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IZVLE�EK

Proteinski �brili nastanejo z agregacijo delno zvitih proteinov in so odgovorni ali

pomembno vplivajo na mnogo hudih £love²kih bolezni, kot sta Alzeimerjeva ali di-

abetes tipa II. Samo-replikacija �brilov je proces, v katerem obstoje£i proteinski

�brili katalizirajo nastanek novih �brilov na na£in, da ponudijo vezavno povr²ino,

kjer se proteini laºje sre£ajo in agregirajo. To prispeva k naglem in eksponent-

nem napredovanju bolezni. V magistrski nalogi predstavimo Monte Carlo simulacije

ra£unalni²kega modela agregacije, v katerega vpeljemo inhibitorje. To so delci, ki

se lahko veºejo na povr²ino �brilov in tako inhibirajo oziroma upo£asnijo proces

samo-replikacije. Tak²en na£in inhibicije se izkaºe za zelo u£inkovit, ampak zaradi

odbojne interakcije med delci naletimo tudi na pojav makromolekularnega gne£enja,

ki povzro£i, da se pri dolo£eni pokritosti povr²ine s proteini hitrost samo-replikacije

pove£a. Edinstven deskriptor hitrosti replikacije najdemo v povpre£ni velikosti

skupka na povr²ino vezanih proteinov, ki nosi informacijo o celotni porazdelitvi

agregacijskih skupkov. Predstavimo teorije, ki uspe²no razloºijo vse zna£ilnosti

opaºanega obna²anja. S pomo£jo mreºnega modela napovemo, katere interakcije

med delci na povr²ini imajo najve£ji inhibicijski potencial.

Klju£ne besede: agregacija amiloidov, samo-sestavljanje proteinov, inhibicija, ra£u-

nalni²ke simulacije, metoda Monte Carlo, nukleacijski mehanizem, gne£enje makro-

molekul, krajina proste energije, statisti£na mehanika, mehka snov, �zikalna kemija
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ABSTRACT

Protein �brils are formed by a process called amyloid aggregation and are impli-

cated in many debilitating human diseases such as Alzheimer's or Type II Diabetes.

Self-replication of �brils is a process by which existing protein �brils catalyse the

formation of new �brils by o�ering a surface on which proteins can bind, and there-

fore facilitate aggregation. This leads to exponential growth of �bril mass and fast

propagation of amyloid diseases. In this thesis, we present simulations of a minimal

but fairly complex computational model of aggregation with added inhibitory par-

ticles that can bind to the �bril surface. It turns out the mechanism of inhibition

where inhibitors compete with proteins for the surface is very promising. However,

we also �nd a manifestation of a macromolecular crowding e�ect which actually

promotes self-replication at given protein coverage of the �bril surface. We �nd a

unique descriptor for the rate of replication in the average protein aggregate size. We

present theories that successfully explain all characteristics of observed simulation

behaviour. By employing a lattice model, we predict which inter-particle interac-

tions on the �bril surface have the largest inhibitory potential.

Key words: Amyloid Aggregation, Self-assembly, Protein Fibrils, Inhibition, Course-

grained Simulation, Monte Carlo Method, Nucleation Mechanism, Macromolecu-

lar Crowding, Free Energy Landscape, Statistical Mechanics, Soft Matter, Physical

Chemistry



Contents

1 Introduction 2

2 Methods 5

2.1 Course-grained model . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Interactions in the model . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Choice of interaction parameters . . . . . . . . . . . . . . . . . 9

2.1.3 MC simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Results 15

3.1 Absence of inhibitor . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Monomer coverage and the rate . . . . . . . . . . . . . . . . . 15

3.1.2 Nucleation mechanism . . . . . . . . . . . . . . . . . . . . . . 19

3.2 In�uence of inhibitor . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Binding isotherms . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 Macromolecular crowding . . . . . . . . . . . . . . . . . . . . 26

3.2.3 Average oligomer size . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.4 Determining the rate of self-replication . . . . . . . . . . . . . 30

3.3 Theoretical lattice model . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Correspondence to simulation data . . . . . . . . . . . . . . . 36

3.3.2 Crowding and surface pressure . . . . . . . . . . . . . . . . . . 37

3.3.3 E�ective inhibitor design . . . . . . . . . . . . . . . . . . . . . 39

4 Conclusions and outlook 43

5 Raz²irjeni povzetek v slovenskem jeziku 45

References 48

1



1 Introduction

Amyloid �brils are a form of protein assembly that results from the aggregation

of normally soluble proteins. Fibrils are elongated thread-like structures and are a

dominant type of protein aggregate that is associated with more than 50 increasingly

prevalent human diseases which are at present incurable [1, 2]. All these diseases

share a common morphology even though the soluble proteins that make up the

aggregates as well as the area of pathogenic in�uence vary substantially across dis-

eases. Diseases most associated with amyloid aggregation are Parkinson's disease

with its α-synuclein protein, Diabetes II with amylin, various types of Amyloidosis,

and chie�y Alzheimer's disease with its Aβ peptide which accounts for up to 80%

of all dementia cases [3].

The aggregation reaction ordinarily involves many molecular steps [1, 4�7]. A

�rst important step is spontaneous or primary nucleation by which the �rst �bril

nuclei are formed from soluble monomers in solution. These nuclei then grow by

an attachment of monomeric proteins to �bril ends by a process called elongation,

eventually into mature �brils that are observable under the microscope. These two

processes are enough to explain the early time signature of the aggregation reaction.

But recent experiments revealed that once �rst amyloid �brils are generated, their

surfaces catalyse the formation of new �bril nuclei via a secondary self-replication

process, which leads to exponential growth of �bril mass and therefore to fast prop-

agation of amyloid diseases [5, 8�12].

Particularly in Alzheimer's disease, this secondary auto-catalytic process has

been found to be the main source of new �bril nuclei [8,9,13,14]. Even more impor-

tantly, it is a dominant source of oligomers, intermediate protein aggregates that do

not yet posses the a β-sheet structure characteristic of mature �brils but are able to

convert to a growth-competent �bril nucleus. These intermediate species are impor-

tant as it has been found that fully grown protein �brils do not signi�cantly interact

with the mammal brain as previously believed and are quite inert. Oligomers, in

fact, have been found to be toxic to neuronal cells and are now believed to be the

main cause of neuronal death in Alzheimer's patients [1].

In order to slow down or eliminate the self-replication process that generates the

majority of toxic oligomers, we can try to cover the binding sites on the catalytic

�bril surface. Recent experiments with Alzheimer's Aβ aggregation have revealed

an inhibitory particle, a type of chaperone, that non-selectively binds to the �bril

surface and in e�ect signi�cantly slows down the self-replication process both in

vitro and in vivo [13, 15�22]. The molecular mechanism of inhibition, however, has

not yet been su�ciently explored and will form the subject of this master's thesis.
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The aggregation reaction is by its nature very rapid, heterogeneous, and in-

volves several molecular steps. Just developing an experimental protocol for getting

reproducible kinetic data on the time dependence of �bril mass has been a break-

through in the �eld of amyloid disease. It is therefore no wonder that the exact

molecular mechanisms driving primary spontaneous nucleation, elongation, or self-

replication remain hardly accessible to experimental analysis of macroscopic data.

This is where computer simulations come of use. Computational models along with

theoretical reasoning can provide a window to the behaviour of aggregation reac-

tions on a molecular scale. In silico, one can isolate individual molecular steps of

the aggregation reaction and utilise simple models that successfully reproduce and

subsequently also interpret experimental �ndings [23�30]. In order to investigate

the inhibition mechanism for thwarting self-replication, we will therefore build upon

a computational model that has already been used to characterise the mechanism

of self-replication [24] and upgrade the model by incorporating inhibitory particles.

In section 2 we will discuss in detail the course-grained computational model

that we use to investigate the secondary nucleation mechanism as well as its inhi-

bition. In 2.1 we discuss the main characteristics of our course-grained model for

amyloid aggregation and then speci�cally focus on the interactions between vari-

ous particles in 2.1.1, the choice of interaction parameters in 2.1.2, and �nally our

setup for the Monte Carlo simulation in 2.1.3. We then discuss the results of our

simulations in section 3. First, we discuss the nucleation mechanism and behaviour

in the absence of inhibitors in section 3.1. To test the code, we attempt and suc-

ceed at reproducing some of the results of a previous study [24] in the limit of no

inhibitor particles (section 3.1.1). We then perform many additional simulations

at previously unexplored external simulated conditions that provide novel insights

into the nucleation mechanism (section 3.1.2). Especially, we provide further ev-

idence that the �bril surface coverage by monomeric proteins determines the rate

of nucleation. Additionally, we identify the most important structural steps in the

nucleation pathway and discuss which of those steps are rate-determining. Next we

perform extensive simulations with inhibitors that are capable to bind to the �bril

surface in section 3.2. As hypothesized, we �nd that the surface-bound inhibitors

reduce the rate of nucleation. We then look at the binding isotherms of both protein

particles and inhibitors and �nd the binding to be non-ideal (section 3.2.1). Then, by

plotting the rate of nucleation against monomer coverage, we interestingly �nd that

inhibitors perturb the nucleation mechanism by crowding the �bril surface (section

3.2.2) and that monomer coverage does not uniquely determine the nucleation rate.

We successfully account for this crowding e�ect by acknowledging that inhibitors

reduce the free energy of oligomerisation on the �bril surface which is a crucial step
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in the nucleation pathway. We also separately measure the cluster distribution of

monomeric proteins and �nd that inhibitors indeed promote the formation of larger

oligomers. Next, in section 3.2.3 we �nd the average oligomer size on the �bril to

be a unique determinant of the nucleation rate, both in inhibitor's presence and

its absence on the �bril surface. In section 3.2.4 we successfully develop a theory

that explains the relationship between average oligomer size and the nucleation rate

by using and reinterpreting concepts from classical nucleation theory. Finally, we

develop and employ a theoretical lattice model in section 3.3 that takes into account

interactions between particles on the �bril surface and is used to successfully �t

the measured binding isotherms (section 3.3.1), and is able to capture and better

explain the crowding e�ect using the concept of surface pressure (section 3.3.2).

Lastly, having developed a correspondence between simulation data and the lattice

model, we can investigate the inhibitor design that is most e�ective at thwarting

self-replication of protein �brils (section 3.3.3).
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2 Methods

To investigate the inhibition mechanism of surface-catalysed nucleation we employ

a course-grained computational model developed by dr. �ari¢ et al. which has been

used to characterise both the spontaneous nucleation mechanism [23, 25], and the

self-replication mechanism [24] of the amyloid aggregation reaction. We then extend

this model by introducing inhibitory particles that can slow down the self-replication

process by attaching to the �bril surface.

Two simulation techniques are widely used in the molecular realm: molecular

dynamics and the Monte Carlo method. Molecular dynamics is used to study clas-

sical many-body systems by integrating equations of motion that are governed by

forces between particles. It probes the time-evolution of the system and can be used

to calculate thermal averages as well as transport properties [31]. Monte Carlo, on

the other hand, is a stochastic integration technique used to calculate thermody-

namic averages by sampling the phase space with discrete random moves. Mostly,

all other things being equal, molecular dynamics would be the simulation method

of choice. But when we are dealing with discrete degrees of freedom such as Ising

spins where we are not interested in the internal dynamics of the transition from

one state to another the use of Monte Carlo is necessary. Our course-grained model

involves conformational changes between discrete protein states which makes the

Monte Carlo method more suited for the task.

2.1 Course-grained model

Our computational model is a course-grained Monte Carlo simulation written in

the C programming language. This model has initially been used to capture the

creation of amorphous oligomers, spontaneous nucleation of �brils, and elongation

of �brils [23,26,27], and has been further modi�ed to capture nucleation catalysed

by the �bril surface [24]. The self-assembly into various morphologies proceeds by

action of non-speci�c anisotropic interactions between various monomeric species.

The justi�cation for using such a simpli�ed model comes from experimental evidence

that the mode of attraction between unfolded proteins seems to be largely indi�erent

to the change of amino acid structure of aggregation prone proteins as long as the

changed residue has similar properties in terms of hydrophobicity etc. [32, 33]. The

main advantage of such a minimal model is that, being su�ciently cheap in terms

of computational time, we can explore a wide range of protein concentrations [30].

In its present state the computational model involves a �bril at the center of the

simulation box and a solution of monomeric proteins. These monomers are modelled

as directional hard spherocylinders with an attractive patch that drives assembly

5



Figure 1. Coarse-grained computer model for amyloid aggregation. Monomers can
primarily exist in two states: a soluble state that forms oligomers and a β-sheet
state that make up �brils. When bound to the �bril surface, soluble monomers can
also convert into an intermediate state which forms more tightly bound oligomers
which have a tendency to detach from the �bril surface. Primary nucleation, at
physiologically relevant protein concentrations, proceeds through soluble monomer
oligomerisation and subsequent conversion to a β-nucleus that continues to grow
in solution by elongation. Secondary nucleation is an auto-catalytic process and
proceeds by protein adsorption and oligomerisation on the surface of an existing
mature �bril, conversion into an intermediate oligomer, oligomer detachment, and
�nally conversion into a β-nucleus in a fashion similar to primary nucleation.

(see Fig. 1). Additionally, monomers can take three di�erent conformational states:

a soluble `s'-state can form micellar-like oligomers and can bind to the �bril surface,

an intermediate `i'-state is a pre�brilar state that can form more strongly bound

oligomers, binds only very weakly to the surface, and has a higher internal free

energy, and a β-sheet rich state which has a very high internal free energy and is

able to form �brils. Monomers in this β-state have a very strong mutual side-patch

interaction as evidenced by the immense structural integrity of �bril aggregates [34].

Monomeric particles are allowed to swap between these conformations but the con-

version from the lower free energy `s'-state to the higher free energy intermediate

and β-states is thermodynamically unfavourable as well as kinetically slow. There-

fore, these conversions to β-state happen only in large monomer oligomers where

per-particle energy becomes low enough to overcome the entropic barrier associated
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with protein refolding to a more β-sheet rich state. When two β-state particles

form together, we call that a β-nucleus which can only irreversibly grow further by

elongation.

Nucleation can happen by way of primary or secondary nucleation. Primary

nucleation involves a random density �uctuation where soluble monomers form an

energetically favourable but high-entropy oligomer. If this oligomer is su�ciently

long-lived it can facilitate nucleation by providing an environment in which a con-

version to β-state is energetically favourable. Secondary nucleation involves the

concomitant adsorption of many soluble monomers to some binding site to make

a �bril-bound surface-oligomer. Again, if su�ciently long-lived, this oligomer can

convert into an intermediate oligomer that has negligible surface a�nity but is very

tightly bound. This `i'-oligomer can then detach from the �bril surface and further

grow in solution and/or convert to a β-nucleus in a manner similar to primary nucle-

ation except that the intermediate oligomer is more thermodynamically stable than

its soluble oligomer counterpart. Both nucleation processes are therefore multi-step

because they involve at least both oligomerisation and conversion where monomers

attach/detach or convert one by one.

In this work, we focus on the surface-mediated secondary nucleation because this

process is the source of the majority of toxic oligomers that accompany amyloid self-

replication. As remarked previously, a way to slow down or extinguish the secondary

nucleation process is by covering the �bril surface with inhibitory particles that can

attach to catalytic binding sites and prevent soluble proteins from approaching the

surface. We implement this kind of inhibition in our simulations by introducing a

new particle, called inhibitor. It is modelled as the same spherocylindrical shape

as a monomer and also has an attractive patch at one end with which it can bind

to the �bril surface or possibly to other soluble monomers and inhibitors. This has

been done in order to preserve simplicity in measuring and comparing monomer and

inhibitor coverages which led to simpler analysis of the inhibition e�ect.

2.1.1 Interactions in the model

In our model, each particle is represented by a spherocylinder with a length to width

ratio of L/σ = 3 which mimics the elementary β-sheet unit in Aβ peptides with

dimensions 2 nm × 6 nm. The unit σ = 2 nm de�nes the natural distance measure

in our model against which every other distance is compared. A hard core repulsion

between all particles forbids any distance between any two points on spherocylinder

centerlines to be smaller than σ.

The attractive potential Vss between two monomers in the soluble `s'-state is
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Figure 2. Inhibition of self-replication. Inhibitory particles, depicted in left �gure as
turquoise spherocylinders, can bind to the �bril surface. Inhibitors compete for the
surface binding sites with soluble proteins and therefore slow the rate of secondary
nucleation. The right �gure shows a transmission electron microscopy image of Bri-
chos chaperones functionalised by nanogold-conjugated antibodies clearly showing
binding of the chaperone to Aβ42 �brils (from ref. [13]).

implemented as:

Vss(r) =

−εss
(σ
r

)6

if r ≤ rcut

0 if r > rcut,
(1)

where r is the distance between the centers of the attractive tips located at the

spherocylinder's ends, rcut = 1.3σ is the cuto� distance, and εss is the maximal

interaction energy between two solubles. An attractive patch is added to only one

of the two spherocylinder poles to ensure formation of �nite micellar-like oligomers

where the tips of soluble monomers are all in contact at the oligomer center (see Fig.

1). The tip-to-tip interaction between other two monomeric particles is implemented

in the same way (Eq. (1)) but with di�erent interaction strengths. So we have

εss → εii and εss → εsi for the interactions between two intermediate monomers and

the interaction between a `s'-state monomer and an `i'-state monomer, respectively,

and possibly εss → εii and εss → εsI for the interaction between two inhibitors and

between a soluble monomer and an inhibitor, respectively.

The attractive side-patch of the β-state monomer is Lb = 0.7L long and spans an

angle of 180◦. If patches of two β-state monomers face each other their interaction

Vββ is:

Vββ(r) =

−εββcos
2(φ)− εββ

(σ
r

)
if d ≤ rcut

0 if d > rcut,
(2)
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where 2εββ is the maximal interaction strength between two β-particles, φ is the

angle between the long axes of the particles, d is the shortest distance between the

axes of the patches, and r is the distance between the centers of the patches. The

�rst term ensures that proteins in the β-form pack parallel to each other, mimicking

the hydrogen-bond interactions between β-sheets, while the second term promotes

compactness of the �brils [34�36]. This is also the interaction that holds together the

mature �bril at the centre of our simulation box. To make �brils thermodynamically

stable, εββ has to be by far the strongest of all the interactions in the system.

The cross-interaction Vsβ between the soluble and the β-sheet con�guration is

implemented simply as a potential well:

Vsβ(d) =

−εsβ if d < rcut

0 if d > rcut,
(3)

where d is the shortest distance between the centre of the attractive tip and the axis

of the β-patch, and εsβ is the interaction strength. The soluble tip has to face the

180◦ opening of the β-particle side patch. The i-β interaction is described in the

same way, with εsβ → εiβ. The interactions described above (Eqs. (1),(2),(3)) are

all required to have spontaneous nucleation at physiological conditions.

For secondary nucleation and its inhibition we additionally need binding to the

�bril surface. Adsorption of the soluble protein onto the preformed �bril is given

by:

Vsf (d) =

−εsf
(σ
d

)6

if r ≤ rcut

0 if r > rcut

(4)

where d is the shortest distance between the centre of the attractive tip on the soluble

protein and the body of the �bril particle which again extends Lf = 0.7L in length.

Intermediate `i' protein and inhibitor adsorptions onto the �bril are described in

the same way (Eq. (4)), with εsf → εif , and εsf → εIf , respectively. We note here

that the �bril surface is not uniform as it is made of spherocylindrical monomeric

particles (see Figs. 1 and 2).

2.1.2 Choice of interaction parameters

As this model contains many di�erent interactions and particle species it can ex-

hibit many di�erent phenomenologies depending on interaction parameters [26]. We

choose parameter values that make surface assisted secondary nucleation possible in

reasonable computer time and keeps the necessary oligomerisation on the �bril and

subsequent oligomer detachment.
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Throughout this work we set the internal free energy of the β-state to 20 kT, the

internal free energy of the intermediate state to 10 kT, and of the soluble state to

zero. The free energy penalty of conversion from a soluble to β-particle is therefore

∆µs→β = 20 kT while the conversion penalties to and from the intermediate state

are ∆µs→i = ∆µi→β = 10 kT. These numbers follow the fact that aggregation-prone

peptides such as Aβ are typically not found in the β-sheet con�guration in solution

[37,38].

We choose a relatively low value of `s'-state binding interaction εss = 4 kT even

though the nucleation rate is faster at larger εss where oligomers would be larger and

more long-lived. This was done in order to hinder spontaneous nucleation in solution

whilst still retaining high rates of surface-catalysed nucleation so we do not need to

track both phenomena at the same time. As the `i'-state represents the conformation

with more β-sheet content than the soluble state, we set its interaction strength at

εii = 16 kT. This high value promotes the conversion of a soluble oligomer to an

intermediate oligomer as well as ensures the stability of the detaching `i'-oligomer.

The strength of the interaction between monomers in `i'-state and `s'-state is set to

εsi = 8 kT which is somewhere in between εss and εii.

The interaction between two β-particles is the strongest by far: εββ = 60 kT.

This high number ensures that the β-nucleus is well de�ned as a thermodynamically

stable β-dimer, leaving no ambiguity in the measurements of nucleation rate. The

cross-interaction strengths between the soluble or intermediate and the β-state are

εsβ = εss + 1 kT and εiβ = εii + 1 kT. This means nucleation can happen only in

large oligomers because the free energy penalty of converting one particle to β-state

is o�set by many new hydrophobic contributions. For example, in a detached `i'-

oligomer that contains eight `i'-state monomers the free energy change of converting

one monomer to β-state is approximately ∆F8i→7i1β ≈ ∆µi→β − 7(εiβ − εii) = 3 kT.

So such a conversion, if attempted, has about e−3 ≈ 5% chance of succeeding.

The interaction strength εsf that promotes adsorption to the �bril surface has

also been carefully chosen. If this value is too low (4 kT) there is negligible adsorp-

tion to the �bril and no surface-catalysis. But if too high (say 10 kT) there is no

detachment of oligomer from the surface and therefore no geometrical rearrangement

that allows for conversion to β-state. At certain conditions [24], the maximum rate

of nucleation is achieved at εmaxsf = 8 kT. We opt for the lower value εsf = 6 kT in

order to avoid possible non-monotonic behaviour of nucleation rate when we change

parameters such as soluble chemical potential and inhibitor properties. The inter-

action between `i'-state monomers and �bril particles is set to εif = 1 kT. This

low value promotes the detachment of an `i'-oligomer from the �bril while hinder-

ing the �rst conversion of a monomer from soluble to intermediate state. To again
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Figure 3. Interparticle interaction strengths. There are in total eight non-zero
attractive interactions in the non-inhibited computer model: six between various
monomer states (εss, εii, εββ, εsi, εsβ, and εiβ) where `s' stands for soluble, `i' for in-
termediate, and `β' for β-state, and two between soluble and intermediate monomer
states (εsf and εif ). The parameter values were chosen such that secondary nucle-
ation on the �bril surface is favoured to spontaneous nucleation in solution and such
that only large surface-oligomers have a chance to detach and nucleate.

make a quick back of the envelope calculation, the free energy change to convert

one soluble state particle to intermediate state in a surface oligomer of six solubles

is ∆F6s→5s1i ≈ ∆µs→i + 5(εss − εsi) + 2(εsf − εif ) = 0 kT. So, if attempted, there is

a fair chance a large oligomer will be able to nucleate.

Finally, we vary the inhibitor binding strength between εIf = 6−8 kT, mimicking

the experimental situation where inhibitors have a larger a�nity for the �bril sur-

face than unfolded proteins [13]. We nominally set both the inter-inhibitor binding

as well as the interaction strength between inhibitors and monomers to zero, that

is εII = εsI = 0. Later, when investigating optimal inhibitor design, we also try

non-zero values of these parameters (section 3.3.3) but the majority of this work is

done with no cooperative inhibitor binding and without mixed oligomers.

2.1.3 MC simulation

Simulations were performed in a periodic cubic box in a semi-grand canonical en-

semble where we kept the volume of the box V , the temperature T , the chemical

potential of monomers µm, and total number of inhibitors NI constant. Such a
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scheme was chosen to avoid the depletion of monomers and inhibitors from solu-

tion due to adsorption onto the �bril surface and to have good control over the

number of particles simulated. All simulations start with a simulation box of size

150σ × 150σ × 150σ, a preformed �bril at the center of the box and 600 randomly

distributed soluble monomers. The �bril contains 92 tightly bound side-patched

particles and is capped at both ends (unable to grow by elongation) as we want to

keep the amount of binding sites constant. We also randomly distribute a certain

amount of inhibitors NI = χ·600, depending on the parameter χ that we input in the

program. We then scale the simulation box, making it larger or smaller, to match

the speci�ed soluble chemical potential µm by making grand-canonical exchange

moves that add or removes soluble monomers from anywhere in the simulation box,

excluding the D = 12σ wide exclusion zone around the preformed �bril. During

scaling, we also reinsert inhibitors that �nd themselves outside the simulation box

by placing them randomly inside the box. We make those replacements during scal-

ing and not after because inhibitors in solution interact with monomers via volume

exclusion, thus in�uencing µm. We settled for 20 rescaling moves and 60 exchange

grand-canonical moves that removed or added soluble monomers according to µm
and box volume.

We note here that we could take a more elegant, fully grand-canonical route

in preparing the simulation by �rst specifying a �xed box size and then distribute

monomers and inhibitors inside the box according to their chemical potentials. This

way we would have direct control on the real chemical potentials of both species

separately. Unfortunately, the e�ect of this route is that we would, depending on

the values of chemical potentials, sometimes simulate 2000+ particles which would

be very expensive in terms of computational time or simulate only 100− particles

which could potentially introduce �nite-size e�ects.

After the simulation is initialised we run the `equilibration simulation' for an

inde�nite number of Monte Carlo steps. In such a simulation we let the soluble

monomers and inhibitors explore the con�guration space until the system reaches

equilibrium - some solubles and inhibitors adsorb to the �bril, some form oligomers,

most remain in solution. At this point we do not allow for possible conversions

between monomer states because we �rst want equilibrium conditions on the �bril

surface where the surface and solution chemical potentials of a given species are

equated. We �nd this dynamic equilibrium state by looking at the graphs of the

number of soluble monomers and inhibitors adsorbed to the �bril against simulation

`time' (see Fig. 4). When the adsorbed particle numbers are observed to �uctuate

around a mean, the system is on average in its lowest free energy state.

After we have reached equilibrium we manually stop the simulation and input
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Figure 4. Reaching dynamic equilibrium state. a) the number of soluble monomers
in the solution (red) is kept constant on average by grand-canonical exchange moves.
b) Equilibration of chemical potentials between solution and �bril surface is achieved
when both the number of �bril-bound monomers (green) and inhibitors (blue) start
�uctuating around a mean.

its last con�guration into a new `rate simulation'. This simulation �rst runs for a

further 500.000 Monte Carlo steps so we can measure and average the equilibrium

properties such as monomer and inhibitor coverages of the �bril surface, monomer

oligomer distribution on the surface, monomer and inhibitor number densities in

solution, average per-particle binding energies of both species on the �bril, and

monomer cooperative binding energies in oligomers.

After the measurement phase we switch on the Monte Carlo routines that govern

conversion between di�erent monomer states. During conversion, the position of the

particle and the orientation of the spherocylinder's long axis are conserved. If the

peptide conversion is between an `s' or `i'-state to a β-state, we also randomly assign

the orientation of the β-sheet side-patch. The probability of attempting a conversion

move was set to pswap = 1/5000, which mimics the slow conversion of the soluble

unfolded protein into a β-sheet prone con�guration.

Overall, each Monte Carlo step involves N translational and orientational moves,

where N is the total number of particles in the system (inhibitors, monomers in

various states, and �bril particles). Additionally, for β-state monomers and �bril

particles there is an additional random rotation around the spherocylinder's long

axis. The chance of these translational and orientational moves being accepted is

governed by the Metropolis algorithm. Also, with a chance of pexchange = 1/30.000 in

each step, we perform Ns grand-canonical exchange moves, where Ns is the number

of soluble monomers outside the exclusion zone. Finally, each step, all monomers

are given a chance to change their conformation between the `s', `i' or β-state. The
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simulation terminates when we observe two mutually bound β-particles that de�ne

the β-nucleus.

Depending on the values of monomer and inhibitor chemical potentials and in-

hibitor binding a�nity, the initialisation phase takes up to two hours, equilibration

phase from one to four days, and nucleation phase from just hours to in�nite time

but we ran the rate simulations for at most 14 days. The highly stochastic nature

of the nucleation rate measurements forces us to make many repetitions for a given

set of parameters. Therefore all parameter sweeps were performed on the compu-

tational cluster `Dexter' that contains 480 computing nodes and is located at the

Department of Chemistry, University of Cambridge.
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3 Results

The results section is structured as follows: �rst we perform simulations at condi-

tions that have been used in a previous study [24] where no inhibitors are present

and con�rm that our code is working properly in the limit of no inhibitor particles.

We discuss the relevant measured variables such as monomer coverage, oligomer

distribution on the �bril, and nucleation rates. Then we introduce inhibitors in our

simulations and observe how they in�uence monomer coverage on the �bril. We

�nd that binding isotherms cannot globally be �tted with the Langmuir competi-

tive binding model because of volume-exclusion interactions between monomers and

inhibitors on the �bril. Looking at the rate of nucleation under the in�uence of

inhibitory particles we discover that the reported nucleation mechanism where the

rate is simply dependent on monomer coverage [24] fails when inhibitors are present

on the �bril due to macromolecular crowding. We therefore look for a more gen-

eral metric that is able to uniquely describe the rate of secondary nucleation and

�nding it to be the average oligomer size on the �bril. Having found this unique

determinant of the rate we build a theory that uses concepts from the classical nucle-

ation theory. Using our theory, we successfully �t our simulation data. Finally, we

develop a statistical-mechanical lattice model that is able to explain the non-ideal

binding isotherms, provide some insight into macromolecular crowding, and make

useful predictions for e�ective inhibitor design.

3.1 Absence of inhibitor

Due to implementing a new particle into the existing simulation scheme for studying

secondary nucleation, we made quite a few changes to the program written in C.

Therefore, we needed to make sure the underlying code for the secondary nucleation

remained intact. We did that by reproducing some of the results published in

[24]. We performed a parameter sweep across a broad range of monomer chemical

potentials µm ∈ [0.71, 7.04] kT in the absence of inhibitor particles and at exactly

the same binding strength parameter values that were used in the previous study

(see Fig. 3).

3.1.1 Monomer coverage and the rate

In our simulations, the �bril surface is not uniform but is made up of 92 �bril particles

with a Lennard-Jones type interaction (Eq. (4)). Binding sites are therefore not very

well de�ned; in simulations, an adsorbed particle would mostly dock with its tip into

a pocket between two �bril particles (see Fig. 3, left) as this is the place with the

lowest potential energy. Alternatively, it could sit on top of one �bril particle while
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still interacting with the neighbouring two �bril particles. Additionally, depending

on the strength of interaction between two adsorbed soluble monomers (εss), the

adsorbed particles may stack upon one another. This can pose a di�culty in de�ning

the monomer coverage but because most of our simulations are done at a constant

temperature (T ), and constant binding strengths εss and εsf , we will simply de�ne

monomer coverage (θm) as:

θm =
Nmon(µm)

Nmon(µm →∞)

∣∣∣∣
T,εss,εsf

, (5)

where Nmon is the number of soluble monomers adsorbed to the �bril. We can eval-

uate the maximum value of adsorbed monomers by �tting the data to the Langmuir

isotherm:

θm =
cmon/Km

1 + cmon/Km

, (6)

where cmon is the measured concentration and Km is the monomer dissociation

constant. We measure the concentration by simply counting the number of soluble

monomers in the bulk volume (outside the �bril exclusion zone), dividing by that

same volume, and averaging over multiple equilibrium con�gurations. By comparing

the two coverage equations (Eq. (5), (6)) and �tting to measured data (Fig. 5a), we

getNmon(µm →∞) = 156±2, which is more than twice the number of �bril particles,

and Km = (4.42± 0.07) · 10−3 σ−3. To convert from the simulation number density

units into SI units, we need to multiply by 0.208mol/L to getKm = (0.92±0.02)mM.

We note however, that the exact numbers are not important to our discussion as

they crucially depend on our choice of interaction parameters. We will therefore

always use simulation units throughout this work and will simply use a shorthand

σ−3 ≡M .

The rate of secondary nucleation is calculated from the average lag time for

nucleation < tlag > which is de�ned as the average number of Monte Carlo steps

needed to obtain a β-nucleus. Regardless of the value of the monomer chemical

potential, we average over 9 successful realisations of the stochastic process (black

circles in Fig. 5) with di�erent random seeds but starting from the same equilibrium

con�guration. The lag time is expressed in the units of 105 MC steps. Using the

equivalence between the average �rst exit time < tlag > across the free energy barrier

and the inverse of the associated Kramers rate (r), we have:

r =
1

< tlag >
. (7)

Plotting the logarithm of the secondary rate against monomer concentration in

16



Figure 5. Monomer adsorption and nucleation rate in absence of inhibitor. The left
graph (a) shows the variation of the number of monomers adsorbed (Nmon) with
respect to monomer concentration (cmon) in log scale. It shows a linear regime at
low concentrations and a saturation regime at higher concentrations. The graph is
�tted with a Langmuir isotherm (6) yielding the maximum number of monomers
adsorbed 156 and a dissociation constant Km = 4.42mM. The �t is not perfect
because of volume exclusion and cooperative binding interactions on the �bril and
mostly serves as a guide to demonstrate the saturation e�ect. On the right (b), we
plot the rate of secondary nucleation (r) with respect to monomer concentration
(cmon). This graph also demonstrates a linear and a saturation regime indicating
that the rate is crucially dependent on monomer coverage. Each black circle stands
for a particular realisation of the stochastic process while cyan circles with error
bars represent the ensemble average over nine realisations with the same parameter
set but di�erent initial conditions.

Fig. (5b), we immediately see that the rate exhibits saturation at higher concentra-

tions. The scaling exponent γs = d ln(r)
d ln(cmon)

is highly dependent on monomer concen-

tration, ranging from about 3.0 at low concentrations to 0.5 at high concentrations.

This indicates that the dominant aggregation mechanism changes with concentra-

tion as was experimentally found for Aβ40 amyloid aggregation [9]. Comparing the

two graphs in Figure 5, we can see that the change in the scaling factor γs follows the

trend in the change of �bril coverage. The change of γs, therefore, seems to be caused

by the surface saturation. This is a plausible conclusion since secondary nucleation

ought to be a surface-catalysed phenomena so monomer coverage, not monomer

concentration, directly in�uences the rate of secondary nucleation. This claim has

been further con�rmed by varying the protein surface a�nity at constant monomer

concentration, both in simulations (changing εsf ) and in experiments (changing the

salinity to in�uence ionic screening) [24].

Yet another striking con�rmation that monomer coverage determines the rate
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of secondary nucleation comes from studying the variation of rate and monomer

coverage with temperature [11, 39, 40]. In these simulations, we keep the monomer

chemical potential constant and only vary the temperature which in�uences both

the adsorption to the �bril and the success of conversions. These simulations were

performed to study the multi-step nucleation pathways of primary and secondary

nucleation in relation to Kramers rate theory. The results have recently been pub-

lished in [41] but will not be a topic of this thesis due to lack of space. In Fig.

6a we overlay three di�erent datasets on a parametric plot of the rate of secondary

nucleation against monomer coverage. One dataset (blue) is the same as in Fig.

5 where we vary the monomer chemical potential at constant temperature T = 1,

while the other two (green, red) datasets are obtained by varying the temperature

at constant chemical potentials µm(green) = 4 kT and µm(red) = 3 kT, correspond-

ing to monomer concentrations cmon(green) = 2.0mM and cmon(red) = 0.72mM,

respectively (see Fig. 6b).

Figure 6. Coverage of the �bril surface determines the nucleation rate. a) para-
metric plot of secondary rate (r) against monomer coverage (θm) for three di�erent
parameter sweeps. Blue points are obtained by varying monomer chemical potential
at a constant temperature, while green and red are obtained by varying the temper-
ature at constant chemical potential. All three datasets collapse on the same curve
indicating that monomer coverage solely determines the rate of self-replication. b)
The variation of the rate with inverse temperature for two chemical potentials. The
rate increases with lowering the temperature as more solubles adsorb to the surface.

We can see that all three datasets collapse on the same line at low to interme-

diate monomer coverages and di�er only slightly in the saturation regime. We can

therefore write with some con�dence the relation between monomer coverage and
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secondary rate as:

r ∼ θN
∗

m , (8)

whereN∗ is the surface reaction order for the self-replication reaction and is expected

to be related to the size of a nucleating oligomer at the top of the highest relative

free energy barrier.

3.1.2 Nucleation mechanism

Having demonstrated that the rate of nucleation is entirely dependent on �bril sur-

face coverage by soluble monomers, we now turn to explain the molecular steps

of the underlying nucleation mechanism. As mentioned earlier, nucleation in our

model proceeds through four visually di�erent and easily de�ned molecular steps

(Fig. 1d): oligomerisation on the �bril surface where many solubles form a micelle-

like surface-oligomer by adsorbing in the vicinity of each other, conversion of that

surface oligomer into an `i'-oligomer that contains only monomers in the interme-

diate state, detachment of the `i'-oligomer and �nally conversion to a β-nucleus.

Each of these steps contain many smaller steps where monomers attach or convert

one-by-one. Needless to say, the free energy landscape for such a nucleation path

is very complex. Additionally, nucleation can take many di�erent paths along the

multi-dimensional free energy landscape, a problem we will tackle in section 3.2.4.

Nevertheless, we can still determine which of the major steps in�uences the rate

of nucleation most. We do that by measuring the scaling exponents for di�erent

steps in the nucleation reaction for di�erent values of the conversion attempt prob-

ability (pswap). The result of increasing this swap probability is, in e�ect, that all

conversion free energy barriers are lowered by a constant amount while adsorption

and oligomerisation processes remain una�ected. We measured the time lags for

several states along the nucleation pathway: the simulation time it takes to observe

the �rst monomer conversion to the intermediate state, the time it takes to observe

two mutually bound `i'-state monomers, three mutually bound `i'-state monomers,

the time of �rst conversion to β-state, and the time to form a β-nucleus or nucleation

time.

By analysing the data and observing the simulation trajectories we �nd that nei-

ther the �rst nor the second conversion of adsorbed monomer to intermediate state

necessitates a nucleation event. Only when at least three monomers are mutually

bound in their intermediate state do we always achieve nucleation. This indicates

that a surface oligomer with three `i'-state monomers (`i3'-oligomer) is already a

stable thermodynamic species. The subsequent conversion to a fully intermediate-

state oligomer and detachment are even more thermodynamically favourable and
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will necessarily happen.

Figure 7. Identifying the rate-limiting step by varying the conversion attempt prob-
ability pswap. We plot the rate of nucleation (a), rate of formation of a surface-bound
`i3'-oligomer (b), and the rate of conversion between a detached `i'-oligomer and an
oligomer that has one monomer transformed to β-state (c). By comparing the scal-
ing exponents (γs, γinter, and γβ1) we can infer that the rate of nucleation is mostly
dominated by the formation of an `i3'-oligomer, making it the rate determining step.
In (d) we plot the nucleating oligomer size when in `i3'-oligomer form and by how
much it grows in solution after it detaches. All data is measured at the same pa-
rameter values as in Fig. (5) while each point on the graph is the result of averaging
over 5 simulation runs.

The next slow step is the conversion of one `i'-state monomer to a β-sheet particle

inside a detached oligomer. This conversion is also unfavourable as already sketched

in section 2.1.2. To facilitate easier conversion to β-state, the oligomer grows further

in solution by conscripting nearby monomers. In principle, each monomer addition

is favourable until we reach a geometrical constraint because only a �nite number of

monomers (about 12) can take full advantage of micellar interactions. In an enlarged

oligomer, conversion to β-state is more available and such a state more long-lived;

enough, in fact, to facilitate another conversion `i'→ β. This �nal conversion to a

β-nucleus is very favourable because of the very strong β-β hydrophobic interaction.

All subsequent conversions and monomer additions go thermodynamically downhill

20



from there in a type of irreversible polymerisation reaction.

In short, we have identi�ed three main checkpoints on the nucleation pathway:

the surface oligomer that contains three `i'-state particles, the detached oligomer

that contains one β-sheet particle and the �nal β-nucleus state. We plot the inverse

of the average simulation time lapsed between these checkpoints in Fig. 7. It shows

the rate of nucleation (a), the rate of creation of an `i3'-oligomer (b), and the rate of

transformation from that oligomer to a detached oligomer with one β-sheet particle.

By comparing these graphs we immediately see how the rate of nucleation follows

very closely the rate of `i3'-oligomer formation; especially we can appreciate that the

saturation of `i3'-oligomer formation rate at high monomer concentrations causes

the saturation e�ect in the nucleation rate. But depending on parameter values, the

conversion of one particle to β-state also plays a major role. This is especially true for

the dataset with pswap = 1/50 where the rate of conversion to β-state is slower than

the rate of `i3'-oligomer formation at low monomer concentration. In this regime,

the scaling of nucleation rate with concentration is governed by β-conversion scaling

as can be seen by comparing scaling exponents (γs and γβ1 in Fig. 7). Another

exception is that at very high surface saturation the free energy barrier for making

an intermediate oligomer is nigh non-existent so again the �rst conversion to β-state

becomes the rate limiting step.

To conclude this section, we have successfully replicated the monomer coverage

and nucleation rate data from previous work [24] where the authors have found, both

in experiments and in silico, that the rate of self-replication is governed by monomer

coverage of the �bril surface. We have further provided evidence for this assertion by

performing simulations where we varied temperature instead of monomer chemical

potential. Making a parametric plot of nucleation rate against monomer coverage,

all data collapsed on the same line. Finally, we have identi�ed and characterised

the major molecular steps along the nucleation pathway. We have found that the

formation of a partially converted surface-oligomer is the most important and could

be considered a rate-limiting step in our simulations while the conversion from the

detached `i'-oligomer to β-nucleus also requires mounting a free energy barrier and

can also be rate-limiting under certain conditions. Incidentally, it has been only

very recently demonstrated [42] through a combination of novel experiments and

chemical kinetics theory that this latter step is indeed very rare and that only a

small number of detached oligomers ultimately form a �bril nucleus. This means

that many toxic oligomers are recycled before ultimately converting to a growth

competent �bril nucleus. These simulations aided in providing a justi�cation that

such a mechanism is indeed possible.
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3.2 In�uence of inhibitor

We now turn to investigate the in�uence of surface-bound inhibitory particles on

the nucleation pathway. In this section, we report the results of simulations that we

performed at various inhibitory conditions: we explored how binding of monomer

and the rate of nucleation changes if we add inhibitors at a constant monomer

chemical potential or if we keep a constant ratio of the monomer and inhibitor

number densities in solution. Additionally, we explored the in�uence of the strength

of inhibitor-�bril binding a�nity on the nucleation pathway. The compiled data is

the result of over a thousand well-equilibrated simulations that together took well

over a 100.000 hours of computer time. We will analyse and explain the results in

separate subsections.

We start by simulating a �bril in solution of monomers and inhibitors that both

have the same chemical potential (cmon = cI). An inhibitor also binds to the �bril

surface with exactly the same binding strength as soluble monomer (εIf = 6 kT)

but has no cooperative binding interaction (εII = 0). We performed a sweep across

several chemical potentials of both species and obtain a green curve in Fig. (8a,c)

where we plot it alongside the blue curve which is obtained by simulating without

inhibitors (same data as in section 3.1). We can immediately see that for all monomer

concentrations the green curve lies below the blue curve. This indicates that the

presence of inhibitors always reduces monomer coverage and the rate of nucleation.

Next, we performed simulations by keeping the monomer chemical potential

constant at (µm = 4.08 or ln(cmon/M) = −6.28) while changing the concentra-

tion of inhibitors in solution from 0 to two times the concentration of monomers

(cI/cmon = 2.0). We did that for three di�erent inhibitor-�bril interaction strengths:

for εsf = 6 kT, represented by red, for εsf = 7.2 kT, plotted in violet, and εsf = 8 kT,

plotted with the orange colour. Although this di�erence in binding strength appears

only minor, it is ampli�ed by the fact that one inhibitor particle binds to 2− 3 �b-

ril particles at the same time. Looking at Fig. 8b,d, we again see that both the

monomer coverage and the rate of secondary nucleation monotonically drop when

increasing the concentration of inhibitors in solution. There is a small kink in nu-

cleation rate for very low inhibitor concentrations in red data but this is well within

the stochastic error. Inhibitors with higher a�nity to the surface better inhibit

self-replication at a given inhibitor concentration than those with lower a�nity.

Comparing graphs that show monomer coverage with those that show the rate

of nucleation, we can again appreciate that the rate seems to be determined by the

amount of monomers adsorbed on the surface which has been succinctly expressed

by equation (8). The data suggests that the inhibitory e�ect of inhibitory particles

simply stems from their ability to occupy some binding sites on the �bril, making
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them inaccessible to monomer particles, and therefore driving down monomer cover-

age and the associated secondary rate. In short, the mechanism of inhibition seems

mainly to be that monomers have to compete with inhibitors for the same binding

sites.

Figure 8. Inhibitors drive down the rate of nucleation. a,b) In the presence of in-
hibitors, monomer coverage (θm) drops for all combinations of inhibitor (cI) and
monomer concentrations (cmon) and all probed inhibitor-�bril binding strengths
(εsf ). c,d) Following the trend of monomer coverage, the rate of secondary nu-
cleation (r) also signi�cantly decreases by action of inhibitors.

3.2.1 Binding isotherms

Competition between two or more species for the same binding sites is a well known

and studied phenomena. We employ here an ideal competitive-Langmuir model to

see if it can explain the binding behaviour of monomers and inhibitors at various

simulated conditions. The Langmuir adsorption theory describes binding to a lattice

with M binding sites, all of which are equivalent, distinguishable, independent, and

also do not facilitate interactions between adsorbed particles [43]. If these conditions

are met, then, regardless of particular arrangement of lattice sites, the competitive
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binding between monomers and inhibitors can be described by the following binding

isotherms:

θm =
cmon/Km

1 + cmon/Km + cI/KI

, (9)

and

θI =
cI/KI

1 + cmon/Km + cI/KI

, (10)

where Km and KI are monomer and inhibitor dissociation constants and θI is in-

hibitor coverage of the lattice sites. We have already used a one-species Langmuir

curve (Eq. (6)) to successfully �t the monomer adsorption data in Fig. (5). So we

have already obtained the value of Km in that �t as well as the maximal possible

number of monomers adsorbed (Nmon(µm → ∞)). We normalise all our measured

adsorption data with that maximal number, including the inhibitor adsorption data

to get the inhibitor coverage as:

θI =
NI

Nmon(µm →∞)
, (11)

where NI is the measured number of inhibitors adsorbed on the �bril surface. We

plot the normalised monomer and inhibitor coverages in Fig. 9. We make two

Langmuir �ts for each dataset: the violet line represents a �t to monomer coverage

(Eq. (9)) with KI the only �tted parameter, and the green line shows a �t to

inhibitor coverage (Eq. (10)) with again KI the only �tted parameter. The black

curve, on the other hand, shows the Langmuir curve for inhibitor coverage (Eq.

(10)) if we use the �tted value KI , obtained when �tting the violet curve.

Going in order, we can see in Fig. 9a that the �t to monomer coverage is quite

good; we get a value of Kmon
I (εIf = 6 kT) = (1.3 ± 0.1)mM. Instead, if we try to

�t KI to inhibitor coverage, we get an equally good �t yielding Kinh
I (εIf = 6 kT) =

(8.3 ± 0.1)mM. There is a very large discrepancy between these two �ts (Kmon
I

and Kinh
I ) as can be seen by plugging Kmon

I in the formula for inhibitor coverage

(Eq. (10)); we get a black curve which completely misses all inhibitor coverage data

points. So both coverages can be successfully �tted separately but not at the same

time with only one shared �tted parameter.

Looking next at Fig. 9b, we can see that while monomer coverage �t works �ne,

yielding Kmon
I (εIf = 7.2 kT) = (0.17 ± 0.01)mM, we can no longer adequately �t

the inhibitor coverage data (the closest �t gives Kinh
I = (2.0±0.1)mM). Comparing

the �tted KI 's for εIf = 6 kT and εIf = 7.2 kT we can appreciate that just a small

increase in binding strength (1.2 kT) makes the dissociation constant fall by an order

of magnitude. Incidentally, we can successfully perform a �t to inhibitor coverage

data if both KI and Km are free parameters. So the shape of the curve is still
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Figure 9. Binding isotherms. Monomer (violet, θm) and inhibitor (green, θI) cover-
ages for four di�erent datasets. a,b,c) Keeping the monomer concentration constant,
at ln(cmon/M) = −6.28, we vary the concentration of inhibitors (cI) with binding
strengths εIf = 6 kT (a), εIf = 7.2 kT (b), and εIf = 8 kT (c). In d) we vary both
monomer and inhibitor concentration, keeping the ratio cI/cmon = 1 constant. The
violet, green and black lines represent �ts to the competitive-Langmuir isotherms
(Eq. (9) and Eq. (10)).

approximately Langmuir but the dissociation constants e�ectively change in that

regard.

Next, in Fig. 9c, we see that neither inhibitor nor monomer coverage can be well

�tted with a Langmuir curve. The monomer coverage �t gives Kmon
I (εIf = 8 kT) =

(0.035 ± 0.003)mM and the inhibitor �t Kinh
I = (0.72 ± 0.06)mM. Separate �ts

with two loose parameters again work but are very under-determined and therefore

do not hold much meaning. Finally, in Fig. 9d, we can see that for our constant

concentration ratio data, the Langmuir �ts fail completely. What is more, the �ts

fail even when performed with two free parameters.

We can therefore conclude from Figure 9 that the Langmuir binding isotherms

serve as a good starting point - they describe surface saturation behaviour, compe-

tition between species, and the dependence of KI on εIf - but are not adequate to

explain the binding behaviour. The most obvious reason would be that our simulated
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particles interact via volume exclusion and in the case of monomers by tip-to-tip

attraction. However, one would expect that at least at very small coverages these

non-ideal e�ects would be suppressed. But importantly, as signi�ed by the crimson

coloured points in Fig. 9, the total coverage of the �bril surface is at least 30% for

any simulation. This means that the surface is quite crowded with particles that

possibly interact with each other via volume exclusion and this is more than enough

to introduce non-ideal binding behaviour. We will discuss a model that takes into

account interactions on the �bril in section 3.3.

3.2.2 Macromolecular crowding

In the absence of inhibitors, we �nd that the rate of secondary nucleation is governed

by soluble monomer coverage of the �bril surface (see Fig. 6a and Eq. (8)). However,

with inhibitors present on the surface, we �nd a dramatic discrepancy from the

expected behaviour, as shown in Figure 10a where we join all datasets on the same

graph of rate against monomer coverage. Inhibitors on the �bril indeed decrease

the amount of the �bril surface available for monomer binding, but the rate of self-

replication does not decrease to the extent predicted by Equation (8). At a given

monomer coverage, we �nd self-replication to be faster in the presence of inhibitors.

Looking at data points (red, violet, orange) where we increase inhibitor concen-

tration at constant monomer concentration ln(c0/M) = −6.28mM but for di�erent

surface binding a�nities, we see that all of these points fall on the same line. This

might suggest that inhibitors on the �bril somehow alter the reaction order N∗ which

is related to the number molecules interacting in the slowest, rate-determining step.

One could for example argue that the surface-bound inhibitors block the formation of

larger oligomers. However, as shown in the inset of Fig. 10b, the nucleating oligomer

properties remain unchanged under the in�uence of inhibitors. Also, blocking larger

oligomers would predict better inhibition compared to simple competitive binding,

not worse as seen in Fig. 10a. Additionally, the data where we vary monomer and

inhibitor concentrations simultaneously (green) does not show this apparent change

in reaction order.

Another possibility would be that by occupying some binding sites, inhibitors

e�ectively increase monomer coverage by reducing the number of available sites as

θm → θmM/(M − NI) = θm/(1 − θI) where M is the number of all �bril binding

sites and NI is the number of adsorbed inhibitors. If we renormalise monomer

coverage in that way, we get the graph in Fig. 10c. We can see that the shift

in monomer coverage is not su�cient to explain the discrepancy between inhibited

and non-inhibited data. Nevertheless, the shift is in the right direction. A possible

justi�cation for performing such a transformation monomer coverage would be that
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at a given number of monomers adsorbed to the �bril, the presence of inhibitors

redistributes adsorbed monomers in a way that we get higher local coverages at

some parts of the �bril and lower local coverages on other parts of the �bril surface.

This explanation is well supported by the fact that nucleation is a very localised

event and the result of a �uctuation in oligomer size.

Figure 10. Inhibitors in�uence the rate of nucleation in a non-trivial way. a) The
relation between monomer coverage (θm) and the rate of nucleation (r) is perturbed
in the presence of inhibitor. b) This perturbation is caused by crowding between
species on the surface. If we take volume-exclusion into account, all data collapses
on the same curve. Inset: the presence of inhibitors does not in�uence the subcluster
size of nucleating oligomers (Nsub). c) One possible but unsatisfactory explanation
for branching in a) was that inhibitors redistribute monomers on the surface, re-
sulting in higher local coverages of monomers. d) An example of a mis�t, using a
smaller value of parameter α.

To investigate how inhibitors in�uence the distribution of monomers on the �bril,

we measured the cluster size distribution for various combinations of monomer and

inhibitor chemical potentials. To extract valuable information from these distribu-

tions we compare the normalised distributions n(N) at a given monomer coverage
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but for di�erent inhibitor coverages and binding a�nities. We plot the distribu-

tion in Fig. 11 where we can clearly see that the distributions are shifted to larger

oligomer sizes in the presence of inhibitors: the blue bar that shows the distribu-

tion in inhibitor absence is higher for sole monomers and lower for larger oligomers

compared to distributions with inhibitor present. Remembering that a formation of

a su�ciently large oligomer which can facilitate conversion to intermediate state is

a crucial step in nucleation, we can recognise the shift in oligomer size distribution

as the reason for deviating behaviour in Fig. 10a.

This in�uence on oligomer formation that is exerted by inhibitors on the �bril

is a clear manifestation of a macromolecular crowding e�ect. Inhibitors have a non-

negligible volume and due to volume-exclusion repel other proteins on the �bril,

pushing them towards each other. As a result, even though the overall rate of self-

replication drops due to competitive binding, the decrease in nucleation rate is to

a lesser extent than predicted by Eq. (8) which e�ectively treats monomers and

inhibitors as point-particles.

We phenomenologically capture this crowding e�ect by stating that inhibitors

e�ectively decrease the free energy of oligomerisation for oligomers of all sizes by

amount ∆∆Folig. By virtue of being surrounded by voluminous inhibitors, an assem-

bled oligomer has to push against neighbouring inhibitors in order to disintegrate

back into free monomers. By doing so, it has to perform positive work Wolig which

has to be supplied by the free energy di�erence between the assembled oligomer state

and a collection of free monomers (or any lower-size oligomer state in between).

We model this work term by making it simply proportional to inhibitor coverage:

Wolig ∼ θI ; more inhibitors on the �bril at given monomer coverage means more

clustering of monomers. We can therefore write the reduction in the free energy of

oligomerisation as:

∆∆Folig = −kTαθI , (12)

where α is an undetermined proportionality factor.

Oligomerisation precedes all nucleation events so all nucleation pathways can

be modelled to be a�ected in the same way by inhibitors. We can therefore, using

Equation (8), write the rate of nucleation (rI) in the presence of inhibitors and at

speci�ed monomer coverage as:

rI ∼ θN
∗

m · e−∆∆Folig(θI)/kT (13)

or, by additionally using the model (12), write the rate law as:

rI ∼
(
θm · eα/N

∗θI
)N∗

. (14)
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We recognise the expression θm · eα/N
∗θI as e�ective monomer coverage of the �bril

surface (θeff ) that governs the rate of nucleation both in absence or presence of

inhibitors.

Plotting the rate of nucleation against this e�ective coverage, we can see that

for α = 2N∗ all data collapses precisely on the same curve (Fig. 10b). Smaller (see

Fig. 10d) or larger value of the �tted parameter α results in a mis�t so the value

of α has to be precise. This result where all data collapses on the same curve is

remarkable because it seems to hold for all possible combinations of monomer and

inhibitor coverages and surface binding a�nities. So we can be quite con�dent that

the rate of secondary nucleation is uniquely determined by both θm and θI at a given

set of interaction parameters.

However, without knowing the meaning of the parameter α, this theory of in-

hibitor in�uence on the free energy barrier to form an oligomer is just a phenomeno-

logical explanation and its use cannot easily be extrapolated beyond our computer

model. One reasonable explanation would be that in the work term (Eq. (12)),

kT θI could stand for pressure while α could stand for the number of binding sites

released when an oligomer disintegrates against the pressure of inhibitors. The best

�tted value however, implies α ≈ 10, a number that is much greater than most

oligomer sizes in our simulations.

3.2.3 Average oligomer size

There is another metric that is able to uniquely determine the nucleation rate - the

average oligomer size on the �bril surface. We have learned that inhibitors shift

the oligomer distribution towards larger oligomer sizes (Fig. 11b) and we know

that larger oligomers better facilitate conversions of monomers to other states and

eventually nucleation. Remarkably, surface-oligomer sizes follow a simple negative

exponential distribution which means that the information about the whole distri-

bution can be captured by a single number - the average oligomer size (N).

We plot the rate against N in Fig. 11 and �nd that all points follow the same

monotonic curve. This is a much stronger result than the one regarding e�ective

monomer coverage because it is general for many di�erent interactions on the �bril

between monomers and inhibitors. It should hold as long as inter-protein interactions

on the �bril in�uence only the oligomerisation part but not the conversion part of the

nucleation process. We con�rmed that by looking at the size of nucleating oligomers

and found it unchanged in inhibitor's presence. There was an issue with that claim

at �rst because we were only measuring the size of a β-nucleus which, as discussed

in section 3.1.2, is not the most important step in the nucleation process. But when

taking into account that a nucleating oligomer grows before �nally nucleating, we
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arrived at the correct number for the nucleating oligomer size (Nnucl). Using this

value Nnucl and the average oligomer size, we were able to develop a theory for

determining the rate of self-replication without any undetermined parameters. We

discuss this theory at length in the next section.

Figure 11. Average oligomer size uniquely determines the rate of self-replication.
a) Plotting the rate of nucleation (r) against average oligomer size (N), all data
collapses on the same curve. We can �t a theoretically derived formula where the
average oligomer size and the average nucleating oligomer size (Nnucl) determine the
rate of nucleation. b) The normalised monomer cluster size distribution (n(N)) on
the surface at a given monomer coverage but di�erent inhibitor concentrations and
binding a�nities. The distribution shifts towards larger oligomers with inhibitors
present (red, violet, orange, green) compared to the distribution in absence of in-
hibitor (blue). c) The average nucleating oligomer size (Nnucl) is constant over a
range of monomer concentrations. A detached oligomer grows in solution by 1.5
monomers on average before converting to a β-nucleus.

3.2.4 Determining the rate of self-replication

We can explain the dependence of rate on the average cluster size on the �bril surface

by introducing a type of two-step nucleation theory that takes into account both

the oligomer growth and structural change [25, 44�46]. Nucleation is in general an

activated process that accompanies most �rst-order phase transitions as well as many
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self-assembly phenomena. It involves a growing nucleus of a new phase or structure

that must overcome a free energy barrier in order to grow into a macroscopic phase

at thermodynamic conditions where the emerging phase is stable and the old phase

is only metastable [47,48].

The nucleation process is usually treated by a form of classical nucleation theory

(CNT) where the rate (r) is expressed as a product of an exponential factor and a

frequency prefactor:

r = ρZj exp
(
−∆F ∗/kT

)
. (15)

Here ∆F ∗ is the free energy cost of creating the critical nucleus, ρ is the number

density of possible nucleation sites, j the rate or �ux with which molecules attach

to the growing nucleus, and Z the Zeldovich factor. This factor signi�es that the

probability of a critical nucleus growing into a macroscopic phase is less than one.

Although CNT rarely manages to provide a full quantitative explanation of nucle-

ation phenomena [48], the simple theory in Eq(15) provides a framework for more

accurate theoretical treatments.

In our simulations, nucleation proceeds in multiple steps: monomers adsorb and

oligomerise on the �bril, then the oligomer converts into an intermediate oligomer,

detaches, and then �nally transforms into a β-nucleus. This multi-step process

evolves along two independent reaction coordinates: oligomer size and oligomer

structure. In contrast to the classical picture where a monomer oligomer would

need to reach a certain critical size in order to nucleate, oligomers of all sizes can in

principle convert to a β-nucleus. There exist several paths along the size/structure

landscape and we need to sum over all of them to arrive at the true rate: r =∑
paths ri.

Let us �rst treat a single nucleation path. An oligomer of size N = Ni forms on

the �bril surface by a concomitant adsorption of Ni monomers on some binding site.

This surface oligomer then undergoes structural or conformational change until it

transforms into a Ni-size β-nucleus. We can therefore treat nucleation as a product

of two consecutive activated processes: oligomerisation and conversion. Viewed in

the framework of classical nucleation theory (Eq (15)) the oligomerisation part can

be treated as oligomer growth towards a critical nucleus whereas conversion can be

absorbed in the Zeldovich factor Z(Ni) which again gives the probability that a

critical nucleus actually grows into a new phase. This probability is in our simu-

lations given as a product of a conversion attempt probability ps and a conversion

barrier: Z(Ni) = ps(Ni) exp[−∆Fconv(Ni)/kT ]. Rate of secondary nucleation at a

given oligomer size r(Ni) is then given as:

r(Ni) = ρs ps(Ni) jD e
−∆Folig(Ni)/kT e−∆Fconv(Ni)/kT , (16)
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where ρs is the number density of surface binding sites, jD is a di�usion governed �ux

of monomers, ∆Folig(Ni) is the free energy cost to make an Ni-size surface oligomer

out of free monomers and Fconv(Ni) is the height of a conversion free energy barrier

to make a Ni-size β-nucleus out of Ni-size surface oligomer. Importantly, we note

that Fconv(Ni) is not dependent on monomer or inhibitor chemical potentials but

only on the interconversion dynamics and thermodynamics of a given oligomer.

Nucleation paths can take other forms from the one outlined in equation (16)

where nucleation proceeds by �rst growth and then structural change. For example

a possible (and in fact frequent) situation is that a surface oligomer of size N = 4

�rst converts into an intermediate oligomer, detaches, and then grows by one or two

monomers in solution before converting to a β-nucleus. This growth in solution,

however, seems to be independent of solution chemical potential (Fig. 11c). We can

then treat this unorthodox path as one of many possibilities on the conversion free

energy landscape of a size 4 oligomer and absorb it into ∆Fconv(N = 4). Therefore,

to sum over all nucleation paths we need simply to sum over all oligomer sizes:

r = ρs jD

∞∑
N=2

ps(N) e−[∆Folig(N)+∆Fconv(N)]/kT . (17)

Without loss of generality we can rewrite the above sum in terms of a probability

distribution over N by using:

n(N) = Aolig e
−∆Folig(N)/kT ] (18)

Pc(N) = Aconv ps(N) e−∆Fconv(N)/kT , (19)

where Aolig and Aconv are normalisation constants for the surface oligomer distribu-

tion n(N) and conversion probability distribution Pc(N), respectively. Finally, we

write:

r = B
∞∑
N=2

n(N) · Pc(N), (20)

with B = ρs jD/(Aolig Aconv).

In simulations, the monomer cluster size distribution on the �bril was found to

follow a simple exponential distribution across a range of coverages:

n(N) = (e1/λ − 1)e−N/λ, (21)

where λ is a distribution parameter that increases with monomer and also inhibitor

coverage. As λ is hard to measure, we instead use the average oligomer size on the
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�bril (N), de�ned as:

N =

∑∞
N=2 n(N) ·N∑∞
N=2 n(N)

, (22)

and evaluated as:

N = 2 +
1

e1/λ − 1
. (23)

We can then rewrite eq(21) as

n(N) =
1

N − 2

(
N − 2

N − 1

)N
. (24)

The charm of the following analysis is that we do not need to know the functional

form of Pconv(N) in order to make progress. We take the total derivative of nucleation

rate with respect to N :

d ln r

dN
=

d lnB

dN
+

d ln
∑∞

N=2 Pc(N) · n(N)

dN
(25)

=
d lnB

dN
+

∑∞
N=2

d

dN
(Pc(N) · n(N))∑∞

N=2 Pc(N) · n(N)
.

We now use the fact that the conversion dynamics are not dependent on the monomer

and inhibitor coverages. Formally, we would write Pc = Pc(N,~ε, ~µswap, ~pswap), and

N = N(µm, µI , εsf , εss), where ~ε, ~µswap, and ~pswap stand for a collection of interaction

energies, conformation entropy penalties, and swap probabilities between all possible

monomer states, respectively. The only overlapping variables between Pc and N are

εss and εsf so we have:

dPc
dN

=
∂Pc
∂εss

∂εss

∂N
+
∂Pc
∂εsf

∂εsf

∂N
= 0, (26)

because we keep both εss and εsf constant throughout our simulation runs. By using

Eq. (24) and Eq. (26) we can now evaluate the expression (25) as:

d ln r

dN
=

d lnB

dN
− 1

N − 2
+

1

(N − 2)(N − 1)

∑∞
N=2N Pc(N) · n(N)∑∞
N=2 Pc(N) · n(N)

=
d lnB

dN
− 1

N − 2
+

Nnucl

(N − 2)(N − 1)
, (27)

where Nnucl is the average nucleating oligomer size. In general, this average nucleus

size is weakly dependent on N but in a presaturation regime we �nd it constant in

our simulations (Fig 11c). We can therefore integrate equation(27) over N and get
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the rate of nucleation as:

r =
B

N − 2

[
N − 2

N − 1

]Nnucl

. (28)

In Fig. 11a, we see that this formula makes for a nearly perfect �t to simulation data

with B the only �tted parameter. The rate (r), average oligomer size on the �bril

(N) and the average nucleating oligomer size (Nnucl) are all measured separately.

Additionally, the �t is quite sensitive to the value of Nnucl as outlined by grey

dashed lines in Fig. 11a, making the correspondence between �tted and measured

Nnucl more convincing and valuable.

To recap, we have found that even though our simulated nucleation process

involves several molecular steps and so forms a very complex and multi-dimensional

free energy landscape, we could still predict the self-replication rate with a slight

reinterpretation of the classical nucleation theory. We now turn to the question of

whether crowding on the �bril can ever overcome the inhibitory e�ect of competing

inhibitors, and ultimately whether we can design inhibitors that are even better at

suppressing self-replication than what we have simulated with our course-grained

model.

3.3 Theoretical lattice model

To investigate whether it is possible that putting inhibitors in solution can speed up

the rate of nucleation we utilise a simple lattice model that captures the interactions

between monomers and inhibitors on the �bril. Because of hard-core repulsions and

tip-to-tip attraction between monomers, a simple Langmuir model proved insu�-

cient to capture the binding of monomers and inhibitors to the �bril. Additionally,

the Langmuir picture cannot account for the crowding e�ect. Therefore we utilise a

more general albeit still analytical lattice model.

The �bril providesM equivalent and independent binding sites. Each site is able

to accommodate at most two particles. Particles that are bound to the same site

can interact while interactions between separate binding sites are not treated. In

general any combination of monomers and inhibitors can adsorb to a binding site,

that is: sm = 0, 1, 2, sI = 0, 1, 2 subject to a constraint sm + sI <= 2, where sm is

the number of monomers bound on a speci�c site, and sI is the number of adsorbed

inhibitors bound to that same site. If sm = 2 we call that a monomer dimer.

The grand partition function for the lattice is Ξ = ξM , where by ξ we denote a
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per-site grand partition function:

ξ =
2∑

sm=0

2∑
sI=0

q(sm, sI) ·
[
eµm/kT

]sm[
eµI/kT

]sI , (29)

where µm, and µI are monomer and inhibitor chemical potentials and q(sm, sI) is a

site partition function that is dependent on the speci�c occupancy of both species.

In our simple model, the co-occupancy of a binding site by two particles only shifts

the energy levels inside a particle partition function by a constant energy term that

is given by wmm for the interaction between two monomers, by wII for two inhibitors,

and wmI for the interaction between a monomer and an inhibitor on a binding site.

The possible lattice site partition functions are then given as: q(0, 0) = 1, q(1, 0) =

2 qm, q(0, 1) = 2 qI , q(2, 0) = q2
m exp[−wmm/kT ], q(0, 2) = q2

I exp[−wII/kT ], and

q(1, 1) = 2 qm qI exp[−wmI/kT ], where qm, and qI are monomer and inhibitor binding

partition functions. Writing out the sum in Eq. (29), we get:

ξ = 1 + 2xm + 2xI + x2
me
−wmm/kT + x2

Ie
−wII/kT + 2xmxIe

−wmI/kT , (30)

where we have introduced new shorthand variables xm = qm e
µm/kT , and xI =

qI e
µI/kT .

We can now extract all relevant variables from the knowledge of our grand par-

tition function. Average monomer occupancy of a binding site is:

sm =
Nm

M
=

1

M
kT

∂ ln Ξ

∂µm
= xm

∂ ln ξ

∂xm
. (31)

This number (sm ∈ [0, 2)) divided by two gets us monomer coverage θm ∈ [0, 1), so

we have:

θm =
1

2

2xm + 2x2
me
−wmm/kT + 2xmxIe

−wmI/kT

ξ
. (32)

Similarly, we get for the inhibitor coverage:

θI =
1

2

2xI + 2x2
Ie
−wII/kT + 2xmxIe

−wmI/kT

ξ
. (33)

In this theoretical model, the rate of secondary nucleation is captured by the prob-

ability of dimerisation P2. This is the probability of two monomers occupying the

same binding site and is given by:

P2 =
x2
me
−wmm/kT

ξ
. (34)
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We can use this probability of dimerisation as a measure for the average cluster size

on the lattice which, as shown in Fig. 11, uniquely determines the rate of nucleation

in our simulations. So we only need P2 in order to �nd how nucleation behaves

under di�erent values of inter-protein interactions.

We now by ξ0 = 1 + 2xm + x2
me
−wmm/kT and P 0

2 = x2
me
−wmm/kT/ξ0 designate the

per-site grand-partition function and dimer probability in the case of no inhibitors:

xI = 0. The most important result of this lattice model is that the probability of

dimerisation will always be smaller if we introduce inhibitors in the solution. For

xI > 0 it always holds that ξ > ξ0 and therefore P2 < P 0
2 . This indicates that

having particles that compete for the same binding sites on the �bril surface always

drives down the rate of nucleation. No matter the inhibitor design, the e�ect of

competition will always exceed the possible e�ect of crowding or other oligomer

growth-inducing interactions on the �bril.

3.3.1 Correspondence to simulation data

We learn the meaning of variables xm and xI by taking the limit wmm, wII , wmI → 0

of monomer coverage (Eq. (32)) and compare it to the Langmuir competitive binding

isotherm θLm:

θm(~w → 0) =
xm

1 + xm + xI
, θLm =

cmon/Km

1 + cmon/Km + cI/KI

. (35)

We �nd that xm and xI are simply monomer and inhibitor concentrations, reduced

with respect to their dissociation constants Km and KI . By comparing the binding

curves (Eqs. (32) and (33)) with simulation data, we can estimate the values of

e�ective binding energies wmm, wIm and wII .

In simulations particles cannot overlap (hard-core repulsion) and monomers have

a favourable tip-to-tip interaction of εss = 4kT strength. We can therefore expect

wmI = wII , and wmm < wmI . We �rst perform a �t of the inhibitor adsorption

data at three di�erent surface binding a�nities (governed by εIf ). This way we

vary only KI by keeping wII necessarily constant across the three datasets. We

get a positive e�ective interaction wII = (2.3 ± 0.2)kT between inhibitors on the

�bril because of repulsive interactions. We then �t the monomer adsorption data

for the case of no attractive interactions between monomers (εss = 0) by setting

wmm0 = wII = 2.3 kT to get Km = (0.22 ± 0.01)mM. Finally, we �t the monomer

adsorption data with the usual cooperative binding interaction εss = 4kT using

previously �tted Km = 0.22mM to �nd wmm = (0.5± 0.3)kT .

We see that our lattice model where only two particles can bind on the same

binding site maps quite well to simulation data in terms of coverage. In principle,
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Figure 12. The binding isotherms are well described by the lattice model. a) We
perform a sweep against a range of inhibitor concentrations (cinh) in the absence of
monomer for three di�erent surface interaction strengths (εIf ). We globally �t these
curves with equation (33) at xm = 0 to �nd the e�ective interaction between hard
particles as wII = (2.3 ± 0.2)kT. b) We also �t the monomer adsorption data for
εss = 4 kT with equation (32) at xI = 0 and �nd the e�ective interaction between
cooperatively binding monomers as wmm = (0.5± 0.3)kT.

we could extend the lattice model to include trimers, tetramers and even larger size

oligomers but we �nd those extensions unwieldy and unnecessary because already

dimers are in�uenced by the crowding e�ect.

3.3.2 Crowding and surface pressure

The main motivation for developing this lattice model was the observation of a

crowding e�ect in simulations, meaning that in addition to depleting the �bril surface

by virtue of competitive binding, inhibitors at the same time accelerate nucleation

by stabilising monomer oligomers on the �bril. This is also what we observe with

this lattice model. When there is repulsion between inhibitors and monomers, we

get an increase in the probability of dimerisation at a given monomer coverage when

inhibitors are present on the �bril (Fig 13a).

In simulations, we explained the rise of nucleation rate at a given coverage by

positing that inhibitors reduce the free energy barrier of oligomer formation. This

reduction is equal to the excess work that has to be provided for an oligomer to

disintegrate. We modelled this excess work as proportional to inhibitor coverage as
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∆∆F (N) = −kTαθI , where α was an undetermined factor. Using the lattice model,

we can model this crowding e�ect more precisely by evaluating the excess pressure

exerted by bound inhibitors on monomers that are bound into a dimer.

The combined surface pressure of monomers and inhibitors on a lattice is given

by:

φ =
∂(kT ln Ξ)

∂M
= kT ln ξ. (36)

We partition this whole surface pressure into a pure monomer φ0 = kT ln ξ0 and an

excess part φe:

φ = kT ln(ξ0 ∗ ξ/ξ0)

= kT ln ξ0 + kT ln(ξ/ξ0)

≡ φ0 + φe. (37)

For low inhibitor concentration we have ln ξ/ξ0 = sI +O(x3
I), or

φe ≈ 2 kT θI . (38)

By doing the same e�ective coverage transformation in the lattice model as in

simulations, we write:

θLeff = θme
aφe/N−

, (39)

where N− = (∂ lnP 0
2 /∂ ln θ0) is the slope of the blue curve in Fig. 13, and a is a

dimensionless factor. By setting a = 1, and using φc = kT ln ξ/ξ0, all points on

Fig. 13b collapse on the same line. This collapse is almost exact if we use the

φc = kT ln ξ/ξ0 in the e�ective coverage expression but holds only at low inhibitor

coverages if we approximate φc ≈ 2kTθI as seen in Fig. 13c and Fig. 13d.

So remarkably, we have shown that the expression we used for the e�ect of

crowding on the free energy of oligomerisation (∆∆Folig)) has a sound footing in

the lattice model where we have been able to analytically arrive at the expression

for the excess pressure that inhibitors impose on the surface. We should note,

however, that this pressure is not a force between particles in the literal sense but

is an e�ective force that comes from the in�uence of monomer-inhibitor interactions

on the distribution of particles on the lattice. We are unsure at this time whether

crowding in our simulations works in a similar implicit way. Intuitively, we might

think that inhibitors physically exert lateral pressure along the �bril surface and

thus keep oligomers from breaking apart. But looking at simulation trajectories

lateral movement along the surface seems rare as most redistribution happens by

desorption-adsorption di�usion.

38



Figure 13. Crowding in the lattice model. a) Emulating the conditions of our course-
grained simulations, we arrive at the same e�ect of crowding where bound inhibitors
increase the rate of dimerisation (P2) at a given monomer coverage (θm). b) Taking
inhibitor surface pressure (φe) into account, all data collapses on the same line for
a = 1. c) This collapse is still good if we use φe ≈ 2kTθI but this approximation
(d) gets increasingly worse for higher inhibitor coverages (θI).

But we should note that this model of crowding on a lattice is still largely phe-

nomenological because we still do not really know the meaning of the factor a.

Following the picture that dimers perform work on surface-bound inhibitors, we

would expect a to present the number of binding sites (or lattice volume) released

when a dimer expands against the pressure of surrounding inhibitors so we expect

a ≤ 2 which is well supported by our �t (a = 1). But in the case of no inter-particle

interactions (wmI , wII = 0) for example, we �nd that a has to be zero in order for

the e�ective coverage expression (Eq. (39)) to work. Also, the collapse to the same

curve in Fig. 13b is very good, but not exact, suggesting that our model of crowding

might need additional enhancements in the future.

3.3.3 E�ective inhibitor design

As the lattice model maps quite well to simulation data, we can use the analytical

model to explore parts of parameter space that was not covered in simulations due to

prohibitive computational costs and use it to make some speculations about the most
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Figure 14. E�ective inhibitor design. a) Adding attractive interactions with in-
hibitors (violet stands for attraction to monomer: wmI = −2.0kT and dotted for
attraction between inhibitors wII = −2.0kT ) lowers the probability of dimerisation
(P2) in comparison to our basic simulation conditions (green, wmI = wII = 2.3kT ).
b) Monomer coverage (θm) actually increases when adding inhibitors to the solution
if we have monomer-inhibitor attraction (violet) while it is reduced by increasing
inhibitor-inhibitor attraction (dotted). Even by increasing monomer coverage, the
attraction to monomer shows a greater inhibitory power than inter-inhibitor attrac-
tion due to entropy. Graphs are drawn for xm = 0.5 and wmm = 0.5kT .

e�ective inhibitor design. In simulations, we only have a hard-core repulsion between

inhibitors and monomers wIm = wII = 2.3kT . If we also add some attractive

interactions the lattice model suggests that we further decrease the probability of

dimerisation (P2) at a given set of monomer and inhibitor chemical potentials. This

can be seen with expression (Eq. (34)) where lowering both wIm, and wII increases

the denominator while keeping the numerator constant.

This result, that an attraction between inhibitors enhances inhibition, is per-

haps trivial to understand because this attraction promotes more adsorption of

inhibitors to the surface at a given xI as well as promotes inhibitor dimers that

then compete with monomer dimers. But analytically, we �nd that increasing the

monomer-inhibitor attraction has an even stronger inhibitory e�ect. The purple

line in Figure 14 (wmI = −2.0kT, wII = 2.3kT ) shows that even though monomer

coverage increases with inhibitor concentration (Fig. 14b) due to cooperation be-

tween adsorbed monomers and inhibitors, the amount of monomer dimers (Fig.

14a) drops even more than for the case of cooperative inhibitor binding (dotted line,

wmI = 2.3kT, wII = −2.0kT ) and de�nitely more than for the case of no attractive

interactions with inhibitors (green, wmI = wII = 2.3kT ).

The reason why inter-species attraction provides stronger inhibition than the

attraction between inhibitors is that a state where one monomer and one inhibitor

are bound to the same binding site is entropically more favourable compared to

an inhibitor dimer state as or a monomer dimer state (two times as many micro-
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states). The hierarchy between di�erent modes of inhibition: crowding because of

repulsions between inhibitors and monomers, just competition without interactions,

inhibitor cooperative binding, and an attraction between monomers and inhibitors

that limits dimer formation, is preserved across a broad parameter space of di�erent

values of xm, xI and wmm. But for binding sites that can accommodate more than

two particles and in di�erent geometrical arrangements the e�ect of inter-species

binding might become less trivial.

To explore this caveat, we performed new simulations with inhibitors that posses

a capacity to bind to each other with the interaction strength εII = 4 kT (yellow in

Fig. 15) and with inhibitors that can bind tip-to-tip with monomers with the same

interaction strength εsI = 4 kT (dark grey in Fig. 15). Comparing with the red data

points in Fig. 15a new simulation data con�rm that increasing attraction between

species makes inhibition of secondary nucleation better, but only very slightly (Fig.

15a).

We do, however, clearly see that increasing εII lowers the monomer coverage at

given value of inhibitor concentration compared to the case εII = 0 and that in-

creasing εsI makes monomer coverage higher (inset of Fig. 15a). So on a graph of

rate against monomer coverage (Fig. 15b), the grey data that stands for monomer-

inhibitor attraction actually falls below the blue line, indicating that at a given

monomer coverage, inhibitors e�ectively break oligomers apart. But the inhibitory

power should be gauged by how much the nucleation rate drops at given inhibitor

concentration, not how it lowers the nucleation rate at a given monomer coverage

because experimentally or therapeutically the inhibitor concentration is usually the

controlled variable. So overall, in simulations, it is best to design inhibitors with

strong �bril surface a�nity but it is even better if inhibitors are capable of cooper-

ative binding to other surface-bound inhibitors or monomers.

Unfortunately, due to loss of access to computing clusters we were not able to

simulate cooperative inhibitor binders for a larger interaction strength which would

tell us if the predictions of the lattice model regarding the stronger inhibition in the

case of binding to monomers are correct. What we can do in the future is to analyse

di�erent inhibitor designs on a simulated lattice model of various geometries and

dimensions. If those higher-order lattice models replicate our model with only two

binding sites they could provide design principles that are rigorous and invariant for

di�erent distributions of �bril binding sites.
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Figure 15. The e�ect of inhibitor attraction. a) Both for increasing the attraction
between inhibitors (yellow) and for increasing the monomer-inhibitor attraction on
the �bril surface (grey) the rate of self-replication (r) is slightly decreased at a given
inhibitor concentration (cmon) even as the monomer coverage (θm) actually increases
in the latter case (inset). b) On the rate against coverage graph, the data for inter-
inhibitor attraction (yellow) follows the line of no inhibitor attraction (red) but the
data for monomer-inhibitor attraction lies below the blue line where inhibitor is
absent indicating that at given monomer coverage surface-oligomers made entirely
of monomers tend to be smaller. Inset shows collapse of all datasets on a single
curve, using α = 2N∗ for green, red, and yellow and using α = −0.77N∗ for grey
data.
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4 Conclusions and outlook

In conclusion, we studied the e�ect of inhibitory particles on the self-replication

pathway that is governed by protein adsorption to the amyloid �bril surface. We

performed extensive computer simulations using a course-grained model where both

proteins and inhibitors are modelled as hard-core spherocylinders with various aniso-

tropic interactions that promote oligomerisation of proteins to micellar-like struc-

tures, binding of proteins and inhibitors to the �bril surface and allow refolding of

proteins to β-rich conformations that promote �bril-like morphologies.

We found that surface-bound inhibitors e�ectively drive down the rate of sec-

ondary nucleation by competing for the �bril surface with aggregation-prone pro-

teins. But we also get a very signi�cant e�ect where inhibitors actually promote

self-replication at given protein surface coverage. We identi�ed this e�ect as macro-

molecular crowding and successfully accounted for it by using a phenomenologi-

cal theory where inhibitors exert a pressure on and marginally stabilise assembled

surface-oligomers. So by perturbing the nucleation pathway with surface-bound in-

hibitors, we actually found that monomer coverage does not uniquely determine the

rate of nucleation as previously believed. Instead, the average size of a surface-bound

oligomer governs the rate of nucleation both in inhibitor's presence and absence. The

formation of a �bril nucleus that characterises �bril self-replication evolves along two

main reaction coordinates, oligomer size and oligomer structure. Inhibitors only in-

�uence the size of oligomers on the surface by shifting the distribution towards larger

oligomers while the structural conversion part of nucleation remains una�ected. Us-

ing classical nucleation theory, we found a simple formula that successfully predicts

the rate of self-replication as a function of average surface-oligomer size and the

average nucleating oligomer size even if the underlying free energy landscape of

nucleation appears very complex.

We also studied the nucleation mechanism in the absence of inhibitor. By per-

forming simulations with varying temperature, we rea�rmed that the �bril surface

coverage by monomeric protein governs the rate of self-replication. Also, by break-

ing the nucleation process into several major and easily identi�able molecular steps,

we identi�ed the most signi�cant or rate-limiting step of nucleation to be the for-

mation and then a partial conversion of a surface-oligomer of appreciable size to

a state where at least three monomers fold into an intermediate state with some

β-sheet content. But if the protein folding kinetics are fast, we found nucleation to

be governed mostly by conversion of detached oligomers to �bril nuclei.

To ascertain whether the crowding e�ect that promotes oligomerisation can ever

dominate over the competitive binding capacity of inhibitors, we employed an an-
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alytical statistical mechanical model that captures the interactions between bound

species on the �bril surface. We found that the inhibitory e�ect of competitive bind-

ing always overcomes the e�ect of crowding so that any �bril-bound particle can

serve as a valuable therapeutic agent that limits the production of toxic oligomers.

Exploring the theoretical model further and comparing with simulation data, we

found that the best design for an inhibitory particle would involve a very strong

a�nity to �bril surface as well as attractive interactions to both to surface-bound

monomers and inhibitors.

Especially this inhibitor-monomer attraction that promotes binding into an al-

ternative chain should be explored further in the future as it might slow down both

the self-replication catalysed by the �bril surface as well as spontaneous nucleation

in solution because they are both governed by oligomerisation in the same way.

We can envision that a strong attraction between monomers and inhibitors might

stabilise larger oligomers. But at the same time, only a small part of those larger

oligomers would participate in the conversion to �bril nucleus. It is likely that the

possible (non-)inhibitory e�ect of alternative chain binding would largely depend on

the speci�c geometry of co-oligomers, both on the surface and in solution.
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5 Raz²irjeni povzetek v slovenskem jeziku

Proteinski ali amiloidni �brili so podolgovate nitaste strukture, ki nastanejo z agre-

gacijo normalno topnih proteinov. So dominantna oblika proteinskih agregatov in

so vpleteni v razvoj ve£ kot 50 £love²kih bolezni, ki so trenutno neozdravljive in

postajajo vse bolj problemati£ne zaradi staranja prebivalstva in sodobnega na£ina

ºivljenja. Med njimi so Parkinsonova bolezen, diabetes tipa II in zlasti Alzheimer-

jeva bolezen, ki je odgovorna za do 80% vseh primerov demence.

Agregacijska reakcija je zelo heterogena in vsebuje mnogo molekularnih korakov,

ki jih lahko reduciramo na le nekaj poglavitnih. Prvi pomemben korak je spontana

oziroma primarna nukleacija v razstopini s katero iz topnih delno zvitih proteinov

nastanejo prva jedra �brilov. Tak²na jedra nato rastejo (elongacija) z vezavo pro-

teinov na oba konca eno-dimenzionalne �brilarne strukture do makroskopskih dimen-

zij (reda µm). Ta dva procesa sta dovolj za opis zgodnje faze agregacijske reakcije,

vendar se po oblikovanju makroskopskih �brilov za£ne proces samo-replikacije. V

tem procesu povr²ina ºe izraslih �brilov katalizira nastanek novih �brilnih jeder, kar

vodi do eksponentne rasti ²tevila in mase �brilov in do hitrega ²irjenja vpliva amiloid-

nih bolezni. Ta avto-kataliti£ni proces je ²e posebej pomemben pri Alzheimerjevi

bolezni, saj je glavni vir toksi£nih oligomerjev, ki povzro£ajo nevronsko smrt. To

so amorfni proteinski agregati, ki ²e nimajo lastnosti �brilov, ampak se lahko pre-

strukturirajo v �brilna jedra.

V tej magistrski nalogi se ukvarjamo z vpra²anjem, kako upo£asniti ali celo zaus-

taviti proces samo-replikacije z delci, ki jih v tej nalogi imenujemo inhibitorji. Ti

delujejo tako, da tekmujejo z amiloidnimi proteini za vezavna mesta na povr²ini

in tako prepre£ujejo, da bi se proteini na povr²ini sre£ali in posledi£no agregirali.

Tega vpra²anja se lotimo s pomo£jo minimalnega ra£unalni²kega modela, ki je ºe

bil uspe²no uporabljen za opis in razlago spontane nukleacije v razstopini in samo-

replikacije na povr²ini. Na²e Monte Carlo simulacije zajamejo dejstvo, da lahko

protein obstaja v najmanj dveh stanjih: v topnem, delno zvitem stanju, v katerem

se protein lahko zdruºuje v micelarne skupke oziroma oligomere in v stanju z niºjo

konformacijsko entropijo, z ve£ β strukture, ki se lahko lateralno veºe v podol-

govate �brile. Vse interakcije so usmerjene in anizotropne, delce modeliramo kot

sferocilindre s trdo sredico. Tako proteini v topnem stanju kot inhibitorji se lahko

veºejo na povr²ino ºe obstoje£ega �brila, ki nam v simulaciji sluºi kot kataliti£na

povr²ina. Simulacijo pripravimo tako, da glede na izbran kemijski potencial pro-

teinov in inhibitorjev simulacijsko ²katlo naselimo z razstopljenimi delci in da na

sredino ²katle vstavimo ºe formiran �bril, ki ne more rasti, ampak deluje kot katali-

ti£na povr²ina. Nato pustimo, da se delci veºejo in zapu²£ajo povr²ino, dokler ta ne
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doseºe dinami£nega ravnovesja z razstopino. Nato vklju£imo moºnost, da proteini

na diskreten na£in spremenijo vsebnost β sekundarne strukture. Nukleacijo dobimo,

ko se vsaj dva proteinska delca veºeta v oligomer s polno β strukturo.

Najprej preu£imo mehanizem samo-replikacije v odsotnosti inhibitorja. Repro-

duciramo rezultate prej²nje ²tudije in analiziramo nove simulacije, kjer spreminjamo

temperaturo pri konstantni koncentraciji proteinov. Z zdruºitvijo osnovnih simu-

lacij, kjer spreminjamo kemijski potencial proteinov, in novih temperaturnih simu-

lacij potrdimo, da ima pokritost povr²ine s proteini klju£no vlogo pri avto-katalizi

�brilov. Zaºenemo tudi ve£ simulacij pri razli£nih hitrostih dinamike zvijanja pro-

teinov. Ugotovimo, da je najpo£asnej²i molekularni korak v na²i avto-kataliti£ni

reakciji tvorba dovolj velikega oligomera na povr²ini �brila, ki je ºe delno zvit in

ima ºe nekaj β-list strukture. Po drugi strani, ob pogoju da je kinetika zvijanja

proteinov hitra, najdemo najpo£asnej²i in tako najpomembnej²i korak v nukleaciji

v delni pretvorbi odcepljenega, v razstopini plavajo£ega, oligomera v strukturo, kjer

ima en del oligomera ºe pre£no β strukturo, ki je zna£ilna za odrasle �brile.

Nato se lotimo preu£evanja vpliva inhibitornih delcev na mehanizem nukleacije.

Ugotovimo, da na povr²ino vezani inhibitorji u£inkovito zmanj²ajo hitrost samo-

replikacije na na£in, da s proteini tekmujejo za ista vezavna mesta, ki jih zasedejo in

tako zmanj²ajo pokritost povr²ine s proteini. Ve£ja kot je vezavna energija inhibitor-

jev na povr²ino, bolj²a je inhibicija pri dolo£eni koncentraciji inhibitorjev. Hkrati pa

dobimo tudi zelo pomemben pojav gne£enja, kjer inhibitorji dejansko pospe²ujejo

nukleacijo pri dolo£eni pokritosti povr²ine z amiloidnimi proteini. Ta pojav gne£enja

pojasnimo s fenomenolo²ko teorijo, kjer inhibitorji izvajajo povr²inski tlak na vezane

proteine v njihovi okolici in marginalno stabilizirajo ºe sestavljene oligomere. Torej s

perturbacijo nukleacijske poti z inhibitorji ugotovimo, da pokritost �brilne povr²ine z

agregacijskimi proteini navsezadnje ne dolo£a hitrosti samo-replikacije na edinstven

na£in, kot je bilo do sedaj sprejeto. S pomo£jo teorije vpeljemo efektivno pokri-

tost povr²ine, ki je renormalizirana glede na vpliv inhibitorjev in pravilno napove

hitrost samo-replikacije pri vseh kombinacijah kemijskih potencialov proteinov in

inhibitorjev.

Nato poi²£emo ²e en deskriptor hitrosti samo-replikacije, ki velja v odsotnosti

kot tudi prisotnosti inhibitorjev na povr²ini in ga najdemo v povpre£ni velikosti

povr²inskih oligomerov. Oblikovanje oligomera oziroma �brilnega jedra, ki je ter-

modinamsko stabilno, poteka preko vsaj dveh reakcijskih spremenljivk: velikosti

oligomera in njegove strukture v smislu vsebnosti β sekundarne strukture. In-

hibitorji na povr²ini vplivajo le na oligomerizacijo proteinov na na£in, da potisnejo

porazdelitev oligomerov na �brilni povr²ini k ve£jim oligomerov, ampak ne vplivajo

na konformacijski del preobrazbe skupkov proteinov v �brilno jedro. Z uporabo

46



in reinterpretacijo klasi£ne teorije nukleacije smo kljub zelo kompleksni nukleacijski

poti izlu²£ili preprosto formulo, ki uspe²no napove povezavo med hitrostjo samo-

replikacije na eni strani in povpre£no velikostjo na povr²ino vezanega proteinskega

oligomera ter povpre£no velikostjo �brilnega jedra na drugi strani.

Nato smo raziskali, ali lahko vpliv gne£enja molekul na povr²ini kadarkoli pre-

vlada nad vplivom tekmovanja proteinov in inhibitorjev za ista vezavna mesta.

Razvijemo statisti£no-mehanski mreºni model, ki zraven obi£ajne vezave obeh vrst

delcev na povr²ino upo²teva tudi interakcije med vezanimi delci in posledi£no zelo

dobro zajame obna²anje vezavnih izoterm obeh delcev v simulacijah. Izkaºe se, da

tekmovalni efekt za ista vezavna mesta vedno prevlada nad gne£enjem, tako da lahko

katerikoli delec, ki ima moºnost vsidranja na �brilno povr²ino, sluºi v medicinske

namene. Vseeno pa so nekatere interakcije med vezanimi delci bolj u£inkovite v

inhibiciji samo-replikacije kot druge. Teoreti£ni mreºni model lahko uporabimo,

da razi²£emo smernice za oblikovanje interakcij s £im bolj u£inkovitim inhibici-

jskim u£inkom. Ugotovimo, da privla£ne interakcije med inhibitorji na povr²ini

kot tudi med vezanimi proteini in inhibitorji oja£ajo inhibicijski u£inek. Prve zato,

ker promovirajo kooperativno vezavo inhibitorjev in torej pri dolo£eni koncentraciji

inhibitorjev v razstopini dobimo ve£ vezav inhibitorja na povr²ino. Zanimivo pa

privla£na interakcija med inhibitorji in proteini celo bolj u£inkovito inhibira katal-

iti£ni proces na povr²ini, £eprav se ²tevilo adsorbiranih proteinov pod vplivom in-

hibitorjev celo pove£a in ne zmanj²a. Tak²na privla£na interakcija namre£ spodbuja

vezavo v me²ane oligomere, ki so delno sestavljeni iz proteinov in delno iz inhibitor-

jev. Ti oligomeri so sicer v povpre£ju ve£ji in entropi£no bolj zaºeljeni, ampak ima

le manj²i del oligomera moºnost zvitja v β strukture, tako da je nukleacija me²anega

oligomera veliko po£asnej²a oziroma manj verjetna.

V prihodnje bi bilo vredno raziskati, kako geometrija razli£nih mreºnih modelov

vpliva na zaklju£ke na²e ²tudije glede oblikovanja interakcij med inhibitorji in ostal-

imi na povr²ino vezanimi proteini, da bi se inhibicijska mo£ pove£ala. Lahko bi se

namre£ zgodilo, da se vpliv me²anih oligomerov razli£no obna²a pri oligomerizaciji

v eni, dveh ali treh dimenzijah in pri razli£nem ²tevilu interakcijskih sosedov.
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