entry p [n] . cogs : p[nl . sales*

aC11 . cogs is transformect into the attribute definition cogs : sales*a. cogs. Likewise, the

map entry p [nl . t ax : QIF (p [n] . inc>O , p [nl . inc*aC11 . tax , 0) becomes the attribute

definition t a x : IF (inc>O , inc*a . t ax , 0) (these are just two representative examples).

Taken together, steps F8-F9 convert the map from Figure 5 to the schema in the bottom

left of Figure 2, which collstitutes the M component of the P&L spreadsheet,

Center for Digital Economy Research
Stem School of Business
Working Paper 19-92-28

The Synthesis Process: from Logical to Physical

The previous section described a top-down factoring process that splits physical spread-

sheets into their four principal components. This section describes a the reverse operation

- synthesis - in which executable spreadsheets are built bottom-up from reusable corn-

ponents. The key player in both processes is the schema, or the M component, of the

underlying spreadsheet. In the factoring algorithm, M is the major output of the process;

in the synthesis algorithm, it is the major input.

It is important to note that even though the schema is not an executable entity, it contains

all the necessary instructions for constructing operational spreadsheets. This construction

occurs through a synthesis process that converts a given schema into a physical spreadsheet

that can be executed on a target spreadsheet program. More precisely, the synthesis process

is designed to 'mix' different model components, M , V, 13, and I , in order to produce

different variants of the same generic spreadsheet.

To illustrate, suppose that a certain spreadsheet has been factored into its four principle

components M , 27, B, and I . The synthesis of all four components, denoted M + D + B +
E , yields a fully operational and executable spreadsheet that is identical to the original,

unfactored, spreadsheet. If the Data component is left out of the synthesis, the combination

M + B + E yields a spreadsheet template - a data independent model structure that can

be instantiated with a variety of different data sets, or modeling scenarios. Specifically,

two spreadsheets of the form JM + B + E + V and M + B + E + V' that differ only in

their Data component are said to be different instances of the same generic spreadsheet.

This will be the case, for example, when different divisions are required to use the same

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

spreadsheet template to produce P&L statements that conform to a certain organiztional

reporting standard.

Other combinations of the four coillponents are equally instructive. For example, consider

the two spreadsheet M + 2) + B + E and M + 2)+ B' + I t , that differ only in their Binding

and Editorial components. Note that even though the two spreadsheets are physically

different, they are completely isomorphic in terms of logical structure and data contents.

For example, E and E' can be the English and Spanish versions of the same spreadsheet.

In a similar vein, B and 0' might be alternative screen layouts of the same model, a useful

distinction when two users wish to present or print the same spreadsheet in two different

ways,

The type of component manipulation that was described above already occurs in industry,

albeit in an informal and haphazard fashion. For example, suppose that a junior loan

officer (Joe) wants to analyze loan applications with a spreadsheet model created by an

experienced colleague (Jane). For Joe, the easiest way to adopt Jane's spreadsheet is to

clone it. This is commonly done by copying Jane's spreadsheet, erasing all its constant cells

(implicit Data component), and retaining all its formulae cells (implicit Model component).

Once the spreadsheet has been emptied from Jane's data, it can be loaded with Joe's data,

at which point Joe and Jane apply the same model to two different data sets. Yet in spite

of this logical proximity, a conventional spreadsheet program will treat the two spreadsheet

as unrelated physical entities. Therefore, when Jane changes her spreadsheet to fix an error

or accommodate a new credit rule, the change will not propagate to Joe's spreadsheet.

We see that when spreadsheets are shared and reused in an informal manner, maintenance

and extension efforts must be duplicated. Had a formal framework existed for spreadsheet

Center for Digital Economy Research
Stem School of Business
Working Paper IS-92-28

models management, this duplication could be minimized. For example, if Joe wants to

clone Jane's spreadsheet, the safest way to do it is to (i) factor Jane's spreadsheet into

its four principal components, and (ii) synthesize Jane's M, I , and 23 components with

Joe's V component. If and when Jane changes her spreadsheet (or, more accurately, the

JM component of her spreadsheet), the revised spreadsheet of Jane can be refactored and

resynthesized with Joe's data. The new data can be either taken from a file, or added

interactively to the spreadsheet template.

Since synthesis is the converse of factoring, it traces the factoring steps backwards. The

input of the algorithm is an JM component, i.e. a spreadsheet schema written in FRL, and

optional Dl E , and B components. The output of the process is an operational spreadsheet

that can be executed on a host spreadsheet program. Synthesis involves three main stages.

In the first stage, the schema is converted into a logical map like the one depicted in Figure

4. At this point, the user has two options. If the goal is to load the spreadsheet with

stored data, the map can be merged with a given D component. If the goal is to create

a spreadsl~eet template, the map can be merged with a 'cloned' data set that is consistent

with the map's structure. Nest, the logical map is transformed into a physical spreadsheet

by synthesizing it with Binding and Editorial components. These components can be taken

from a documentation library or added interactively by the user.

Transforiming the schellla to a logical map: Recall that all the attribute references

that appear in the schema were abbreviated as much as possible, using FRL's default rules.

For example, the attribute definition cogs : sales*a . cogs is shorthand of p [yearl . cogs :

p [yearl . sales*a [I] . cogs. In the first step of the synthesis algorithm, all the defaulted

attribute references are expanded to their fully specified references:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

S1: Using FRL's syntax rules and default conventions, rewrite all the attribute
references that appear in the schema in an extended (no defaults) FRL
syntax.

Step S 1 generates extended attribute references of the form r[key].x, +rev(. . . prev(key)

. . .)].x, or r[next(. . . next(key) . . .)].x. The next step in the synthesis algorithm converts

all key-based tuple references to index-based tuple addresses:

S2: Rewrite each attribute reference of the form r[key].x as r[n].x, each at-
tribute reference of the form rlprev(. . . prev(key) . . .)].x were prev appears
i times as r[n - i].x, and each attribute reference of the form 1-[SUCC(. . .
succ(key) . . .)].n: were succ appears i times as r[n -t i1.x.

When steps S1-S2 are applied to the schema from Figure 2, they yield the map shown in

Figure 5. Focusing once again on the p . sales-cluster, the result will be as follows:

pCn=l] . sa les : numeric
p [2<=n<5] . sa les : p [n-11 . sales*(l+aCl] .grate)
p [n>=5] . sa les : 0.5* (p Cn-21. sales+pCn-11 .sa les) * I .2

In the next step, each map entry is espanded, i.e. repeated for all the tuples that it covers.

In order to carry out this expansion, we have to know the cardinality (number of tuples)

of each relation in 22. If the user wants to synthesize M with a given 27, this is a simple

lookup. Alternatively, if a V component is not available, a cloned (generic) version of D

can be constructed from ,U. In the latter case, the outcome of the synthesis process will be

a spreadsheet template to which the user can add data interactively. The cloning process,

which is straightforward, is described later in this section.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

S3: Let n, be the cardinality of r, i.e. the number of tuples that are presently
stored in the relation r.

Replace each map entry of the form r [nl . x : d e f i n i t i o n ,
with a series of n, map entries of the form '

r [I] .x : d e f i n i t i o n , . . . , r [n,] . x: d e f i n i t i o n .

Replace each map entry of the form r [kl Ln< kal . x : d e f i n i t i o n ,
with a series of k2 - k1 + 1 map entries of the form
r [k l l . x : d e f i n i t i o n , . . . , r [k2 - 11 .x: d e f i n i t i o n .

Replace each map entry of the form r [n? k] . x : d e f i n i t i o n ,
with a series of n, - k + 1 map entries of the form
r [kl . x : d e f i n i t i o n , . . . , r [n,] . x : d e f i n i t i o n .

Replace each map entry of the form r [n= il . x: d e f i n i t i o n ,
with a single map entry of the form
r [i] . x : d e f i n i t i o n .

To illustrate, step S3 expands the p . sales-cluster into the following cluster:

p [I] . sa les : numeric
p [2] . sa les : p [n-11 .sales* (I+aCil .gra te>
p C3l . sa les : p [n-11. sa les*(l+a[l l .grate)
p [4] . sa les : p [n-11 . sa les*(l+a[i l .grate>
p [5] . sa les : 0.5* (p [n ~ 2] . sales+p [n-I] .sales) * I . 2
p [6] . sa les : 0.5*(p [n-21 . sales+p [n-I] . sa les)*l .2

At this point of processing, the right hand side definitions of each cluster contain two

kinds of tuple addressing: relative and absolute. Relative addressing is characterized by

the presence of the symbol n, as in r[n].z, r[n i- j3.3, or r[n - j].z, for some j. Absolute

addressing consists of constant tuple references, as in r[j].x for some j. The next step in

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

the synthesis algori t hm marks absolute tuple references by prefixing them with the special

character $.

S4: Throughout the map, rewrite all attribute labels of the form r [j] . x as
r [$ j] . z .

Next, relative tuple references (those that are not prefixed by $) are converted to their

corresponding tuple n ~ ~ ~ n b e r s :

S5: Let r[i].x be the label of a map entry, let r [n -t- j1.y be a related attribute
label in the entry's definition (i.e, a label with the same relation prefix),
and let cl = i + j (note: j may be either negative, zero, or positive). Rewrite
the related attribute label as r [d] . y . Repeat this operation for each map
entry whose definition part contains attribute labels that are related to
the entry's label.

When applied t o the schema of the P&L spreadsheet, steps S4-S5 will yield the logical

map shown in Figure 4.

Adding the Data Coil~ponent: The data element of a synthesized spreadsheet can come

from three alternative sources:

a stored V component;

a gener ic V component;

a user-supplied V component

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

In the first alternative, M is synthesized with a given V component taken from a database.

It is assumes that 27 is either the originally (but possibly modified) factored Data component

of the spreadsheet, or another set of relations that passed an applicability test indicating

that they are compatible with JM'S structure. In the second and third alternatives, M is

synthesized with a du,mmy Data component DM which is generated from the schema M.

The synthesis M + DM produces a spreadsheet template that can be either left as is, or

populated with data that is entered by the user a t the spreadsheet program level (following

synthesis) .

Instead of providing a separate algorithm for template generation, we note that a dummy

Data component & can be easily generated for each given schema M. The VdU component

is a collection of clunlmy relations consisting of filler values. A dummy relation r E DM is

constructed from a relation schema s E JU through the following straightforward process.

First, the number of filler tuples in r inust be determined. Recall that the right hand side

of the c a s e construct of FRL consists of expressions of the form c o n d i t i o n t-+ d e f i n i t i o n .

Further, the c o n d i t i o n parts always malie references to tuple numbers. Now, if the relation

schema s contains no c a s e constructs, the number of dummy tuples in T is set to one. If s

contains one or more case constructs, the number of dummy tuples in r is set to one plus

the highest tuple number referred fo in the c o n d i t i o n part of any one of the c a s e constructs

in s. For example, consider Figure 2, where the schemas of assumptions and proforma

consist of 0 and 1 c a s e constructs, respectively. In the latter relation schema, the highest

tuple number in the c a s e construct is 5 . Therefore, the dummy relations corresponding

to assumpt ions and to prof orma will contain 1 and 6 filler tuples, respectively. Note that

the dummy pro f orma relation will contain 6 tuples irrespective of how many 'real' tuples

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

the data relation prof orma actually contains in D.

Once the number of dummy tuples has been determined, the dummy relations are 'pop-

ulated' with filler data through the following straightforward process. If a data attribute

x in s is of type numeric, s t r i ng , date , or l og i ca l , the filler character N, S, D, or L,

respectively, is placed as the attribute value of x in the dummy relation r. Functional at-

tributes are represented through the special character C, standing for calculated value. The

collection of all the dummy relations thus constructed forms the dummy DM component.

Nest, the D component, be it 'real' or 'dummy,' is merged with the 'data entries' in the

spreadsheet's logical map. The data entries can be easily identified by focusing on the

map entries of the form r[i] .x data-type where data-type is either numeric, s t r i n g ,

l o g i c a l , or d a t e (see Figure 4). In order to populate these entries with data, the

data-type of each entry is substituted with a constant value which is retrieved from 2)

according to the pointer r[ij.x. Note that this pointer specifies the relation name, tuple

index, and attribute slot, where the constant value resides in 22.

Adding the Editorial and the Binding Components: The synthesis of M +D with I

and B is mainly an implementation issue which is of little theoretical interest. ?Ve describe

it here in broad terms, noting that thenreader can skip this section without losing the thread

of the paper.

In what follows, it is assumed that V, M, I, and 13 are the original components that

were factored from the spreadsheet. If the structure of any of these components has been

modified after factoring, £ and B may not be compatible with M + 23. As it turns out

however, this is not a major problem. First, the I component can be modified to match the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

modified M +D. Second, a new (default) binding & can be easily generated for M +V. For

the sake of brevity, we will not describe the implementation details of these adjustments.

In the next two steps of the synthesis process, the logical map is 'joined' with the Binding

component (using the map entries as the matching criterion). The result of the join is a

physical spreadsheet map.

S6: For each logical map entry of the form

r [i] .x definition

and a corresponding bincling entry (element of I) of the form

r [i] . x: cell-address [f ormatting-specs]

create a physical map entry of the form

r [i] . x: cell-address [f ormatting-specs] definition

S?: The definition part of each physical map entry is either a constant value,
or a formula. If it is the latter, replace the formula part with formula',
where formula' is the same as formula, except that each attribute la-
bel r[i].x that appears in formula is substituted with its corresponding
cell-address, as obtained from the physical map entry whose entry label
is r[i].x.
Following these substitutiops, the labels of the map entries r[i].x are no
longer necessary. Rewrite each map entry of the form

r [i] . x: cell-address [f ormatt ing-specs] definition
as :

cell-address [f ormatt ing-specs] definition

The next and final step of the synthesis process merges M + D + B with I. Recall that

the Editorial & component is simply a list of entries of the form cell-address string.

Center for Digital Economy Research
Stem School o f Business
Walking Paper IS-92-28

components in any given spreadsheet: ibfodel, Data, Editorial, and Binding. The four

components and the algorithms that operate on them are presented in Figure 6. In the

figure, the area above the factoring/synthesis bubble corresponds to the physical realm of

commercial spreadsheet programs, along with their appealing and intuitive user interfaces.

The area below the bubble corresponds to a logical realm in which spreadsheet models

are viewed as modular amalgamations of generic components that can be constructed in

different ways under the user's control. The two-way transition between the physical and

the logical views is made possible by the factoring and synthesis algorithms.

Put Figure 6 around here

Beginning with the physical realm, note that our approach is complementary to the stan-

dard practice of spreadsheet modeling. That is, we assume that users will continue to build

spreadsheets via conventional spreadsheet programs like Lotus, Excel1 and Quattro. Once

implemented, though, such spreadsbeets can be outlined and then translated into spread-

sheet maps by the host spreadsheet program. Nest, the factoring algorithm can be invoked

to decompose the maps into their respective principle components. The reverse direction,

from generic components to conventional spreadsheets, is handled by a symmetric syn-

thesis algorithm which assists users in the construction of executable spreadsheets from

reusable objects. Both algorithms make estensive use of FRL - a specialized data definition

formalism for spreadsheet models.

What are the benefits of this dua.1 perspective on spreadsheet modeling? As Figure 6 il-

lustrates, once the four components have been extracted from the spreadsheet's physical

representation, they can be stored and managed in separate repositories which are inde-

38

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

pendent of spreadsheet programs. Most importantly, Model components can be channeled

to and managed by a model management system that supports model documentation, re-

trieval and reuse. Likewise, Data components can be archived and accessed via a database

management system that offers all the flexibility and power of a general-purpose DBMS.

The E and B components, which are of lesser theoretical importance, are placed in a

separate documentation library. This way, a user with no spreadsheet experience can

translate a spreadsheet from English to Spanish (or, say, check its spelling) by operating

directly on its Editorial component, which is essentially a list of textual labels implemented

as an ASCII file. Similarly, the screen layout of a spreadsheet can be manipulated by

operating on its underlying Binding component, for example if one wants to protect the

spreadsheet's M and 2) components from operations that pertain to appearance only.

Hence, the dual perspective has both 'micro' and 'macro' implications for the standard prac-

tice of spreadsheet modeling. At the micro level, for example, the components' modularity

enables us to distinguish between different types of spreadsheet manipulations. Neutral

manipulations, like transposing or moving relations around the screen, effect neither the

M nor the D components of the spreadsheet. Data manipulations, like adding or deleting

rows or columns that correspond to repetitive tuples, effect only the spreadsheet's 2) com-

ponent, leaving the iM component intact. Structural manipulations, like adding or deleting

rows and columns that correspond to attributes, effect both the M and the 2) components

of the spreadsheet. The key point is that once the component modularity of spreadsheets is

explicitly recognized by the host modeling environment, an intelligent modeling 'assistant'

could be designed to sense from the physical spreadsheet what the user is trying to do in

the way of building logical models that interact with corporate repositories of models and

data.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

At the 'macro' level, the dual perspective redefines the conventional notion of spreadsheets

in such a way that makes them accessible to other, non-spreadsheet software environments.

This opens new and exciting possibilities for integrating spreadsheet-, data-, and model-

management systems in novel ways that were previously unfeasible.

Conclusion This paper presents the conceptual framework, data definition language, and

factoring and synthesis algorithms, necessary to take spreadsheet modeling one step further

beyond the present 'state of the art.' Specifically, we provide a foundation for two important

developments: (i) building intelligent spreadsheet programs that 'understand' the model

world of the user; and (ii) building powerful spreadsheet model management systems that

help manage and streamline huge repositories of spreadsheets as well-organized corporate

resources. Our objective is to use this foundation as a point of departure for future research

in these directions.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

Appendix: FRL - The language in BNF form

The FRL data definition language for functional-relational schemas is described next in BNF

form. The applicable constraints are given after the BNF description.

Syntax

Modelschema : := R-schema
R-schema Model-Schema

: : = relatioil RJame alias R-aliasname I
R-Name alias R-aliasname (type vector)

RJame : : = Name

Name * .- . .- String

R-al ias~ame : := Letter

KeyAttr-descr : : = DataAttr-descr key

RestAttr-descr : := Attr-descr I
Attr-descr Rest Attr-descr

Attr-descr : : = DataAttr-descr I
FuncAtt r-descr

DataAttr-descr : := Attrname : Type

Type : := nuinber I string I date I logical

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

At t r aame . .= . . Name

FuncAtt r -descr : : = Attrname : Expr

Expr : : = SimpleXxpr
Expr= CaseXxpr

CaseXxpr : := Boolean-Cond I+ SimpleXxpr I
Boolean-Cond I+ SimpleXxpr CaseXxpr

Boolean-Cond : : = n Comparator NUM I
NUM < n 5 NUM

SimpleXxpr : := Type I
Constant I
Reference I
I f -Expr

Constant : := NUM I STRING I DATE I LOGICAL

Reference : : = R-aliasname [Ref 1 . Attrname

Ref : : = Num-expr I A t t r-expr

Num-expr : : = #n I Num-expr $- 1 I Num-expr - 1

A t t r-expr : : = A t t r ~ a m e I F U ~ c (~ t t r - e x p)

FUNC : := next I prev I g l b l ub

I f -Expr : : = IF(Bool-Cond, SimpleXxpr , Simple Ixpr)

Bool-Cond : := Reference Comparator Reference
Comparator : := < I < I = I > I >

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

NUM : := numeric constants
STRING . .= . . s t r i n g constants
DATE . .= . . date constants
LOGICAL : := logica l constants

Constraints

In the main body of this article we explained how to synthesize a functional relation into

a logical map of a spreadsheet. This, in a sense provides an opera t iona l s e m a n t i c s for

functional relations. Although we do not define a precise declarative semantics for the

functional relational model, we provide the following explanations on a semi-formal level.

1. Types . Although the language is not typed, it is simple to obtain a strongly typed lan-

guage by assigning types to the different spreadsheet functions and enforcing typing

a t the language definition level. We have chosen the untyped version of the language

for the sake of brevity,

2. K e y s a n d os-del-ings. We assunle that each relation has a key in the database sense,

i.e., there is an attribute x of r such that no two tuples of r have the same value for

In addition, we require that the domains of key attributes (the sets of values that

the attributes can attain) be totally ordered. That is, there is a relation < defined

on the domain Dk of a key k, such that < is asymmetric and transitive, and that for

any two elements vl, v2 of Dk, either vl < v2 or v2 < vl.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

The ordering among the keys of r induces an ordering on the tuples of r as follows.

Let k be the key of relation r , and let t l , t2 be tuples of r , then

tl < t2 iff tl.k < t2.k

3. Successors and predecessors. Since each relation contains only finitely many tuples,

we can define the notions of immediate predecessor and immediate successor as follows.

Let t l , . . . , t, be all the tuples in a relation r, ordered by their keys. Then

for 1 < i < n, ti immediately precedes t;+l (denoted t;<<,ti+l,) and t;+l

immediately succeeds (denoted ti ti+l>>Tti.)

Hence, it makes sense to talk about the next or previous tuple, and about the tuple

closest from below to a certain value v in the domain Dk (i.e., the tuple with key

glbT(v) = rnux(t.k/t E r and t.k < v)); and of the tuple closest from above, i.e. the

tuple with key Zr~b,(u) = ??zi?z(t.klt E r and t.k > v) .

Note that the notion of irn~nediacy depends on the relation r. If r and r' are two

relations with the same schema but different data, it might happen that a tuple t

immediately precedes a tuple t' in r , but not in r ' .

4. References. These are of the general form r [ref 1 . x. Each r e f e r ence appears in

the definition of an attribute y in a relation q. The attribute y is called "the owning

attribute" a,nd q the "the owning relation". Intuitively, r [ref 1 . x is a reference to

the value of attribute x in the tuple of relation r whose key value is r e f . (Note that

x has to be an attribute of r.)

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

There are three kinds of refs :

(a) Absolute: denoted by #i, where i is a number. This is a reference to the ith

tuple of r, in the order of the keys.

(b) Relative: denoted by an expression of the form i n , or #n >. The interpretation

of #n is the current tuple of r , #n-j is the jth previous tuple, and #n+j is the

jtth next tuple, as defined above.

(c) Named Attribute: denoted b y an attribute name z, or an expression involving

z and the functors prev, nex t , l u b , glb . A reference r Cz] points to the

tuple in r whose key value equals the value of the z attribute in the current

tuple. References with prev, n e x t , l u b , g l b are interpreted by the immediate

predecessor, immediate successor, glbT(v) and lubT(v) functions described above.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-92-28

References

[I] Robert Blanning, Andrew PVhinston, Vasant Dhar, Clyde Holsapple, Mathias Jarke,

Stephen Kimbrough, Javier Lerch, and Michael Prietula. Precis of Model Management

and the Language of Thought Hypothesis. In Edward A. Stohr, editor, Proceedings

ISDP-89, 1989.

121 Narain H. Gehani. Databases a,nd Units of Measure. IEEE Transactions on Software

Engineering, SE-S(G):605-611, November 1982.

[3] Arthur M. Geoffrion. An Introduction To Structured Modeling. h n a g e m e n t Science,

33(5):547-588, May 1987.

[4] Arthur M. Geoffrion. The SML Language For Structured Modeling: Levels 1 and

2. Western management science institute working paper, UCLA School of Manage-

ment, Western Management Science Institute, School of Management, University of

California, Los Angeles, CA 90024, April 1991.

151 Arthur M. Geoffrion. The SPlL Language For Structured Modeling: Levels 3 and

4. Western management science institute working paper, UCLA School of Manage-

ment, Western Management Science Institute, School of Management, University of

California, Los Angeles, CA 90024, April 1991.

[6] Seymour Ginzburg and Stephen I<urtzrnan. Spreadsheet Histories, Object-Histories

and Projection Simulation. In ICDT - Proceedings of the 2nd Internatiorzal Confer-

ence on Database Theory - Lecture Notes in Computer Science no. 326, Berlin, 1988.

Springer-Verlag.

(71 Paul Gray. Guide to IFPS/Per.so.nal. McGraw-Hill Book Company, 1988.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

[S] Scott Hudson and Roger King. The Cactis Project: Database Support for Software

Engineering. IEEE Transactio~zs on Sofiware Engineering, June 1988.

[9] Scott Hudson and Roger King. Cactis Project: A Self-Adaptive, Concurrent Imple-

mentation of an Object-Oriented Database Management System. ACM Transactions

on Database Systems, 14(3):291-321, September 1989.

[lo] D. Icnuth. Semantics of Context Free Languages. Mathematical Systems Theory,

2(2): 127-145, 1968.

[ll] David Maier. The Theory of Relational Databases, chapter 14, pages 533-549. Com-

puter Science Press, 1988.

[12] Boaz Ronen, Michael Palley, and Henry C. Lucas Jr. Spreasdheet Analysis and Design.

Communications of the ACrl4, 33(1):84-93, January 1989.

[13] Steven P. Wesier and Frederick H. Lochovsky. Object-Oriented Concepts, Databases

and Applications. In Won Kim a.nd Frederick H. Lochovsky, editors, OZ+: An Object-

Oriented Database System, chapter 13, pages 309-340. ACM Press, 1989.

[14] Niklaus kvirth. Algorithms + Data Structures = Programs. Series in Automatic Com-

puting. Prentice-Hall, Inc., Engle~vood Cliffs, N.J., 1976.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

Figure 1: The P&L Spreadsheet

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

grate ovhead cogs

qrowth overhead CoGS tax rate
assumptions: [10% $2.500 60% 48?]

relation p
PkL Forecast (a l l f igures i n 000's)

i/

s a l e s
COGS
overhead
l e a s e
gross
tax .

net income

Model (M)

relation assumptions alias a type vector
grate: numeric
ovhead: numeric
cogs: numeric
tax: numeric

<- sales
C--- cogs + ovhead + lease
i-, inc
f--- tax

net

Data (D)

relation a:
1 ovhead I cogs (tax

.lease: numeric t ' . ..
inc: s a l u - lease - w g s .
tax: if(inc > 0,inc * a.tax,O)
net: i n c - t a x

relation p:

Figure 2: The outlined P&L spreadsheet (top) and its respective Model (M) comp,onent
(left) and Data (P) component (right).

relation proforma alias p
year: numeric key
sales: n= 1 H numeric

2 ,< n< 5 plprev(year)].soles * (1 f a.grate)
5 - 0.5 * (p ~ e v (y e a r)] . s a ~ e ~ ' + p ~ e v (p r e v (~ e a r))] . s a l e s * 1.2

cogs: soles * a-wgs

Center for Digital Economy Research
Stem School of Business
IVork'ing Paper IS-92-28

ovhead: a.uuhead

r
, Ye*

1992
1993 .
1994
1995 -
1996
1997

.

sales
6000
C

cogs
C

- C
C C C
C C C

C C C
C C c

ovhead
C
c

net
C
C
C
C
C
c

lease
100
100
500
500
500
500

inc
C
C
C
C
C
C

tax
C
C
C
C
C
C

at11 .grate
acll. ovhead
a Cll . cogs
aCll .tax

p Cll . sales
pC2], sales
p C3l. sales

p C11. cogs
p C21 . cogs
p C3l. cogs

p Ell . ovhead
p c21. ovhead
p C3l. ovhead

p CII . inc
p C2l. inc
p 131 . inc

Bl: 'growth
Cl: 'overhead
Dl : 'COGS
El: 'tax rate
A2: 'assumptions:
B2: (PO) 0.1
C2: (CO) 2500
D2: (PO) 0.6
E2: (PO) 0.48
B4: 'POL Forecast (all figures in 000's) ;
B5: I----------------------------------

B7: 1992
C7: 1993
D7: 1994
B8: \=
C8: \=
D8: \=
A9: 'sales
B9: (CO) 6000
C9: (,0) +B9*(l+B2)
D9: (,0) +C9*(1+B2)
AlO: 'COGS
BlO: ('0) +B9*D2
ClO: (,O) +C9*D2
DlO: (,O) +D9*D2
All: 'overhead
Bll: (,O) +C2
Cll: (,O) '+$~$2
Dll: ('0) +C2
A12: 'lease
B12: 100
C12: 100
012: 500
A13: 'gross
B13: (,O) +B9-BIO-Bll-B12
C13: ('0) +C9-CIO-Cll-CI2
013: (,0) +D9-DlO-Dll-Dl2
A14: 'tax
B14: (,0) ~1F(B13>O,Bl3*$~$2,0)
C14: ('0) OIF(Cl3>O,Cl3*E2,0)
014: ($0) QIF(Dl3>O,Dl3*$E$2,0)
Bl5: ('0) \-
C15: (,O) \-
D15: (,0) \-
A16: 'net income
B16: (' 0) +Bl3-B14
C16: ('0) +Cl3-C14
D16:. ('0) +Dl3-Dl4

Figure 3: The map of the P&L spreadsheet (right hand side), annotated by user-defined
attribute labels (left hand side), obtained from the spreadsheet's outline. E ~enterforDigita1 Economy Research . Stem School of Business limitations, the map covers only years 1992, 1993, and 1994, of the onglna WorhingPaperlS-92-28

aC1l .gra te :
a E l] . ovhead :
a C11. cogs :
aC1l . tax:
p Cll .year :
p C21 .year :
pC3l .year:
p C11 . sa les :
pC21 . sa les :
p C3l. s a l e s :
p C11 . cogs :
p [a] . cogs :
p C3l . cogs :
p C1l . ovhead :
p C2l. ovhead :
p C3l. ovhead :
p C11 . lease:

numeric
numeric
numeric
numeric
s t r i n g
s t r i n g
s t r i n g
numeric
P El1 .sales*(l+aC$ll .grate)
P C2l .sales*(l+aC$l] .grate)
p C11. sales*a[$ll. cogs
pC21 .sales*aC$iI .cogs
P C31. sales*aC$il . cogs
a l l] . ovhead
a C1l . ovhead
a C1l . ovhead
numeric

p C2l . l ease : numeric
p C3l . l ease :
pC1I . inc:
p C23 . inc :
p C3l. inc :
pC11 . tax:
pC21 . tax:
pC3l - t ax :
pC11 .net:
p C21 .net :
p C3l .net :

numeric
p C i l . sales-p Ell . cogs-p Ell . ovhead-p [l] . lease
P C21. sales-p C21. cogs-p C21. ovhead-p C21 . lease
p C31. sales-p C3l. cogs-p C31. ovhead-p C3l. lease
QIF(pC11 . inc>0,~[11 . inc*a[$11 .tax,O)
QIF(p C21. inc>O ,p C21. inc*aC$11 .tax,())
QIF(pC31. inc>O,pC31. inc*aC$ll . tax,0)
p C11. inc-p C11 . tax
p C21. inc-p C21 . tax
p C31. inc-p C31 . tax

Figure 4: The logical map of the forecasting spreadsheet- the output of steps F1-F4 of the
factoring algorithm. The cell addresses on the right are not part of the logical map, and
are given here only for reference purposes.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

a Cnl . g ra t e :
a [n] . ovhead :
a Cnl . cogs :
aCnl . tax:
p Cnl .year :
p Cn=ll . sa les :
p [2<=n<51 . sa les :
p Cn>=5l . sa les :
p Cnl . cogs :
p Cnl . ovhead :

numeric
numeric
numeric
numeric
s t r i ng
numeric
pCn-11 .sales*(i+aCIl .grate)
0.5*(p En-21 . sales+p Cn-11 .sales) *I .2
p Cnl . sales*aC11 .cogs
a Cll . ovhead

pCnl . lease: numeric
p Cnl . inc : p Cnl . sales-p Cnl . cogs-p Cnl . ovhead-p Cnl . lease
.pCn] . tax: (OIF(~ Cnl . inc>O,p Cnl . inc*aC11 .tax,O) .
pCnl .net: p Cnl . inc-p Cnl . t ax

Figure 5: The spreadsheet map after step F7 of the factoring algorithm.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

Conventional
Spreadsheet

Spreadsheet /I
Factoring / Synthesis i-i

E
b L * * : b

I *
t I I I

I '
: 4

I *

Base Libr

Figure 6: A spreadsheet model and its four components. Up arrows represent synthesis;
down arrows factoring.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-28

