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Abstract
We study the problem of approximate shortest path queries in chordal graphs and give a n logn+
o(n logn) bit data structure to answer the approximate distance query to within an additive
constant of 1 in O(1) time.

We study the problem of succinctly storing a static chordal graph to answer adjacency, degree,
neighbourhood and shortest path queries. Let G be a chordal graph with n vertices. We design
a data structure using the information theoretic minimal n2/4 + o(n2) bits of space to support
the queries:

whether two vertices u, v are adjacent in time f(n) for any f(n) ∈ ω(1).
the degree of a vertex in O(1) time.
the vertices adjacent to u in (f(n))2 time per neighbour
the length of the shortest path from u to v in O(nf(n)) time
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1 Introduction

Chordal graphs have a rich history of study. There were encountered in the study of Gaussian
elimination of sparse matrices [15]. Chordal graphs have many equivalent characterizations
including the absence of chordless cycles of length greater than 3, the existence of an perfect
elimination order[16], the existence of a clique tree [4], and as the intersection graph of
subtrees of a tree [18]. Tarjan et. al [16] gave a linear O(n+m) algorithm for recognizing
chordal graphs with n vertices and m edges by computing a perfect elimination order. The
structure of chordal graphs allows the computation of many otherwise NP-Hard problems
to be solved in polynomial time. These include finding the largest clique or computing
the chromatic number. Chordal graphs have found applications in many fields, including
compiler construction [14] and databases [6].

We consider the problem of creating a data structure for a chordal graph through the
lens of succinct data structures. The goal of succinct data structures is to store a set X of
objects in the information theoretic minimal log(|X|) + o(log(|X|)) bits of space while still
being able to efficiently support the relevant queries. Jacobson [10] is the first to consider
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space efficient data structures in this sense and he gave representations of bit vectors, trees
and planar graphs. Further work in this area gave space minimal representations of dynamic
trees [11], arbitrary graphs [8] and partial k-trees [7].

1.1 Related Work
Graphs are a fundamental combinatorical structure and it is no surprise that there are a lot
of work in constructing space efficient data structure for different classes of graphs. Many
classes of graphs have been considered, such as arbitrary graphs [8], partial k-trees [7], planar
graphs [10] and separable graphs [2]. For chordal graphs, there has been work in the dynamic
setting, focusing mainly on whether certain edge insertions/deletions preserve chordality
[1, 9]. Banerjee et. al showed that insertions/deletions can be done in O(deg(u) + deg(v))
time where (u, v) is the edge that is inserted/deleted. They also show a lower bound that
O(logn) amortized time is required.

Singh et. al [17] gave an O(n logn) bit data structure for the problem of approximate
distance queries in chordal graphs. Their result is a 2d+ 8 approximation, that is, the result
of the query is anywhere between d the actual distance and 2d+ 8.

1.2 Our Results
Our representation of a chordal graph is based on the clique tree [4]. We store a slight
variation of the clique tree in the information theoretic minimal n2/4 + o(n2) bits of space.
We then augment this structure to support degree in O(1), adjacency and neighbourhood
in O(f(n)), O(f(n)2) respectively for any f ∈ ω(1)) and distance queries in O(nf(n)). We
then consider the problem of approximating the distance query and identify the necessary
portions of the previous data structure required to answer this approximation to obtain a
n logn+ o(n logn) bit data structure with O(1) query time. The approximation is within 1
of the actual distance.

Finally we explore the close relationship between the distance query and the set intersection
oracle problem, and show that heuristically, it is difficult to construct a data structure in the
exact distance scenario.

2 Preliminaries

2.1 Graph Terminology
We will assume basic terminology from graph theory such as vertex, edge, tree, undirected
graph, etc. We will denote an undirected graph as G = (V,E) with vertex set V and edge
set E. We will denote an edge between vertices u, v by (u, v). The number of vertices as
n = |V | and the number of edges as m = |E|. As we will be dealing with multiple graph-like
structures at the same time, we will use V to denote the vertex set when the underlying
graph is clear and V (G) to denote the vertex set of graph G. To avoid confusion in discussing
mapping a graph onto a tree, we will refer to vertices of trees as nodes. A clique of G is a
complete subgraph of G. Unless otherwise stated, our log are base 2.

2.2 Chordal Graph Structure
A graph G is chordal if it does not contain any Ck, a cycle on k vertices as an induced
subgraph for any k ≥ 4. We will assume that all our chordal graphs are connected, or if
not we could treat each component separately. The well known result of Rose et al. [16]
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Figure 1 A chordal graph and a PEO of it labelled. A clique tree and the tree decomposition.

states that this is equivalent to the existence of a perfect elimination order (PEO) of the
vertices of G. A PEO of a chordal graph G is an ordering v1, v2, . . . , vn of V such that the
predecessor set pred(vi) = {vj ; j < i, (vi, vj) ∈ E} is a clique for every vertex vi ∈ V . For
simplicity, we will denote vi simply as i. Furthermore, one can construct a clique tree of G
using the maximal cliques of G. Here every node of the tree is assigned a maximal clique
and the tree has the property that for every pair of cliques K,K ′, K ∩K ′ is contained in
every clique along the path between the nodes corresponding to K,K ′. This is equivalent to
for every vertex v ∈ V , the set of cliques v belongs to forms a contiguous subtree.

We will use a variant of the clique tree that has n nodes constructed from the PEO,
which we will denote as a tree decomposition of G. Let T be a tree and X : V (T )→ 2V a
function that assigns to each node of T a subset of the vertices of G such that:

For every v ∈ V , the set of nodes X−1(v) is non-empty and is contiguous. We will call
this the contiguous subtree property.
For every pair of vertices u, v ∈ V , (u, v) is an edge if and only if there is a tree node Tw
such that u, v ∈ X(Tw).

Note clique trees satisfies these properties.
Define B(i) = pred(i) ∪ {i} which we will call the bag of i. Define the functions

s(i) = min(pred(i)) and l(i) = max(pred(i)). It is easily seen that pred(i) ⊆ B(l(i)) since
l(i) ∈ pred(i) so it is adjacent to every element of pred(i).

We will construct a tree decomposition T from a PEO of G inductively. The initial node
is T1 with X(T1) = {1} = pred(1) ∪ {1} = B(1). Given a tree decomposition of 1, . . . , i,
construct a tree decomposition of 1, . . . , i+ 1 by creating a node Ti+1 with X(Ti+1) = B(i)
and connect Ti+1 to Tl(i+1).

I Lemma 1. This construction is a tree decomposition of G.

Proof. The second condition is easily seen as for every edge (i, j) with i < j is in bag
X(Tj) = B(j). Conversely, every bag is a clique. For the first condition, each Ti ∈ X−1(i),
so it is non-empty. Furthermore, since pred(i) ⊆ B(l(i)), it follows by induction that the set
X−1(i) is contiguous for every i. J
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We will abuse notation and refer to both the tree node Ti and the vertex i as i when the
context is clear. We will naturally refer to l(i) as the parent of i and denote the tree
decomposition constructed by Tl. We will build a second tree (not a tree decomposition) by
setting the parent of i as s(i) and call this tree Ts.

2.3 Chordal Graph Enumeration
Wormald [19] showed that the number of connected labelled chordal graphs on n vertices
is asymptotic to

∑
r

(
n
r

)
2r(n−r) >

(
n
n/2
)
2n2/4. To bound the number of unlabelled chordal

graphs, we take into account the number of automorphisms and obtain a lower bound of(
n
n/2
)
2n2/4/n! unlabelled chordal graphs. Thus the information theoretic lower bound gives

log(
(
n
n/2
)
2n2/4/n!) = n2/4−Θ(n logn) bits.

2.4 Succinct Structures Used
In this paper we will use both succinct trees and succinct bit vectors. While there have been
work on further compressing bit vectors to zeroth order entropy [13], we only require the
most basic form of bit vectors.

I Lemma 2. There is a succinct data structure for a bit vector B of length n using n+ o(n)
bits of space that supports following operations in O(1) time. [10]

B[i]: returns the bit at position i of B.
rank(i) =

∑i
k=1 B[i] the number of 1s at or before position i

select(i) = j such that B[j] = 1 and rank(j) = i, is the position of the i-th 1.

I Lemma 3. There is a succinct data structure for a tree T on n nodes using 2n+ o(n) bits
of space that supports the following operations in O(1) time. [11]

parent, k-th child
depth(i), the depth of node i
level-ancestor(i,d), the ancestor of node i at depth d in the tree
LCA(i,j), the lowest common ancestor of nodes i, j

3 Representation, Adjacency and Neighbourhood

We will store the chordal graph as follows: for each vertex i, store a bit vector W (i) of
length |B(l(i))| indicating which subset pred(i) is of B(l(i)) equipped with rank and select
operations. We also store 1 bit indicating whether this bit vector is the all 1s vector, and if
so, store the length in log |B(l(i))| bits instead. We also store the trees Tl, Ts. We identify
each vertex with the corresponding node in these trees. Unless otherwise stated, the tree
relations such as parent, are in Tl.

I Theorem 4. This representation uses at most n2/4 + o(n2) bits.

Proof. The main fact we will use is that pred(i) ⊆ B(l(i)) so that |B(i)| ≤ |B(l(i))| + 1
and equality occurs only when pred(i) = B(l(i)). In this equality case, we need only
log |B(l(i))| ≤ logn bits.

Consider the index i such that bag size |B(i)| = b is maximized. Since at each vertex,
the bag size can only increase by 1 from its parent l(i), there must be at least b indices
such that the above inequality is an equality, and we only need logn bits each in these
indices, for a total of b logn ≤ n logn bits. In all other vertices j, we need to store at most
|B(l(j))| ≤ |B(l(i))| = b bits (+o(b) for the rank and select structures). Thus in total we
need to store (b+ o(b))(n− b) + n logn+O(n) ≤ n2/4 + o(n2) bits. J
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Figure 2 The label on each node is the bit vector W (i). The ones that are all 1s are identified
and only their lengths are stored, but for clarity, they are drawn out explicitly.

3.1 Adjacency Queries

This structure is enough to answer the following queries in O(n) time:
Given a vertex i and an integer k, find the k-th smallest predecessor of i. We will call
this decode(i, k).
Given two vertices j < i, determine whether (i, j) ∈ E or equivalently, j ∈ pred(i). We
will call this adj(i, j)

Proof. We will handle these queries recursively up the tree.
First find the index of the k-th predecessor in the parent l(i) be k′ = select(W (i), k).
The vertex we are looking for is thus the k′-th predecessor of l(i). Note that l(i) is a
predecessor of i and it will be at index |B(l(i))|. This is the only predecessor that we
know exactly, all others are relative. Hence if k′ = |B(l(i))| we report the answer being
l(i), otherwise we recursively call decode(l(i), k′). In the worst case, this will recurse
depth(i) times with O(1) work per recursion, which could be as bad as Θ(n).
First note that every predecessor j of i, their tree node must be an ancestor of the tree
node corresponding to i (in Tl). This is because predecessor set are taken as subsets of
our ancestor’s predecessor sets. Thus it is necessary that j is an ancestor of i in Tl and
we can do this by LCA(Tl, j, i) = j, which if fails, we return false.
Next consider the path from j to i, j = p0, p1, . . . , ph = i. We wish to calculate the
index kh−1 of j in B(l(i)) = B(ph−1) if it exists, at which point, we may determine
whether it survived in the subset pred(i) by checking the value of W (i)[kh−1]. To do
this, we know that the index of j in B(p0) is simply k0 = |B(p0)|. Thus j exists in B(p1)
if W (p1)[k0] = 1, and its index in B(p1) is simply k1 = rank(W (p1), k0). We return
false if W (p1)[k0] = 0. Thus we create the helper query adj(i, j, k) which determines
whether the k-th predecessor of j is adjacent to i, with adj(i, j) = adj(i, j, |B(j)|) and
in the recursive case above, call adj(i, p1, k1). We determine p1 in O(1) time by calling
level-ancestor(i, depth(j) + 1). This is O(1) per recursive call and the number of calls is
at most depth(i) which could be as bad as Θ(n). J
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To speed up the query times, we would need to store some additional information. For certain
nodes, rather than storing its predecessors relative to its parents, we store them explicitly
with a bit vector using n bits (that is we store the corresponding row of the adjacency matrix)
along with a rank and select structure on this. To use o(n2) bits, we can only store this
information in o(n) of these nodes. Furthermore, we would like to select these nodes in an
uniform manner, such that for the paths above, we will encounter these shortcut nodes with
regularity. Formally, we would like to find a set of (o(n)) nodes such that every path of
length k in Tl intersects one of these nodes. This is exactly the problem of k-path vertex
cover. Bresar et al. [3] showed that while in general it is NP-hard, it is solvable on trees in
linear time.

I Lemma 5. There is an algorithm that computes an optimal k-path vertex cover of a tree
T , of size at most |V (T )|

k in linear time.

Let f = ω(1) be any non-constant increasing function, for example, the inverse Ackermann
function. Then by Lemma 5, we can find a set of at most n

f(n) = o(n) shortcut nodes such
that every path in Tl contains one of these nodes. We may thus modify the above queries to
cap the recursion depth.

If i is a shortcut node, then the k-th predecessor of i is select(W (i), k). Thus the recursion
depth is at most f(n). The time is thus O(f(n)).
We follow the path to the root from i until we hit either j or a shortcut node. If it
hit j first, then we continue as above, but with the recursion depth guaranteed to be
less than f(n). If we hit a shortcut node p0 first, check that j is a predecessor of p0 by
W (p0)[j] = 1. If not, return false, otherwise call adj(i, p0, rank(W (p0), j)) since j is the
rank(W (p0), j)-th predecessor of p0. Again the recursion depth is at most f(n) so the
time is O(f(n)).

Thus we have the following result:

I Theorem 6. There is a data structure for chordal graphs on n vertices that can answer
adjacency queries in f(n) time using n2/4 + n2/f(n) + o(n2) bits of space.

3.2 Degree, Neighbourhood queries

Degree queries are simple, since we may write the down the degree of every vertex in n logn
bits of space. For neighbourhood queries at vertex i, we split it into two parts, those
neighbours that are smaller than i and those that are greater.

For the smaller neighbours, we simply query: at vertex i, find the k-th predecessor of i
for 1 ≤ k ≤ |pred(i)| - in other words, applying decode(i, k). This takes f(n) time per
neighbour.
For the larger neighbours at vertex i, we store a bit vector of length (n− i)/f(n), with
entry j being a 1 if there is a neighbour in range of vertices [i+ (j − 1)f(n), i+ jf(n)].
Total space is n2/f(n) = o(n2). We select each 1 from this bit vector and check adjacency
for every vertex in the given range. Therefore, each neighbour will need at most f(n)
adjacency queries, and thus we need f(n)2 time per neighbour.

Thus we have the following:

I Theorem 7. There is a data structure for chordal graphs on n vertices that can answer
adjacency queries in f(n) time and neighbourhood queries in (f(n))2 time per neighbour
using n2/4 +O(n2/f(n)) + o(n2) bits of space.
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4 Shortest Paths

Let d(i, j) denote the distance between vertices i, j.
We would like to answer queries of the form:
sp(i, j) = i = p0, p1, . . . , pk = j a path from i to j of minimal length
dist(i, j) = k the length of the shortest path

We will show that these queries are difficult to answer, since they are a superset of adjacency
queries. Thus we will look at approximate forms of these queries. We will use d(i, j) to
denote the actual distance and dist(i, j) to denote the result of our query. We would like
dist(i, j) = d(i, j) but in general this is difficult. Define the approximate forms of these
queries as asp, adist.

4.1 Ancestor Case
We will first study the easy case, where j < i is an ancestor of i.

I Lemma 8. The following algorithm:
repeatedly apply s(.) to i to obtain the sequence i = p0, p1, . . . , pk. This is equivalent to
traverse the node to root path from i in Ts.
stop when pk > j but pk+1 = s(pk) ≤ j.
if adj(pk, j) then dist(i, j) = k+ 1 and the path is i = p0, p1, . . . , pk, pk+1 = j. Otherwise,
dist(i, j) = k + 2 and the path is i = p0, p1, . . . , pk, pk+1, j

correctly computes the distance (that is dist(i, j) = d(i, j)) and a shortest path between i and
j given that j is an ancestor of i.

Proof. We induct on the distance between i and j.
If d(i, j) = 1, then i and j are adjacent. Furthermore, since j ∈ pred(i), s(i) ≤ j. Thus

i = p0 = pk and algorithm correctly gives dist(i, j) = 1.
Suppose that d(i, j) = 2, and let i, h, j be a path from i to j with minimal h. Note

that if h > i then both i, j ∈ pred(h) so they are adjacent, contradicts d(i, j) = 2. In all
other cases, the algorithm will return the path i, s(i), j. We need to show that s(i) and j
are adjacent. First note that h > s(i) and they are adjacent by definition of s(.). Thus the
ordering must be either i > h > s(i) > j or i > h > j > s(i) or i > j > h > s(i). In the first
two orderings, s(i), j ∈ pred(h). In the third ordering, since s(i) ∈ pred(i), by the contiguous
subtree property, it must exist in the bag along the entire path between s(i), i which contains
j. Thus s(i) ∈ pred(j). In all these cases s(i) is adjacent to j.

Now suppose that our algorithm is correct for distances < k. Let d(i, j) = k and a
shortest path be i = p0, p1, . . . , pk = j. We will show that there is a shortest path that begins
with the step i, s(i). Thus, d(s(i), j) = k − 1 and a path for it can be found using the above
algorithm. But the step i, s(i) is the first step in the algorithm for distances > 2, so the
combination of the two is exactly the output of the algorithm.

Essentially, we will replace p1 by s(i) and argue that the resulting sequence is still a
path. Let pα be the node such that pα < i. We claim that α = 1 since otherwise, pα−1 is a
descendant of i and by the contiguous subtree property, i is adjacent to pα. Thus we may
replace the entire path i, . . . , pα by i, pα, contradicting minimality. Thus at each step of the
shortest path, we must go to an ancestor. Let pβ be the first node in the path such that
pβ < s(i). Note that pβ−1 > s(i) > pβ is a path on the tree, and thus by the contiguous
subtree property, s(i) is adjacent to pβ hence we may replace the path i = p0, p1, . . . , pβ with
i, s(i), pβ . J
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Figure 3 The tree Ts.

To answer sp(i, j), we simply follow the algorithm, and traverse Ts, so we can output the
path in O(1) per vertex in the path. To answer dist(i, j) we would like to compute k efficiently.
Denote i′ = pk in the algorithm. That is, pk is the ancestor such that pk > j but s(pk) ≤ j.
The only candidates are level-ancestorTs

(i, depth(j)) and level-ancestorTs
(i, depth(j) + 1).

Thus we may find i′ in constant time. In both queries, we require 1 adjacency check in the
final step. Finally, if we do not perform this check, we are able to answer the queries within
1. Thus we obtain:

I Lemma 9. Using the data structure as before, and suppose that j is an ancestor of
i in Tl, then we can answer sp(i, j) in O(d(i, j) + f(n)) time and dist(i, j) in O(f(n))
time. We can answer asp(i, j) in O(d(i, j)) time and adist(i, j) in O(1) time such that
d(i, j) ≤ |asp(i, j)| = adist(i, j) ≤ d(i, j) + 1.

Furthermore, since we only need to traverse through Tl, Ts in the approximate queries,
the space required is the two trees plus a table to identify the nodes that correspond to the
same vertex. Thus the space required is ndlogne+ 4n+ o(n) bits.

We note that Θ(n logn) bits is best possible for our idea of representing these two trees
and the mapping between them. The mapping between them is equivalent to computing
the function s(.). Since the order of the children in the trees does not matter, they are free
trees. Consider the split graph with a size n/2 clique {v1, . . . , vn/2}, size n/4 independent
set {u1, . . . , un/4} together with one child of each of the n/4 vertices in the independent set
{w1, . . . , wn/4}. Furthermore, we have the freedom to allow s(ui) to be any permutation
of {v1, . . . , vn/4} and also s(wi) to be any permutation of {vn/4+1, . . . , vn/2}. Thus for any
ordering of the children in the tree, we would have to store a permutation on n/4 elements.
This requires Θ(n logn) bits.

4.2 General Case
Now we study the general case when i, j do not have the ancestor relation. We will reduce
to the ancestor case by the following lemma:

I Lemma 10. Consider the shortest node-path PT in Tl Ti, . . . , Th, . . . , Tj . For every shortest
path PG from i to j in G, and every node Tw in PT , B(Tw) contains a vertex of PG.

Proof. Note that if (u, v) ∈ E then X−1(u) ∩X−1(v) 6= ∅ since there must be a bag that
both u, v belong to. Thus the set

⋃
v∈PG

X−1(v) is a contiguous subtree of Tl that contains
both Ti and Tj . So in particular it contains the path PT . J

Let h = LCATl
(i, j). Then B(h) contains a vertex x on a shortest path between i, j. Thus,

d(i, j) = d(i, x) + d(x, j). Furthermore, x is an ancestor of both i and j.

I Lemma 11. The algorithm dist(i, j) (sp(i, j)):
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Figure 4 Green is the optimal path between i′ and j′. Red is the naive path returned by adist

and yellow is the fix from an error of 2 to an error of 1.

For each vertex x ∈ B(h) compute dist(x, i) + dist(x, j) (or sp(x, i) ∪ sp(x, j)).
return the minimum sum (resp. path) among those calculated above.

Computes the distance (resp. a shortest path) between i, j. The time cost for d(i, j) is
O(|B(h)| · f(n)) = O(n · f(n)) and the time cost for sp(i, j) is O (|B(h)| · (d(i, j) + f(n))) =
O(n · (d(i, j) + f(n))

The time cost is dominated by the term |B(h)| which is as bad as O(n). It seems difficult to
avoid performing the entire loop, so we will turn to approximation again.

I Lemma 12. The algorithm adist(i, j) (asp(i, j)):
Compute dist(h, i) + dist(h, j) (or sp(h, i) ∪ sp(h, j))

Gives an error of at most 2 in the distance between i, j. That is d(i, j) ≤ dist(i, j) ≤ d(i, j)+2.

Proof. Let x ∈ B(h) be the vertex that is in a shortest path between i, j. Consider the paths
h, sp(x, i) and h, sp(x, j). These are paths between h and i, j. Thus d(h, i) ≤ 1 + d(x, i) and
d(h, j) ≤ 1 + d(x, j). Finally, we have adist(i, j) = d(h, i) + d(h, j) ≤ 2 + d(x, i) + d(x, j) =
2 + d(i, j). J

4.3 Improved Bounds
We would like to improve the approximate distance algorithm in two ways: first, reduce the
error to 1 and second, to use adist as the subroutine rather than dist as the subroutine.
To do this, we would need to compare the computation steps that are done by both the
approximate and the exact versions.

Let x ∈ B(h) be the optimal vertex. We consider the computation of dist(x, i) and
dist(h, i). In dist(h, i), we compute i′h and depending on (i′h, h) ∈ E we return depth(i)−
depth(i′h) + 1 or +2. In adist(h, i) we always return +2 skipping the adjacency check. Now
consider dist(x, i). We compute i′x which is either i′h or an ancestor of i′h. In the case that
i′x = i′h, the worst case is that (i′x, x) ∈ E, thus adist(h, i)−dist(x, i) = 1. If i′x is an ancestor
of i′h then depth(i′x) < depth(i′h) and adist(h, i)− dist(x, i) ≤ 0 and we occur no error at all.

Therefore, we may replace dist(h, i) by adist(h, i) and obtain the same guarantees.
Next consider the case that both (i′, h), (j′, h) /∈ E. This is exactly when the algorithm

can potentially give an error of 2, since we may obtain an error of 1 in both branches. In this
case, both s(i′), s(j′) ∈ B(h) so they are adjacent. Therefore, instead of returning the path
i, . . . , i′, s(i′), h, s(j′), j′, . . . , j, we may return the path i, . . . , i′, s(i′), s(j′), j′, . . . , j, and cut
the error down to 1. Note that in adist(i, h) we do not perform the adjacency check, so we
will always contract the path. Thus we obtain the result:

ISAAC 2018
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I Theorem 13. The algorithm adist(i,j):
return adist(h, i) + adist(h, j)− 1

approximates d(i, j) within 1 in O(1) time using ndlogne+ 4n+ o(n) bits of space.

5 Relation to Set Intersection Oracle

We now consider the conditions in which our approximation algorithm is exact and when it
incurs an error of 1. We argued above that we incur an error of 1 on both branches when
there is x ∈ B(h) such that (x, i′), (x, j′) ∈ E. Equivalently, (x, i′) ∈ E ⇔ x ∈ B(i′). Thus
x ∈ B(i′) ∩B(j′). Conversely, if no such x exists, we only incur an error of 1 on exactly one
branch, and due to the adjustment our algorithm is exact.

I Lemma 14. adist(i, j) incurs an error of 1 if and only if B(i′) ∩B(j′) 6= ∅.

5.1 Set Intersection Oracle Problem
The set intersection oracle (SIO) problem is the following:

Given n sets Si ⊆ U , such that
∑
|Si| = N , preprocess the sets to answer queries of

Si ∩ Sj = ∅? It is known that it can be done in O(N) space and O(
√
N) time [5]. We may

also view this as storing the intersection graph of the sets, where the vertex set is each set,
and two sets are adjacent if they intersect. However, if we disregard N and focus on |U |, we
see that the intersection graph can be any graph if |U | = n2/4. Thus, Ω(n2) space is required
to answer these queries. Conversely, given a graph, we may ask, what is the minimum |U |
such that a set intersection representation exists. This is known as the intersection number
of the graph. It is equivalent to the number of cliques required to cover the edges of the
graph and is NP-hard to compute.

Now consider the case that |U | = n. Since every chordal graph can be covered by n
maximal cliques, the number of graphs that can be represented by such a set intersection
representation is at least

(
n
n/2
)
2n2/4/n!. Therefore, again we require Ω(n2) space for the data

structure.
Furthermore it can be shown that O(n|U |) bits of space is necessary and sufficient to

answer these queries.

I Theorem 15. Let |U | = k and |U | = ω(logn) and |U | = O(n). Then O(n|U |) bits is
necessary and sufficient to answer set intersection queries.

Proof. One direction is trivial. We may always represent a set with a length |U | bit vector,
with position i = 1 if i is in the set. To answer the queries, with compute the bit-wise-and of
the bit vectors and check if it is the 0 vector. Therefore n|U | bits is sufficient to answer the
query.

Conversely, consider the split graphs where we have a size n − k clique and a size k
independent set. The neighbourhood of each of the vertices in the independent set is one
of 2n−k − 2 subsets of the clique (we omit the empty set and the entire set). Since there
are k such vertices in the independent set, there are 2k(n−k) such graphs. Divide by n! to
account for isomorphisms and we obtain a lower bound of k(n− k)−O(n logn) bits required
to represent these sets. Note that all of these split graphs have intersection number k + 1.
For k = o(n) and k ∈ ω(logn), k(n − k) − O(n logn) = nk − o(nk). For k = cn for some
constant c, we require (1− c)nk = O(nk) bits. J
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The above does not try to optimize the query time of the data structure. To obtain an query
time of O(1), it is not known whether there is any non-naive data structure (storing the
entire incidence matrix using n2/2 bits) to solve the problem, even when |U | = O(logc(n))
(see conjecture 3 in [12]).

Next we show the close relationship between SIO and an exact distance oracle for chordal
graphs. As shown above, it seems very difficult to construct an exact distance oracle that
has query time O(1) succinctly, using n2/4 bits of space.

I Theorem 16. Consider the SIO problem, with n sets Si ⊆ U and |U | = n. Any solution
using B bits of space and has query time t will yield an exact distance oracle for chordal
graphs occupying B+ o(B) bits of space with query time O(t). Conversely, any exact distance
oracle for chordal graphs on n nodes using B(n) bits of space with query time t(n) will yield
a solution to the SIO problem on n sets using B(2n) bits of space and query time t(2n).

Proof. WLOG assume U = [n] and Si 6= ∅ Since if Si = ∅ then Si ∩ Sj = ∅ for every j.
The lower bound implies that B = Ω(n2). Suppose we have a SIO, then we simply store

B(i) for every vertex i. By lemma 14, we can detect when adist(i, j) is wrong by applying
the query B(i′) ∩B(j′). Thus we have a chordal graph distance oracle using B + o(B) bits
of space with query time t+O(1).

Conversely, consider the split graph on 2n vertices. Let the vertex set be [n]∪{v1, . . . , vn}
where [n] is a clique and {v1, . . . , vn} is an independent set. It is easy to see that this graph
is chordal. Let N(vi) = Si. Then d(vi, vj) = 2 or 3 and d(vi, vj) = 2⇔ Si ∩Sj 6= ∅. Thus we
have reduced the SIO query to a exact distance query in chordal graphs on 2n vertices. J
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