
CASE TECHNOLOGY AS A
MEDIATING FACTOR IN ANALYST

AND PROGRAMMER JOB OUTCOMES

Gregory E. Truman
Information Systems Department

Leonard N. Stern School of Business
New York University

New York, New York 10003

January 1992

Center for Research on Information Systems
Information Systems Department

Leonard N. Stern School of Business
New York University

Working Paper Series

STERN IS-92-6

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-06

Table of Contents

I. Introduction

11. Advent of CASE Technologies

111. Current State of CASE Technology

IV. The Bounding Effects of CASE Technology

The Semantic Bounding Aspect

The Syntactic Bounding Aspect

V. The Hackman and Oldham Job Characteristic Model

Job Characteristics

Job Characteristic Model Moderators

The Job Characteristics Model and IS Research

VI. The Role Perception Constructs

The Role Perception Constructs and IS Research

VII. Hypotheses

VIII. Research Methodology

Research Design

Subjects

Measures

Testing

Power Analysis

IX. Discussion

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-06

I. ~ntroduct ion

The performance of software engineering groups has been censured by

individuals, from both within the ranks of data processing personnel and

those they support. End-users are unsettled as they await substantial

time periods for delivery of their application systems. As a specific

example consider the following: several years ago a manufacturer of

paperboard products reported a three year turnaround on large development

projects--two years just waiting in the queue [Gremillion et a1 19831.

More generally Alloway et a1 (1983) found demand among four classes of

application systems exceeded supply by 100 to 500 percent, as they

stressed the need to refocus attention from the backlog to demand in

order to gain a greater appreciation of the problem from the users1

perspective. Indeed the problem of unfulfilled user demand, accompanied

by decreasing hardware cost and more sophisticated user interfaces, is

consistently cited in the literature as providing impetus for end-user

computing proliferation [Cotterman et a1 1989, Benson 1983, Rockart et a1

19831. And literature describing vital concerns of IS experts or

management consistently identify end-user computing growth as one leading

management concern: Straub et a1 (1990) as evinced through identifying

the importance of Human Interface Technologies; Brancheau et a1 (1987)

and Dickson et a1 (1984) as stressed explicitly by stating the importance

of end-user computing.

Data processing managers are even admitting and critical of their

own departments1 performance. According to a survey of data processing

managers, the average backlog of development projects ranged from 18 to

36 months [Plaskett et a1 19831. As further evidence an empirical study

1

Center for Digital Ecollol~~y Research
Stern School of Business
W o r h g Paper IS-92-06

using the Delphi technique found data processing executives ranking

adequate systems development response as the number one critical success

factor, as they claimed frequent and sizable cost and time overruns

[Martin 19821. This testimony is supported by continuing indications of

problems in systems development as an influential concern among data

processing experts and managers [Straub et a1 1990, Brancheau et a1 1987,

Dickson et a1 19841.

System analysts and programmers themselves admit the excruciating

slow progress on development work. The reason is palpable--their ever

increasing preoccupation with software maintenance. As recently cited,

consider that maintenance demands require one-half of any typical

analyst/programmer's time schedule, that maintenance consumes two-thirds

of the total life-cycle resource, and that maintenance may cost as much

as 200 percent of the original development cost [Gibson et a1 19891.

Other large-scale studies investigating maintenance burdens report

similar magnitudes of disproportionate resource allocation between

maintenance and development work [Jones 1986, Lientz et a1 19803. And

dollar figures have been reported. Though the validity may be debated,

the figures1 magnitude provides an impression--over 200 billion is spent

on software engineering annually [Boehm 19871, with two to three dollars

contributed to maintenance for every single dollar expended on

development [Gallant 19861.

The chronic demand for more and better application systems, coupled

with a desire to restrain expensive data processing labor costs [Baroudi

et a1 19861, has forced businesses to create new methodologies and tools

to improve software development productivity and quality. Research has

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-06

followed these developments as it attempts to assess the impacts these

new methods and tools will have on the productivity and quality of

software engineers' work [Gibson et a1 1989, Harel et a1 1985, Hanson et

a1 1985, Jones 1978, Kemerer 1987, Mahmood 1987, Srinivasan et a1 1987,

Vessey et a1 19861, and on the job outcomes of these individuals [Baroudi

et a1 1986, Mahmood 19871. Significant research endeavor has focused on

the task of developing and testing adequate productivity measures as a

foundation for facilitating subsequent empirical research [Jones 1978,

Kemerer 19871. Exploration into impacts of specific methods and tools on

productivity, quality and job outcomes has concurrently transpired.

Hanson et a1 (1985) found that out of 20 available tools programmers

perceived interactive debuggers and screen editors as the primary

contributors to improved productivity. Harel et a1 (1985) tested the

effects of procedural and nonprocedural languages on productivity and

efficiency (quality). They found procedural languages facilitate greater

machine efficiency while nonprocedural languages promote greater

individual productivity. Other studies examined the effect of program

complexity on maintenance task performance [Gibson et a1 19891, the

influence of conditional logic tools (decision tables, decision trees and

structured English) on programmer/analyst performance [Vessey et a1

19861, and the impact of two general development methods--the traditional

structured approach and the innovative prototype approach, on the

outcomes of development projects [Mahmood 19871. Approaching the

research issue from an organizational level of analysis, Srinivasan et a1

(1987) found that organization resources, external influences on the

development process and the project teams' experience levels can

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-06

influence software development quality and effectiveness. Meanwhile

~aroudi et a1 (1986) discovered that structured design approaches

increase role conflict, structured programming techniques decrease role

ambiguity and fourth generation languages increase job satisfaction. And

Mahmood (1987) also found that structured development and prototype

approaches have varied impacts on certain affective states of the

programmer and analyst. Clearly the interest among researchers in

establishing relationships between software engineering productivity,

quality and quality of work-life and new software engineering methods and

tools is pervasive and proceeding.

11. Advent of CASE Technologies

Given the existing problems in systems development, effort to

develop more powerful and sophisticated software engineering methods and

tools continues. Of recent development in this domain of technological

advancement is the advent of Computer Automated Software Engineering

(CASE) tools. This technology has been described as the automated

manifestations of previous research efforts exploring and promoting

strategies for integrated software engineering processes [Normon et a1

19891. Designed to improve the productivity and quality of software

engineering work by automating previously performed manual tasks, CASE

provides potential to ease the current problems. Though the

proliferation of CASE tools is slight as less than 10% of analysts and

programmers have actually used them [Carlyle 19881, utilization is likely

to expand as the anticipated benefits materialize [Gane 19881, Further

support of this trend is indicated in Necco et a1 (1987); they found

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-06

general consensus among data processing personnel for expanding

utilization of specific automated analysis and design tools. And Straub

et a1 (1990) solicited opinions of ten Information System experts who

believed CASE will have a major, though indirect, effect on business

conduct as it will facilitate faster response to application system

development and maintenance requests. "CASE s value is rooted in its

ability to automate the human designer and coder11, one expert was quoted.

In light of the collective evidence it appears that CASE will become

pervasive in organizations.

Similar to the introduction of other methods and tools assisting in

software engineering, CASE and its impact on productivity, quality and

programmerjanalyst job outcomes will likely allure ample research

attention. Though there currently exists a relative paucity of CASE

research in these contexts, the initial probings have begun. Normon et

a1 (1989) has paralleled the method of [Hanson et a1 19851 to ascertain

programmer perceptions regarding the varied impact CASE technology

components exert on productivity and quality. And Orlikowski (1989)

investigatedthe behavioral implications of CASE technology deployment at

a software consulting firm. The erection of social barriers between a

technical group responsible for enhancing and supporting the CASE

technology and the functional group responsible for leveraging the power

of the CASE technology during application development was observed.

Other behavioral repercussions resulting from CASE deployment were

noticed as well. These studies exhaust, to the best of the author's

knowledge, the empirical investigations of CASE technology's impact on

productivity, quality and programmer/analyst job outcomes. As an effort

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-06

to expand research in this domain, and to continue in the traditional

streams of research in software development, this study will assess the

effect CASE tools may exert on programmers1 and analystst job outcomes.

Interest in focusing on job outcomes is borne on two rationales.

First, an assessment of job outcomes contingent on CASE technology

deployment is significant as turnover of data processing personnel has

consistently imparted concern and attention among data processing

managers [~aroudi et a1 1986, Bartol 1983, Brancheau et a1 1987, Ives et

a1 1981, Martin 1982, Rockart 19821 . As CASE mediates system development
practices [Orlikowski 19891, it may possess the potential to alter the

task set of programmers and analysts and the working relationships among

programmers and analysts. And more generally information technology--

induced changes to a job fundamentally alters the individual's relation

to the task, forcing task execution into an abstract mode [Zuboff 19821.

 heo ore tic ally task alteration [Hackman et a1 19801 and changes in working

relationships, or role perceptions [Kahn et a1 19641, may affect job

outcomes such as job satisfaction. As job outcomes are related to

turnover among IS personnel as shown by [Bartol 19831 and supported by

Baroudils review of relevant literature [Baroudi 19851, a link between

CASE technology deployment and turnover is established.

The second rationale for interest in CASE technology influences on

job outcomes is advanced by the findings of Curtis et a1 (1988). They

cited several supportive studies and demonstrated that behavioral

components generally impact software engineering productivity and quality

significantly, while methods , and tools have only small to moderate

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-06

influence. In light of these results dissection of the behavioral

implications of CASE technology deployment may provide more efficacious

extension of research, as opposed to direct assessment of CASE

technology's impact on productivity and quality independent of the

behavioral associations.

111. Current State of CASE Technology

The infancy of CASE technology is reflected not only in its limited

exposure to programmers and analysts as indicated above, but also in its

sophistication. To date there is no CASE tool that integratively

supports the entire systems development process from planning through

implementation [Gane 19881, which, at least theoretically, is the

objective. Progress towards this goal is occurring incrementally. The

vendor market currently delivers a set of tools providing fragmented

support of substantial variation across systems development stages. For

example Excelerator, the leading CASE tool by market share (28.9%),

supports nearly every stage of the development process: analysis is aided

through data flow diagram capability; design is supported through

automated entity relationship diagrams, structured charts/diagrams, and

state-transition diagrams among other design aids; code generation is

limited to automating code akin to that of a COBOL 'Data Divisionf,

however "add-onsvf can be attached for generation of rudimentary COBOL

'Procedure Divisionf-like code; prototyping is functional; documentation

generation is highly sophisticated, evidenced by an interface to desktop

publishing software; and finally project management is facilitated

through an optional link to Project Management software [Gane 19881. And

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-06

this list is not exhaustive of Excelerator functions. In contrast ER-

Designer (1.5%) , ANATOOL (1.6%) and Transform (0.1%) are functionally

limited as they support only entity relationship diagrams (design), data

flow diagrams (analysis) and code generation (programming) respectively

[Gane 19883.

As further evidence regarding the varied nature of basic

functionality among CASE tools, a brief inventory was taken according to

the information provided by Gane (1988). Specifically prototyping, code

generation, documentation generation and project management functions

were considered. Of the 25 tools researched 14 contained some form of

prototyping capability, 17 generated COBOL 'Data Divisiont code or

comparable code of some other language while only 8 generated COBOL

'Procedure Divisiont code or something comparable, 19 supported

documentation generation, and 12 yielded some type of project management

assistance. And there was the tendency for a CASE tool to provide either

a front-end function e.g. prototyping, or a back-end function e.g. code

generation. Therefore depending on the level of granularity upon which

various stages of the system development process is defined, a given CASE

tool may be considered to lend support for a particular system

development stage or it may not.

Limited CASE technology support may lend cause to argue against

significant influence on software engineering job outcomes. However as

some are relatively comprehensive e.g. Excelerator, and vendor plans are

generally expansive e.g. of the 25 vendors 14 had plans for adopting

other functional roles [Gane 19881, it is contended software engineers

will become increasingly exposed to automated development mechanisms in

Center for Digital Economy Rerearch
Stern School of Business
Working Paper IS-92-06

the future. Consequently consideration for focusing on CASE tools

incorporating greater functionality will guide the survey cite selection

decision, even though limited CASE tools may wield some effect as well.

A framework for analyzing how CASE technology may impart impact on

software engineerst job outcomes follows.

IV. The Bounding Effects of CASE Technology

According to Orlikowski et a1 (1989) CASE technologies hold the

potential to exert bounding influences on systems development activity.

As indicated in [Orlikowski et a1 19891, three bounding effects may

occur :

Constitutional Boundinq - Reflects the notion that design activity
is constituted by a set of underlying assumptions, concepts, norms,
interests, and values--that is, a language.

Methodolosical Boundinq - Recognizes that each CASE tool supports a
different set of system design methodologies for the task it
addresses.

Im~lementation Boundinq - Reflects specific constraints imposed on
the design activity consequent to CASE deployment which reduces the
designerst degrees of freedom with respect to the sequence of design
attention, representation and manipulation of objects, interface
characteristics or possible methodological ttshort-cutsw.

These three bounding effects become manifested in the semantic and

syntactic aspects of design activity a la CASE technology [Orlikowski et

a1 19891. The semantic aspect will be addressed first, followed by the

syntactic aspect.

The Semantic Bounding Aspect

The semantic aspect refers to the assortment of diagrams and

representation symbols used to facilitate the conduct and convey the

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-06

results of development activity. The I1soulW of the semantic aspect is

the software development methodology to which the tool subscribes. And

all CASE technologies must subscribe to a methodology as their existence

necessarily embodies one. Orlikowski et a1 (1989) referred to the

semantic aspect as the content of the CASE tool. To the extent that the

design activity is constrained or influenced by the CASE tool, a semantic

bounding effect transpires [Orlikowski et a1 19891. As indicated in

~rlikowski et a1 (1989), several semantic facets may exert a bounded

influence on programmers and analysts; facets centered on (1) the number

of design objects offered by each tool, (2) the variety of design object

types, and (3) the rarity of design objects.

As a concrete example illustrating the semantic bounding effect

consider the following. A tool used during the analysis phase of a

development project is the data flow diagram [Davis 1983, Gane et a1

1979, Marshall 1986, Whitten et a1 19891. Indeed data flow diagrams have

evolved into a highly pervasive mechanism through which systems analysis

is conducted [Whitten et a1 19893. These diagrams reveal the data's

origin (input), its destination (output), its interim storage area

(storage), and its transformations (process) [Davis 1983, Gane et a1

1979, Marshall 19863. The data flow diagram assists in organizing masses

of information, in facilitating communication with the user as meaning is

embodied in concise, non-technical picture format, and in "bridgingw to

the design phase by conveying high-level design specifications [Davis

19831. There are two predominate symbol sets popularly employed for data

flow diagrams; each set has an exhaustive collection of symbols for

conveying necessary information and each contains a symbol comparable to

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-06

one comprised in the other [Whitten et a1 19891. The two symbol sets are

referred to as the Gane-Sarson Data Flow Diagram and the DeMarco-Yourdon

Data Flow Diagram. As revealed in Gane (1988), of the 25 CASE products

surveyed one supported the Gane-Sarson symbol set only, three supported

the DeMarco-Yourdon symbol set only, six supported both sets and eight

supported data flow diagrams but were unspecified as to the exact symbol

set utilized. (Seven CASE tools did not support any analysis activity.)

To the extent that the deployed CASE tool's faculty of data flow

diagramming technique counters the developers' norm of data flow

diagramming technique, a semantic bounding effect will occur. For

example a CASE tool providing Gane-Sarson symbols while the developer's

experience is grounded in the DeMarco-Yourdon symbol set substantiates an

occurrence of semantic bounding. Clearly this is possible as four of the

tools engaged only one of the symbol sets. As a CASE tool will likely

govern the development activity of software engineering groups, these

semantic bounding influences may potentially reverberate to many

individuals within a single group.

As another example consider the activity of program design. Davis

(1983), Gane et a1 (1979). Marshall (1986) and Whitten et a1 (1989)

collectively identify the following tools or techniques for supporting

program logic specification: Warnier-Orr diagrams, traditional (IBM)

flowcharts, decision tables, decision trees, HIPO/IPO charts, pseudo code

or structured English, and Nassi-Schneiderman diagrams. There are subtle

differences among these but their general purpose--program logic

specification, is the same. For example decision tables are generally

more useful for illustrating complex decisions i.e. many alternatives

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-06

[~avis 1983, whitten et a1 19891, while decision trees are generally more

useful when many levels characterize the decision [Marshall 19861. And

Vessey et a1 (1986) confirmed these subtle trade-offs by finding varying

programmer performance levels transpiring during two psychological

processes (taxonomizing and sequencing) occurring during program design;

the variance resulted from the leveraging of either decision trees,

decision tables or structured English. For taxonomizing decision trees

provided the best performance level followed by structured English and

decision tables. For sequencing decision trees and structured English

facilitated comparable performance, while performance using decision

tables lagged behind.

Consequently a programmer may prefer utilizing one tool or

technique, depending on the nature of the program, or indeed one may be

advantageous. However by operating within the jurisdiction of CASE

technology, a programmer will be bounded by the program logic tool or

technique made available through the CASE technology. As shown in Gane

(1988) Warnier-Orr diagrams were available in three CASE tools, three

employed the traditional (IBM) flowcharts, one facilitated the use of

decision tables, none used decision trees, one implemented HIPO/IPO

diagrams, none leveraged pseudo code or structured English, one engaged

the Nassi-Schneiderman option, and finally five employed some type of

customized feature for program logic specification. (Fourteen did not

accommodate program logic specification or did not specify the

alternative.) Most tools provided only one option, although several had

two options available and one had three alternatives. The potential for

constraining or influencing the programmer through activation of the

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-06

semantic bounding aspect during program logic specification exists under

these conditions, as a programmer's preferred method may not be available

in a given CASE environment. Further examples of the semantic bounding

influences are available in Orlikowski et a1 (1989).

The Syntactic Bounding Aspect

The syntactic aspect of design is bounded primarily through

implementation bounding effects [Orlikowski et a1 19891. Generally it

refers to the formalization and standardization of development activity

as necessarily imposed through tool usage [Orlikowski et a1 19891.

Additionally, the ordering of work activities as prescribed by the CASE

tool is another manifestation of implementation effects. As noted in

[Orlikowski et a1 19891:

The details of a specific tool implementation impose a context of
use on the designer/tool user by determining the spatial and
temporal conditions within which design tasks are executed.

The syntactic aspect is the form of the CASE tool, which contains several

facets capable of exerting potential bounding effects on programers and

analysts [Orlikowski et a1 19891. These facets include the technical

limitations, the extent of design assistance, the degree of integration,

and the support for multiple users.

As an example to illustrate the syntactic bounding effects, consider

the facet of multiple user support and the implications this has for

sustaining integrity of the work activity. Each CASE tool employs a

control mechanism over access to the repository containing the results of

development activity. Various degrees of locking exist. Gane (1988)

found three CASE tools had no locking capacity, eight employed a locking

13

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-06

mechanism at the entity or object level, five provided locking at the

document or diagram level, two maintained locking functions at the

application or database level, one locked at the release or version

level, one allowed only single user capability, and for the remaining

tools the locking mechanism was either not discernible or not applicable.

And all locking mechanisms were instantiated either formally or

informally. Formal meaning locking mechanisms were embedded in the

technical design of the CASE product; informal meaning locking mechanisms

were constituted through notification of developers that sharing of work

objects was occurring. The latter mechanism left the burden for

maintaining integrity to the developers. To the extent the locking

mechanism constrains or influences the developers, a syntactic bounding

effect transpires [Orlikowski et a1 19891. And the intrusiveness of the

locking mechanism's effect on the development team effort will calibrate

the required communication among the members during the design process

[Orlikowski et a1 19891. Further examples of the syntactic bounding

influences are available in [Orlikowski et a1 1989).

In general the semantic and syntactic bounding effects evinced

through CASE technology deployment will constrain developers by omitting

any expression or process of problem resolution outside the realm of the

CASE language; similarly CASE deployment will influence developers by

coaxing use of contained problem solving expressions and processes

[Orlikowski et a1 19891. The specific manifestations of these bounding

effects is hypothesized to impact on the job characteristics and role

perceptions of software engineers. Testing these effects is the essence

of this study. Providing evidence to support his conjecture emerges, a

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-06

prediction regarding CASE technology's impact on job outcomes can be made

as task characteristics [Hackman et a1 19751 and role perceptions [Kahn

et a1 19641 have been shown to impact job outcomes such as job

satisfaction. Before stating the hypotheses, brief descriptions of the

Job characteristics model [Hackman et a1 19801 and the role perceptions

model [Kahn et a1 19641 are conducted, accompanied by a review of each

respective models use in IS research.

V. The Hackman and Oldham Job Characteristic Model

The Hackman and Oldham Job Characteristics model specifies three

psychological states that, when obtained, lead to positive influences on

job outcomes. These states manifest themselves in a feeling of

meaningfulness from work, a sense of responsibility for work outcomes and

an obtainment of knowledge regarding work activity. All psychological

states are necessary conditions to instantiate a positive influence on

job outcomes. Each state is in turn influenced by one or more job

characteristics as described along several dimensions. These dimensions-

-skill variety, task identity, task significance, autonomy and feedback,

are the specific characteristics to be examined for change consequent to

the impact of CASE technology's semantic and syntactic bounding

influences.

Job characteristics

Listed below are the specific job characteristics identified by

Hackman and Oldham as influencing psychological states [Hackman et a1

1980 1.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-06

Skill Variety: The degree to which a job requires a variety of
different activities in carrying out the work, involving the use of
a number of different skills and talents of the person.

Task Identity: The degree to which a job requires completion of a
"whole" and identifiable piece of work; that is, doing a job from
beginning to end with a visible outcome.

Task Significance: The degree to which the job has a substantial
impact on the lives of other people, whether those people are in the
immediate organization or in the world at large.

Autonomy: The degree to which the job provides substantial freedom,
independence, and discretion to the individual in scheduling the
work and in determining the procedures to be used in carrying it
out.

Job Feedback: The degree to which carrying out the work activities
required by the job provides the individual with direct and clear
information about the effectiveness of his or her performance.

The first three characteristics contribute to one psychological state in

disjunctive form. Specifically the presence of either skill variety,

task identity or task significance will allow for a feeling of

meaningfulness to emerge from work activity. The presence of autonomy

will allow for a sense of responsibility for outcomes of work effort,

while the presence of job feedback will enable the accumulation of

knowledge regarding the results of work activities. Together the three

substantiate the motivating potential of the individual as alluded to

above. Additionally, the model has some verified moderating variables

which are discussed below.

Job Characteristic Model Moderators

People are different. They respond to similar situations and

routines in various fashions as they experience different feelings.

Several factors, intrinsic to the individual, have been recognized as

moderating the resulting motivating potential and job outcomes as changes

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-06

in job characteristics occur [Hackman 19801. The first moderating

variable is knowledge and skill. Assuming a job is rated highly on all

job characteristics, the individualls level of knowledge and skill will

influence the job outcome. (This assumption is necessary as no influence

on job outcomes transpires when job characteristics are rated low.)

Substantive knowledge and skill necessary for the job will facilitate the

individualls ability to perform well, thereby allowing positive job

outcomes to follow. The individualls perception regarding the relevancy

of his knowledge and skill in performing his job must therefore be

recorded and controlled for. Given the context of the research problem

posed here, this moderating variable has potential for considerable

effect. CASE tools are a relatively innovative technology, therefore the

potential for programmers and analysts to feel inadequate in knowledge

and skill with the tool is possibly quite high.

The other two moderating variables are 'growth need strength1 and

'satisfaction level with the work context1. Growth need strength refers

to the intrinsic desire for personal accomplishment; satisfaction level

with the work context refers to other facets of the individualls

relationship with the organization. These facets include feelings toward

pay, fellow workers, physical working environment and the like.

Different from the first moderator, these two will influence the

relationship between job characteristics and job outcomes via an

interaction effect. Concurrent high growth need strength and high

satisfaction with the work situation will lead to strong influence on job

outcomes from high levels of the job characteristics. Concurrent low

growth need strength and low satisfaction with the work situation will

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-06

lead to weak or no influence on job outcomes from high levels of the job

characteristics. Concurrently mixed levels of the two moderators will

cause a moderate influence on job outcomes, Though the context of the

research question does not lend enhanced likelihood of these moderating

effects occurring, ascertainment of them is still necessary for control

purposes during subsequent interpretation of results.

The reliability and construct validity of the Job Diagnostic Survey

[Hackman et a1 19751--the instrument for capturing measures of the task

characteristics and moderating factors, has been confirmed by several

sources. Hackman and Oldham performed exhaustive reliability and

validity tests on the instrument at the time of model inception [Hackman

et a1 19741, and independent sources have corroborated their results

[Cook et a1 19811. A review of several studies in Information Systems

research employing Hackman and Oldhamts model follows.

The Job Characteristics Model and IS Research

Turner (1984) focused on the task environment embodied within the

amount of work demanded of workers, the degree of discretion allowed

workers and the interdependence among workers as intervening factors

between technology utilization and workers' attitudes and performance.

The embodiment elements are, in the context of the Hackman and Oldham

model, equivalent to the job characteristics identified above. The

empirical results indicated both positive and negative impacts on job

outcomes occurred.

Kraut et a1 (1989) extended on [Turner 19841. The original model

from [Turner 19841 was expanded to incorporate other elements such as

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-06

implementation strategy, organizational environment and composition of

work force as moderating factors, but the I1heartl1 of the original model

was left in tact--the nature of job characteristics remained the central

mediating factor between technology implementation and workers1 attitudes

and productivity. Again the results revealed both positive and negative

impacts on job outcomes.

Cougar and Zawacki (1980) employed Hackman and Oldhamls model and

surveyed over 2500 data processing employees from management, development

(data processing professionals) and operations. They found data

processing managers possess high growth need strength and they perceived

their jobs to have high motivating potential. Hence a good match exists.

Data processing professionals also have high growth need strength and

their jobs have high motivating potential, however variation at the

organization level existed. This suggested over-specialization of jobs

at some organizations may affect task characteristics and detract from

the motivating potential creating a mismatch between person and job, and

consequent low job satisfaction. Operations personnel were found to have

growth need strength comparable to the other groups, however the

motivating potential of their jobs was significantly lower. This

indicated a serious mismatch between operations personnel and their jobs,

suggesting a need for work redesign.

Finally Yaverbaum (1988) leveraged the Hackman and Oldham model to

study the job satisfaction of end-users. She found end-users generally

perceive their jobs as providing greater motivating potential than

comparable workers performing their tasks without the assistance of

information technology. This finding contrasted with a similar

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-06

comparison at the management level. Managers using information

technology did not behold their jobs as more significant or meaningful,

relative to managers not using it.

The Hackman and Oldham Job Characteristics model has been useful for

assessing the impact of information technology on job outcomes, both

within and outside of the ranks of data processing personnel, as

evidenced by these studies. However there is a limitation associated

with it. The Job Characteristics model maintains an implicit assumption

of job characteristics impacting job outcomes for an individual working

indeuendentlv [Hackman et a1 19801. It does not capture the orthogonal

dimension of workins relationshius that has been shown to also impact job

outcomes [Kahn et a1 19641. As significant exposure of software

engineers to other members of the project team and the user community

occurs [Goldstein et al1984, Goldstein 19891, the relevance of capturing

the impact of workina relationships on software engineers' job outcomes

is established.

VI. The Role Perception Constructs

The role perception constructs capture the effects of worker

interaction on job satisfaction [Kahn et a1 19641. Kahn et a1 (1964)

discovered two specific constructs holding potential for impacting job

satisfaction--role conflict and role ambiguity. Definition of each

follows [Bostrom 19811.

Role Conflict - The degree of incongruity or incompatibility in the
expectations or requirements communicatedto a focal person [p. 921.

Role ~mbiauitv - The degree to which desired expectations are vague,
ambiguous or unclear, thereby making it difficult for the person to
fulfill the requirements (of his/her role) [p. 931.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-06

Kahn et a1 (1964) identified four components of role conflict. Role

ambiguity is constituted by a single component. The role conflict

components follow.

(1) Person-role Conflict - The extent to which role expectations
are incongruent with the orientations, standards, or values of
the focal person.

(2) Intrasender Conflict - The extent to which role requirements
are incompatible with the resources or capabilities of the
focal person.

(3) Intersender Conflict - The extent to which role requirements or
expectations from one party oppose those from one or more other
parties.

(4) Role Overload - The extent to which the various role
expectations communicated to the focal person exceed the amount
of time available for their accomplishment,

These constructs are the specific job interaction properties to be

examined for change consequent to potential impact of CASE technology's

semantic and syntactic bounding influences. Several IS research studies

have been conducted focusing on measurement of the role constructs;

descriptions of these follow.

The Role Perception Constructs and IS Research

Bostrom (1981) found a negative correlation between software

engineersi sense of role conflict and role ambiguity and their job

satisfaction. (This inverse relationship was originally found by Kahn et

a1 (1964)). More interestingly, as the software engineerst perceptions

of role variable levels increased, users' satisfaction with the

information system decreased. Baroudi et a1 (1986) tested various

technological environment elements' impact on perceived role conflict and

role ambiguity. They found structured design techniques correlate

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-06

positively with role conflict, while reporting to a project leader and

working on innovative projects correlate negatively with it. Role

ambiguity correlated negatively with only two variables--structured

programming and project innovativeness. And congruent to theoretical

rationale, they found role perceptions correlate negatively with job

satisfaction.

Goldstein et a1 (1984) tested role perceptions, job characteristics

and leadership variables to ascertain which set explains a greater

proportion of variance in job satisfaction. They found job

characteristics, role perceptions and leadership characteristics account

for job satisfaction variance in decreasing order. And both role

perceptions and leadership characteristics account for significant

variance beyond that accounted for by job characteristics. However

leadership characteristics did not account for significant variance

beyond that accounted for by job characteristics role perceptions.

And finally Goldstein (1989) found that the perceived level of role

ambiguity differed significantly among data processing professionals

grouped into four functional areas--user support, maintenance,

development-analysis, and development-programming. Using the Scheffe

test he showed that development-analysis personnel experience higher role

ambiguity than development-programming personnel.

The role perception constructs have been instrumental in IS research

for capturing significant relationships between the worker interaction

dimension and job satisfaction. This dimension, coupled with analysis of

the task environment as captured by the Job characteristics model, will

more fully apprehend the dynamic factors operating on job satisfaction in

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-06

a software engineering environment with CASE technology deployment than

would either alone. To this end, both dimensions will be tested for

sensitivity to the semantic and syntactic bounding effects.

VII. Hypotheses

Orlikowski et a1 (1989) identified a semantic bounding rooted in a

CASE toolis subscription to a specific systems development methodology.

Methodology implies a parochial set of design tools and techniques. This

may constrain or influence the programmers1 and analysts1 development

practice as their preferred tools and techniques may be disallowed by the

tool's methodology domain. Essentially CASE may narrow the set of skills

and talents which they most appreciably would exercise outside a CASE

environment, as indicated by quotes from CASE-users in [Orlikowski et a1

"Tools force people to think in a certain way. We all think screens
and reports. So we donlt have a chance to think if things could be
done a better way. Tools have definitely stopped me thinking about
other ways of doing things.",

and

"With tools we force one path, and force everyone down that path.
I am not sure it's the right path, but at least it's a standardized
path. It

Hy~othesis 1
Given the semantic bounding effects in this context, CASE will lessen
skill variety as some of the individuals1 skills and talents may be
inhibited by the technology.

Orlikowski et a1 (1989) indicated automated development assistance

as one manifestation of syntactic bounding. The rationale behind

inclusion of automated assistance is promotion of productivity and

quality; however, an undesirable consequence of this may emerge as the

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-06

tool governs work activity previously performed by the individual. As

Hackman et a1 (1980) indicated a potential infringement on task identity

by either coworkers or machines, a software engineer's ability to

experience task identity leveraging CASE technology may be restrained.

Hmothesis 2
Given the syntactic bounding effects in this context, CASE will lessen a
sense of task identity as the machine inherits portions of development
tasks.

Orlikowski et a1 (1989) also disclosed CASE tools reducing the

perceived level of active problem solving by forcing developers into

working more abstractly. As problem solving is the substance of

analytical work, a software engineer with less opportunity to solve

problems may inherit a lesser sense of accomplishment and influence in

his or her work; and consequently, according to Hackman et a1 (1980), a

lower perceived task significance.

Hypothesis 3
Given the semantic bounding effects in this context, CASE will lessen a
sense of task significance, as the software engineer experiences a
reduced sense of accomplishment and influence.

Orlikowski et a1 (1989) described the semantic bounding effects as

employing a prescribed systems development methodology, consequently

forcingthe software engineer to utilize a specific repertoire of symbols

and objects provided by the CASE tool. Additionally, Orlikowski et a1

(1989) described a syntactic bounding feature of degree of integration.

As noted in [Orlikowski et a1 19891 a higher level of integration

tightens control over the ordering of tasks, imposing a temporal

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-06

constraint on design activity. Consequently many developers would

attempt to "tricktf the tool to create the appearance of task completion

so that work could proceed. Together these semantic and syntactic

bounding effects may lessen autonomy as discretion in work activity and

the ordering of it decreases, and as CASE imposes a reduced sense of

independence.

Hv~othesis 4
Given the semantic and syntactic bounding effects in these contexts, CASE
will lessen a software engineer's sense of autonomy as the tool imposes
a repertoire of development aids and a temporal constraint on design
activity.

Some CASE technologies provide capabilities which previously evaded

programmers and analysts. For example user interface prototyping was

rarely performed prior to CASE for lack of a mechanism. (Here the

syntactic bounding effect of CASE technology has influenced design

activity by extending the developers' capabilities.) As Mahmood (1987)

found increased user participation in the design process using the

prototype method, this process will facilitate greater opportunity for

feedback from the user community. Additionally, CASE tools are

constantly performing cross-checking to enforce standards and structure

in the design process [Orlikowski et a1 19891. This is a syntactic

bounding feature referred to as design assistance. Any violations in

data integrity for example are immediately referred to the programmer or

analyst for prompt correction. Prior to CASE any threats to standards

and structure remained unresolved until later stages, or perhaps never

detected. The tool is essentially providing substantive feedback on a

near continual basis as software engineering activity occurs, therefore

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-06

perceived levels of feedback fromthe development environment may rise as

well.

Hy~othesis 5
Given the syntactic
increase the level o
technical environment

bounding effects in these contexts, CASE will
lf feedback both from the user community and the

CASE technologies are implemented in part to elicit a structured

development process [Orlikowski 19881 and dictate standards to [Normon et

a1 19893. Goldstein (1982) asserted that structured development

processes will reduce role conflict and role ambiguity. Baroudi et a1

(1986) adhered to this claim by hypothesizing a reduction in both role

conflict ambiguity, however they found an increase in role conflict and

no impact on role ambiguity. Baroudi et a1 (1986) also investigated the

impact of structured programming on role ambiguity. They hypothesized

and found a reduction in role ambiguity as structured programming

provides guidelines regarding the process of programming. Consequently

the results regarding the impact of structured development processes on

role perceptions are mixed. Nonetheless assuming structured techniques

and standards are imposed by CASE deployment, the technology may reduce

role conflict and role ambiguity given the tool's provision of

technically enforceable guidelines and automated assistance.

~vpothesis 6
To the extent CASE imposes structured techniques and standards, role
conflict and role ambiguity will decrease.

-

As support for hypotheses 1, 2, and 4 cast in the context of the

semantic/syntactic framework, the hypothesized reduction for these three

job characteristics concurs with Kraftls (1977) and Goldstein's (1982)

26

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-06

assertion that structured development methods will reduce skill variety,

task identity and autonomy.

A summary of hypotheses is listed in Table 1. The overall impact on

job satisfaction and motivating potential is indeterminate as there

exists a competing influence of hypothesized effect amonq the five job

characteristics and the two role constructs. The first four job

characteristics are hypothesized to decrease--reduce job satisfaction,

while the last one is hypothesized to increase--increase job

satisfaction. The two role constructs are hypothesized to decrease--

increase job satisfaction. The composite effect of these constructs on

job satisfaction is consequently unknown. Accordingly no hypothesis

regarding overall job satisfaction is made.

VIII. Research Methodology

To test the hypotheses, an organization with CASE technology

deployment was sought out. The requirements of the organization's data

processing department included (1) deployment of a CASE tool

accommodating at least two stages of the development process e.g.

requirements definition and analysis, analysis and design, or design and

code generation, (2) at least six months of development activity

leveraging CASE technology, and (3) the persistence of development

activity using traditional methods.

A consulting company in the New York City area meeting the

requirements was found. It has deployed a CASE tool supporting, to

varying degrees, every development stage. The CASE tool incorporates

prototyping capability, allowing screen and report creation as it

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-06

facilitates the designer-user dialogue. Systems analysis is supported

via automated construction of data flow diagrams with explosion

capability. The tool assists in the design as well, granting several

mechanisms to aid the developer in conducting detailed system and program

specifications. And finally a foundation for code generation is

sustained through inclusion of established rules, resembling structured

English and providing the Itbuilding blocks1' of program construction.

This brief list of functions is intended not to exhaust the complete

functionality of the CASE technology, but to grant a flavor of the CASE

technology's automated features at the research cite.

Research Design

The study design will contrast the subjects1 opinions regarding job

characteristics and role perceptions. Subjects will be placed in two

groups. One group will consist of software engineers working in a CASE

environment and the other group of software engineers working in a non-

CASE environment. Assessment and comparison of job characteristics and

role perceptions as conveyed by the subjects of these distinctive

environments will allow hypotheses testing, analysis supplemented by the

theoretical support provided by the Job Characteristics model and role

perception constructs. Figure 1 presents a model of the research design,

referred to as the Development Environment Impact model. Campbell et a1

(1963) refers to this design as the Posttest-Only Control Group Design;

it is vulnerable to no internal sources of invalidity and only two

external sources--(l) the interaction of selection and treatment and (2)

the reactive arrangements.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-06

A questionnaire will be administered to the individuals for data

collection. The questionnaire administration will require approximately

one hour and will be conducted according to the guidelines as indicated

in [Hackman et a1 19753. All subjects will undertake the inquisition

concurrently and will be guaranteed anonymity.

Subjects

Thirty software engineers constitute the pool of subjects; fifteen

from each environment will be chosen at random. This will assist in

removing potential confounding factors of experience levels, nature of

application, and supervisor relations. More subjects were desired,

however the limit of thirty was imposed by the organization.

Measures

The data collection instrument will capture data on job

characteristics using an augmented Job Diagnostic Survey [Hackman et a1

19751, expanded to include assessment of role perceptions utilizing

scales accommodated to software engineers by Rizzo et a1 (1970). The

number of scales for each construct follows: three scales each for skill

variety, task identity, task significance and autonomy; six scales for

feedback--three for feedback from the job/tool and three for feedback

from agents (coworkers, users and supervisor); eight scales for all

facets of role conflict1; and six scales for role ambiguity. Data

' Bostrom (1981) found role overload did not correlate
significantly with programmer/analystst job satisfaction. However
as a major impetus behind CASE technology proliferation is improved
productivity, this variable is maintained to test whether
anticipated productivity enhancement infringes on perceptions of

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-06

covering the confounding factors as identified by Hackman et a1 (1980)

will also be solicited to control for these effects during statistical

analyses, As described above the confounding factors include possession

of knowledge and skill, growth need strength and satisfaction with the

work context.

Testing

T-tests will be conducted on composite scores for each variable,

calculated through averaging responses across respective scales. The t-

tests will compare the responses of the two groups to assess the

significance. Significance will be set at p<.05. Two-tailed t-tests

will be used to test for effects in both directions, since no empirical

evidence exists indicating any unidirectional influence. Means will be

used to assess the direction and magnitude of differences.

Power Analysis

A medium effect size in programmerst and analysts' perceptions is

anticipated from the deployment of CASE technology. In standardized

units this translates into a .50 magnitude of change [Cohen 19771.

Assuming a two-tailed t-test at the .05 alpha level and a sample size of

30, the test will provide a power level of 47 percent [Cohen 19771. To

achieve a desirable 80 percent power level a sample size of 64 would be

required. Unfortunately due to the externally enjoined constraints

previously mentioned, this sample size will not be possible. Table 2

reveals power levels for various sample sizes assuming a two-tailed alpha

role overload.

30

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-06

of .05 and a medium effect size [Cohen 19771.

IX. is cuss ion

This research study has potential to reveal specific impacts CASE

technologies may impart on job characteristics and on the pattern of

interactions among development team members. Assuming analyses of

results indicate alterations in the perceived job characteristics and

role perceptions among software engineers consequent to CASE deployment,

germane suggestions for the redesign of programmers1 and analystst work

routine will be forthcoming. As CASE may be construed as an "information

systema1 to develop information systems, the introduction of new

information systems (CASE technology) generally leads to changes in job

design [Davis et a1 19801. For example if CASE is found to decrease

skill variety as hypothesized, management may dispense expanded

responsibility to counterbalance the intrusion of CASE on the software

engineerst ill-utilized skill set. Or, if CASE increases the degree of

perceived role ambiguity, then increased management heed to software

engineer's work objectives and more guidance to their work tactics may be

suitable.

The research study may render valuable information to CASE vendors

as well. To the extent significant findings emerge, vendors may gain

insight into specific means by which CASE tools cause dissatisfaction.

Adjustment to overcome consistent impetuses toward software engineer

discontent may adequately relieve the adverse consequences, conducted

within the constraints of technical feasibility and without compromising

the benefits a CASE technology delivers e.g. integrity control measures.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-06

Creative thought, coupled with technical expertise, will be necessary.

However resources, dedicated to leverage any forthcoming insight this

study may provide, will be well expended as CASE technologies increase in

sophistication and transform the landscape of software engineering.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-06

Table 1

Hypotheses Summary

Semantic and syntactic influence on...

..respective factor. f . . . j ob satisfaction.

I I
I I

Skill Variety I I Decrease I
I Decrease

I I
I I

Task Identity I I Decrease I Decrease I

I I
I I

Task Significance f Decrease I Decrease I

I I
I I

Autonomy I I Decrease I Decrease I

I I
I I

Feedback I Increase I
I I Increase
I I
1 I

Role Conflict I Decrease I
I I Increase
I I
I

Role Ambiguity I I Decrease
I
I

Increase

Overall Job
Satisfaction

Table 2

n I
I Power

Indeterminate

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-06

REFERENCES

Al10way~R.M. and Q~il1ard~J.A. User Managerst System Needs. MIS
Quarterly 7:2 June 1983, p. 27-41.

Baroudi,J,J. The Impact of Role Variables on IS Personnel Work Attitudes
and Intentions, MIS Quarterly 9:4 December 1985, p. 341-356.

Baroudi,J.J, and Ginzberg,M.J. Impact of the Technical Environment on
ProgrammerlAnalyst Job Outcomes. Communications of the ACM 29:6 June
1986, p. 546-554.

Barto1,K.M. Turnover Among Data Processing Personnel: A Causal Analysis.
Communications of the ACM 26:lO October 1983, p. 807-811.

Benson,D.H. A Field Study of End User computing: Findings and Issues.
MIS Quarterly 7:4 December 1983, p. 33-45.

Boehm,B. Improving Software Productivity. Computer September 1987, p.
43-57.

Bostrom,R.P. Role Conflict and Ambiguity: Critical Variables in the
User-Designer Relationship. Proceedings of the 17th Annual Computer
Personnel Research Conference 1981, p. 88-112.

Brancheau,J.C. and Wetherbe,J.C. Key Issues in Information System
Management. MIS Quarterly 11:l March 1987, p. 23-36.

Campbel1,D.T. and Stanley,J.C. Experimental and Ouasi-Experimental
Desisns for Research. Houghton Mifflen Company, Boston, 1963.

Carlyle,R.E. Where Methodology Falls Short. Datamation 34:24 December
1988, p. 179-191.

Cohen, J . Statistical Power Analysis - for the Behavioral Sciences.
Lawrence Erlbaum Associates, London, 1977.

Cook,D. Hepworth,F. Wal1,G. and Warr,W. The Experience of Work.
Academic Press, London, England. 1981.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-06

Cotterman,W.W. and Kuldeep,K. User Cube: A Taxonomy of End Users.
Communications of the ACM 32:ll November 1989, p. 1313-1320.

Cougar,J.D. and Zawacki,R.A. Motivating and Managing Computer Personnel.
Wiley, New York,NY. 1980.

Curtis,B. Krashner,H. and Iscoe,N. A Field Study of the Software Design
Process for Large Systems. Communications of the ACM 31:11 November
1988, p. 1268-1287.

Davis,W. Tools and Techniaues for Structured Systems Analysis and Desian.
Addison-Wesley Publishing Company, Inc. Reading, MA. 1983.

Davis,G.B. and 0ls0n~M.H. Manaqement Information Systems: Conce~tual
Foundations, Structure, and Development. Second Edition, McGraw-Hill,
Inc., New York, NY. 1985. p. 354.

Dickson,G.W. Leitheiser,R.L. Wetherbe,J.C. and Nechis,M. Key Information
System Issues for the 1980s. MIS Quarterly 8:3 September 1984, p. 135-
154.

Gallant,J. Survey Finds Maintenance Problem Still Escalating.
Computerworld, January 27, 1986.

Gane,C. and Sarson,T. Structured Systems Analysis: Tools and Techniaues.
Prentice-Hall, Inc. Englewood Cliffs, NJ. 1979.

Gane,C. Computer Aided Software Engineering: The Methodologies, The
Products, The Future. Technical Report, Rapid System Development, Inc,
1988.

Gibson,V.R. and Senn,J.A. System Structure and Software Maintenance
Performance. Communications of the ACM 32:3 March 1989, p, 347-358.

~01dstein~D.K. The Effects of Structured Development Methods on the Job
Satisfaction of Programmer/Analysts: A Theoretical Model. Working Paper
CISF-90. Alfred P. Sloan School of Management, MIT, Cambridge, MA.
1982.

G01dstein~D.K. and Rockart,J.F. An Examination of Work-Related

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-06

Correlates of Job Satisfaction in ProgrammerlF-nalysts. MIS Quarterly 8:2
June 1984, p. 103-115.

Goldstein,D.K. The Effects of Task Differences on the Kork Satisfaction,
Job Characteristics, and Role Perceptions of Programmer/Analysts.
Journal of Management Information Systems 6:l Summer 1989, p. 41-58.

 rem million L. , Pyburn P. , "Breaking the Systems Development Bottleneckf1,
Harvard Business Review, March-April 1983, p. 130-137

Hackman,J.R. and Oldham,G.R. The JDS: An instrument for the Diagnosis of
Jobs and the Evaluation of Redesign Projects. Technical Report #4,
Department of Administrative Sciences, Yale University, New Haven, CT.
1974.

Hackman,J.R. and Oldham,G.R. Development of the Job Diagnostic Survey.
Journal of Applied Psychology 60:2 1975, p. 159-170.

Hackman,J.R. and Oldham,G.R. Work Redesisn, Addison-Wesley, Reading, MA,
1980

Hanson,S.J. and Rosinski,R.R. Programmer Perceptions of Productivity and
Programming Tools. Communications of the ACM 28:2 February 1985, p. 180-
189.

Hare1,E.C. and McLean,E.R. The Effects of Using a Nonprocedural Computer
Language on Programmer Productivity. MIS Quarterly 9:2 June 1985, p.
109-120.

Ives,B. and Olson,M.H. Manager or Technician? The Nature of the IS
Manager's Job. MIS Quarterly 5:4 December 1981, p. 49-63.

Jones,T.C. Measuring Programming Quality and Productivity. IBM Systems
Journal 17:1 1978.

Jones,T.C. Programming Productivity: Issues for the Eighties. IEEE
Computer Society Press Second Edition, Washington D.C. 1986.

Kahn,R.L. Wolfe,D. Quinn,R. Snoek,J.D. and Rosentha1,R. Orqanizational
Stress: Studies in Role Conflict and Role Ambisuitv. John Wiley and
Sons, New York, NY. 1964.

36

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-06

Kemerer,C.F. Measurement of Software Development Productivity. Doctoral
~issertation, Carnegie-Mellon University, Pittsburgh, PA. 1987.

Kraft,P. Programmers and Managers: The Routinization of Computer
programming in the U.S. Springer-Verlag, New York, NY. 1977.

Kraut,R., Dumais,S., and Koch,S. Computerization, Productivity, and
~uality of Work-life. ~ommunications of the ACM 32:2 February 1989, p.
220-238.

Lient2,B.P. and Swanson,E.B. Software Maintenance Manaqement. Addison-
Wesley, Reading, MA 1980.

Mahmood,M.A. Systems Development Methods-A Comparative Investigation.
MIS Quarterly 11:3 September 1987, p. 293-311.

Marshal1,G.R. Svstems Analysis and Desiqn: Alternative Structured
Approaches. Prentice-Hall, Inc. Englewood Cliffs, NJ. 1986.

Martin,E.W. Critical Success Factors of Chief MIS/DP Executives. MIS
Quarterly 6:2 June 1982, p. 1-11.

Necc0,C.R. Gordon,C.L. and Tsai,N.W. Systems Analysis and Design:
Current Practices. MIS Quarterly 11:4 December 1987, p. 461-473.

Norman,R.J. and Nunamaker,J.F. Jr. CASE Productivity Perceptions of
Software Engineering Professionals. Communications of the ACM 32:9
September 1989, p. 1102-1108.

0r1ikowski~W.J. Information Technology and Post-Industrial
Organizations: An Examination of the Computer-Mediation of Production
Work. Ph,D Thesis, Stern School of Business, New York University, New
York, NY. 1988.

0rliko~ski~W.J. Division Among the Ranks: The Social Implications of
CASE Tools for System Developers. Proceedings of the Tenth International
Conference on Information Systems. 1989.

~rlikowski,W. and Ariav,G. The Bounding Effect of IS Design Tools: A
critical ~xamination of CASE Technology. Working Paper #204; Center for

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-06

Research on Information Systems; New York University. March 1989.

Plasket R. , Wilnef f P. , HProductivity and DP Management : Losing C~ntrol?~~,
Journal of Systems Management, October 1983, p. 30-35

Rizzo,J. House,R. and Lirtzman,S. Role Conflict and Ambiguity in Complex
Organizations. Administrative Science Quarterly 15:2 June 1970, p. 150-
163.

Rockart,J.F. The changing Role of the IS Executive: A Critical Success
Factor perspective. Sloan Management Review 24:l Fall 1982, p. 3-13.

Rockart,J.F. and Flannery,L.S. The Management of End-User Computing.
Communications of the ACM 26:lO October 1983, p. 776-784.

~rinivasan,~. and Kaiser,K.M. Relationships between Selected
Organizational Factors and Systems Development. Communications of the
ACM 30:6 June 1987, p. 556-562.

Straub,D.W. and Wetherbe,J.C. Information Technologies for the 1990s: An
Organizational Impact Perspective. Communications of the ACM 32:11
November 1989, p. 1328-1339.

Turner,J.A. Computer Mediated Work: The Interplay Between Technology and
Structured Jobs. Communications of the ACM 27:12 December 1984, p. 1210-
1217.

Vessey,I. and Weber,R. Structured Tools and Conditional Logic: An
Empirical Investigation. Communications of the ACM 29:l January 1986,
p. 48-57.

Whitten,J.L. Bentley,L.D. and Bar10w~V.M. Systems Analvsis and Desisn
Methods. Richard D. Irwin, Inc. Boston, MA. 1989.

Yaverbaum,G.J. Critical Factors in the User Environment: An Experimental
Study of Users, Organizations and Tasks. MIS Quarterly 12:l March 1988,
p. 75-88.

Zuboff,S. New Worlds of Computer Mediated Work. Harvard Business Review
October-November 1982.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-06

