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Abstract
We initiate the study of the following natural geometric optimization problem. The input is
a set of axis-aligned rectangles in the plane. The objective is to find a set of horizontal line
segments of minimum total length so that every rectangle is stabbed by some line segment. A
line segment stabs a rectangle if it intersects its left and its right boundary. The problem, which
we call Stabbing, can be motivated by a resource allocation problem and has applications in
geometric network design. To the best of our knowledge, only special cases of this problem have
been considered so far.

Stabbing is a weighted geometric set cover problem, which we show to be NP-hard. While for
general set cover the best possible approximation ratio is Θ(logn), it is an important field in geo-
metric approximation algorithms to obtain better ratios for geometric set cover problems. Chan
et al. [SODA’12] generalize earlier results by Varadarajan [STOC’10] to obtain sub-logarithmic
performances for a broad class of weighted geometric set cover instances that are characterized by
having low shallow-cell complexity. The shallow-cell complexity of Stabbing instances, however,
can be high so that a direct application of the framework of Chan et al. gives only logarithmic
bounds. We still achieve a constant-factor approximation by decomposing general instances into
what we call laminar instances that have low enough complexity.

Our decomposition technique yields constant-factor approximations also for the variant where
rectangles can be stabbed by horizontal and vertical segments and for two further geometric set
cover problems.
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Figure 1 An instance of Stabbing (rectangles) with an optimal solution (gray line segments).
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1 Introduction

In this paper, we study the following geometric optimization problem, which we call Stabbing.
The input is a set R of n axis-aligned rectangles in the plane. The objective is to find a set S
of horizontal line segments of minimum total length ‖S‖, where ‖S‖ =

∑
s∈S ‖s‖, such that

each rectangle r ∈ R is stabbed by some line segment s ∈ S. Here, we say that s stabs r
if s intersects the left and the right edge of r (see Fig. 1). The length of a line segment s
is denoted by ‖s‖. Throughout this paper, rectangles are assumed to be axis-aligned and
segments are horizontal line segments (unless explicitly stated otherwise).

Our problem can be viewed as a resource allocation problem. Consider a server that
receives a number of communication requests. Each request r is specified by a time win-
dow [t1, t2] and a frequency band [f1, f2]. In order to satisfy the request r, the server has
to open a communication channel that is available in the time interval [t1, t2] and operates
at a fixed frequency within the frequency band [f1, f2]. Therefore, the server has to open
several channels over time so that each request can be fulfilled. Requests may share the same
channel if their frequency bands and time windows overlap. Each open channel incurs a fixed
cost per time unit and the goal is to minimize the total cost. Consider a t–f coordinate
system. A request r can be identified with a rectangle [t1, t2]× [f1, f2]. An open channel
corresponds to horizontal line segments and the operation cost equals its length. Satisfying a
request is equivalent to stabbing the corresponding rectangle.

To the best of our knowledge, general Stabbing has not been studied, although it is a
natural problem. Finke et al. [10] consider the special case of the problem where the left
sides of all input rectangles lie on the y-axis. They derive the problem from a practical
application in the area of batch processing and give a polynomial time algorithm that
solves this special case of Stabbing to optimality. Das et al. [6] describe an application of
Stabbing in geometric network design. They obtain a constant-factor approximation for a
slight generalization of the special case of Finke et al. in which rectangles are only constrained
to intersect the y-axis. This result constitutes the key step for an O(logn)-approximation
algorithm to the Generalized Minimum Manhattan Network problem.

We also consider the following variant of our problem, which we call Constrained
Stabbing. Here, the input additionally consists of a set F of horizontal line segments of
which any solution S must be a subset.

https://doi.org/10.4230/LIPIcs.ISAAC.2018.61
https://arxiv.org/abs/1806.02851
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Related Work. Stabbing can be interpreted as a weighted geometric set cover problem
where the rectangles play the role of the elements, the potential line segments correspond to
the sets and a segment s “contains” a rectangle r if s stabs r. The weight of a segment s equals
its length ‖s‖. Set Cover is one of the classical NP-hard problems. The greedy algorithm
yields a lnn-approximation (where n is the number of elements) and this is known to be the
best possible approximation ratio for the problem unless P = NP [9, 7]. It is an important
research direction of computational geometry to surpass the lower bound known for general
Set Cover in geometric settings. In their seminal work, Brönniman and Goodrich [3] gave
an O(log OPT)-approximation algorithm for unweighted Set Cover, where OPT is the size
of an optimum solution, for the case when the underlying VC-dimension is constant. This
holds in many geometric settings. Numerous subsequent works have improved upon this result
in specific geometric settings. For example, Aronov et al. [1] obtained an O(log log OPT)-
approximation algorithm for the problem of piercing a set of axis-aligned rectangles with
the minimum number of points (Hitting Set for axis-aligned rectangles) by means of
so-called ε-nets. Mustafa and Ray [17] obtained a PTAS for the case of piercing pseudo-disks
by points. A limitation of these algorithms is that they only apply to unweighted geometric
Set Cover; hence, we cannot apply them directly to our problem. In a break-through,
Varadarajan [18] developed a new technique, called quasi-uniform sampling, that gives sub-
logarithmic approximation algorithms for a number of weighted geometric set cover problems
(such as covering points with weighted fat triangles or weighted disks). Subsequently, Chan
et al. [5] generalized Varadarajan’s idea. They showed that quasi-uniform sampling yields a
sub-logarithmic performance if the underlying instances have low shallow-cell complexity.
Bansal and Pruhs [2] presented an interesting application of Varadarajan’s technique. They
reduced a large class of scheduling problems to a particular geometric set cover problem
for anchored rectangles and obtained a constant-factor approximation via quasi-uniform
sampling. Recently, Chan and Grant [4] and Mustafa et al. [16] settled the APX-hardness
status of all natural weighted geometric Set Cover problems where the elements to be
covered are points in the plane or space.

Gaur et al. [12] considered the problem of stabbing a set of axis-aligned rectangles by a
minimum number of axis-aligned lines. They obtain an elegant 2-approximation algorithm for
this NP-hard problem by rounding the standard LP-relaxation. Kovaleva and Spieksma [14]
considered a generalization of this problem involving weights and demands. They obtained
a constant-factor approximation for the problem. Even et al. [8] considered a capacitated
variant of the problem in arbitrary dimension. They obtained approximation ratios that
depend linearly on the dimension and extended these results to approximate certain lot-sizing
inventory problems. Giannopoulos et al. [13] investigated the fixed-parameter tractability
of the problem where given translated copies of an object are to be stabbed by a minimum
number of lines (which is also the parameter). Among others, they showed that the problem
is W[1]-hard for unit-squares but becomes FPT if the squares are disjoint.

Our Contribution. We are the first to investigate Stabbing in this general form: horizontal
line segments stabbing axis-aligned rectangles without further restrictions. We examine the
complexity and the approximability of this problem.

We rule out the possibility of efficient exact algorithms by showing that Stabbing is
NP-hard; see Section 4. Another negative result is that Stabbing instances can have high
shallow-cell complexity so that a direct application of the quasi-uniform sampling method
yields only the same logarithmic bound as for arbitrary set cover instances; see Section 2.2.
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Our main result is a constant-factor approximation algorithm for Stabbing; see Section 2.
Our algorithm is based on the following three ideas. First, we show a simple decomposition
lemma that implies a constant-factor approximation for (general) set cover instances whose
set family can be decomposed into two disjoint sub-families each of which admits a constant-
factor approximation. Second, we show that Stabbing instances whose segments have a
special laminar structure have low enough shallow-cell complexity so that they admit a
constant-factor approximation by quasi-uniform sampling. Third, we show that an arbitrary
instance can be transformed in such a way that it can be decomposed into two disjoint
laminar families. Together with the decomposition lemma, this establishes the constant-factor
approximation.

Another (this time more obvious) application of the decomposition lemma gives also
a constant-factor approximation for the variant of Stabbing where we allow horizontal
and vertical stabbing segments. Also in this case, a direct application of quasi-uniform
sampling gives only a logarithmic bound as there are laminar families of horizontal and
vertical segments that have high shallow-cell complexity. This and two further applications
of the decomposition lemma are sketched in Section 3.

The above results provide two natural examples for the fact that the property of having
low shallow-cell complexity is not closed under the union of the set families. In spite
of this, constant-factor approximations are still possible. Our results also show that the
representation as a union of low-complexity families may not be obvious at first glance. We
therefore hope that our approach helps to extend the reach of quasi-uniform sampling beyond
the concept of low shallow-cell complexity also in other settings. Our results for Stabbing
may also lead to new insights for other related geometric problems such as the Generalized
Minimum Manhattan Network problem [6].

Due to space constraints, we refer the reader for further results such as the APX-hardness
of Constrained Stabbing and the relationship of Stabbing to well-studied geometric set
cover (or equivalently hitting set) problems to the full version of our paper (see page 2).

2 A Constant-Factor Approximation Algorithm for Stabbing

In this section, we present a constant-factor approximation algorithm for Stabbing. First,
we model Stabbing as a set cover problem, and we revisit the standard linear programming
relaxation for set cover and the concept of shallow-cell complexity; see Sections 2.1 and 2.2.
Then, we observe that there are Stabbing instances with high shallow-cell complexity.
This limiting fact prevents us from obtaining any constant approximation factor if applying
the generalization of Chan et al. [5] in a direct way; see Section 2.2. In order to bypass
this limitation, we decompose any Stabbing instance into two disjoint families of low
shallow-cell complexity. Before describing the decomposition in Section 2.5, we show how
to merge solutions to these two disjoint families in an approximation-factor preserving way;
see Section 2.3. Then, in Section 2.4, we observe that these families have sufficiently small
shallow-cell complexity to admit a constant-factor approximation.

2.1 Set Cover and Linear Programming
An instance (U,F , c) of weighted Set Cover is given by a finite universe U of n elements, a
family F of subsets of U that covers U , and a cost function c : F → Q+. The objective is to
find a sub-family S of F that also covers U and minimizes the total cost c(S) =

∑
S∈S c(S).

An instance (R,F ) of Constrained Stabbing, given by a set R of rectangles and a
set F of line segments, can be seen as a special case of weighted Set Cover where the
rectangles in R are the universe U , the line segments in F form the sets in F , and a line
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segment s ∈ F “covers” a rectangle r if and only if s stabs r. Unconstrained Stabbing can
be modeled by Set Cover as follows. We can, without loss of generality, consider only
feasible solutions where the end points of any line segment lie on the left or right boundaries
of rectangles and where each line segment touches the top boundary of some rectangle. Thus,
we can restrict ourselves to feasible solutions that are subsets of a set F of O(n3) candidate
line segments. This shows that Stabbing is a special case of Constrained Stabbing and,
hence, of Set Cover.

The standard LP relaxation LP(U,F , c) for a Set Cover instance (U,F , c) is as follows:

Minimize
∑
S∈F

c(S)zS

subject to
∑

S∈F,S3e

zS ≥ 1 for all e ∈ U,

zS ≥ 0 for all S ∈ F .

The optimum solution to this LP provides a lower bound on OPT. An algorithm is called
LP-relative α-approximation algorithm for a class Π of set cover instances if it rounds any
feasible solution z = (zS)S∈F to the above standard LP relaxation for some instance (U,S, c)
in this class to a feasible integral solution S ⊆ F of cost c(S) ≤ α

∑
S∈F c(S)zs.

2.2 Shallow-Cell Complexity
We define the shallow-cell complexity for classes that consist of instances of weighted Set
Cover. Informally, the shallow-cell complexity is a bound on the number of equivalent
classes of elements that are contained in a small number of sets. Here is the formal definition.

I Definition 1 (Chan et al. [5]). Let f(m, k) be a function non-decreasing in m and k. An
instance (U,F , c) of weighted Set Cover has shallow-cell complexity f if the following
holds for every k and m with 1 ≤ k ≤ m ≤ |F|, and every sub-family S ⊆ F of m sets: All
elements that are contained in at most k sets of S form at most f(m, k) equivalence classes
(called cells), where two elements are equivalent if they are contained in precisely the same
sets of S. A class of instances of weighted Set Cover has shallow-cell complexity f if all its
instances have shallow-cell complexity f .

Chan et al. proved that if a set cover problem has low shallow-cell complexity then quasi-
uniform sampling yields an LP-relative approximation algorithm with good performance.

I Theorem 2 (Chan et al. [5]). Let ϕ(m) be a non-decreasing function, and let Π be a
class of instances of weighted Set Cover. If Π has shallow-cell complexity mϕ(m)kO(1),
then Π admits an LP-relative approximation algorithm (based on quasi-uniform sampling)
with approximation ratio O(max{1, logϕ(m)}).

Unfortunately, there are instances of Stabbing (and its constrained variants) that have
high shallow-cell complexity, so we cannot directly obtain a sub-logarithmic performance
via Theorem 2. These instances can be constructed as follows; see Fig. 2a. Let m be
an even positive integer. For i = 1, . . . ,m, define the point pi = (i, i). For each pair i, j
with 1 ≤ i ≤ m/2 < j ≤ m, let rij be the rectangle with corners pi and pj . Now, consider
the following set S of m line segments. For i = 1, . . . ,m/2, the set S contains the segment si

with endpoints pi and (m, i). For i = m/2 + 1, . . . ,m, the set S contains the segment si with
endpoints (1, i) and pi. We want to count the number of rectangles that are stabbed by at
most two segments in S. Consider any i and j satisfying 1 ≤ i ≤ m/2 < j ≤ m. Observe that

ISAAC 2018
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Figure 2 Instances with high shallow-cell complexity.

the rectangle rij is stabbed precisely by the segments si and sj in S. Hence, according to
Definition 1, our instance consists of at least m2/4 equivalence classes for k = 2. Thus, if our
instance has shallow cell-complexity f for some suitable function f , we have f(m, 2) = Ω(m2).
Since f is non-decreasing, we also have f(m, k) = Ω(m2) for k ≥ 2. Hence, Theorem 2 implies
only an O(logn)-approximation algorithm for Stabbing (and its constrained variants) where
we use the above-mentioned fact (see Section 2.1) that we can restrict ourselves to m = O(n3)
many candidate segments.

2.3 Decomposition Lemma for Set Cover
Our trick is to decompose general instances of Stabbing (which may have high shallow-cell
complexity) into partial instances of low complexity with a special, laminar structure. We
use the following simple decomposition lemma, which holds for arbitrary set cover instances.

I Lemma 3. Let Π, Π1, Π2 be classes of Set Cover where Π1 and Π2 admit LP-relative α1-
and α2-approximation algorithms, respectively. The class Π admits an LP-relative (α1 + α2)-
approximation algorithm if, for every instance (U,F , c) ∈ Π, the family F can be partitioned
into F1,F2 such that, for any partition of U into U1, U2 where U1 is covered by F1 and U2
by F2, the instances (U1,F1, c) and (U2,F2, c) are instances of Π1 and Π2, respectively.

Proof. Let z = (zS)S∈F be a feasible solution to LP(U,F , c). Let U1, U2 = ∅ initially.
Consider an element e ∈ U . Because of the constraint

∑
S∈F,S3e zS ≥ 1 in the LP relaxation

and because of F = F1 ∪ F2, at least one of the two cases
∑

S∈F1,S3e zS ≥ α1/(α1 + α2)
and

∑
S∈F2,S3e zS ≥ α2/(α1 + α2) occurs. If the first case holds, we add e to U1. Otherwise,

the second case holds and we add e to U2. We execute this step for each element e ∈ U .
Now, consider the instance (U1,F1, c). For each S ∈ F1, set z1

S := min{zS(α1 + α2)/α1, 1}.
Since

∑
S∈F1,S3e zS ≥ α1/(α1 + α2) for all e ∈ U1, we have that z1 = (z1

S)S∈F1 forms
a feasible solution to LP(U1,F1, c). Next, we apply the LP-relative α1-approximation
algorithm to this instance to obtain a solution S1 ⊆ F1 that covers U1 and whose cost
is at most α1

∑
S∈F1

c(S)z1
S ≤ (α1 + α2)

∑
S∈F1

c(S)zS . Analogously, we can compute a
solution S2 ⊆ F2 to (U2,F2, c) of cost at most (α1 + α2)

∑
S∈F2

c(S)zS .
To complete the proof, note that S1 ∪ S2 is a feasible solution to (U,F , c) of cost

at most (α1 + α2)
∑

S∈F1∪F2
c(S)zS . Hence, our algorithm is an LP-relative (α1 + α2)-

approximation algorithm. J

2.4 x-Laminar Instances
I Definition 4. An instance of Constrained Stabbing is called x-laminar if the projection
of the segments in this instance onto the x-axis forms a laminar family of intervals. That is,
any two of these intervals are either interior-disjoint or one is contained in the other.
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We remark that for an x-laminar instance of Constrained Stabbing the corresponding
instance (U,F , c) of Set Cover does not necessarily have a laminar set family F .

I Lemma 5. The shallow-cell complexity of an x-laminar instance of Constrained
Stabbing can be upper bounded by f(m, k) = mk2. Hence, such instances admit a constant-
factor LP-relative approximation algorithm.

Proof. To prove the bound on the shallow-cell complexity, consider a set S of m segments.
Let 1 ≤ k ≤ m be an integer. Consider an arbitrary rectangle r that is stabbed by at most
k segments in S. Let Sr be the set of these segments. Consider a shortest segment s ∈ Sr.
By laminarity, the projection of any segment in Sr onto the x-axis contains the projection
of s onto the x-axis. Let Cs = (s1, . . . , s`) be the sequence of all segments in S whose
projection contains the projection of s, ordered from top to bottom. The crucial point is that
the set Sr forms a contiguous sub-sequence si, . . . , si+|Sr|−1 of Cs that contains s = sj for
some i ≤ j ≤ i+ |Sr| − 1. Hence, Sr is uniquely determined by the choice of s ∈ S (for which
there are m possibilities), the choice of si with i ∈ {j − k, . . . , j} within the sequence Cs (for
which there are at most k possibilities), and the cardinality of Sr (for which there are at
most k possibilities). This implies that Sr is one of mk2 many sets that define a cell. This
completes our proof since r was picked arbitrarily. J

2.5 Decomposing General Instances into Laminar Instances
I Lemma 6. Given an instance I of (unconstrained) Stabbing with rectangle set R, we can
compute an instance I ′ = (R,F ) of Constrained Stabbing with the following properties.
The set F of segments in I ′ has cardinality O(n3), it can be decomposed into two disjoint
x-laminar sets F1 and F2, and OPTI′ ≤ 6 ·OPTI .

Proof. Let F ′ be the set of O(n3) candidate segments as defined in Sec. 2.1: For every
segment s of F ′, the left endpoint of s lies on the left boundary of some rectangle, the right
endpoint of s lies on the right boundary of some rectangle, and s contains the top boundary
of some rectangle. Recall that F ′ contains the optimum solution.

Below, we stretch each of the segments in F ′ by a factor of at most 6 to arrive at a set F
of segments having the claimed properties. By scaling the instance we may assume that the
longest segment in F ′ has length 1/3.

For any i, j ∈ Z with i ≥ 0, let Iij be the interval [j/2i, (j + 1)/2i]. Let I1 be the family
of all such intervals Iij . We say that Iij has level i. Note that I1 is an x-laminar family of
intervals (segments). Let I2 be the family of intervals that arises if each interval in I1 is
shifted to the right by the amount of 1/3. That is, I2 is the family of all intervals of the
form Iij + 1/3 := [j/2i + 1/3, (j + 1)/2i + 1/3] (for any i, j ∈ Z with i ≥ 0). Clearly, I2
is x-laminar, too.

We claim that any arbitrary interval J = [a, b] of length at most 1/3 is contained in an
interval I that is at most 6 times longer than J and that is contained in I1 or in I2. This
completes the proof of the lemma since then any segment in F ′ can be stretched by a factor
of at most 6 so that its projection on the x-axis lies in I1 (giving rise to the segment set F1)
or in I2 (giving rise to the segment set F2). Setting F = F1 ∪ F2 completes the construction
of the instance I ′ = (R,F ).

To show the above claim, let s be the largest non-negative integer with b− a ≤ 1/(3 · 2s).
If J is contained in the interval Isj for some integer j, we are done because b− a > 1/(6 · 2s)
by the choice of s. If J is not contained in any interval Isj , then there exists some integer j such
that j/2s ∈ J = [a, b] and thus a ∈ Is,j−1. Since b−a ≤ 1/(3·2s), we have that J is completely
contained in the interval I ′ := Is,j−1 + 1/(3 · 2s) and in the interval I ′′ := Is,j − 1/(3 · 2s).

ISAAC 2018
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We complete the proof by showing that one of the intervals I ′, I ′′ is actually contained
in I2. To this end, note that 1/3 =

∑∞
`=1(−1)`−1/2`. Hence, if s is even, the interval I ′−1/3

lies in I1, and if s is odd, the interval I ′′ − 1/3 lies in I1. J

Applying the decomposition lemma to Lemmas 5 and 6 yields our main result. We do
not give an explicit approximation factor due to our reliance on the result by Chan et al. [5].
We also cannot apply a decomposition technique similar to Constrained Stabbing since
Lemma 6 requires a free choice of the set F of stabbing line segments.

I Theorem 7. Stabbing admits a constant-factor LP-relative approximation algorithm.

Complementing Lemmas 5 and 6, Fig. 2a shows that the union of two x-laminar families
of segments may have shallow-cell complexity with quadratic dependence on m. Hence, the
property of having low shallow-cell complexity is not closed under taking unions.

3 Further Applications of the Decomposition Lemma

Here we show that our decomposition technique can be applied in other settings, too.

Horizontal–Vertical Stabbing. In this new variant of Stabbing, a rectangle may be stabbed
by a horizontal or by a vertical line segment (or by both). Using the results of Section 2.5
and the decomposition lemma where we decompose into horizontal and vertical segments, we
immediately obtain the following result.

I Corollary 8. Horizontal–Vertical Stabbing admits an LP-relative constant-factor
approximation algorithm.

Figure 2b shows that a laminar family of horizontal segments and vertical segments may
have a shallow-cell complexity with quadratic dependence on m. Thus, Corollary 8 is another
natural example where low shallow-cell complexity is not closed under union and where
the decomposition lemma gives a constant-factor approximation although the shallow-cell
complexity is high.

Stabbing 3D-Boxes by Squares. In the 3D-variant of Stabbing, we want to stab 3D-boxes
with axis-aligned squares, minimizing the sum of the areas or the sum of the perimeters of
the squares. Here, “stabbing” means “completely cutting across”. By combining the same
idea with shifted quadtrees – the 2D-equivalent of laminar families of intervals – we obtain a
constant-factor approximation for this problem. It is an interesting question if our approach
can be extended to handle also arbitrary rectangles but this seems to require further ideas.

Covering Points by Anchored Squares. Given a set P of points that need to be covered
and a set A of anchor points, we want to find a set of axis-aligned squares such that each
square contains at least one anchor point, the union of the squares covers P , and the total
area or the total perimeter of the squares is minimized. Again, with the help of shifted
quadtrees, we can apply the decomposition lemma. In this case, we do not even need to
apply the machinery of quasi-uniform sampling; instead, we can use dynamic programming
on the decomposed instances. This yields a deterministic algorithm with a concrete constant
approximation ratio (4 · 62, without polishing).
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Figure 3 Obtaining a visibility representation from a Planar Vertex Cover instance.
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Figure 4 The vertex gadget Rv of vertex v.

4 NP-Hardness of Stabbing

To show that Stabbing is NP-hard, we reduce from Planar Vertex Cover: Given a
planar graph G and an integer k, decide whether G has a vertex cover of size at most k. This
problem is NP-hard [11]. Omitted proofs can be found in the full version of the paper.

I Theorem 9. Stabbing is NP-hard, even for interior-disjoint rectangles.

Let G = (V,E) be a planar graph with n vertices, and let k be a positive integer. Our
reduction will map G to a set R of rectangles and k to another integer k? such that (G, k)
is a yes-instance of Planar Vertex Cover if and only if (R, k?) is a yes-instance of
Stabbing. Consider a visibility representation of G, which represents the vertices of G
by non-overlapping vertical line segments (called vertex segments), and each edge of G by
a horizontal line segment (called edge segment) that touches the vertex segments of its
endpoints; see Figs. 3a and 3b. Any planar graph admits a visibility representation on a
grid of size O(n)×O(n), which can be found in polynomial time [15]. We compute such a
visibility representation for G. Then we stretch the vertex segments and vertically shift the
edge segments so that no two edge segments coincide (on a vertex segment); see Fig. 3c. The
height of the visibility representation remains linear in n.

In the next step, we create a Stabbing instance based on this visibility representation,
using the edge segments and vertex segments as indication for where to put our rectangles.
All rectangles will be interior-disjoint, have positive area and lie on an integer grid that we
obtain by scaling the visibility representation by a sufficiently large factor (linear in n). A
vertex segment will intersect O(n) rectangles (lying above each other since they are disjoint),
and each rectangle will have width O(n). The precise number of rectangles and their sizes
will depend on the constraints formulated below. Our construction will be polynomial in n.

For each edge e in G, we introduce an edge gadget re, which is a rectangle that we place
such that it is stabbed by the edge segment of e in the visibility representation.
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︸︷︷︸
n+ 3

Figure 5 The Stabbing instance that encodes the Planar Vertex Cover instance of Fig. 3;
edge gadgets are shaded gray.

For each vertex v in G, we introduce a vertex gadget Rv as shown in Fig. 4a. It consists
of an odd number of rectangles that are (vertically) stabbed by the vertex segment of v in
the visibility representation. Any two neighboring rectangles share a horizontal line segment.
Its length is exactly n+ 3 if neither of the rectangles is the top-most rectangle rtop or the
bottom-most rectangle rbot. Otherwise, the intersection length equals the width of the
respective rectangle rtop or rbot. We set the widths of rtop and rbot to 1 and 2, respectively.
A vertex gadget Rv is called incident to an edge gadget re if v is incident to e.

Before we describe the gadgets and their relation to each other in more detail, we construct,
in two steps, a set Sv of line segments for each vertex gadget Rv. First, let Sv be the set of
line segments that correspond to the top and bottom edges of the rectangles in Rv. Second,
replace each pair of overlapping line segments in Sv by its union. Then number the line
segments in Sv from top to bottom starting with 1. Let Sv

ina be the set of the odd-numbered
line segments, and let Sv

act be the set of the even-numbered ones; see Figs. 4b and 4c. By
construction, Sv

act and Sv
ina are feasible stabbings for Rv. Furthermore, |Sv

ina| = |Sv
act| as |Rv|

is odd and, hence, |Sv| is even. Given the difference in the widths of rtop and rbot, we have
that ‖Sv

act‖ = ‖Sv
ina‖ + 1. Note that this equation holds regardless of the widths of the

rectangles in Rv \ {rtop, rbot}.
The rectangles of all gadgets together form a Stabbing instance R. They meet two

further constraints: First, no two rectangles of different vertex gadgets intersect. We can
achieve this by scaling the visibility representation by an appropriate factor linear in n.
Second, each edge gadget re intersects exactly two rectangles, one of its incident left vertex
gadgets, Rv, and one of its incident right vertex gadgets, Ru. The top edge of re touches a
segment of Sv

act and the bottom edge of re touches a segment of Su
act. The length of each of

the two intersections is exactly n+ 3; see Fig. 5. Thus, we have |Rv| = O(deg(v)) = O(n).
Let S be a feasible solution to the instance R. We call a vertex gadget Rv active in S

if {s ∩
⋃
Rv | s ∈ S} = Sv

act, and inactive in S if {s ∩
⋃
Rv | s ∈ S} = Sv

ina. We will see that
in any optimum solution each vertex gadget is either active or inactive. Furthermore, we will
establish a direct correspondence between the Planar Vertex Cover instance G and the
Stabbing instance R: Every optimum solution to R covers each edge gadget by an active
vertex gadget while minimizing the number of active vertex gadgets.

Let OPTG denote the size of a minimum vertex cover for G, let OPTR denote the length
of an optimum solution to R, let width(r) denote the width of a rectangle r, and finally
let c =

∑
e∈E (width(re)− n− 3) +

∑
v∈V ‖Sv

ina‖. To show NP-hardness of Stabbing, we
prove that OPTG ≤ k if and only if OPTR ≤ c+ k. We show the two directions separately.

I Lemma 10. OPTG ≤ k implies that OPTR ≤ c+ k.

Proof sketch. Set each vertex gadget to active if it corresponds to a vertex in the given
vertex cover, otherwise to inactive. Stab each edge gadget by prolonging one of the line
segments that it touches. Using ‖Sv

act‖ = ‖Sv
ina‖+ 1, the bound follows. J
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Next we show the other, more challenging direction. Consider an optimum solution SOPT
to R and choose k ≤ n such that OPTR ≤ c+ k is satisfied. Let Rv be any vertex gadget,
let rtop and rbot be its top- and bottom-most rectangles, respectively, and let Sv

OPT =
{s ∩

⋃
Rv | s ∈ SOPT}. In the following, we prove that Sv

OPT equals either Sv
ina or Sv

act.

I Lemma 11. If Sv
ina 6⊆ Sv

OPT and Sv
act 6⊆ Sv

OPT, then ‖Sv
OPT‖ > ‖Sv

act‖+ n.

Proof sketch. Consider all pairs of neighboring rectangles in Rv that are stabbed by the
same line segment of Sv

OPT. Let P be a maximum-cardinality subset of these pairs such that
every rectangle appears at most once. Thus,

∑
r∈Rv

width(r)−
∑

(r1,r2)∈P width(r1 ∩ r2) is
a lower bound of ‖Sv

OPT‖. Observe that the lower bound is minimized if the total intersection
length of the rectangles in P is maximized. This happens (even with tightness) if and
only if Sv

OPT = Sv
ina. Given that |Rv| is odd, there is at least one rectangle not in P .

If Sv
ina 6⊆ Sv

OPT and Sv
act 6⊆ Sv

OPT, there is a rectangle r not in P that is neither rtop, rbot nor
a neighbor of those. Thus, r contributes n+ 3 to the total intersection length in Sv

ina but
nothing in Sv

OPT. The difference of the total intersection lengths implies the lemma. J

I Lemma 12. Exactly one of the following three statements holds:
(i) Sv

OPT = Sv
ina, or

(ii) Sv
OPT = Sv

act, or
(iii) ‖Sv

OPT‖ > ‖Sv
ina‖+ n.

Proof sketch. If Sv
ina ( Sv

OPT, there is a line segment s ∈ Sv
OPT \ Sv

ina that stabs a rectangle
in Rv \ {rtop, rbot}. By construction, its length is at least n+3. Hence, ‖Sv

OPT‖ > ‖Sv
ina‖+ n.

The same holds if Sv
act ( Sv

OPT. J

Now, we show that SOPT forces each vertex gadget to be either active or inactive.

I Lemma 13. In SOPT, each vertex gadget is either active or inactive.

Proof. Suppose that there is a vertex gadget Ru that is neither active nor inactive in SOPT.
This implies OPTR > c+ n and contradicts our previous assumption OPTR ≤ c+ k ≤ c+ n.

To this end, we give a lower bound on OPTR. Since Ru is neither active nor inact-
ive, Su

OPT > ‖Su
ina‖+ n by Lemma 12. Thus,

∑
v∈V ‖Sv

OPT‖ >
∑

v∈V ‖Sv
ina‖+ n . Let Sout

OPT
be the set of all segment fragments of SOPT lying outside of

⋃
v∈V S

v
OPT. Each edge gad-

get rv contains a segment fragment from Sout
OPT of length at least width(rv)− n− 3 since, by

construction, it can share a line segment with only one of its incident vertex gadgets. Since
all edge gadgets are interior-disjoint, we have ‖Sout

OPT‖ ≥
∑

e∈E width(rv)− n− 3. Hence,

OPTR ≥
∥∥Sout

OPT
∥∥+

∑
v∈V

‖Sv
OPT‖ >

∑
e∈E

(width(re)− n− 3) +
∑
v∈V

‖Sv
ina‖+n = c+n .J

I Lemma 14. For each edge gadget, one of its incident vertex gadgets is active in SOPT.

Proof. Suppose that for an edge gadget re both vertex gadgets are not active in SOPT. By
Lemma 13, they are inactive. Without loss of generality, the line segment s stabbing re

lies on the top or bottom edge of re. Then s intersects a vertex gadget to the left or right,
say Rv, and hence Sv

OPT 6= Sv
ina and Sv

OPT 6= Sv
act. A contradiction to Lemma 13. J

I Lemma 15. OPTR = c+ k′, where k′ is the number of active vertex gadgets in SOPT.

Proof sketch. Every edge gadget re is stabbed by a line segment s that also stabs a rect-
angle r of an incident active vertex gadget Rv. Hence, ‖s‖ = width(r) + width(re)− n− 3.
By ‖Sv

act‖ = ‖Sv
ina‖+ 1, OPTR =

∑
e∈E

(width(re)− n− 3) +
∑

v∈V

‖Sv
ina‖+ k′ = c+ k′. J
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Given SOPT, we put exactly those vertices in the vertex cover whose vertex gadgets are
active. By Lemma 14, this yields a vertex cover of G. By Lemma 15, the size of the vertex
cover is exactly OPTR − c, which is bounded from above by k given that OPTR ≤ c+ k.

I Lemma 16. OPTR ≤ c+ k implies that OPTG ≤ k.

By our construction, we represent R on a grid of size polynomial in n, hence, all numerical
values are upperbounded by a polynomial in n. Our construction is polynomial. With
Lemmas 10 and 16, we conclude that Stabbing is NP-hard.
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