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Abstract

During infection with human immunodeficiency virus (HIV), immune pressure from cytotoxic T-lymphocytes (CTLs) selects
for viral mutants that confer escape from CTL recognition. These escape variants can be transmitted between individuals
where, depending upon their cost to viral fitness and the CTL responses made by the recipient, they may revert. The rates of
within-host evolution and their concordant impact upon the rate of spread of escape mutants at the population level are
uncertain. Here we present a mathematical model of within-host evolution of escape mutants, transmission of these
variants between hosts and subsequent reversion in new hosts. The model is an extension of the well-known SI model of
disease transmission and includes three further parameters that describe host immunogenetic heterogeneity and rates of
within host viral evolution. We use the model to explain why some escape mutants appear to have stable prevalence whilst
others are spreading through the population. Further, we use it to compare diverse datasets on CTL escape, highlighting
where different sources agree or disagree on within-host evolutionary rates. The several dozen CTL epitopes we survey from
HIV-1 gag, RT and nef reveal a relatively sedate rate of evolution with average rates of escape measured in years and
reversion in decades. For many epitopes in HIV, occasional rapid within-host evolution is not reflected in fast evolution at
the population level.
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Introduction

During the course of a single infection HIV evolves to escape

from the selection pressures imposed by its host’s immune

response. Such changes have been recorded under selection from

all three arms of the specific immune response, but escape from

CD8+ cytotoxic T lymphocytes is particularly well documented

[1,2,3,4,5]. HIV variants that cannot be recognised by current

host CTLs are termed ‘‘CTL escape mutants’’. Such mutants have

been shown to transmit from one host to another [6,7], raising

their status from potential causes of pathogenesis within

individuals [8,9,10,11] to potential drivers of evolutionary change

across the global HIV pandemic [12,13,14,15,16].

Different hosts make immune responses to different parts of

HIV (known as epitopes) and for CTL responses the epitopes that

can be recognised are determined by the host’s class 1 human

leukocyte antigen (HLA) type. CTL escape mutants can revert to

the wild-type when they are no longer under selection pressure

from host immune responses [17,18]. Global change in HIV’s

CTL antigens is therefore driven by three parallel processes: the

selection of escape mutants in hosts whose immune response can

recognise a given epitope (HLA matched hosts), transmission to

new hosts, and reversion of escape mutants in hosts unable to

recognise the epitope in question (HLA mismatched hosts).

A large literature describes the evolution of HIV CTL escape

mutants within individual hosts. Many of those papers are case

reports of the timing and speed of outgrowth of escape mutations

within an individual and in most cases the events described occur

during the first year of infection [3,5,19,20]. The accumulated

wisdom from this literature is that the evolution of HIV is always

very rapid, that this is strong evidence that CTL immune

responses are highly effective and that this viral evolution would

pose a severe threat to the durability of any HIV vaccine. This is a

received wisdom that is worth serious review as it has profound

influence on how we think about the interaction between HIV and

its human hosts.

A better understanding of the global tempo of antigenic change

in HIV can be achieved by addressing a series of specific questions.

On average, how fast do HIV escape mutations arise in HLA

matched individuals? How fast do reversions occur in HLA

mismatched people? HIV is a relatively recently emerged infection

of humans; so is it still adapting to its new hosts, and if so, how

fast? What is the relationship between the tempo of adaptation

within individuals and the rate of genetic change across the entire
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pandemic? If HIV is still adapting, what patterns can we expect to

unfold across the population of infected people? How will those

patterns be different in people of different HLA types and in

populations with different HLA frequencies?

Some of these questions have been elegantly addressed in large

observational studies which describe the patterns of events that

have unfolded in recent decades [12]. In order to understand the

processes that underlie those patterns, and to predict what future

patterns we might expect we need mathematical models of within-

host evolution and between-host transmission that are firmly

rooted in the relevant data. There is a substantial literature on

mathematical models of the evolution of HIV. Much of it has

focussed on the within-host dynamics of HIV variants, either

selected by immune responses [4,21,22] or by antiviral drugs

[23,24,25]. Another literature focuses on models of the spread of

drug resistance [26,27]. By comparison, limited attention has been

paid to the two-level problem of the evolution of CTL escape

mutants within hosts and the spread of those mutants between

hosts [28].

Results

In order to address this gap we have developed a mathematical

model that simultaneously captures events while viruses evolve

within individuals and tracks the spread of variants as viruses are

transmitted between individuals. Between-host transmission is

modelled using a standard mathematical description of the

frequency-dependent transmission of an infectious disease from

which there is no recovery – the so-called SI model. However, the

model we present allows host-heterogeneity with respect to a single

HLA type so that some hosts have the potential to make a CTL

response to a given viral epitope, whereas other hosts do not. Viral

evolution is captured by allowing viral heterogeneity with respect

to the presence – or not – of escape mutations in a single epitope

restricted by the host HLA under consideration. Thus there are

four types of infected hosts: HLA matched hosts infected with

wild-type or escape mutant virus, and HLA mismatched hosts

infected with wild-type or escape mutant virus. Thus there are no

mixed infections, or more precisely each host can only be

infectious with one type of virus. Only HLA matched hosts

infected with wild-type virus can mount effective CTL responses to

the viral epitope under consideration. They drive the evolution of

CTL escape mutants and can therefore switch to become HLA

matched hosts infected with escape mutant virus. HLA mis-

matched hosts are unable to mount CTL responses to the given

epitope whatever mutations it bears and they can therefore allow

their infecting virus to revert from escape mutant to wild-type. In

this model such viral reversion is represented by HLA mismatched

hosts switching from being infected with the escape mutant virus to

being infected with the wild-type virus. Every infected host is

infectious with the viral type they carry, so that the two viral types

are transmitted between individuals at rates driven by the

proportion of the total population infected with each. A diagram

of the model is presented in Figure 1A and the parameters,

variables and equations defining the model are provided in the

Methods section. Figure 1B illustrates the three phases of an

epidemic predicted by our model (and therefore also by the

standard SI model): initial exponential growth, saturation, and

then stabilisation at an endemic equilibrium. The model structure

and parameter values we have used are appropriate for modelling

HIV within a single, closed high-risk group. Since the majority of

the data that we analyse will be from individuals belonging to high

risk groups this is an appropriate approximation.

This model has similarities to mathematical models of the

spread of drug resistance [29]. HLA matched hosts being

equivalent to hosts taking antiviral drugs and CTL escape mutant

virus equivalent to drug resistant virus. However, in this model,

hosts never change their type so the model is structurally different

from drug resistance models and new analyses are needed.. Unlike

the gene-for-gene models of the world of plant pathology [30] this

model is also not designed to consider host and pathogen co-

evolution. Here, birth rates are independent of current host

densities (see Figure 1A) so a different model structure that

combined pathogen evolution as explored here and host changes

as explored, for example, in Cromer et al. (2010) [31], would be

needed to explore co-evolution of HIV and humans.

Figure 1C summarises the time-course of population prevalence

for an escape mutant that arises at the start of an epidemic. Three

features are noteworthy. First, there are qualitatively different

patterns for mutants with different rates of escape and reversion.

For escape mutants that never revert or revert very rarely (e.g.

once in 50 person-years of observation) we would currently expect

the prevalence of escape in the population to be increasing. On the

other hand, if reversion is more rapid, we would expect the

population prevalence of escape to have already stabilised at a

plateau before entering a second transient phase to reach its

eventual equilibrium value. The early plateau occurs because at

this stage, although the number of HLA matched and HLA

mismatched hosts with each virus type are growing exponentially,

they are growing at equal rates. Second, the predicted prevalence

of escape is both qualitatively and quantitatively very sensitive to

the reversion rate if reversion is slow. Notice the dramatic

difference in the long-term between a zero rate of reversion and a

very slow rate of reversion (Figure 1C crosses versus triangles). If

reversion never happens then the escape mutation will eventually

fix – although this could take centuries. However, even a rate of

reversion that could only be observed in a large cohort study (once

in 50 person-years of observation) would prevent fixation of the

escape mutant in the population, with an initial rise in prevalence

followed by a fall and eventual stabilisation. Thirdly, faster rates of

escape and slower rates of reversion lead to higher population

prevalence of escape. However the underlying epidemic dynamics

of in the community under study and the proportion of HLA

matched hosts in the population [12] will also affect the prevalence

of escape.

In each of Figures 1D and 1E escape prevalence is tracked in

the two different host populations: HLA matched (black lines) and

HLA mismatched (red lines). As one would expect, escape

Author Summary

HIV evolves so quickly that it can be seen to adapt within
one infected person. Evolutionary escape from immunity is
particularly well-described. Escape variants transmit to
new hosts, where they may revert. We present a
mathematical model of three processes: within-host
evolution of escape mutants, transmission of those
variants between hosts and subsequent reversion in new
hosts. Using this model we reconcile diverse datasets on
HIV immune escape, highlighting where multiple data
sources agree or disagree on the underlying rate
processes. The several-dozen immune epitopes we survey
reveal a relatively sedate rate of evolution with average
rates of escape measured in years and reversion in
decades. Although there are frequent reports in the
literature of early and rapid within-host evolution of HIV,
for many epitopes this is not reflected in fast evolution at
the population level.
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Figure 1. A mathematical model of within-host evolution and between-host transmission of escape mutants at a single CTL
epitope. A) The mathematical model in schematic form, where WT and EM denote the wild-type strain and escape mutant strain, respectively. B)
Changes in numbers of susceptible (

P
h~1,2

X h(t)) and infected (
P

h~1,2

P
v~1,2

Y h
v (t)) hosts over time showing the three phases of the epidemic: exponential
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prevalence is always higher in HLA matched than HLA

mismatched hosts and increases with faster escape rates

(Figure 1D) or slower reversion rates (Figure 1E). Furthermore,

when reversion takes an average of approximately 10 years or less,

the prevalence in both host types achieves a temporary plateau

during the exponential phase of an epidemic. Analytic expressions

for the temporary plateau, the long-term equilibria and the time-

course of escape prevalence during the initial years of the epidemic

are presented in the Text S1.

In Figure 1 we plot results as prevalence of infection with escape

mutant viruses in infected hosts of different types. Incidence is also

of interest, but in this model incidence is driven by prevalence so

the proportion of new infections that carry escape mutations will

always be the same as the proportion of prevalent mutations that

carry escape mutations.

The model’s behaviour can be compared with CTL escape data

from the current HIV pandemic. Such data are available from

diverse studies, summarised in Figure 2. Throughout this study we

define escape as any mutation at a site at which an escape mutation

has been described (and phenotypically demonstrated in vitro).

Escape data are available at two levels of organisation:

comparisons across individuals (Figures 2A and 2B) and changes

within individuals (Figures 2C–F). Figure 2A (dataset 1) tracks

changes through time in the proportion of hosts with escape

mutations in six different epitopes. These data were downloaded

from the Los Alamos HIV sequence database (www.hiv.lanl.gov)

using a search for dated B-clade sequences and eliminating

duplicate samples from the same individual. Although this

database is not strictly an epidemiological survey, it is the largest

source of temporal population level data. The six epitopes are a

subset of 31 epitopes in gag, reverse transcriptase (RT), and nef for

which at least one escape mutation has been described in the

literature. Details and references for these mutations are provided

in Table S1 and Text S2. None lie at defined drug resistant sites

according to Stanford HIV Drug Resistance Database (http://

hivdb.stanford.edu/). As predicted in Figure 1C, different epitopes

show different behaviour; in some the prevalence of escape has

remained stable over several decades (filled markers), whereas in

others the prevalence of escape has been increasing (unfilled

markers). In Figure 2B (dataset 2), for 26 epitopes with described

escape mutants in gag, RT and nef the prevalence of escape in

HLA matched and HLA mismatched hosts amongst 84 individuals

with chronic infection is presented. These patients, the majority

(76%) of whom have HIV-1 subtype B, have been described in

detail elsewhere [32,33,34]. Data for the remaining 5 (out of 31)

epitopes were not available (Table S2). The data presented in

Figure 2B should be compared to the model predictions in

Figures 1D and 1E. As expected, escape is more prevalent in HLA

matched than mismatched individuals (for given parameters black

lines are above red lines in 1D and 1E, while points in 2B lie below

the line y = x), but otherwise, across different epitopes the

prevalence of escape is very variable (at a fixed time point in 1D

or 1E prevalence of escape for different epitopes can vary widely,

in 2B epitopes are liberally scattered across the bottom right half).

The other type of data on the dynamics of escape and reversion

tracks events as they occur within infected individuals. One source

of such data (dataset 3) is case reports of single HIV-1 infections,

recording the time after infection when escape or reversion

occurred. Around 55 such escape events in 28 different epitopes

across the full genome are described in the literature (Figure 2C,

Table S3 and Text S2), but only 3 such reversions (Figure 2D,

Table S4 and Text S2). For most epitopes there are only one or

two records of time to escape and those are within the first few

years of infection. It is common for the data summarised in 2C to

be taken as indicating that the rate of escape is generally rapid.

Collating individual records of time to escape cannot yield an

estimate of the rate of escape as these studies typically ignore the

existence of individuals in whom nothing interesting happens. To

estimate escape and reversion rates longitudinal cohort studies are

typically used. Early results from one such cohort study of 189,

acute seroconverters are summarised in Figures 2E and 2F (dataset

4). These individuals are mostly B-clade (87%) and have been

described previously [35]. They were first sampled a median of 6

weeks following their estimated date of seroconversion and were

followed for a mean further 1.9 years (range: 0.5–5 years). It is

clear from Figure 2E that the published literature on time to

escape (Figure 2C) is heavily biased towards early escape events

and that when a cohort is followed, amongst all hosts who are

HLA matched for any given epitope and infected with wild-type at

first sample (N in Figure 2E), many show no escape in the early

years of infection. The absence of escape events amongst many

hosts implies that escape is slow. For example, the average time to

escape in epitope KRWIILGLNK (HLA B27-restricted, HXB2

p24 gag 131–140) is 11.1 years because escape events occurred in

only 3 out of the 17 HLA B27 hosts who had the wild-type at the

first sample. Reversion events are similarly sparse in comparison to

the numbers of HLA mismatched hosts who had each escape

mutant at first sample (Figure 2F). Reversion rates are therefore

also slow.

We do not have to wait several decades for longitudinal cohort

studies to play out. Our model can be used to infer rates of escape

and reversion from HLA-typed escape prevalence data such as

that shown in Figure 2B. To make these inferences we need

estimates of the basic reproduction number, R0, (defined as the

expected number of secondary cases arising from a typical infected

individual when all other members of the community are

susceptible), the average life expectancy of infected hosts, the

duration of the HIV epidemic in the sample population and the

proportion of the population who are HLA matched for each

epitope. Since the data in 2B are from Switzerland, we assume that

HLA prevalences are equal to those found in Caucasians [36] and

that the epidemic duration at the time of sampling (year 2000) is

27 years [37]. Further, we use a basic reproductive number of 3

[38] and an average life expectancy of infected hosts of 10 years

[39]. With these parameters fixed, we use the model to fit only two

parameters – the escape and reversion rates – from two

observations – the proportions of HLA matched and HLA

mismatched hosts with escape. For fixed model parameters, escape

prevalences in both host types strictly increase with faster escape

rates and slower reversion rates, thus any unique pair of rates

correspond to a unique pair of escape prevalences. The model can

therefore be fitted very simply using ‘least-squares’ to find the

growth, saturation and equilibrium. C) Changes through time in the proportion of infected hosts with escape at a single CTL epitope for different
escape and reversion rates. D and E) Changes through time in the proportion of HLA matched (black lines) and HLA mismatched (red lines) hosts
infected with escape at a single CTL epitope for different escape and reversion rates. Different escape rates are compared in D) and different reversion
rates are compared in E). The following initial conditions and parameters were used for these plots: X1(0) = 104, X0(0) = 9|104 , Y 1

0 (0) = 0.1, Y 0
0 (0) = 0.9,

Y 1
1 (0)~Y 0

1 (0) = 0, p = 0.1, m = 1/50 years21, m+a = 1/10 years21, bc = 0.3 and B = 105m years21. These parameters yield a basic reproduction number of
3, since for this model R0 = bc/(m+a).
doi:10.1371/journal.ppat.1001196.g001
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Figure 2. CTL escape and reversion data from the current HIV pandemic. A) Dataset 1: the evolution of previously described escape mutants
in six CTL epitopes. Data from dated B-clade sequences provided in the Los Alamos database. The filled shapes show three epitopes for which the
proportion of hosts with escape has remained relatively invariant over the past 20 years. The unfilled shapes show three epitopes for which the
proportion of hosts with escape has increased over the last 20 years. B) Dataset 2: cross sectional data describing the proportion of HLA matched and
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unique pair of escape and reversion rates that minimise the

difference between the observed and expected escape prevalences.

Figure 3 shows the inferred mean time to escape (3A; x-axis

values) and mean time to reversion (3B; x-axis values) for each

epitope estimated from the cross-sectional escape prevalence data

in Figure 2B (dataset 2). Ninety five percent confidence intervals

surrounding these estimates are shown in Figure S1. Confidence

differs between epitopes because of differences in the underlying

evolutionary rates and in the number of hosts who are HLA

matched and mismatched for each HLA type. Nevertheless, even

with our relatively small total sample size (84 individuals), for most

epitopes the confidence is sufficient to distinguish between rates

measured in months, years or decades. These confidence intervals

account for sampling errors, but assume that the structure and

parameters of the model are a perfect representation of the system.

Figure S2 shows how our assumed global parameters (the basic

reproductive number, life expectancy of infected hosts, epidemic

duration and HLA prevalences) affect our inferences. These

analyses reveal that while the magnitude of our escape and

reversion rates change with each of these parameters, their rank

orders remain largely preserved.

To test our model predictions, escape and reversion rates for the

same epitopes were determined from the independent longitudinal

cohort data (dataset 4) presented in Figures 2E and 2F. Although

this cohort is relatively new it is still possible to estimate mean

escape and reversion rates by taking account of all individuals,

those who demonstrate escape or reversion and those who do not.

Since very many individuals have not yet demonstrated escape or

reversion (few dots in Figures 2E and 2F compares to N for each

epitope) many of our estimates of mean escape and reversion rates

are long compared with the duration of the cohort study. Thus the

fact that the y–axis of Figure 3A runs to .50 years whilst that of

Figure 2E only extends to 5 years is a reflection of the large

number of person-years of observation in which no escape occurs

summarised in Figure 2E. Figure 3A reveals that the inferred

escape rates estimated from the two population studies are not just

highly correlated (Pearson’s correlation coefficient (PCC) = 0.83,

2-tailed p-value,0.001, N = 24) but are also approximately equal

in magnitude (2-tailed paired t-test, H0: difference = 0, t-

value = 20.17). Figure 3B also shows a positive correlation

between the observed and inferred reversion rates. For this

comparison significance just misses the standard 0.05 p-value

boundary (Kendall Tau correlation coefficient (KTCC) = 0.32, p-

value = 0.06, N = 25). It is noteworthy, however, that the

correlation is highly significant (KTCC = 0.68, p-value,0.001,

N = 21) if we exclude the four epitopes for which we have least

confidence in our inferred rates (Figure S1). These reversion rates

are also approximately equal in magnitude (2-tailed paired t-test t-

value = 0.87, N = 21).

We can take the inferred rates of escape and reversion and use

the model to calculate a predicted change over 20 years (1985–

2005) in the population escape prevalence of each epitope. When

we compare that predicted change with the observed change in

sequences deposited in the Los Alamos database (Figures 3A,

dataset 1, Figures 2A and S3) we find that these values are strongly

correlated (Figure 3C; PCC = 0.78, 2-tailed p-value,0.001,

N = 26) and not significantly different from each other (2-tailed

paired t-test t-value = 21.58). Thus, the model is able to explain

why some escape mutants appear to have stable prevalence, whilst

others are spreading through the population. To calculate these

predicted changes, the initial conditions of the model are defined

so that the proportion of hosts with escape is equal to the

proportion observed in dataset 1 at the earliest sample time. Since

individuals in dataset 1 are not HLA-typed, the initial conditions

are also defined so that the ratio of HLA matched to HLA

mismatched hosts with escape is equal to the ratio observed in the

cross sectional data (Figure 2B).

Our interpretation of the data in Figure 2 is that datasets 1, 2

and 4 yield consistent estimates across many epitopes. Both escape

and reversion rates are slow. It is only the data from small studies

of one or two people in dataset 3 which imply that escape rates are

usually rapid. The studies summarised in 2C are mostly individual

case reports and do not give a reliable picture of time to escape as

there is strong publication bias in favour of papers describing

escape events and against case studies of individuals in whom

nothing happened. Escape rates estimated from population data,

whether longitudinal (Figure 2E and y axis Figure 3A) or cross-

sectional (Figure 2B and x axis Figure 3A) reveal that, on average,

escape is typically much slower than the individual case reports

suggest. As shown in Figure 2C, escape has previously been

described as typically occurring within the first year of infection

(median time to escape = 0.44 years; interquartile range

(IQR) = 0.25–1.3 years); however, our population-based estimates

imply that only 3 out of the 26 epitopes surveyed here have an

inferred mean time to escape of less than a year. Across all 26

epitopes the median inferred time to escape is 8.0 years and the

IQR is 1.8–34.0 years. It must be emphasized that these estimates

refer to escape in any HLA matched hosts. Hosts who are HLA

matched for a given epitope have the potential to make an

immune response to that epitope, but do not necessarily do so.

Indeed, one study indicates that, on average, responses to any

given epitope are made by only a third of HLA matched hosts

[33]. Escape rates in the presence of an immune response could

therefore be three times faster than the rates estimated in this study

and this may go part way towards explaining why the escape rates

derived from the case-reports – where CTL responses are

measurable – are faster than those estimated here. However it is

not enough to explain the close-to 20-fold difference uncovered

HLA mismatched hosts with described escape mutants in gag, RT and nef. Each dot represents the data for a single CTL epitope (N = 26). Data from 84
chronically infected hosts from Switzerland. C) Dataset 3: escape data from individual case reports described in the literature. Each marker represents
the results from one HLA matched host infected with the wild-type epitope at the first sample time. In cases where escape occurred the time
between infection and escape is represented by a circle. In cases where escape did not occur the time between infection and the last sample is
represented by a triangle. The inferred average time to escape is represented by a horizontal bar. These averages account for data, where available
(triangles), from hosts in whom escape mutants do not appear (see Table S3 for details). D) Dataset 3: reversion data from individual case reports
described in the literature. Each marker represents the results from one HLA mismatched host infected with a described escape mutant at a particular
epitope at the first sample time. The markers are analogous to those described for C). E) Dataset 4: escape data from a longitudinal cohort of 189
acute seroconverters. Estimates are provided for 27 epitopes with previously described escape mutations in gag, RT and nef. These are largely the
same epitopes shown in B), though there is some lack of overlap due to the absence of certain data from one or other dataset. N is the number of
HLA matched hosts infected with the wild-type epitope at the first sample. In cases where escape occurred, the time between infection and escape is
represented by a dot. F) Dataset 4: reversion data from the same longitudinal cohort of individuals. For each epitope N is the number of HLA
mismatched hosts infected with an escape mutant at the first sample. In cases where reversion occurred, the time between infection and reversion is
represented by a dot.
doi:10.1371/journal.ppat.1001196.g002
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here. Our assumed global parameters also do not explain this

difference. Plausible alternative parameter choices do change the

magnitude of our inferred rates, but not to this extent (Figure S2).

Our inferred reversion rates are even slower than our inferred

escape rates: there is no reversion in 56% of epitopes and at the

lower quartile the average time to reversion is 6.5 years. As shown

in Figure 1C, however, even a slow but non-zero reversion rate

can prevent fixation of an escape mutant at the population level.

The longitudinal cohort also reveals that reversion is slow (time to

reversion: median = 36.4 years, IQR = 13.0 years-no reversion).

For neither dataset do the escape rates correlate with the reversion

rates.

It is surprising to find that the rate of escape from CTL

selection is more than an order of magnitude slower than

suggested in a substantial literature describing events in carefully

followed individuals. It is reassuring that the result arises very

consistently from two different analyses of two independent

datasets. Estimating escape and reversion rates from longitudinal

cohort data is a straightforward and well-established process (see

Figure 3 legend). Our estimates from the cross-sectional data

require inference based on the new model we have presented

here. That model is deliberately kept simple to allow a

transparent explanation of what assumptions we have made

and to minimise the number of other parameters we must fix

when using the model to estimate escape and reversion rates. But

with such a simple model the question must arise, is the result

simply an artefact of leaving out too much of the relevant

biology? In what follows we explore a series of six complicating

factors that might change the rates of escape and reversion

inferred from the cross sectional data. In each case we find that

our results are robust to the inclusion of extra biological

complexities in our model structure or alternative definitions of

escape mutants. The details of data interpretation and model

development are, for the sake of brevity, presented in the

supplementary materials. Here we summarise the results.

Might our definition of escape have excluded many genuine

escape mutations? We confined our analysis to mutations at sites

that have been demonstrated in vitro to confer escape. This curbs

Figure 3. Observed and inferred escape rates, reversion rates
and changes in escape prevalence. A) A comparison of the mean
times to escape inferred from dataset 2, the cross-sectional data (x-axis)
and observed in dataset 4 (Figure 2E), the longitudinal cohort study (y-

axis). B) A comparison of the mean times to reversion inferred from
dataset 2 and observed in dataset 4 (Figure 2F). For A) and B) estimates
are provided for epitopes in gag, RT and nef for which escape mutants
have been described and for which data are available from both
studies. The inferred rates (x-axes) are calculated from dataset 2 using
the mathematical model. For A) the observed times to escape (y–axis)
are calculated from dataset 4 by considering all HLA-matched hosts
who have the wild-type epitope at the first sample. We then sum over
all person-years of observation for which an escape mutant is absent
and divide by the number of hosts in whom escape mutants emerge.
For B) reversion rates from dataset 4 are estimated using an analogous
method from all HLA-mismatched hosts who have an escape mutant at
the first sample. Note that the epitopes in these graphs are the same as
those presented in Figure 2B, except that, epitope FLK is absent from A)
and epitope ETF is absent from both A) and B) because the relevant
estimates were not available from dataset 4. The data are presented on
a linear scale from 0–10 years and on a log scale beyond 10 years. In B)
the crosses represent the four epitopes for which we have the least
confidence in our inferred reversion rates (see Figure S1). The remaining
epitopes are shown as circles. C) A correlation between observed and
predicted changes in the escape prevalence of described escape
mutants in gag, RT and nef in the population between approximately
1995 and 2005. These are the same 26 epitopes as shown in dataset 2.
The observed changes are from sequence data downloaded from the
Los Alamos Database (dataset 1, Figures 2A and S3). The predicted
changes over the same period are estimated using the mathematical
model parameterised by the escape and reversion rates inferred from
dataset 2 (x-axes 2A and 2B).
doi:10.1371/journal.ppat.1001196.g003
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both the epitopes we look at and the sites within those epitopes

that we consider. To check for bias arising from only looking at

sites with defined escape we replot Figure 2B redefining escape as

any mutation within the epitope (Text S3, factor 1). We find that,

for all but 2 of the 26 epitopes, any increase in the inferred escape

rate would be marginal or none. To check for bias arising from our

choice of epitopes we replot Figure 2B to include all known

epitopes in gag, RT and nef, regardless of whether or not an

escape mutant has ever been described in that epitope. The figure

includes the 26 epitopes we have already investigated and 48 other

epitopes for which no escape mutation has ever been described. All

of the 48 new epitopes have roughly equal prevalence of mutated

epitopes in HLA matched and mismatched hosts. Thus, if

anything, our choice of epitopes has tended to focus attention

on those epitopes where escape and reversion are faster.

It is an inbuilt assumption of our model that escape mutants do

not revert in HLA matched hosts. In principal such reversion

could lead to lower prevalence of escape in HLA matched hosts

and consequent underestimation of escape rates. The longitudinal

cohort study (dataset 4) allows an estimate of the rate at which

escape mutants revert in HLA matched hosts. The estimate is that

this occurs, on average, once every 25 person-years of observation.

Using this estimate and a modified version of our model in which

escape mutants can revert in HLA matched hosts we can re-

estimate escape and reversion rates from the data in Figure 2B and

the new model (Text S3, factor 2). We find that the new estimates

of escape rates are marginally (less than 10%) faster and that

reversion rates are barely affected at all. If the rate of reversion in

HLA matched hosts is as small as that observed in our longitudinal

study then such reversion would not substantially affect inferred

rates of escape and reversion.

Another possibility is that some escape mutations only appear

transiently, to be replaced by other mutations in the same epitope.

We develop a model of such a process in Text S3 (factor 3). We

find that transitions between different escape mutants at the same

epitope would not affect the evolution of escape mutants at the

population level. This is because if an individual with one

particular escape mutant selects another escape mutant in place of

the first, the total number of hosts with escape remains the same.

As a result, transitions between escape mutants would not affect

the rates of escape and reversion inferred from the cross-sectional

data using the original model.

We have assumed that the rates of escape and reversion are

homogenous across the duration of infection. In principal, if

escape is faster earlier on during infection the prevalence of escape

mutants in the population would be lower than would be predicted

under the assumption that escape is as fast late on as it is early on

during infection. This would lead us to underestimate the rate of

escape during the early stage of infection. Instead, our estimate

would represent a form of average escape rate across both the

early and late stages of infection. Likewise, faster reversion in early

infection could affect the prevalence of escape mutants and thus

our inferred rates. Using a model in which escape and reversion

are both faster in the first year of infection and an estimate (based

on an upper bound from the longitudinal cohort study) that both

rates halve after the first year we re-analysed the cross-sectional

data to see how estimates change under these different assumption.

We found that both inferred escape and reversion rates are faster

under these new assumption but the halving of rates after 1 year is

not large enough to have a substantial effect upon the escape

prevalence at the population level and thus upon our inferred rates

of escape and reversion. Details of the model and of the data

supporting a halving of rates after one year are presented in Text

S3 (factor 4).

We have also assumed that people are equally infectious

throughout their infection. A study of HIV-discordant heterosex-

ual couples [40] found that transmission is 10 times more likely in

the first 2.5 months of infection compared with the chronic phase

of infection. We developed a model in which transmission is much

faster during acute infection than later (Text S3, factor 5). We

found that realistic differential transmission rates between acute

and chronic infection would have very little impact upon the

prevalence of escape mutants in the population. There are two

reasons for this. Firstly, even if, as estimated, transmission is 10

times faster during acute infection than during chronic infection,

acutely infected hosts still account for a minority of infections

because acute infection is short compared to the whole duration of

an infection. Indeed, it is estimated that only 15–20% of all

infections can be attributed to acutely infected hosts [40,41]. In

addition to this, the escape prevalence at the population level is

highly dependant upon the rates of within-host evolution and not

just upon the transmission of escape mutants between hosts. Model

simulations show that together these factors would have no

noticeable impact upon the evolution of escape mutants or upon

our inferred rates of escape or reversion.

Throughout this analysis we have treated different epitopes as

though they were independent entities. Of course that is not so and

the most intimate way in which epitopes can interact is by lying in

identical parts of the HIV genome. Many CTL epitopes do lie in

overlapping sections of the genome and we therefore developed a

model to investigate the dynamics of a mutation at a single site that

confers resistance in two overlapping epitopes restricted by two

different HLA alleles (Text S3, factor 6). We find that analysing

overlapping epitopes as though they were independent of each

other typically leads to underestimation of the reversion rate but

overestimation of the escape rate. Overlapping epitopes therefore

cannot explain why the escape rates estimated from the cross-

sectional data are so slow.

Discussion

In the introduction we posed a series of questions about the

tempo of antigenic change in HIV within individuals and at the

population level. Here we summarise our answers to those

questions.

On average, how fast do HIV escape mutations arise in HLA

matched individuals? We find that the median time to escape in

HLA matched individuals across the 26 epitopes considered here is

8 years with an interquartile range of 1.8–34.0 years.

How fast do reversions occur in HLA mismatched people? Our

inferred reversion rates are slow: there is no evidence of reversion

in 56% of epitopes and at the lower quartile, the average time to

reversion is 6.5 years.

These estimates, inferred using the model presented here from

cross sectional population data, are highly consistent with

independent estimates from an independent longitudinal cohort

study. Taken together, these estimated rates of within-host

evolution can accurately predict population level changes in the

prevalence of escape mutants over the past 20 years for these 26

epitopes. The only data inconsistent with these estimates are the

case studies which have driven the accumulated perception that

escape is rapid and common. But case studies are subject to

publication bias in favour of dramatic events and are not a reliable

source of information on average rates of evolution across the

population.

Is HIV still adapting to humans and if so how fast? We believe

that HIV is still adapting to humans, and that the tempo of

adaption will be different for different epitopes. We expect the
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prevalence of escape in some epitopes to carry on increasing far

into the future, but only slowly.

What is the relationship between the tempo of adaptation within

individuals and the rate of antigenic change across the entire

pandemic? If HIV is still adapting, what patterns can we expect to

unfold across the population of infected people? Depending on the

rates of evolution within hosts we expect three different patterns of

change in the prevalence of escape mutations. If the rate of

reversion is zero then we expect the prevalence of escape

mutations to carry on climbing, slowly, until they become fixed.

If escape rates are fast or HLA prevalence is high then the rate of

increase will be faster, but the expected qualitative pattern of slow

rise in prevalence is independent of the escape rate. This pattern is

illustrated in the curves in Figures 1C and 1D in which escape

mutants never revert. It is perhaps counter-intuitive that it is

epitopes with the very slowest reversion rates that we expect to

display the most obvious population-level increases. For epitopes

in which reversion is fast, or reversion and escape are both slow we

expect the current prevalence of escape to be close to its long term

level. Finally, if escape is fast and reversion is slow we expect the

population prevalence of escape to fall as the underlying epidemic

approaches its own long-term equilibrium. This third pattern is

illustrated in the curve in Figure 1C with mean time to escape of 1

year and mean time to reversion of 10 years. These patterns are

illustrated for particular parameter values in figure 1C and

described for all possible parameter values in the analytic results

presented in equations (S9) and (S12) of the Text S1.

How will these patterns be different in people of different HLA

types in populations with different HLA frequencies? As one

would intuitively expect, other things being equal, escape

prevalence is lower in HLA mismatched people than HLA

matched. It is also intuitively appealing that if the rate of reversion

for an epitope is faster, then the discrepancy between prevalence in

the two groups is greater. We also expect different dynamics in the

HLA matched versus mismatched populations with escape

prevalence in the two groups diverging in the years following the

peak in the underlying epidemic. Of course this pattern is not what

we expect if the reversion rate is zero in which case prevalence of

escape slowly converges to fixation in both groups.

Finally, how will these patterns be different in populations with

different HLA frequencies? The equations describing the tempo-

rary and final plateau in HLA matched, mismatched and total

populations (Text S1, equations (S7)–(S12)) illustrate the intuitively

appealing result that, other things being equal, escape prevalence

increases with the underlying prevalence of HLA that restricts the

escaping epitope.

Did our strict definition of escape bias our results towards those

epitopes that evolve more slowly within hosts? We have explored

the sensitivity of these results to different definitions of escaped

epitopes and find that, if anything, our definition leads us to focus

on epitopes that escape and revert more quickly. Nevertheless, this

analysis only considers epitopes in gag, RT and nef restricted by

HLA class I A and B alleles. HLA C-restricted epitopes [42] and

epitopes in env and the accessory/regulatory genes may behave

differently. Recent studies of the very first weeks of infection have

described very early and rapid CTL escape in env in a small

number of individuals [5,43]. If these individuals are representa-

tive of the population, this intense early escape will be reflected in

population prevalence of these env mutations. However the

analysis presented here is a worked example of how events in a

small number of individuals are not always representative of the

wider population. Finally, as noted earlier, our escape rates are

averaged across all HLA matched hosts. If only one third of HLA

matched hosts actually mount a given epitope-specific response

[33] our estimates of escape rates in hosts who mount a response would

increase three-fold. This is not enough to reconcile the 20-fold

difference between rates estimated from case-study data versus

population data.

Model assumptions are another potential source of bias. We

have presented a series of five additional models to check for the

structural sensitivity of our findings. We find that none of the five

different, more complex models we use to reinterpret the cross

sectional data substantially alter our estimates of escape and

reversion rates. These results are robust under several alternative

models and different data definitions.

However we have not exhausted the infinite range of potential

models we could use to better understand these questions. In

future work we would hope to explore a number of further

complications. Perhaps the most intriguing is to investigate the role

of epistatic interactions between epitopes [44]. Although we have

already considered overlapping epitopes, the role of more subtle,

perhaps long-range interactions is clearly of great interest. We can

also relax more of the assumptions of the simple model: that

virulence and infectiousness are the same regardless of the host-

virus pairing; that hosts can only ever transmit the type of virus

which dominates their own infection; or that populations mix

heterogeneously both socially and spatially. However, finding

enough data to keep such complex models grounded in reality may

be challenging.

This model provides a new framework with which to investigate

how within-host evolution of CTL escape mutants translates to

evolution of HIV at the population level. We have used it here to

explain why some escape mutants have stable prevalence, whereas

others continue to spread through the population. We have also

used it to estimate within-host escape and reversion rates from

population-level, cross-sectional sequence data. This is a useful

tool since cross-sectional studies are faster, cheaper and often

larger than longitudinal studies. Interpreting longitudinal studies is

made difficult because mutants present at the first sample may

have been transmitted or may have escaped prior to the first

sample. Both cross-sectional data and this model include both

means by which an individual can acquire an escape mutant and

our rate estimates therefore account for them. In broader terms,

this model allows comparisons across diverse sources of data on

CTL escape. Although the model makes several simplifying

assumptions, it reveals striking agreement across diverse and

independent datasets: for most of the epitopes surveyed here,

averaged across HLA matched individuals, escape happens slowly.

Materials and Methods

Ethics statement
This study has been approved by the Multicentre Research

Ethics Committee (MREC). All patients provided written

informed consent before participating in this study.

Variables and parameters of the model

N t = time

N h = host type (0 if HLA mismatched, 1 if HLA matched)

N v = virus type (0 if wild-type (WT), 1 if escape mutant (EM))

N B = population birth rate (years21)

N p = proportion of the population who are HLA matched

N w = rate of escape in HLA matched hosts (years21)

N y = rate of reversion in HLA mismatched hosts (years21)

N m = death rate of susceptible hosts (years21)

N a = disease-related death rate (years21)
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N b = transmission probability per partnership

N c = rate of partner exchange (years21)

N Xh(t) = number of susceptible hosts of host type h at time t

N Y h
v (t) = number of type h hosts infected with virus type v at

time t

N N(t) = total number of hosts in the population at time t

N lv(t) = force of infection from hosts infected with virus type v at

time t (years21)

Model equations
The model is described mathematically using ordinary differen-

tial equations (1–6), where the force of infection is defined as

l0(t)~
bc

N(t)
Y 1

0 (t)zY 0
0 (t)

� �
for the wild-type virus and

l1(t)~
bc

N(t)
Y 1

1 (t)zY 0
1 (t)

� �
for the escape mutant virus. The total

population size is defined as N(t)~
P

h~1,2

X h(t)z
P

v~1,2

Y h
v (t)

 !
.

Susceptible, HLA mismatched

dX 0(t)

dt
~(1{p)B{ l0(t)zl1(t)zmð ÞX 0(t) ð1Þ

Susceptible, HLA matched

dX 1(t)

dt
~Bp{ l0(t)zl1(t)zmð ÞX 1(t) ð2Þ

Infected, WT, HLA mismatched

dY 0
0 (t)

dt
~l0(t)X 0(t)zyY 0

1 (t){(mza)Y 0
0 (t) ð3Þ

Infected, EM, HLA mismatched

dY 0
1 (t)

dt
~l1(t)X 0(t){yY 0

1 (t){(mza)Y 0
1 (t) ð4Þ

Infected, WT, HLA matched

dY 1
0 (t)

dt
~l0(t)X 1(t){wY 1

0 (t){(mza)Y 1
0 (t) ð5Þ

Infected, EM, HLA matched

dY 1
1 (t)

dt
~l1(t)X 1(t)zwY 1

0 (t){(mza)Y 1
1 (t) ð6Þ

Statistics
Minitab 14 was used to compare the observed and predicted

escape rates (Figure 3A). Firstly, we tested whether they are

correlated using a 2-tailed Pearson Correlation test. For this test, a

small p-value (i.e. p-value,0.005) indicates a strong correlation.

Since variables that are correlated are not necessarily equal in

magnitude, we also evaluated whether the observed and predicted

escape rates are approximately equal in magnitude. We present

the t-value relating to a 2-tailed paired t-test with a null hypothesis

that the difference in magnitude between the rates is equal to zero.

For this test, a t-value with a small magnitude (i.e. less than 1)

indicates that the variables are close in magnitude. Variables are

typically regarded as statistically different in magnitude if the

magnitude of the t-value is greater than 1.96. To meet the

normality conditions for the two tests described, both sets of escape

rates were first transformed according to f (x)~{ ln xz0:01ð Þ.
The observed and predicted changes in the escape prevalences

(Figure 3C) were compared using the same tests, but each were

first transformed according tof (x)~sgn(x)
ffiffiffiffiffi
DxD
p

. The observed

and predicted reversion rates (Figure 3B) could not be normalised,

therefore the correlation between these two variables was tested

using the non-parametric Kendall Tau test. However, transfor-

mation of each set of reversion rates according to

f (x)~{ ln xz0:01ð Þ was sufficient to meet the normality

conditions for the paired t-test.

Supporting Information

Table S1 A summary of mutations in HIV-1 gag, RT and nef

which have been reported in the literature as conferring CTL

escape and confirmed by in vitro tests.

Found at: doi:10.1371/journal.ppat.1001196.s001 (0.02 MB PDF)

Table S2 A summary of escape and reversion data from the

cross-sectional study (dataset 2) and the longitudinal cohort study

(dataset 4).

Found at: doi:10.1371/journal.ppat.1001196.s002 (0.03 MB PDF)

Table S3 A summary of published escape data from case reports

(dataset 3).

Found at: doi:10.1371/journal.ppat.1001196.s003 (0.03 MB PDF)

Table S4 A summary of published reversion data from case

reports (dataset 3).

Found at: doi:10.1371/journal.ppat.1001196.s004 (0.01 MB PDF)

Text S1 Analytic expressions representing the escape prevalence

under different circumstances.

Found at: doi:10.1371/journal.ppat.1001196.s005 (0.03 MB PDF)

Text S2 Supporting references.

Found at: doi:10.1371/journal.ppat.1001196.s006 (0.01 MB PDF)

Text S3 A detailed analysis describing how additional factors

could affect the evolution of escape mutants and thus affect our

inferred rates of escape and reversion rates from the cross-sectional

data (dataset 2).

Found at: doi:10.1371/journal.ppat.1001196.s007 (0.41 MB PDF)

Figure S1 Confidence intervals for escape and reversion rates

inferred from the cross-sectional data (dataset 2).

Found at: doi:10.1371/journal.ppat.1001196.s008 (0.04 MB PDF)

Figure S2 Sensitivity analysis showing how the assumed model

parameters affect our inferences from the cross-sectional data (c.f.

Figure 3).

Found at: doi:10.1371/journal.ppat.1001196.s009 (0.19 MB PDF)

Figure S3 Observed changes in the population escape preva-

lence over approximately 20 years (dataset 1).

Found at: doi:10.1371/journal.ppat.1001196.s010 (0.04 MB PDF)

Acknowledgments

The following is a list of SPARTAC Investigators. The Trial Steering

Committee members were A. Breckenridge (Chair), C. Conlon, D.

Cooper, F. Conradie, J. Kaldor, M. Schechter, P. Claydon, P. Kaleebu,

G. Ramjee, F. Ssali, G. Tambussi, and J. Weber; the Trial Physician was

Modelling the Spread of HIV Immune Escape Mutants

PLoS Pathogens | www.plospathogens.org 10 November 2010 | Volume 6 | Issue 11 | e1001196



Sarah Fidler; and the Trial Statistician was Abdel Babiker. Members of the

Data and Safety Monitoring Committee were A. McLaren (in memoriam),

V. Beral, G. Chene, and J. Hakim. Members of the Central Virology

Laboratories and Repositories Jefferiss Trust Laboratories, Imperial

College, London, United Kingdom, were M. McClure, D. Muir, I. Blain,

A. Helander, O. Erlwien, and S. Kaye. The Clinical Endpoint Review

Committee members were N. Paton and S. Fidler. The following were

coordinating trial centers: in Australia, the National Centre in HIV

Epidemiology and Clinical Research, University of New South Wales,

Sydney (P. Gray, D. Cooper, T. Kelleher, and M. Law), and in the United

Kingdom and Ireland, the MRC Clinical Trials Unit, London (A. Babiker,

K. Porter, P. Kelleher, K. Boyd, D. Johnson, and D. Nock). The

investigators and staff at participating sites in Australia were as follows: St.

Vincent’s Hospital, Sydney (D. Cooper); Carlton Clinic, Melbourne (J.

Anderson); 407 Doctors, Sydney (R. McFarlane); Prahran Market Clinic,

Melbourne (N. Roth); Taylor Square Private Clinic, Sydney (R. Finlayson);

The Centre Clinic, Melbourne (B. Kiem Tee); Sexual Health Centre,

Melbourne (T. Read); AIDS Medical Unit, Brisbane (M. Kelly); and

Centre for Immunology, Sydney (P. Cunningham). In Brazil, the

participating site (investigators) was the Projeto Praça Onze, Hospital

Escola São Francisco de Assis, Universidade federal do Rio de Janeiro, Rio

de Janeiro (M. Schechter, R. Zajdenverg, and M. Merçon). Participating
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Dieguez, C. Manzardo, J. A. Arnaiz, T. Pumarola, M. Plana, M. Tuset, M.

C. Ligero, VM Sanchez, T. Gallart, and J. M. Gatell). In the United

Kingdom and Ireland, the participating sites (investigators) were the Royal

Sussex County Hospital, Brighton (M. Fisher, L. Heald, N. Perry, D. Pao,

and D. Maitland); St. James’s Hospital, Dublin (F. Mulcahy, G. Courtney,

and D. Reidy); Regional Infectious Diseases Unit, Western General

Hospital and Genitourinary Department, Royal Infirmary of Edinburgh,

Edinburgh (C. Leen, G. Scott, L. Ellis, S. Morris, P. Simmonds, and T.

Shaw); Chelsea and Westminster Hospital, London (B. Gazzard, D.

Hawkins, C. Higgs, and C. Mahuma); Homerton Hospital, London (J.

Anderson and L. Muromba); Mortimer Market Centre, London (I.

Williams, J. Turner, D. Mullan, and D. Aldam); North Middlesex Hospital

(J. Ainsworth and A. Waters); Royal Free Hospital (M. Johnson, S.

Kinloch, A. Carroll, P. Byrne, and Z. Cuthbertson); St. Bartholomew’s

Hospital, London (C. Orkin, J. Hand, and C. De Souza); and St. Mary’s

Hospital, London (J. Weber, S. Fidler, E. Thomson, J. Fox, K. Legg, S.

Mullaney, A. Winston, N. Poulter, and S. Wilson). Trial Secretariat

members were D. Winogron and S. Keeling. We are also grateful to

Bernard Hirschel and The Swiss HIV Cohort Study Group.

Author Contributions

Conceived and designed the experiments: JF REP ARM. Performed the

experiments: JF AD. Analyzed the data: HRF JF AD MGR ARM. Wrote

the paper: HRF ARM.

References

1. Phillips RE, Rowland-Jones S, Nixon DF, Gotch FM, Edwards JP, et al. (1991)

Human immunodeficiency virus genetic variation that can escape cytotoxic T

cell recognition. Nature 354: 453–459.

2. Borrow P, Lewicki H, Wei X, Horwitz MS, Peffer N, et al. (1997) Antiviral

pressure exerted by HIV-1-specific cytotoxic T lymphocytes (CTLs) during

primary infection demonstrated by rapid selection of CTL escape virus. Nat

Med 3: 205–211.

3. Price DA, Goulder PJ, Klenerman P, Sewell AK, Easterbrook PJ, et al. (1997)

Positive selection of HIV-1 cytotoxic T lymphocyte escape variants during

primary infection. Proc Natl Acad Sci U S A 94: 1890–1895.

4. Asquith B, Edwards CT, Lipsitch M, McLean AR (2006) Inefficient cytotoxic T

lymphocyte-mediated killing of HIV-1-infected cells in vivo. PLoS Biol 4: e90.

5. Goonetilleke N, Liu MK, Salazar-Gonzalez JF, Ferrari G, Giorgi E, et al. (2009)

The first T cell response to transmitted/founder virus contributes to the control

of acute viremia in HIV-1 infection. J Exp Med 206: 1253–1272.

6. Allen TM, Altfeld M, Yu XG, O’Sullivan KM, Lichterfeld M, et al. (2004)

Selection, transmission, and reversion of an antigen-processing cytotoxic T-

lymphocyte escape mutation in human immunodeficiency virus type 1 infection.

J Virol 78: 7069–7078.

7. Goulder PJ, Brander C, Tang Y, Tremblay C, Colbert RA, et al. (2001)

Evolution and transmission of stable CTL escape mutations in HIV infection.

Nature 412: 334–338.

8. Goulder PJ, Phillips RE, Colbert RA, McAdam S, Ogg G, et al. (1997) Late

escape from an immunodominant cytotoxic T-lymphocyte response associated

with progression to AIDS. Nat Med 3: 212–217.

9. Feeney ME, Tang Y, Roosevelt KA, Leslie AJ, McIntosh K, et al. (2004)

Immune escape precedes breakthrough human immunodeficiency virus type 1

viremia and broadening of the cytotoxic T-lymphocyte response in an HLA-

B27-positive long-term-nonprogressing child. J Virol 78: 8927–8930.

10. Karlsson AC, Iversen AK, Chapman JM, de Oliviera T, Spotts G, et al. (2007)

Sequential broadening of CTL responses in early HIV-1 infection is associated

with viral escape. PLoS One 2: e225.

11. Goepfert PA, Lumm W, Farmer P, Matthews P, Prendergast A, et al. (2008)

Transmission of HIV-1 Gag immune escape mutations is associated with

reduced viral load in linked recipients. J Exp Med 205: 1009–1017.

12. Kawashima Y, Pfafferott K, Frater J, Matthews P, Payne R, et al. (2009)

Adaptation of HIV-1 to human leukocyte antigen class I. Nature 458: 641–645.

13. Moore CB, John M, James IR, Christiansen FT, Witt CS, et al. (2002) Evidence

of HIV-1 adaptation to HLA-restricted immune responses at a population level.

Science 296: 1439–1443.

14. Bhattacharya T, Daniels M, Heckerman D, Foley B, Frahm N, et al. (2007)

Founder effects in the assessment of HIV polymorphisms and HLA allele

associations. Science 315: 1583–1586.

15. Pond SL, Frost SD, Grossman Z, Gravenor MB, Richman DD, et al. (2006)

Adaptation to different human populations by HIV-1 revealed by codon-based

analyses. PLoS Comput Biol 2: e62.

16. Kiepiela P, Leslie AJ, Honeyborne I, Ramduth D, Thobakgale C, et al. (2004)

Dominant influence of HLA-B in mediating the potential co-evolution of HIV

and HLA. Nature 432: 769–775.

17. Leslie AJ, Pfafferott KJ, Chetty P, Draenert R, Addo MM, et al. (2004) HIV

evolution: CTL escape mutation and reversion after transmission. Nat Med 10:

282–289.

18. Li B, Gladden AD, Altfeld M, Kaldor JM, Cooper DA, et al. (2007) Rapid

reversion of sequence polymorphisms dominates early human immunodeficiency

virus type 1 evolution. J Virol 81: 193–201.

19. Geels MJ, Cornelissen M, Schuitemaker H, Anderson K, Kwa D, et al. (2003)

Identification of sequential viral escape mutants associated with altered T-cell

responses in a human immunodeficiency virus type 1-infected individual. J Virol

77: 12430–12440.

20. Kelleher AD, Long C, Holmes EC, Allen RL, Wilson J, et al. (2001) Clustered

mutations in HIV-1 gag are consistently required for escape from HLA-B27-

restricted cytotoxic T lymphocyte responses. J Exp Med 193: 375–386.

21. Nowak MA, May RM, Phillips RE, Rowland-Jones S, Lalloo DG, et al. (1995)

Antigenic oscillations and shifting immunodominance in HIV-1 infections.

Nature 375: 606–611.

22. Nowak MA, Anderson RM, McLean AR, Wolfs TF, Goudsmit J, et al. (1991)

Antigenic diversity thresholds and the development of AIDS. Science 254:

963–969.

23. Althaus CL, Bonhoeffer S (2005) Stochastic interplay between mutation and

recombination during the acquisition of drug resistance mutations in human

immunodeficiency virus type 1. J Virol 79: 13572–13578.

24. McLean AR, Emery VC, Webster A, Griffiths PD (1991) Population dynamics

of HIV within an individual after treatment with zidovudine. AIDS 5: 485–489.

25. Frost SD, Nijhuis M, Schuurman R, Boucher CA, Brown AJ (2000) Evolution of

lamivudine resistance in human immunodeficiency virus type 1-infected

individuals: the relative roles of drift and selection. J Virol 74: 6262–6268.

26. Marks AJ, Pillay D, McLean AR (2010) The effect of intrinsic stochasticity on

transmitted HIV drug resistance patterns. J Theor Biol 262: 1–13.

27. Brown AJ, Richman DD (1997) HIV-1: gambling on the evolution of drug

resistance? Nat Med 3: 268–271.

Modelling the Spread of HIV Immune Escape Mutants

PLoS Pathogens | www.plospathogens.org 11 November 2010 | Volume 6 | Issue 11 | e1001196



28. Poon AFY, Kosakovsky Pond SL, Bennett P, Richman DD, Leigh Brown AJ,

et al. (2007) Adaptation to human populations is revealed by within-host
polymorphisms in HIV-1 and hepatitis C virus. Plos Pathog 3: 409–417.

29. Baggaley RF, Ferguson NM, Garnett GP (2005) The epidemiological impact of

antiretroviral use predicted by mathematical models: a review. Emerg Themes
Epidemiol 2: 9.

30. Thompson JN, Burdon JJ (1992) Gene-for-gene coevolution between plants and
parasites. Nature 360: 121–125.

31. Cromer D, Wolinsky SM, McLean AR (2010) How fast could HIV change gene

frequencies in the human population? Proc Biol Sci 277: 1981–1989.
32. Frater AJ, Brown H, Oxenius A, Gunthard HF, Hirschel B, et al. (2007)

Effective T-cell responses select human immunodeficiency virus mutants and
slow disease progression. J Virol 81: 6742–6751.

33. Scherer A, Frater J, Oxenius A, Agudelo J, Price DA, et al. (2004) Quantifiable
cytotoxic T lymphocyte responses and HLA-related risk of progression to AIDS.

Proc Natl Acad Sci U S A 101: 12266–12270.

34. Oxenius A, Price DA, Gunthard HF, Dawson SJ, Fagard C, et al. (2002)
Stimulation of HIV-specific cellular immunity by structured treatment

interruption fails to enhance viral control in chronic HIV infection. Proc Natl
Acad Sci U S A 99: 13747–13752.

35. Duda A, Lee-Turner L, Fox J, Robinson N, Dustan S, et al. (2009) HLA-

associated clinical progression correlates with epitope reversion rates in early
human immunodeficiency virus infection. J Virol 83: 1228–1239.

36. Marsh SGE, Parham P, Barber LD The HLA Factsbook: Academic Press.

37. Swiss Confederation () HIV and AIDS in Switzerland 2006. Federal Office of

Public Health. March 2007.

38. Anderson RM, May RM Infectious diseases of humans: dynamics and control:

Oxford and New York: Oxford University Press.

39. Morgan D, Mahe C, Mayanja B, Okongo JM, Lubega R, et al. (2002) HIV-1

infection in rural Africa: is there a difference in median time to AIDS and

survival compared with that in industrialized countries? AIDS 16: 597–603.

40. Wawer MJ, Gray RH, Sewankambo NK, Serwadda D, Li X, et al. (2005) Rates

of HIV-1 transmission per coital act, by stage of HIV-1 infection, in Rakai,

Uganda. J Infect Dis 191: 1403–1409.

41. Hollingsworth TD, Anderson RM, Fraser C (2008) HIV-1 transmission, by stage

of infection. J Infect Dis 198: 687–693.

42. Rousseau CM, Daniels MG, Carlson JM, Kadie C, Crawford H, et al. (2008)

HLA class I-driven evolution of human immunodeficiency virus type 1 subtype c

proteome: immune escape and viral load. J Virol 82: 6434–6446.

43. Salazar-Gonzalez JF, Salazar MG, Keele BF, Learn GH, Giorgi EE, et al. (2009)

Genetic identity, biological phenotype, and evolutionary pathways of transmit-

ted/founder viruses in acute and early HIV-1 infection. J Exp Med 206:

1273–1289.

44. Bonhoeffer S, Chappey C, Parkin NT, Whitcomb JM, Petropoulos CJ (2004)

Evidence for positive epistasis in HIV-1. Science 306: 1547–1550.

Modelling the Spread of HIV Immune Escape Mutants

PLoS Pathogens | www.plospathogens.org 12 November 2010 | Volume 6 | Issue 11 | e1001196


