
Longest Unbordered Factor in Quasilinear Time
Tomasz Kociumaka
Institute of Informatics, University of Warsaw, Warsaw, Poland
kociumaka@mimuw.edu.pl

https://orcid.org/0000-0002-2477-1702

Ritu Kundu
Department of Informatics, King’s College London, London, UK
ritu.kundu@kcl.ac.uk

https://orcid.org/0000-0003-1353-4004

Manal Mohamed
Department of Informatics, King’s College London, London, UK
manal.mohamed@kcl.ac.uk

https://orcid.org/0000-0002-1435-5051

Solon P. Pissis
Department of Informatics, King’s College London, London, UK
solon.pissis@kcl.ac.uk

https://orcid.org/0000-0002-1445-1932

Abstract
A border u of a word w is a proper factor of w occurring both as a prefix and as a suffix. The
maximal unbordered factor of w is the longest factor of w which does not have a border. Here
an O(n logn)-time with high probability (or O(n logn log2 logn)-time deterministic) algorithm
to compute the Longest Unbordered Factor Array of w for general alphabets is presented, where
n is the length of w. This array specifies the length of the maximal unbordered factor starting
at each position of w. This is a major improvement on the running time of the currently best
worst-case algorithm working in O(n1.5) time for integer alphabets [Gawrychowski et al., 2015].

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases longest unbordered factor, factorisation, period, border, strings

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2018.70

Related Version A full version of the paper is available at https://arxiv.org/abs/1805.
09924.

1 Introduction

There are two central properties characterising repetitions in a word –period and border–
which play direct or indirect roles in several diverse applications ranging over pattern
matching, text compression, assembly of genomic sequences and so on (see [3, 6]). A period
of a non-empty word w of length n is an integer p such that 1 ≤ p ≤ n, if w[i] = w[i+ p], for
all 1 ≤ i ≤ n−p. For instance, 3, 6, 7, and 8 are periods of the word aabaabaa. On the other
hand, a border u of w is a (possibly empty) proper factor of w occurring both as a prefix
and as a suffix of w. For example, ε, a, aa, and aabaa are the borders of w = aabaabaa.

In fact, the notions of border and period are dual: the length of each border of w is equal
to the length of w minus the length of some period of w. For example, aa is a border of the
word aabaabaa; it corresponds to period 6 = |aabaabaa|− |aa|. Consequently, the basic data

© Tomasz Kociumaka, Ritu Kundu, Manal Mohamed, and Solon P. Pissis;
licensed under Creative Commons License CC-BY

29th International Symposium on Algorithms and Computation (ISAAC 2018).
Editors: Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou Liao; Article No. 70; pp. 70:1–70:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/162456772?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:kociumaka@mimuw.edu.pl
https://orcid.org/0000-0002-2477-1702
mailto:ritu.kundu@kcl.ac.uk
https://orcid.org/0000-0003-1353-4004
mailto:manal.mohamed@kcl.ac.uk
https://orcid.org/0000-0002-1435-5051
mailto:solon.pissis@kcl.ac.uk
https://orcid.org/0000-0002-1445-1932
https://doi.org/10.4230/LIPIcs.ISAAC.2018.70
https://arxiv.org/abs/1805.09924
https://arxiv.org/abs/1805.09924
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

70:2 Longest Unbordered Factor in Quasilinear Time

structure of periodicity on words is the border array which stores the length of the longest
border for each prefix of w. The computation of the border array of w was the fundamental
concept behind the first linear-time pattern matching algorithm – given a word w (pattern),
find all its occurrences in a longer word y (text). The border array of w is better known as
the “failure function” introduced by Knuth, Morris, and Pratt [12]. It is well-known that the
border array of w can be computed in O(n) time, where n is the length of w, by a variant of
the Knuth-Morris-Pratt algorithm [12].

Another notable aspect of the inter-dependency of these dual notions is the relationship
between the length of the maximal unbordered factor of w and the periodicity of w. A maximal
unbordered factor is the longest factor of w which does not have a non-empty border; its
length is usually represented by µ(w), e.g. the maximal unbordered factor is aabab and
µ(w) = 5 for the word w = baabab. This dependency has been a subject of interest in the
literature for a long time, starting from the 1979 paper of Ehrenfeucht and Silberger [9] in
which they raised the question – at what length of w, µ(w) is maximal (i.e., equal to the
minimal period of the word as it is well-known that it cannot be longer than that). This
line of questioning, after being explored for more than three decades, culminated in 2012
with the work by Holub and Nowotka [11] where an asymptotically optimal upper bound
(µ(w) ≤ 3

7n) was presented; the historic overview of the related research can be found in [11].
Somewhat surprisingly, the symmetric computational problem – given a word w, compute

the longest factor of w that does not have a border – had not been studied until very recently.
In 2015, Kucherov et al. [15] considered this arguably natural problem and presented the
first sub-quadratic-time solution. A naïve way to solve this problem is to compute the border
array starting at each position of w and locating the rightmost zero, which results in an
algorithm with O(n2) worst-case running time. On the other hand, the computation of the
maximal unbordered factor can be done in linear time for the cases when µ(w) or its minimal
period is small (i.e., at most half the length of w) using the linear-time computation of
unbordered conjugates [8]. However, as has been illustrated in [15] and [2], most of the words
do not fall in this category owing to the fact that they have large µ(w) and consequently
large minimal period. In [15], an adaptation of the basic algorithm has been provided with
average-case running time O(n2/σ4), where σ is the alphabet’s size; it has also been shown
to work better, both in practice and asymptotically, than another straightforward approach
that employs data structures from [14, 13] to query all relevant factors.

The currently fastest worst-case algorithm to compute the maximal unbordered factor
of a given word takes O(n1.5) time; it was presented by Gawrychowski et al. [10] and it
works for integer alphabets (alphabets of polynomial size in n). This algorithm works by
categorising bordered factors into short borders and long borders depending on a threshold,
and exploiting the fact that, for each position, the short borders are bounded by the threshold
and the long borders are small in number. The resulting algorithm runs in O(n logn) time on
average. More recently, an O(n)-time average-case algorithm was presented using a refined
bound on the expected length of the maximal unbordered factor [2].

Our Contribution. In this paper, we show how to efficiently answer the Longest Unbordered
Factor question using combinatorial insight. Specifically, we present an algorithm that
computes the Longest Unbordered Factor Array in O(n logn) time with high probability. The
algorithm can also be implemented deterministically in O(n logn log2 logn) time. This array
specifies the length of the maximal unbordered factor at each position in w. We thus improve
on the running time of the currently fastest algorithm, which reports only the maximal
unbordered factor of w and works only for integer alphabets, taking O(n1.5) time.

T. Kociumaka, R. Kundu, M. Mohamed, and S. Pissis 70:3

Structure of the Paper. In Section 2, we present the preliminaries, some useful properties
of unbordered words, the algorithmic toolbox, and a formal definition of the problem. We lay
down the combinatorial foundation of the algorithm in Section 3 and expound the algorithm
in Section 4; its analysis is explicated in Section 5. We conclude this paper with a final
remark in Section 6.

2 Background

Definitions and Notation. We consider a finite alphabet Σ of letters. Let Σ∗ be the set of
all finite words over Σ. The empty word is denoted by ε. The length of a word w is denoted
by |w|. For a word w = w[1]w[2] . . w[n], w[i . . j] denotes the factor w[i]w[i+ 1] . . w[j], where
1 ≤ i ≤ j ≤ n. The concatenation of two words u and v is the word composed of the letters of
u followed by the letters of v. It is denoted by uv or also by u · v to show the decomposition
of the resulting word. Suppose w = uv, then u is a prefix and v is a suffix of w; if u 6= w

then u is a proper prefix of w; similarly, if v 6= w then v is a proper suffix of w. Throughout
the paper we consider a non-empty word w of length n over a general alphabet Σ; in this
case, we replace each letter by its rank such that the resulting word consists of integers in
the range {1, . . . , n}. This can be done in O(n logn) time after sorting the letters of Σ.

An integer 1 ≤ p ≤ n is a period of w if and only if w[i] = w[i+ p] for all 1 ≤ i ≤ n− p.
The smallest period of w is called the minimum period (or the period) of w, denoted by λ(w).
A word u (u 6= w) is a border of w, if w = uv = v′u for some non-empty words v and v′; note
that u is both a proper prefix and a suffix of w. It should be clear that if w has a border of
length |w| − p then it has a period p. Thus, the minimum period of w corresponds to the
length of the longest border (or the border) of w. Observe that the empty word ε is a border
of any word w. If u is the shortest border then u is the shortest non-empty border of w.

The word w is called bordered if it has a non-empty border, otherwise it is unbordered.
Equivalently, the minimum period p = |w| for an unbordered word w. Note that every
bordered word w has a shortest border u such that w = uvu, where u is unbordered. By
µ(w) we denote the maximum length among all the unbordered factors of w.

Useful Properties of Unbordered Words. Recall that a word u is a border of a word w if
and only if u is both a proper prefix and a suffix of w. A border of a border of w is also a
border of w. A word w is unbordered if and only if it has no non-empty border; equivalently
ε is the only border of w. The following properties related to unbordered words form the
basis of our algorithm and were presented and proved in [7].

I Proposition 1 ([7]). Let w be a bordered word and u be the shortest non-empty border of
w. The following propositions hold:
1. u is an unbordered word;
2. u is the unique unbordered prefix and suffix of w;
3. w has the form w = uvu.

I Proposition 2 ([7]). For any word w, there exists a unique sequence (u1, · · · , uk) of
unbordered prefixes of w such that w = uk · · ·u1. Furthermore, the following properties hold:
1. u1 is the shortest border of w;
2. uk is the longest unbordered prefix of w;
3. for all i, 1 ≤ i ≤ k, ui is an unbordered prefix of uk.

ISAAC 2018

70:4 Longest Unbordered Factor in Quasilinear Time

The computation of the unique sequence described in Proposition 2 provides a unique
unbordered-decomposition of a word. For instance, for w = baababbabab the unique
unbordered-decomposition of w is baa · ba · b · ba · ba · b.

Longest Successor Factor (Length and Reference) Arrays. Here, we present the arrays
that will act as a toolbox for our algorithm. The longest successor factor of w (denoted by
lsf) starting at position i, is the longest factor of w that occurs at i and has at least one
other occurrence in the suffix w[i+ 1 . . n]. The longest successor factor array gives for each
position i in w, the length of the longest factor starting both at position i and at another
position j > i. Formally, the longest successor factor array (LSF`) is defined as follows.

LSF`[i] =
{

0 if i = n,

max{k | w[i . . i+ k − 1] = w[j . . j + k − 1}, for i < j ≤ n.
Additionally, we define the LSF-Reference Array, denoted by LSFr. This array specifies,

for each position i of w, the reference of the longest successor factor at i. The reference of
i is defined as the position j of the last occurrence of w[i . . i + LSF`[i] − 1] in w; we say i
refers to j. Formally, LSF-Reference Array (LSFr) is defined as follows.

LSFr[i] =
{
nil if LSF`[i] = 0,
max{j | w[j . . j + LSF`[i]− 1] = w[i . . i+ LSF`[i]− 1]} for i < j ≤ n.

Computation: Note that the longest successor factor array is a mirror image of the
well-studied longest previous factor array which can be computed in O(n) time for integer
alphabets [4, 5]. Moreover, in [4], an additional array that keeps a position of some previous
occurrence of the longest previous factor was presented; such position may not be the
leftmost. Arrays LSF` and LSFr can be computed using simple modifications (pertaining to
the symmetry between the longest previous and successor factors) of this algorithm1 within
O(n) time for integer alphabets.

I Example 3. Let w = aabbabaabbaababbabab. The associated arrays are as follows.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
w[i] a a b b a b a a b b a a b a b b a b a b

LSF`[i] 5 6 5 4 3 4 3 4 3 2 1 4 3 2 1 3 2 1 0 0
LSFr[i] 7 14 15 16 17 10 11 14 15 18 19 17 18 19 20 18 19 20 nil nil

I Remark. For brevity, we will use lsf and luf to represent the longest successor factor and
the longest unbordered factor, respectively.

Problem Definition. The Longest Unbordered Factor Array problem can be defined
formally as follows.

Longest Unbordered Factor Array
Input: A word w of length n.
Output: An array LUF[1 . . n] such that LUF[i] is the length of the maximal unbordered
factor starting at position i in w, for all 1 ≤ i ≤ n.

1 The modified algorithm also computes some starting position j > i for each factor w[i . . i + |LSF`[i]|− 1],
1 ≤ i ≤ n. Each such factor corresponds to the lowest common ancestor of the two terminal nodes
in the suffix tree of w representing the suffixes w[i . . n] and w[j . . n]; this ancestor can be located in
constant time after linear-time preprocessing [1]. A linear-time preprocessing of the suffix tree also
allows for constant-time computation of the rightmost starting position of each such factor.

T. Kociumaka, R. Kundu, M. Mohamed, and S. Pissis 70:5

I Example 4. Consider w = aabbabaabbaababbabab, then the longest unbordered factor
array is as follows. (Observe that w is unbordered thus µ(w) = |w| = 20.)

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
w[i] a a b b a b a a b b a a b a b b a b a b

LUF[i] 20 3 12 9 12 3 14 3 11 3 10 5 2 3 5 2 2 2 2 1

3 Combinatorial Tools

The core of our algorithm exploits the unique unbordered-decomposition of all suffixes
of w in order to compute the length of the maximal (longest) unbordered prefix of each
such suffix. Let the unbordered-decomposition of w[i . . n] be uk · · ·u1 as in Proposition 2.
Then LUF[i] = |uk|. In order to compute the unbordered-decomposition for all the suffixes
efficiently, the algorithm uses the repetitive structure of w characterised by the longest
successor factor arrays.

Basis of the algorithm. Abstractly, it is easy to observe that for a given position, if the
length of the longest successor factor is zero (no factor starting at this position repeats
afterwards) then the suffix starting at that position is necessarily unbordered. On the other
hand, if the length of the longest successor factor is smaller than the length of the unbordered
factor at the reference (the position of the the last occurrence of the longest successor factor)
then the ending positions of the longest unbordered factors at this position and that at
its reference will coincide; these two cases are formalised in Lemmas 5 and 6 below. The
remaining case is not straightforward and its handling accounts for the bulk of the algorithm.

I Lemma 5. If LSF`[i] = 0 then LUF[i] = n− i+ 1, for 1 ≤ i ≤ n.

I Lemma 6. If LSFr[i] = j and LSF`[i] < LUF[j] then LUF[i] = j+LUF[j]− i, for 1 ≤ i ≤ n.

Proof. Let k = j+LUF[j]−1. We first show that w[i . . k] is unbordered. Assume that w[i . . k]
is bordered and let β be the length of one of its borders (β < LSF`[i] as LSFr[i] = j). This
implies that w[i . . i+β−1] = w[k−β+1 . . k]. Since w[i . . i+LSF`[i]−1] = w[j . . j+LSF`[i]−1],
we get w[j . . j + β − 1] = w[k− β + 1 . . k] (i.e., w[j . . k] is bordered) which is a contradiction.
Moreover, w[k + 1 . . n] can be factorised into prefixes of w[j . . k] (by definition of LUF);
every such prefix is also a proper prefix of w[i . . i+ LSF`[i]− 1] which will make every factor
w[i . . k′], k < k′ ≤ n, to be bordered. This completes the proof. J

We introduce the notion of a hook to handle finding the unbordered-decomposition of
suffixes w[i . . n] for the remaining case (i.e., when LSF`[i] ≥ LUF[LSFr[i]]).

I Definition 7 (Hook). Consider a position j in a length-n word w. Its hook Hj is the smallest
position q such that w[q . . j − 1] can be decomposed into unbordered prefixes of w[j . . n].

The following observation provides a greedy construction of this decomposition.

I Observation 8. The decomposition of a word v into unbordered prefixes of another word u
is unique. This decomposition can be constructed by iteratively trimming the shortest prefix
of u which occurs as a suffix of the decomposed word.

Moreover, the decomposability into unbordered prefixes of u is hereditary in a certain sense:

ISAAC 2018

70:6 Longest Unbordered Factor in Quasilinear Time

i q j

v v
uu

i q j

u1u2ur−1
· · ·

ur

LSF`[i] = |v|
LSFr[i] = j

LUF[j] = |u|

Hj = q

Figure 1 Case a (i < q): The unbordered-decomposition of w[i . . n] consists of w[i . . q− 1] as the
longest unbordered prefix, followed by a sequence of unbordered prefixes of u, including u itself at
position j. Therefore, LUF[i] = q − i.

I Observation 9. If a word v can be decomposed into unbordered prefixes of u, then every
prefix of v also admits such a decomposition. Formally, if v = ur · ur−1 · . . · u2 · u1 such
that each ui, r ≥ i ≥ 1, is an unbordered prefix of u then any prefix v[1 . . k] can be uniquely
decomposed as v[1 . . k] = ur · ur−1 · . . · ui−1 · u′p · u′p−1 · . . · u′1, where k falls in ui and each
u′i, p ≥ i ≥ 1, is an unbordered prefix of u; simply, the decomposition preceding ui will be
retained by the prefix.

I Example 10. Consider w = aabbabaabbaababbabab as in Example 4. Observe that
H18 = 13: the factor w[13 . . 17] = ba · b · ba can be decomposed into unbordered prefixes of
w[18 . . 20] = bab. Moreover, no prefix of w[18 . . 20] matches a suffix of w[1 . . 12] = · · · aa.

The hook Hj has its utility when j is a reference as shown in the following lemma.

I Lemma 11. Consider a position i such that LSF`[i] ≥ LUF[j], where j = LSFr[i]. Then

LUF[i] =
{
Hj − i if i < Hj ,
LUF[j] otherwise.

Proof. Let u = w[j . . j + LUF[j]− 1], v = w[i . . i+ LSF`[i]− 1], and q = Hj . Observe that u
occurs at position i and that w[q . . n] can be decomposed into unbordered prefixes of u.
Case a: i < q. We shall prove that w[i . . q − 1] is the longest unbordered prefix of w[i . . n];

see Figure 1. By Observation 9, any longer factor w[i . . k], q ≤ k ≤ n has a suffix w[q . . k]
composed of unbordered prefixes of u. Thus, w[i . . k] must be bordered, because u is its
prefix. To conclude, for a proof by contradiction suppose that w[i . . q − 1] has a border
v′. Note that |v′| ≤ LSF`[i], so v′ is a prefix of v. Hence, it occurs both as a suffix of
w[1 . . q − 1] and a prefix of w[j . . n], which contradicts the greedy construction of q = Hj
(Observation 8).

Case b: i ≥ q. The decomposition of w[q . . n] into unbordered prefixes of u yields a decom-
position of w[i . . n] into unbordered prefixes of u, starting with u. This is the unbordered-
decomposition of w[i . . n] (see Proposition 2), which yields LUF[i] = |u| = LUF[j]. J

4 Algorithm

The algorithm operates in two phases: a preprocessing phase followed by the main computa-
tion phase. The preprocessing phase accomplishes the following: Firstly, compute the longest
successor factor array LSF` together with LSFr array. If LSFr[i] = j then we say i refers to j
and mark j in a boolean array (IsReference) as a reference.

In the main phase, the algorithm computes the lengths of the longest unbordered factors
for all positions in w. Moreover, it determines HOOK[j] = Hj for each potential reference,
i.e., each position j such that j = LSFr[i] and LSF`[i] ≥ LUF[j] for some i < j; see Lemma 11.

T. Kociumaka, R. Kundu, M. Mohamed, and S. Pissis 70:7

q j

uu1

i1

u2

i2

ur

ikip

ukup

ip−1

· · ·· · ·· · ·

Figure 2 A chain of consecutive shortest prefixes of w[j . . n] starting at positions i1 > i2 > · · · >
ir = q. No prefix of w[j . . n] is a suffix of w[1 . . q − 1], so the hook value of position j is Hj = q.
Meanwhile, HOOK[ik] is set to ip−1 in order to avoid iterating through ik+1, . . . , ip−1 again.

Positions are processed from right to left (in decreasing order) so that if i refers to j,
then LUF[j] (and HOOK[j], if necessary) has already been computed before i is considered.
For each position i, the value of LUF[i] is determined as follows:
1. If LSF`[i] = 0, then LUF[i] = n− i+ 1.
2. Otherwise

a. If LSF`[i] < LUF[j], then LUF[i] = j + LUF[j]− i.
b. If LSF`[i] ≥ LUF[j] and i ≥ HOOK[j], then LUF[i] = LUF[j].
c. If LSF`|[i] ≥ LUF[j] and i < HOOK[j], then LUF[i] = HOOK[j]− i.

If i is a potential reference, then HOOK[i] is also computed, as described in Section 4.1. It is
evident that the computational phase of the algorithm fundamentally reduces to finding the
hooks for potential references; for brevity, the term reference will mean a potential reference
hereafter.

4.1 Finding Hook (FindHook Function)
Main idea. When FindHook is called on a reference j, it must return Hj . A simple
greedy approach follows directly from Observation 8; see also Figure 2. Initially, the factor
w[1 . . j − 1] is considered and the shortest suffix of w[1 . . j − 1] which is a prefix of w[j . . n]
is computed. Then this suffix, denoted u1 = w[i1 . . j − 1], is truncated (chopped) from the
considered factor w[1 . . j − 1]; the next factor considered will be w[1 . . i1 − 1]. In general,
we iteratively compute and truncate the shortest prefixes of w[j . . n] from the right end
of the considered factor; shortening the length of the considered factor in each iteration
and terminating as soon as no prefix of w[j . . n] can be found. If the considered factor at
termination is w[1 . . q − 1], position q is returned by the function as Hj .

The factors w[q . . j−1] considered by successive calls of FindHook function may overlap.
Moreover, the same chains of consecutive unbordered prefixes may be computed several
times throughout the algorithm. To expedite the chain computation in the subsequent calls
of FindHook on another reference j′ (j′ < j), we can recycle some of the computations
done for j by shifting the value HOOK[·] of each such index (at which a prefix was cut for j)
leftwards (towards its final value). Consider the starting position ik at which uk was cut (i.e.,
uk = w[ik . . ik−1 − 1] is the shortest unbordered prefix of w[j . . n] computed at ik−1). Let
ip be the first position considered after ik such that |up| > |uk|. In this case, every factor
uk+1, . . . , up−1 is a prefix of uk; see Figure 2. Therefore, w[ip−1 . . ik − 1] can be decomposed
into prefixes of uk (and of w[ik . . n]). Consequently, we set HOOK[ik] = ip−1 so that the next
time a prefix of length greater than or equal to |uk| is cut at ik, we do not have to repeat
truncating the prefixes uk+1, . . . , up−1 and we may start directly from position ip−1.

In order to express the intermediate values in the HOOK table, we generalize the notion
of Hj : for a position j and a length `, we define H`j as the smallest position q such that
w[q . . j − 1] can be decomposed into unbordered prefixes of w[j . . n] whose lengths do not
exceed `. Observe that H0

j = j and H`j = Hj if ` ≥ LUF[j].

ISAAC 2018

70:8 Longest Unbordered Factor in Quasilinear Time

Implementation. For each position ik, we set HOOK[ik] = H|uk|
ik

, equal to ip−1 in the case
considered above. Computing these values for all indices ik can be efficiently realised using a
stack. Every starting position ip, at which up is cut, is pushed onto the stack as a (length,
position) pair (|up|, ip). Before pushing, every element (|uk|, ik) such that |uk| < |up| is
popped and the hook value of index ik is updated (HOOK[ik] = H|uk|

ik
= ip−1 = ip + |up|).

Analysis. Throughout the algorithm, each unbordered prefix up at position ip is computed
just once by the FindHook function. Nevertheless, a longer2 unbordered prefix u′p may be
computed at ip again when FindHook is called on reference j′ (where q < j′ < j).

In what follows, we introduce certain characteristics of the computed unbordered prefixes
which aids in establishing the relationship between the stacks of various references. Let Sj
be the set of positions pushed onto the stack during a call of FindHook on reference j.

I Definition 12 (Twin Set). A twin set of reference j for length `, denoted by T `j , is the set
of all the positions i ∈ Sj which were pushed onto the stack paired with length ` in the call
of FindHook on reference j (i.e., T `j = {i | (`, i) was pushed onto the stack of j}).

Note that a unique shortest unbordered prefix of w[j . . LUF[j]− 1] occurs at each i belonging
to the same twin set. However, as and when a longer prefix at i is cut (say `′) for another
reference j′ < j, i will be added to T `′j′ .

I Remark. Sj =
LUF[j]⋃
`=1
T `j .

Hereafter, a twin set will essentially imply a non-empty twin set.

I Lemma 13. If j′ and j are references such that j′ ∈ Sj, then Hj ≤ Hj′ .

Proof. Since j′ ∈ Sj , the suffix w[j′ . . n] (and, by Observation 9, its every prefix w[j′ . . k])
can be decomposed into unbordered prefixes of w[j . . n]. Consequently, any decomposition
into unbordered prefixes of w[j′ . . n] yields a decomposition into unbordered prefixes of
w[j . . n]. In particular, w[Hj′ . . n] admits such a decomposition, which implies Hj ≤ Hj′ . J

If the stack Sj is the most recent stack containing a reference j′, we say that j′ is the
parent of j. More formally, the parent of j′ is defined as min{j | j′ ∈ Sj}. If j′ does not
belong to any stack (and thus has no parent), we will call it a base reference.

I Lemma 14. If j and j′ are two references such that j is the parent of j′ and j′ ∈ T `j , then
each position i ∈ Sj′ satisfies the following properties:
1. i ∈ T `j ;
2. there exists k ∈ T `′j , with `′ > `, such that (k + `′ − i, i) is pushed onto the stack of j′.

Proof. Let p be the value of HOOK[j′] prior to the execution of FindHook(j′). Since
j′ ∈ T `j , the earlier call FindHook(j) has set HOOK[j′] = H`j′ . As j is the parent of j′, no
further call has updated HOOK[j′]. Thus, we conclude that p = H`j′ .

Consequently, the first pair pushed onto the stack of j′ is (|z|, i), where z = w[i . . p− 1]
is the shortest suffix of w[1 . . p− 1] which also occurs as a prefix of w[j′ . . n] (see Figure 3).
Moreover, observe that |z| > ` by the greedy construction of H`j′ .

2 It will be easy to deduce after Lemma 14 that the length of the prefix cut (the next time) at the same
position will be at least twice the length of the current prefix cut at it.

T. Kociumaka, R. Kundu, M. Mohamed, and S. Pissis 70:9

Hj j

z z

j′pki

vv′v
· · ·· · ·· · ·

Figure 3 The pair (|z|, i) is the first to be pushed onto the stack of j′. The factor z is unbordered,
has v as a proper prefix and some v′ as a proper suffix, where both v and v′ are unbordered prefixes
of w[j . . n] whose lengths ` and `′, respectively, satisfy ` < `′.

q j

u

z1
z2 u′′

u′

j′′p ki j′

vv1v vr vv
· · ·· · ·· · ·· · ·

xr

Figure 4 The pair (|z1|, i) and (|z2|, i) are pushed onto the stack of j′ and j′′ where i is a position
common to both Sj′ and Sj′′ .

Recall that j′ ∈ T `j implies that w[j′ . . n] can be decomposed into unbordered prefixes of
w[j . . n], with the first prefix of length `, denoted v = w[j′ . . j′ + `− 1]. With an occurrence
at position j′, the factor z also admits such a decomposition, still with the first prefix v (due
to |z| > |v|). Additionally, note that w[p . . j′−1] can be decomposed into unbordered prefixes
of v. Concatenating the decompositions of z = w[i . . p− 1], w[p . . j′ − 1], and w[j′ . . n], we
conclude that w[i . . n] can be decomposed into unbordered prefixes of w[j . . n] with the first
prefix (in this unique decomposition) equal to v. Hence, i ∈ Sj′ belongs to the same twin set
as j′; i.e., it satisfies the first claim of the lemma.

Additionally, in the aforementioned decomposition of w[i . . n] consider the factor v′ =
w[k . . p− 1] which ends at position p− 1. By the greedy construction of H`j′ , its length |v′| is
strictly larger than `, so k ∈ T `′j for `′ = |v′| > `. Moreover, recall that (|z|, i) = (k+ `′− i, i)
is pushed onto the stack of j′. Consequently, i also satisfies the second claim of the lemma.

A similar reasoning is valid for each i that will appear in Sj′ . J

I Lemma 15. If j is the parent of two references j′′ < j′, both of which belong to T `j , then
Sj′ ∩ Sj′′ = ∅.

Proof. The proof is trivial if ` = LUF[j]. Let ` < LUF[j], u = w[j . . j+LUF[j]−1] and v be the
shortest unbordered prefix of u cut at j′ and j′′ (i.e., |v| = `). Let u′ = w[j′ . . j′+LUF[j′]−1]
and u′′ = w[j′′ . . j′′ + LUF[j′′] − 1]. Here, the current call to the FindHook function has
been made on the reference j′′. Consider the largest position i such that it is common to the
stacks of j′ and j′′ i.e. i ∈ Sj′ and i ∈ Sj′′ . Let the prefixes cut at i be z1 = w[i . . p] and
z2 = w[i . . k]. Observe that i being the largest position and j′ 6= j′′ ensure that |z1| 6= |z2|.
Without loss of generality, let |z1| < |z2| (examine Figure 4).

1. j′ cuts z2 and j′′ cuts z1: We proceed with the proof below by showing that there is
a reference between j′ and j that pushes j′ onto its stack, thus contradicting the fact
that j is the parent of j′.

ISAAC 2018

70:10 Longest Unbordered Factor in Quasilinear Time

Following Observation 9, w[i . . k] can be decomposed into unbordered prefixes of u′′ with
the first prefix being z1 i.e. z2 = z1 · x1 · x2 · . . · xr. Here, |xr| > |z1| otherwise z2 is
bordered. Moreover, each xi larger than v has corresponding position in Sj′′ and others
(i.e. |xi| ≤ |v|) are skipped because of HOOK[·]. Let xs be the first of these xi, 1 ≤ i ≤ r
such that |xs| > |z1|; the prefix z̃2 = z1 · . . · xs is unbordered. In the occurrence of z2 at
j′, let j0 be the position corresponding to xs i.e. j0 = j′ + |z1 · · ·xs−1|.
Note that xs, like every xi and z1, has v as proper prefix and some vi as a proper
suffix where vi is an unbordered prefix of u longer than v (from Lemma 14). Therefore,
j0 < j (xs cannot start at j otherwise it would be bordered and xs starting after j would
contradict the assumption that j is the parent of j′ as w[j′ . . j0] can be factorised into
prefixes of xs).
Now, we prove that j0 is a (potential) reference. The fact that j′ is a potential reference
ensures that ũ = w[j0 . . j

′ + |u′| − 1] is a repeated factor. Moreover, ũ contains the luf at
j0, say u0, because u0 is a factor (or suffix) of u′ (since w[j′ . . j0 − 1] can be decomposed
into prefixes of xs); an implication is that |ũ| ≥ |u0|. Thus, j0 is a reference if the
last occurrence of ũ is at j0. For contradiction, assume that the factor ũ has another
occurrence at some position larger than j0. This implies that there is another occurrence
of u as u0 contains u (the luf at any position which is in the stack of j, ends at or after
j + |u| − 1). It is not possible as the last of the occurrences of u after j would cause j, j′,
j′′ etc. to go in its stack and j would no longer be the parent of j′ or j′′.
Summing up, j0 < j is a reference with xs as a prefix of u0. If j is the parent of j0 then
j0 would have pushed j′ onto its stack, otherwise another reference j−1, j0 < j−1 < j

that pushed j0 onto its stack would have pushed j′ as well. In either case, j is not the
parent of j′ which is a contradiction.

2. j′ cuts z1 and j′′ cuts z2: Using the similar argument as in Case 1, we can prove
that this case would lead to the conclusion that there is another reference between j′′
and j that would push j′′ onto its stack and hence contradicting that j is the parent of
j′′. J

4.2 Finding Shortest Border (FindBeta Function)
Given a reference j and a position q, function FindBeta returns the length β of the shortest
prefix of w[j . . n] that is a suffix of w[1 . . q − 1], or β = 0 if there is no such prefix; note that
the sought shortest prefix is necessarily unbordered.

To find this length, we use ‘prefix-suffix queries’ of [14, 13]. Such a query, given a positive
integer d and two factors x and y of w, reports all prefixes of x of length between d and 2d
that occur as suffixes of y. The lengths of sought prefixes are represented as an arithmetic
progression, which makes it trivial to extract the smallest one. A single prefix-suffix query
can be implemented in O(1) time after randomized preprocessing of w which takes O(n) time
in expectation [14], or O(n logn) time with high probability [13]. Additionally, replacing hash
tables with deterministic dictionaries [16], yields an O(n logn log2 logn)-time deterministic
preprocessing.

To implement FindBeta, we set x = [j . . n], y = [1 . . q − 1] and we ask prefix-suffix
queries for subsequent values d = 1, 3, . . . , 2k − 1, . . . until d exceeds min(|x|, |y|). Note that
we can terminate the search as soon as a query reports a non-empty answer. Hence, the
running time is O(1 + log β) if the query is successful (i.e., β 6= 0) and O(logn) otherwise.

Furthermore, we can expedite the successful calls to FindBeta if we already know that
β /∈ {1, . . . , `}. In this case, we can start the search with d = ` + 1. Specifically, if j is
not a base reference and belongs to T `j′ for some j′, we can start from d = 2`+ 1 because
Lemma 14.2 guarantees that β ≥ `+ `′ > 2`.

T. Kociumaka, R. Kundu, M. Mohamed, and S. Pissis 70:11

5 Analysis

Our algorithm computes the longest unbordered factor at each position i; position i is a
start-reference or it refers to some other position. The correctness of the computed LUF[i]
follows directly from Lemmas 5, 6 and 11.

The analysis of the algorithm running time necessitates probing of the total time consumed
by FindHook and the time spent by FindBeta function which, in turn, can be measured
in terms of the total size of the stacks of various references.

I Lemma 16. The total size of all the stacks used throughout the algorithm is O(n logn).
Moreover, the total running time of the FindBeta function is O(n logn).

Proof. First, we shall prove that any position p belongs to O(logn) stacks.
By Lemma 14.1, the stack of any reference is a subset of the stack of its parent. Moreover,

by Lemmas 14.1 and 15, the stacks of references sharing the same parent are disjoint. A
similar argument shows that the stacks of base references are disjoint.

Consequently, the references j1 > . . . > js whose stacks Sji
contain p form a chain with

respect to the parent relation: j1 is a base reference, and the parent of any subsequent ji is
ji−1. Let us define `1, . . . , `s so that p ∈ T `i

ji
. By Lemma 14.2, for each 1 ≤ i < s, there exist

ki and `′i > `i such that ki ∈ T
`′i
ji

and `i+1 = ki − p+ `′i ≥ `i + `′i > 2`i. Due to 1 ≤ `i ≤ n,
this yields s ≤ 1 + logn = O(logn), as claimed.

Next, let us analyse the successful calls β = FindBeta(q, j) with p = q − β. Observe
that after each such call, p is inserted to the stack Sj and to the twin set T βj , i.e, j = ji

and β = `i for some 1 ≤ i ≤ s. Moreover, if i > 1, then ji ∈ T `i−1
ji−1

, which we are aware
of while calling FindBeta. Hence, we can make use of the fact that `i /∈ {1, . . . , 2`i−1}
to find β = `i in time O(log `i

`i−1
). For i = 1, the running time is O(1 + log `1). Hence,

the overall running time of successful queries β = FindBeta(q, j) with p = q − β is
O(1 + log `1 +

∑s
i=2 log `i

`i−1
) = O(1 + log `s) = O(logn), which sums up to O(n logn) across

all positions p.
As far as the unsuccessful calls 0 = FindBeta(q, j) are concerned, we observe that each

such call terminates the enclosing execution of FindHook. Hence, the number of such calls
is bounded by n and their overall running time is clearly O(n logn). J

I Theorem 17. Given a word w of length n, our algorithm solves the Longest Unbordered
Factor Array problem in O(n logn) time with high probability. It can also be implemented
deterministically in O(n logn log2 logn) time.

Proof. Assuming an integer alphabet, the computation of LSF` and LSFr arrays along with
the constant time per position initialisation of the other arrays sum up the preprocessing stage
to O(n) time. The running time required for the assignment of the luf for all positions is O(n).
The time spent in construction of the data structure to answer prefix-suffix queries used in
FindBeta function is O(n logn) with high probability or O(n logn log2 logn) deterministic.

Additionally, the total running time of the FindHook function for all the references,
being proportional to the aggregate size of all the stacks, can be deduced from Lemma 16.
This has been shown to be O(n logn) in the worst case, same as the total running time of
FindBeta. The claimed bound on the overall running time follows. J

We can also show that the upper bound shown in Lemma 16 is in the worst case tight
by designing an infinite family of words that exhibit the worst-case behaviour. We plan to
include this construction in the full version of the paper.

ISAAC 2018

70:12 Longest Unbordered Factor in Quasilinear Time

6 Final Remark

Computing the longest unbordered factor in o(n logn) time for integer alphabets remains an
open question.

References
1 Michael A. Bender and Martin Farach-Colton. The LCA Problem Revisited. In Gaston H.

Gonnet, Daniel Panario, and Alfredo Viola, editors, LATIN 2000: Theoretical Informatics,
4th Latin American Symposium, Punta del Este, Uruguay, April 10-14, 2000, Proceedings,
volume 1776 of Lecture Notes in Computer Science, pages 88–94. Springer, 2000. doi:
10.1007/10719839_9.

2 Patrick Hagge Cording and Mathias Bæk Tejs Knudsen. Maximal Unbordered Factors of
Random Strings. In Shunsuke Inenaga, Kunihiko Sadakane, and Tetsuya Sakai, editors,
String Processing and Information Retrieval - 23rd International Symposium, SPIRE 2016,
Beppu, Japan, October 18-20, 2016, Proceedings, volume 9954 of Lecture Notes in Computer
Science, pages 93–96, 2016. doi:10.1007/978-3-319-46049-9_9.

3 Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algorithms on strings.
Cambridge University Press, 2007.

4 Maxime Crochemore and Lucian Ilie. Computing Longest Previous Factor in Linear Time
and Applications. Inf. Process. Lett., 106(2):75–80, 2008.

5 Maxime Crochemore, Lucian Ilie, Costas S. Iliopoulos, Marcin Kubica, Wojciech Rytter,
and Tomasz Waleń. Computing the Longest Previous Factor. Eur. J. Comb., 34(1):15–26,
2013.

6 Maxime Crochemore and Wojciech Rytter. Jewels of stringology. World Scientific, 2002.
doi:10.1142/4838.

7 Jean-Pierre Duval. Relationship between the period of a finite word and the length
of its unbordered segments. Discrete Mathematics, 40(1):31–44, 1982. doi:10.1016/
0012-365X(82)90186-8.

8 Jean-Pierre Duval, Thierry Lecroq, and Arnaud Lefebvre. Linear computation of un-
bordered conjugate on unordered alphabet. Theor. Comput. Sci., 522:77–84, 2014. doi:
10.1016/j.tcs.2013.12.008.

9 Andrzej Ehrenfeucht and D. M. Silberger. Periodicity and unbordered segments of words.
Discrete Mathematics, 26(2):101–109, 1979. doi:10.1016/0012-365X(79)90116-X.

10 Pawel Gawrychowski, Gregory Kucherov, Benjamin Sach, and Tatiana A. Starikovskaya.
Computing the Longest Unbordered Substring. In Costas S. Iliopoulos, Simon J. Pug-
lisi, and Emine Yilmaz, editors, String Processing and Information Retrieval - 22nd In-
ternational Symposium, SPIRE 2015, London, UK, September 1-4, 2015, Proceedings,
volume 9309 of Lecture Notes in Computer Science, pages 246–257. Springer, 2015. doi:
10.1007/978-3-319-23826-5_24.

11 Stepan Holub and Dirk Nowotka. The Ehrenfeucht-Silberger problem. J. Comb. Theory,
Ser. A, 119(3):668–682, 2012. doi:10.1016/j.jcta.2011.11.004.

12 Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast Pattern Matching in
Strings. SIAM J. Comput., 6(2):323–350, 1977. doi:10.1137/0206024.

13 Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, and Tomasz Walen. Effi-
cient Data Structures for the Factor Periodicity Problem. In Liliana Calderón-Benavides,
Cristina N. González-Caro, Edgar Chávez, and Nivio Ziviani, editors, String Processing and
Information Retrieval - 19th International Symposium, SPIRE 2012, Cartagena de Indias,
Colombia, October 21-25, 2012. Proceedings, volume 7608 of Lecture Notes in Computer
Science, pages 284–294. Springer, 2012. doi:10.1007/978-3-642-34109-0_30.

http://dx.doi.org/10.1007/10719839_9
http://dx.doi.org/10.1007/10719839_9
http://dx.doi.org/10.1007/978-3-319-46049-9_9
http://dx.doi.org/10.1142/4838
http://dx.doi.org/10.1016/0012-365X(82)90186-8
http://dx.doi.org/10.1016/0012-365X(82)90186-8
http://dx.doi.org/10.1016/j.tcs.2013.12.008
http://dx.doi.org/10.1016/j.tcs.2013.12.008
http://dx.doi.org/10.1016/0012-365X(79)90116-X
http://dx.doi.org/10.1007/978-3-319-23826-5_24
http://dx.doi.org/10.1007/978-3-319-23826-5_24
http://dx.doi.org/10.1016/j.jcta.2011.11.004
http://dx.doi.org/10.1137/0206024
http://dx.doi.org/10.1007/978-3-642-34109-0_30

T. Kociumaka, R. Kundu, M. Mohamed, and S. Pissis 70:13

14 Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, and Tomasz Walen. Internal
Pattern Matching Queries in a Text and Applications. In Piotr Indyk, editor, Proceedings
of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015,
San Diego, CA, USA, January 4-6, 2015, pages 532–551. SIAM, 2015. doi:10.1137/1.
9781611973730.36.

15 Alexander Loptev, Gregory Kucherov, and Tatiana A. Starikovskaya. On Maximal Un-
bordered Factors. In Ferdinando Cicalese, Ely Porat, and Ugo Vaccaro, editors, Combin-
atorial Pattern Matching - 26th Annual Symposium, CPM 2015, Ischia Island, Italy, June
29 - July 1, 2015, Proceedings, volume 9133 of Lecture Notes in Computer Science, pages
343–354. Springer, 2015. doi:10.1007/978-3-319-19929-0_29.

16 Milan Ruzic. Constructing Efficient Dictionaries in Close to Sorting Time. In Luca Aceto,
Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and
Igor Walukiewicz, editors, Automata, Languages and Programming, 35th International Col-
loquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part I: Tack A:
Algorithms, Automata, Complexity, and Games, volume 5125 of Lecture Notes in Computer
Science, pages 84–95. Springer, 2008. doi:10.1007/978-3-540-70575-8_8.

ISAAC 2018

http://dx.doi.org/10.1137/1.9781611973730.36
http://dx.doi.org/10.1137/1.9781611973730.36
http://dx.doi.org/10.1007/978-3-319-19929-0_29
http://dx.doi.org/10.1007/978-3-540-70575-8_8

	Introduction
	Background
	Combinatorial Tools
	Algorithm
	Finding Hook (FindHook Function)
	Finding Shortest Border (FindBeta Function)

	Analysis
	Final Remark

