
Partially Walking a Polygon
Franz Aurenhammer
Institute for Theoretical Computer Science, University of Technology, Graz, Austria
auren@igi.tugraz.at

Michael Steinkogler
Institute for Theoretical Computer Science, University of Technology, Graz, Austria
steinkogler@igi.tugraz.at

Rolf Klein
Universität Bonn, Institut für Informatik, Bonn, Germany
rolf.klein@uni-bonn.de

Abstract
Deciding two-guard walkability of an n-sided polygon is a well-understood problem. We study the
following more general question: How far can two guards reach from a given source vertex while
staying mutually visible, in the (more realistic) case that the polygon is not entirely walkable?
There can be Θ(n) such maximal walks, and we show how to find all of them in O(n logn) time.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Polygon, guard walk, visibility

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2018.60

Funding This work was supported by Project I 1836-N15, Austria Science Fund (FWF).

Acknowledgements We want to thank the anonymous referees for their detailed comments that
have helped improving the presentation of this paper.

1 Introduction

We address the following structural question on polygons: How many adjacent ear triangles
can be cut off from a polygon W , starting from a given vertex s? This question was originally
motivated by optimizing so-called triangulation axes, a recently introduced skeletal structure
for simple polygons [1]. An equivalent formulation of the problem, which is of interest in its
own right, reads as follows: How far can two guards reach when they are to walk on W ’s
boundary, starting from s in different directions and staying mutually visible?

Visibility problems of this kind have been studied already in the 1990s, where Icking
and Klein [6] gave an O(n logn) time algorithm for deciding two-guard walkability of an
n-sided polygon W , from a source vertex s to a target vertex t. A few years later, Tseng
et al. [7] showed that one can find, within the same runtime, all vertex pairs (s, t) such
that W is two-guard walkable from s to t. Their result was improved to optimal O(n) time
by Bhattacharya et al. [3]. The algorithm in [6] actually provides a walk for W in case of its
existence but, on the other hand, only a negative message is returned in the (quite likely)
case that the polygon is not entirely walkable.

The present paper elaborates on ‘how far’ in the latter case a polygon W is two-guard
walkable – a natural question that has not been considered in the literature to the best of
our knowledge. Such maximal walks are not unique, in general, which complicates matters.
We present a strategy that finds, in O(n logn) time, all possible maximal walks that initiate

© Franz Aurenhammer, Michael Steinkogler, and Rolf Klein;
licensed under Creative Commons License CC-BY

29th International Symposium on Algorithms and Computation (ISAAC 2018).
Editors: Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou Liao; Article No. 60; pp. 60:1–60:9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/162456762?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:auren@igi.tugraz.at
mailto:steinkogler@igi.tugraz.at
mailto:rolf.klein@uni-bonn.de
https://doi.org/10.4230/LIPIcs.ISAAC.2018.60
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


60:2 Partially Walking a Polygon

at a given source vertex s of W . A preliminary version of this paper appeared in [2]. For an
account of related visibility questions on polygons, we refer to the survey article by Urrutia [8]
on art gallery problems.

2 Preliminaries

We start with introducing the concepts and notations needed later in our considerations.
Throughout, we let W denote a simple polygon in the plane with n vertices, one of them
being tagged as a source vertex, s. For two points x and y on the boundary, ∂W , of W , we
write x < y if x is reached before y when walking on ∂W from s in clockwise (CW) direction.
For a vertex p of W , p+ denotes the CW successor vertex of p on ∂W . Similarly, p− denotes
the CW predecessor vertex of p on ∂W . When p is a reflex vertex (that is, a vertex where
the interior angle in W is greater than π), then the two ‘ray shooting points’ for p in W
can be defined, namely, For(p) as the first intersection point with ∂W of the ray from p−

through p, and Back(p) as the first intersection point with ∂W of the ray from p+ through p;
consult Figure 1.

According to the aforementioned relation between walks and triangulations, we are only
interested in discrete and straight walks. That is, the guards when moving on ∂W directly
‘jump’ from a vertex to the respective neighboring vertex (only one guard is allowed to
move at a time), and they never backtrack. A walk in W is now defined as a diagonal (l, r)
of W , l < r, such that the first guard can move CW from s to l, and the second guard
can move CCW from s to r, while staying visible to each other at each step. An obvious
condition for W to be walkable till (l, r) is that the two boundary chains from s to l and to r,
respectively (call them L and R), are co-visible in W . That is, each vertex on L is visible
from some vertex on R, and each vertex on R is visible from some vertex on L.

To characterize walkability, we will need a few more concepts, first introduced in [6]. We
say that W forms a forward deadlock at a pair (p, q) of its reflex vertices if we have

Back(q) < p < q < For(p).

Similarly, W forms a backward deadlock at (p, q) if

p < (For(q),Back(p)) < q.

Finally, W forms a CW wedge at (p, q), if p < q and there exists no vertex x of W with

q < For(q) < x < Back(p).

(A CCW wedge is defined in a symmetric way.) See Figure 1 where these geometric concepts
are illustrated.

It is not hard to see that the two guards cannot pass beyond deadlocks and wedges
without losing visibility. This will be made specific in Section 4. Moreover, in the work [6] it
has been shown that these obstacles to walkability are indeed the only ones. By adapting
their result to our setting we get:

I Theorem 1. Let (l, r), l < r, be a diagonal of W , and denote with Q the polygon bounded
by (l, r) and the two chains L and R defined above. Then (l, r) is a walk in W iff the following
three conditions are satisfied:
(1) L and R are co-visible in Q,
(2) Q neither forms a forward deadlock nor a backward deadlock (p, q) with p ∈ L and q ∈ R,

unless p or q is in {l, r},
(3) Q forms no CW wedge on L, and no CCW wedge on R.



F. Aurenhammer, M. Steinkogler, and R. Klein 60:3

s
s s

p

p

p

q

q

Back(q)

For(p)

Back(p)
For(q)

For(q)

Back(p)

q

Figure 1 Forward deadlock (left), backward deadlock (middle), and CW wedge (right).

s

For(q)

Back(p)p

q

p+
r

Q x

l

Figure 2 The line segment lr enables a CW wedge (p, q) in the shaded polygon Q.

3 Extremal walks and obstacles

Given a polygon W , our intention is to explore how far W is walkable from the source
vertex s. That is, we want to find extremal positions for a diagonal (l, r) in W such that
(l, r) is still a valid walk. A necessary (but not sufficient) condition is that (l, r) cannot be
extended by a single guard move. More adequately, a walk (l, r) in W is termed maximal if
there is no other walk (l′, r′) in W such that l′ ≥ l and r′ ≤ r. For finding maximal walks,
we will apply Theorem 1, but we have to do so with care since conditions (1) to (3) refer to
a (yet unknown) polygon Q, rather than to the input polygon W as in [6].

To this end, for (1) we observe that the chains L and R are co-visible in Q iff they are
co-visible in W : The line segment lr lies entirely within W , so the part of ∂W different
from ∂Q does not obstruct the view within Q.

Concerning (2), we notice that forward deadlocks formed by Q do not depend on the
shape of ∂W \ ∂Q, and thus trivially are also forward deadlocks formed by W . By contrast,
for a backward deadlock (p, q) formed by Q, the points For(q) and Back(p) in Q may not be
the same as in W . (Namely, if at least one of them lies on lr). But since these points are
larger than p and smaller than q, (p, q) is also a backward deadlock in W .

No such property holds for the wedges in (3), however. A wedge (p, q) formed by Q is
not necessarily also formed by W : The segment lr can obstruct the view to vertices x on
∂W \ ∂Q that prevent (p, q) from being a wedge in W . Figure 2 illustrates this situation.

Fortunately though, such ‘induced’ wedges cannot occur as long as the co-visibility
condition is satisfied:

ISAAC 2018



60:4 Partially Walking a Polygon

I Observation 2. Assume that the diagonal lr of W induces a wedge in the polygon Q

bounded by lr and the chains L and R. Then L and R are not co-visible.

Proof. Without loss of generality, let the induced wedge, (p, q), be a CW wedge; see Figure 2
again. Then for the reflex vertex p we have p < Back(p), and because (p, q) is induced by lr
we also have r > Back(p). But this implies that the vertex p+ (which belongs to the chain L)
is not visible from any point on the CCW chain from p to r. In particular, p+ is not visible
from any vertex on the chain R, which ranges from s to r. J

In summary, we can conclude that it suffices to consider the obstacles formed by the
input polygon W , rather than the obstacles formed by Q.

For maximal walks, obstacles with extremal positions are relevant (in case of the presence
of obstacles at all, which we will assume in the sequel). A minimal CW wedge on the chain L
is a wedge (p, q) on L where the vertex q is smallest possible. For a minimal CCW wedge
(p, q) on R, in turn, the vertex p has to be largest possible. Such extremal wedges need not
be unique. A representative can be found in O(n logn) time, by a simple adaption of an
algorithm given in [7], which finds all non-redundant wedges of a polygon. (We therefore do
not elaborate on the details here.)

A deadlock (p, q) (either forward or backward) is called minimal if there is no other such
deadlock (p′, q′) with p′ ≤ p and q′ ≥ q. The minimal backward deadlock is unique, by the
following property:

I Observation 3. If (p, q) and (p′, q′) are two backward deadlocks with p < p′ and q < q′,
then (p, q′) is a backward deadlock as well.

To find this minimal deadlock, we simply let p and q run through the reflex vertices of W ,
starting from s in CW and CCW direction, respectively, until the deadlock inequalities for p
as well as for q are fulfilled at the same time. This can be done in O(n) time, if W has been
preprocessed accordingly in O(n logn) time using ray shooting; see Chazelle et al. [4].

Minimal forward deadlocks, on the other hand, are not unique in general. This is one of
the reasons why maximal walks need not be unique. In fact, W can contain Θ(n) minimal
forward deadlocks (pi, qi); see the figure below for i = 1, 2, 3. The following algorithm reports
all of them. The points on ∂W relevant for this task are the reflex vertices p of W plus their
ray shooting points For(p). We assume their availability in cyclic order around W .

Algorithm MFD
for all relevant points x in CCW order from s do

if x = For(p) and p < x then
Insert p into a CW sorted list F

else if x is a reflex vertex q then
Search F for the smallest p with Back(q) < p

if p exists and is unmarked then
Mark p
Report the forward deadlock (p, q)

end if
end if
x = next relevant point
Delete from F all vertices p with p ≥ x

q

q

q

1

1

3

2

3

2

s

p

p

p



F. Aurenhammer, M. Steinkogler, and R. Klein 60:5

In a nutshell, the algorithm scans the boundary of W in counterclockwise direction,
maintaining reflex vertices with forward rayshots on the scanned part of the boundary in a
CW sorted list. When a reflex vertex is encountered, this list is used to search for forward
deadlocks formed by the current vertex and vertices in the list.

I Lemma 4. Algorithm MFD reports all minimal forward deadlocks (p, q) in W , and no
other pair.

Proof. Let (p, q) be a minimal forward deadlock. Then q is reflex and q < For(p) holds.
So the list F contains p when q is processed, by the CCW order of processing. Moreover,
because (p, q) is minimal, p is the smallest vertex in F with Back(q) < q, and p is unmarked.
Therefore, the algorithm will report (p, q). Conversely, assume that (p, q) gets reported.
Then we know Back(q) < p, and because p is in F we know q < For(p). Also, p < q

holds by the deletion criterion in the last line. Therefore (p, q) is a forward deadlock.
Concerning minimality, observe first that there cannot be a forward deadlock (p′, q′) with
p′ < p and q′ ≥ q. Otherwise, F contains p′ when (p, q) is reported, because we have
q ≤ q′ < For(q′). Because of p′ < p, the algorithm would have reported (p′, q) rather than
(p, q), or nothing at all if p′ is marked. There also is no forward deadlock (p′, q′) with
p′ = p and q′ > q. Otherwise, because of q′ > q, (p′, q′) has been reported already. So p′ = p

is marked, and (p, q) does not get reported. J

The algorithm can be implemented to run in O(n logn) time. It scans O(n) relevant
points, each being processed in constant time apart from the actions on F , which take
O(n logn) time in total when a balanced search tree for F is used.

4 Constraints from obstacles

Minimal wedges and deadlocks, and also the required co-visibility, give rise to constraints
on the vertices l and r for a maximal walk (l, r) in the polygon W . We will discuss the
constraints on l in some detail. The situation for r is symmetric.

We have to distinguish between absolute and conditional constraints. Among the former
is the list below. The first two constraints stem from the co-visibility of L and R, and have
been taken from [6]. For the last two constraints, compare Figure 1.
(1) For each reflex vertex p with p > For(p): l ≤ p.
(2) For each reflex vertex p with p < Back(p): l ≤ Back(p).
(3) For the minimal CW wedge (p, q) on L: l ≤ q.
(4) For the minimal backward deadlock (p, q): l ≤ p.
The conditional constraints read as follows:

(I) For each p in (1): If r > p then l < p−.
(II) For each p in (2): If r > Back(p) then l ≤ p.
(III) For (p, q) in (3): If r > q then l < q.

For convenience, we subsume the absolute constraints (1) - (4) into a single one, l ≤ x
(where x is the smallest right-hand side value), and turn it into a conditional constraint:

(IV) If r ≥ s then l ≤ x.

Finally, the minimal forward deadlocks lead to absolute constraints which deserve special
attention. Whereas in the case of a backward deadlock (p, q), neither guard can walk beyond
these vertices, we have the following observation for the avoidance of a forward deadlock:

I Observation 5. To avoid the forward deadlock (p, q), only one of the bounds l ≤ p and
r ≥ q needs to hold.

ISAAC 2018



60:6 Partially Walking a Polygon

Assume now that k minimal forward deadlocks (p1, q1), . . . , (pk, qk) exist, and let the
vertices pi be sorted in CW order.

I Lemma 6. Each of the following k+ 1 pairs of bounds for (l, r) avoids all minimal forward
deadlocks: (p1, s), (p2, q1), . . . , (pk, qk−1), (s−, qk).

Proof. By minimality of the considered deadlocks, we know that the vertices qi will be
sorted in CW order as well. So, for each index i ≥ 2, Observation 5 tells us that the
constraint l ≤ pi avoids the deadlocks (pi, qi), . . . , (pk, qk), and the constraint r ≥ qi−1 avoids
the remaining deadlocks (p1, q1), . . . , (pi−1, qi−1). Moreover, the constraint l ≤ p1 suffices to
avoid all k deadlocks, and r ≥ s is trivially fulfilled. The same is true for r ≥ qk and l ≤ s−,
respectively. J

In summary, there are O(n) constraints in total, which can be identified in O(n logn)
time by the results in Section 3.

5 Computing all maximal walks

Section 4 tells us that the goal is to fulfill the constraints in (I) - (IV) simultaneously, though
for each of the bounding pairs in Lemma 6 separately. This gives all possible maximal walks
– granted the visibility of the reported vertex pairs. But let us come back to the issue of
visibility later in this section.

For a fixed bounding pair (a, b), the constraint satisfaction problem can be transformed
into the following standard form: For two variables l and r, with absolute bounds a and
b, respectively, we have two sets of conditional constraints: Namely, a set CL containing
constraints for l, of the form

r ≥ yi =⇒ l ≤ xi

and a set CR containing constraints for r, of the form

l ≤ xj =⇒ r ≥ yj .

We may assume that all x-values and y-values are in {0, 1, . . . , n}. That is, the vertices
w0, w1, . . . , wn of W , w0 = wn = s, are identified with their indices. This is no loss of
generality, because only their relative positions (rather than the geometric positions) on ∂W
matter. We want to compute the (unique) maximal pair (l, r) such that

l ≤ a, r ≥ b, and all constraints c ∈ CL ∪ CR are fulfilled.

We say that a constraint ci ∈ CL is active at a value r if r ≥ yi holds. Similarly, a
constraint cj ∈ CR is active at l if we have l ≤ xj . The constraint fulfilling algorithm, CFF,
now simply alternates in scanning through the sorted sets CL and CR (in ascending order
of yi-values, and in descending order of xj-values, respectively), and adjusts the values of l
and r according to the constraints that become active. In the figure below, active/inactive
constraints are indicated with full/dashed arrows.



F. Aurenhammer, M. Steinkogler, and R. Klein 60:7

Algorithm CFF(a, b, CL, CR)
l = a, r = b

repeat
x = min{xi | ci ∈ CL is active at r}
l = min{l, x}
y = max{yj | cj ∈ CR is active at l}
r = max{r, y}

until r = y or r = b

Return the pair (l, r)

a

n

n

b

0

1

0

l

r

Suppose that a function VIS(l, r) is available which returns the smallest vertex r′ ≥ r

such that (l, r′) is visible in the polygon W . (That is, lr′ is the first possible diagonal of W
that emanates from vertex l. If r′ does not exist then n+ 1 is returned.) We now present an
algorithm that uses CFF and VIS as subroutines, and is capable of computing, in O(n logn)
time, all maximal walks that exist in W . Let P = {(a1, b1), . . . , (am, bm)} be the given set of
bounding pairs. We assume that a1, . . . , am (and thus b1, . . . , bm) are in increasing order. In
the polygon below, (l, r) and (l′, r′) are the two possible maximal walks.

Algorithm MAXWALKS(P,CL, CR)
l = am, r = b1
rrep = n+ 1
while l ≥ 0 and r < rrep do

(l, r) = CFF(l, r, CL, CR)
i = min{λ | aλ ≥ l}
rcand = max{bi, r}
rvis = VIS(l, rcand)
y = max{% | all c ∈ CL active at % admit l}
if rvis ≤ min{n, y} and rvis < rrep then

Report (l, rvis)
rrep = rvis

end if
l = l − 1

end while s

l

l’

r
r’

v

x

Before providing a proof of correctness, we give a short explanation of this algorithm. All
the bounding pairs (ai, bi) need to fulfill the constraints that are active there, so the algorithm
starts by fulfilling the constraints for the vertex pair (am, b1), as these constraints have to be
fulfilled in any case. Then the boundary chain of W from am ‘down to’ s is scanned in CCW
direction, while fulfilling all constraints on both chains. After each constraint fulfillment it
is checked whether a candidate vertex pair lies ‘below’ a bounding pair (ai, bi), while also
ensuring visibility within W and maximality among walks.

I Lemma 7. Algorithm MAXWALKS is correct.

ISAAC 2018



60:8 Partially Walking a Polygon

Proof. The value of r changes only when Algorithm CFF is called, and thus r cannot
decrease. The first call of CFF is with the bounding pair (am, b1), and the subsequent calls
are with (l, r) for l < am. As soon as we have r > b1, some constraint in CR is responsible for
this. So putting the bound r for the next call means no additional restriction. This implies
that, for all l, we have the equality CFF(l, r, CL, CR) = CFF(l, b1, CL, CR).

We now look at one iteration of the while loop, under the assumption that Algorithm
MAXWALKS worked correctly so far. That is, all maximal walks (l′, r′) with l′ ≥ l have been
reported, and no other walks. Let lold be the value of l before the iteration. Then (l, r) =
CFF(lold−1, b1, CL, CR) holds by the former equality. So we have (l, r) = CFF(l′, b1, CL, CR)
for lold > l′ > l, implying that there is no walk (l′, r′) for these l′-values.

There also is no walk (l, r′) with r′ < rcand, because the bounding pair (ai, bi) as well as
the constraints in CR need to be respected. Concerning rvis, if rvis > n then no pair (l, r′)
with r′ ≥ rcand is visible, and thus no such pair can be a walk. Further, if rvis > y then some
constraint in CL is active at rvis but does not admit l, so (l, rvis) is not a walk either. On
the other hand, if rvis ≤ min{n, y} then (l, rvis) is a walk, because the pair is visible and
fulfills all the constraints. The pair gets reported unless rvis ≥ rrep, in which case (l, rvis) is
not maximal because a larger pair has been reported already. J

Turning to runtime considerations now, we can make the following observations. CFF
can be implemented such that the bounding pair of the last call is remembered. This way
each constraint in CL ∪ CR is handled only once: If a call has been with (l, r), the next call
will be with (l′, r′) where l′ < l (and thus r′ ≥ r). Thus only O(n) time is spent in total for
all calls to CFF from Algorithm MAXWALKS.

Computing the thresholds y in MAXWALKS can also be done in total O(n) time. We
remember the previous value of y, and scan down from this value as long as all active
constraints of CL are fulfilled by l. The first violating constraint then gives the new value
for y.

The function VIS can be performed in logarithmic time using the techniques in Guibas
and Hershberger [5], in a way similar as already done in Icking and Klein [6]: Basically,
finding the desired vertex rvis can be reduced to finding the first vertex on a shortest path
between two polygon vertices. Clearly, the while loop is executed only O(n) times (because
the value of l is decremented in each iteration), which gives a runtime of O(n logn) for this
part, and thus for Algorithm MAXWALKS overall.

We now can conclude the main result of this paper:

I Theorem 8. Let W be a simple polygon with n vertices. For a given vertex s of W , there
can be Θ(n) maximal two-guard walks in W starting from s, and these walks can be computed
in O(n logn) time.

6 Concluding remarks

A few comments related to the results in this paper are in order.
The polygon example in Algorithm MAXWALKS shows that maximal walks may differ

in (combinatorial) length. The walk (l, r) involves 6 steps by the left guard and 3 steps by
the right guard, so 9 steps in total, whereas the walk (l′, r′) involves 8 steps by the left guard
and 2 steps by the right guard, and thus allows one more step in total.

The same example also reveals that minimum forward deadlocks are not the only reason
why maximal walks are not unique: The reason why there are two walks for the shown



F. Aurenhammer, M. Steinkogler, and R. Klein 60:9

polygon is the vertex v, which can be ‘approached’ by the (mutually visible) guards in two
different ways.

In Section 3 we have seen that minimum forward deadlocks can lead to Ω(n) different
maximal walks. On the other hand, the number of maximal walks trivially cannot exceed n,
because no two of them can have the same l-vertex, or the same r-vertex, by maximality.

Algorithm MAXWALKS provides each maximal walk in the form of a target pair (l, r),
but the algorithm does not specify the way the two guards actually move on ∂W . Such a
movement can be computed in O(n) additional time: Since we know that the subpolygon Q
of W defined by s and (l, r) is entirely walkable, we can simply apply the algorithm in [6]
to the polygon Q (which has already been preprocessed with W ).

Notice, however, that a fixed target pair (l, r) may still leave the guards different ways to
perform the walk. Different ways to triangulate W from s to (l, r) then result. For example,
in the polygon example in Algorithm MAXWALKS, it would be possible to include one more
diagonal with endpoint r into the solid-line trianguation, namely, the diagonal rx. The dual
of any such triangulation has to be a path, though, as the triangulation is constructed by
repeatedly cutting off adjacent ear triangles, one triangle per guard step.

References
1 Wolfgang Aigner, Franz Aurenhammer, and Bert Jüttler. On triangulation axes of polygons.

Information Processing Letters, 115(1):45–51, 2015.
2 Franz Aurenhammer, Michael Steinkogler, and Rolf Klein. Maximal two-guard walks in a

polygon. In 34nd European Workshop on Computational Geometry, EuroCG 2018, pages
17–22, 2018.

3 Binay Bhattacharya, Asish Mukhopadhyay, and Giri Narasimhan. Optimal algorithms for
two-guard walkability of simple polygons. In Workshop on Algorithms and Data Structures,
WADS 2001. Lecture Notes in Computer Science, volume 2125, pages 438–449. Springer,
2001.

4 Bernard Chazelle, Herbert Edelsbrunner, Michelangelo Grigni, Leonidas Guibas, John Her-
shberger, Micha Sharir, and Jack Snoeyink. Ray shooting in polygons using geodesic
triangulations. Algorithmica, 12(1):54–68, 1994.

5 Leonidas J Guibas and John Hershberger. Optimal shortest path queries in a simple poly-
gon. Journal of Computer and System Sciences, 39(2):126–152, 1989.

6 Christian Icking and Rolf Klein. The two guards problem. International Journal of Com-
putational Geometry & Applications, 2(03):257–285, 1992.

7 L.H. Tseng, Paul Heffernan, and Der-Tsai Lee. Two-guard walkability of simple polygons.
International Journal of Computational Geometry & Applications, 8(01):85–116, 1998.

8 Jorge Urrutia. Art gallery and illumination problems. In Handbook of Computational
Geometry, pages 973–1027. Elsevier, 2000.

ISAAC 2018


	Introduction
	Preliminaries
	Extremal walks and obstacles
	Constraints from obstacles
	Computing all maximal walks
	Concluding remarks

