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Abstract
We study the point location problem in incremental (possibly disconnected) planar subdivisions,
that is, dynamic subdivisions allowing insertions of edges and vertices only. Specifically, we
present an O(n logn)-space data structure for this problem that supports queries in O(log2 n)
time and updates in O(logn log logn) amortized time. This is the first result that achieves
polylogarithmic query and update times simultaneously in incremental planar subdivisions. Its
update time is significantly faster than the update time of the best known data structure for
fully-dynamic (possibly disconnected) planar subdivisions.
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1 Introduction

Given a planar subdivision, a point location query asks for finding the face of the subdivision
containing a given query point. The planar subdivisions for point location queries are induced
by planar embeddings of graphs. A planar subdivision consists of faces, edges and vertices
whose union coincides with the whole plane. An edge of a subdivision is considered to be
open, that is, it does not include its endpoints (vertices). A face of a subdivision is a maximal
connected subset of the plane that does not contain any point on an edge or a vertex. The
boundary of a face of a subdivision may consist of several connected components. Imagine
that we give a direction to each edge on the boundary of a face F so that F lies to the left of
it. (If an edge is incident to F only, we consider it as two edges with opposite directions.) We
call a boundary component of F the outer boundary of F if it is traversed in counterclockwise
order around F . Every bounded face has exactly one outer boundary. We call a connected
component other than the outer boundary an inner boundary of F .

We say a planar subdivision is dynamic if the subdivision changes dynamically by
insertions and deletions of edges and vertices. A dynamic planar subdivision is connected if
the underlying graph is connected at any time. In other words, the boundary of each face is
connected. We say a dynamic planar subdivision is general if it is not necessarily connected.
There are three versions of dynamic planar subdivisions with respect to the update operations
they support: incremental, decremental and fully-dynamic. An incremental subdivision allows
only insertions of edges and vertices, and a decremental subdivision allows only deletions of
edges and vertices. A fully-dynamic subdivision allows both of them.

The dynamic point location problem is closely related to the dynamic vertical ray shooting
problem in the case of connected subdivisions [6]. In this problem, we are asked to find
the edge of a dynamic planar subdivision that lies immediately above a query point. The
boundary of each face in a dynamic connected subdivision is connected, so one can maintain
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51:2 Point Location in Incremental Planar Subdivisions

the boundary of each face efficiently using a concatenable queue. Then one can answer
a point location query without increasing the space and time complexities using a data
structure for the dynamic vertical ray shooting problem [6].

However, it is not the case in general planar subdivisions. Although the dynamic vertical
ray shooting data structures presented in [1, 2, 4, 6] work for general subdivisions, it is
unclear how one can use them to support point location queries efficiently. As pointed out in
previous works [4, 6], a main issue concerns how to test for any two edges if they belong to
the boundary of the same face in the subdivision. This is because the boundary of a face
may consist of more than one connected component.

Previous work. There are several data structures for the point location problem in fully-
dynamic planar connected subdivisions [1, 2, 4, 6, 7, 8, 10, 14]. The latest result was given
by Chan and Nekrich [4]. The linear-size data structure by Chan and Nekrich [4] supports
O(logn(log logn)2) query time and O(logn log logn) update time in the pointer machine
model, where n is the number of the edges of the current subdivision. Some of them [1, 2, 4, 6]
including the result by Chan and Neckrich can be used for answering vertical ray shooting
queries without increasing the running time.

There are data structures for answering point location queries more efficiently in incre-
mental planar connected subdivisions in the pointer machine model [1, 10, 11]. The best
known data structure supports O(logn log∗ n) query time and O(logn) amortized update
time, and it has size of O(n) [1]. This data structure can be modified to support O(logn)
query time and O(log1+ε n) amortized update time for any ε > 0. In the case that every cell
is monotone at any time, there is a linear-size data structure supporting O(logn log logn)
query time and O(1) amortized update time [10].

On the other hand, little has been known about this problem in fully-dynamic planar
general subdivisions, which was recently mentioned by Snoeyink [15]. Very recently, Oh
and Ahn [13] presented a linear-size data structure for answering point location queries in
O(logn(log logn)2) time with O(

√
n logn(log logn)3/2) amortized update time. In fact, this

is the only data structure known for answering point location queries in general dynamic
planar subdivisions. In the same paper, the authors also considered the point location
problem in decremental general subdivisions. They presented a linear-size data structure
supporting O(logn) query time and O(α(n)) update time, where n is the number of edges in
the current subdivision and α(n) is the inverse Ackermann function.

Our result. In this paper, we present a data structure for answering point location queries
in incremental general planar subdivisions in the pointer machine model. The data structure
supports O(log2 n) query time and O(logn log logn) amortized update time. This is the first
result on the point location problem specialized in incremental general planar subdivisions.
The update time of this data structure is significantly faster than the update time of the
data structure in fully-dynamic general planar subdivisions in [13].

Comparison to the decremental case. In decremental general subdivisions, there is a simple
and efficient data structure for point location queries [13]. This data structure maintains the
decremental subdivision explicitly: for each face F of the subdivision, it maintains a number
of (concatenable) queues each of which stores the edges of each connected component of the
boundary of F . When an edge is removed, two faces might be merged into one face, but
no face is subdivided into two faces. Using this property, they maintain a disjoint-set data
structure for each face such that an element of the disjoint-set data structure is the name of
a queue representing a connected component of the boundary of this face.
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Figure 1 (a) The insertion of e makes the face subdivided into two subfaces F1 and F2. (b)
Given a query point q, we shoot the upward vertical ray from q which penetrates inner boundaries
not containing q until it hits the outer boundary of a face at q′.

In contrast to decremental subdivisions, it is unclear how to maintain incremental
subdivisions explicitly. Suppose that a face F is subdivided into F1 and F2 by the insertion
of an edge e. An inner boundary of F becomes an inner boundary of either F1 or F2 after e
is inserted. See Figure 1(a). It is unclear how to update the set of the inner boundaries of
Fi for i = 1, 2 without accessing every queue representing an inner boundary of F . If we
access all such queues, the total insertion time for n insertions is Ω(n2) in the worst case.
Therefore it does not seem that the approach in [13] works for incremental subdivisions.

2 Preliminaries

Consider an incremental planar subdivision Π. We use Π to denote the union of the edges
and vertices of Π. We require that every edge of Π be a straight line segment. For a set A
of elements (points or edges), we use |A| to denote the number of the elements in A. For a
planar subdivision Π′, we use |Π′| to denote the complexity of Π′, i.e., the number of the
edges of Π′. We use n to denote the number of the edges of Π at the moment. Also, for a
connected component γ of Π, we use Πγ to denote the subdivision induced by γ. Notice that
Πγ is connected. Due to lack of space, proofs and details are omitted. Missing proofs and
details can be found in the full version of this paper.

In this problem, we are to process a mixed sequence of n edge insertions and vertex
insertions so that given a query point q the face of the current subdivision containing q
can be computed efficiently. More specifically, each face in the subdivision is assigned a
distinct name, and given a query point the name of the face containing the point is to be
reported. For the insertion of an edge e, we require e to intersect no edge or vertex in the
current subdivision. Also, an endpoint of e is required to lie on a face or a vertex of the
subdivision. We insert the endpoints of e in the subdivision as vertices if they were not
vertices of the subdivision. For the insertion of a vertex v, it lies on an edge or a face of the
current subdivision. If it lies on an edge, the edge is split into two (sub)edges whose common
endpoint is v.

2.1 Tools

In this subsection, we introduce tools we use. A concatenable queue represents a sequence of N
elements, and allows five operations: insert an element, delete an element, search an element,
split a queue into two queues, and concatenate two queues into one. By implementing them
with 2-3 trees, we can support each operation in O(logN) time.

ISAAC 2018



51:4 Point Location in Incremental Planar Subdivisions

The vertical decomposition of a (static) planar subdivision Πs is a finer subdivision of Πs

induced by vertical line segments. For each vertex v of Πs, consider two vertical extensions
from v, one going upwards and one going downwards. The extensions stop when they meet
an edge of Πs other than the edges incident to v. The vertical decomposition of Πs is the
subdivision induced by the vertical extensions contained in the bounded faces of Πs together
with the edges of Πs. Note that the unbounded face of Πs remains the same. In this paper, we
do not consider the unbounded face of Πs as a cell of the vertical decomposition. Therefore,
every cell is a trapezoid or a triangle (a degenerate trapezoid). There are O(|Πs|) trapezoids
in the vertical decomposition of Πs. We treat each trapezoid as a closed set. We can compute
the vertical decomposition in O(|Πs|) time [5] since we do not decompose the unbounded
face of Πs.

We use segment trees, interval trees and priority search trees as basic building blocks. In
the following, we briefly review those trees. But we use priority search trees and interval trees
of larger fan-out only in the part omitted in the main text, so we also omit their description.
Their description can be found in the full version of this paper. For more information, refer
to [9, Section 10].

We first introduce the segment tree and the interval tree on a set I of n intervals on the
x-axis. Let Ip be the set of the endpoints of the intervals of I. The base tree is a binary
search tree on Ip of height O(logn) such that each leaf node corresponds to exactly one point
of Ip. Each internal node v corresponds to a point `(v) on the x-axis and an interval region(v)
on the x-axis such that `(v) is the midpoint of Ip ∩ region(v). For the root v, region(v) is
defined as the x-axis. Suppose that `(v) and region(v) are defined for a node v. For its
two children v` and vr, region(v`) and region(vr) are the left and right regions of region(v),
respectively, in the subdivision of region(v) induced by `(v).

For the interval tree, each interval I ∈ I is stored in exactly one node: the node v of
maximum depth with region(v) ⊆ I, that is, the lowest common ancestor of two leaf nodes
corresponding to the endpoints of I. For the segment tree, each interval I is stored in O(logn)
nodes: the nodes v with region(v) ⊆ I, but region(u) 6⊆ I for the parent u of v. For any point
p ∈ R, let π(p) be the search path of p. The intervals of I containing p are stored in some
nodes of π(p) in both trees. However, not every interval stored in such nodes contains p in
the interval tree while every interval stored in such nodes contains p in the segment tree.

Similarly, the segment tree and the interval tree on a set S of n line segments in the plane
are defined as follows. Let Sx be the set of the projections of the line segments of S onto the
x-axis. The segment and interval trees of S are basically the segment and interval trees on
Sx, respectively. The only difference is that instead of storing the projections, we store a
line segment of S in the nodes where its projection is stored in the case of Sx. As a result,
`x(v) and regionx(v) for the trees of S are naturally defined as the vertical line containing
`(v) and the smallest vertical slab containing region(v) for the trees of Sx, respectively. If it
is clear in context, we use `(v) and region(v) to denote `x(v) and regionx(v), respectively.

2.2 Subproblem: Stabbing-Lowest Query Problem for Trapezoids
The trapezoids we consider have two sides parallel to the y-axis. We consider the stabbing-
lowest query problem for trapezoids as a subproblem. In this problem, we are given a set T
of trapezoids which is initially empty and changes dynamically by insertions of trapezoids.
Here, the trapezoids we are given satisfy that no two upper or lower sides of the trapezoids
cross each other. But it is possible that the upper (or lower) side of one trapezoid crosses a
vertical side of some other trapezoid. We process a sequence of updates so that given a query
point q, the trapezoid with lowest upper side can be found efficiently among all trapezoids
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of T containing q. Here, we say a trapezoid has the lowest upper side if its upper side is
intersected first by the vertical upward ray from q among all upper sides of the trapezoids of
T containing q. We call such a trapezoid the lowest trapezoid stabbed by q.

In Section 4, we present a data structure for this problem . The worst case query time is
O(log2 n), the amortized update time is O(logn log logn), and the size of the data structures
is O(n logn). We will use this data structure as a black box in Section 3.

3 Point Location in Incremental General Planar Subdivisions

Compared to connected subdivisions, a main difficulty for handling dynamic general planar
subdivisions lies in finding the faces incident to the edge e lying immediately above a query
point [6]. If e is contained in the outer boundary of a face, we can find such a face as the
algorithm in [6] for connected planar subdivisions does. However, this approach does not
work if e lies on an inner boundary of a face. To overcome this difficulty, instead of finding
the edge in Π lying immediately above a query point q, we find an outer boundary edge of
the face F of Π containing q. See Figure 1(b). To do this, we answer a point location query
in two steps.

First, we find the (maximal) connected component γ of Π containing the outer boundary
of the face F containing the query point q. We use FindCC(Π) to denote this data structure.
Observe that the boundary of the face of Πγ containing q coincides with the outer boundary
of F . We maintain the boundary of each face of Πγ using a concatenable queue. Thus given
an outer boundary edge of F , we can return the name of F by defining the name of each
face of Π as the name of the concatenable queue representing its outer boundary.

Second, we apply a point location query on Πγ . More specifically, we find the face Fγ in
Πγ containing q, find the concatenable queue representing the boundary of Fγ , and return its
name. Since Πγ is connected, we can maintain an efficient data structure for point location
queries on Πγ . We use LocateCC(γ) to denote this data structure. Each of Sections 3.1
and 3.2 describes each of the two data structures together with query and update algorithms.

In addition to them, we maintain the following data structures: one for checking if a
new edge is incident to Π, one for maintaining the connected components of Π, and one for
maintaining the concatenable queue for the outer boundary of each face of Π. Details can be
found in the full version.

3.1 FindCC(Π): Finding One Connected Component for a Query Point
We construct a data structure for finding the (maximal) connected component γq of Π
containing the outer boundary of the face of Π containing a query point q. To do this, we
compute a set T of O(n) trapezoids each of which belongs to exactly one edge of Π such that
the edge to which the lowest trapezoid stabbed by q belongs is contained in γq. Then we
construct the stabbing-lowest data structure on T described in Section 4.

Data structure and query algorithm. For each connected component γ of Π, consider the
subdivision Πγ induced by γ. Notice that Πγ is connected. Let U(γ) be the union of the
closures of all bounded faces of Πγ . Note that it might be disconnected. Imagine that we
have the cells (trapezoids) of the vertical decomposition of U(γ). Note that an edge of γ
might intersect a cell. We say that a cell of the decomposition belongs to the edge of γ
containing the upper side of the cell. Let Tγ be the set of such cells (trapezoids) for γ, and T
be the union of Tγ for every connected component γ of Π. See Figure 2. In the full version,
we show that the lowest trapezoid in T stabbed by a query point q belongs to an edge in γq.
If no trapezoid in T contains q, we conclude that q is contained in the unbounded face of Π.

ISAAC 2018
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(a) (b)

q

γ

q

Figure 2 (a) The component γ contains the outer boundary of the face containing q. (b) Using
the vertical decomposition, we obtain O(n) (possibly intersecting) trapezoids. Their corners are
marked with disks. The lowest trapezoid stabbed by q is the dashed one, which comes from γ.

However, each edge insertion may induce Ω(n) changes on T in the worst case. For an
efficient update procedure, we define and construct the trapezoid set Tγ in a slightly different
way by allowing some edges lying inside U(γ) to define trapezoids in Tγ . For a connected
component γ of Π, we say a set of connected subdivisions induced by edges of γ covers γ if
an edge of γ is contained in at most two subdivisions, and one of the subdivisions contains
all edges of the boundary of U(γ). Let Fγ be a set of connected subdivisions covering γ. See
Figure 3. Notice that Fγ is not necessarily unique. For a technical reason, if the union of
some edges (including their endpoints) in a subdivision of Fγ forms a line segment, we treat
them as one edge. Then we let Tγ be the set of the cells of the vertical decompositions of the
subdivisions in Fγ . Note that a cell of Tγ might intersect another cell of Tγ . See Figure 3(b).
We say that a cell (trapezoid) of Tγ belongs to the edge of γ containing the upper side of the
cell. Let T be the union of all such sets Tγ .

Due to the following lemma, we can maintain T efficiently. In the update algorithm, we
insert trapezoids to T only.

I Lemma 1. The size of T is O(n), where n is the complexity of the current subdivision.

The following lemma shows that the lowest trapezoid in T stabbed by q belongs to an
edge of γq. Thus by constructing a stabbing-lowest data structure on T , we can find γq in
O(Q(n)) time, where Q(n) is the query time for answering a stabbing-lowest query. The
query time of the structure on n trapezoids described in Section 4 is O(log2 n).

I Lemma 2. The lowest trapezoid in T stabbed by a query point q belongs to an edge of the
connected component of Π containing the outer boundary of the face of Π containing q. If
the face of Π containing q is unbounded, no trapezoid in T contains q.

I Lemma 3. Given FindCC(Π) of size O(n), we can find the connected component of Π
containing the outer boundary of the face of Π containing a query point in O(log2 n) time.

Update algorithm. We maintain a stabbing-lowest data structure on T . Let Tγ be the set
of the trapezoids of T which belong to edges of γ. Notice that we do not maintain the sets Fγ
and Tγ for a connected component γ of Π. We use them only for description purpose. Here,
we describe the update algorithm for the insertion of an edge only. The update algorithm for
the insertion of a vertex can be found in the full version.

We process the insertion of an edge e by inserting a number of trapezoids to T . Here, we
use Π to denote the subdivision of complexity n before e is inserted. There are four cases: e is
not incident to Π, only one endpoint of e is contained in Π, the endpoints of e are contained
in distinct connected components of Π, and the endpoints of e are contained in the same
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(a) (b)

Π1

Π2

Figure 3 (a) A connected component γ. (b) A set of two subdivisions covering γ. The union
of the edge sets of the two subdivisions is γ. The set Tγ consists of the trapezoids in the vertical
decompositions of Π1 and Π2.

connected component of Π. We can check if e belongs to each case in O(logn) time using
the data structure described at the beginning of Section 3 in the full version. For the first
three cases, we do not need to update T . This is because no new face appears in the current
subdivision. Thus the conditions on the definition of Fγ are not violated in these cases. (We
will see this in more detail in the proof of Lemma 4.)

Now consider the remaining case: the endpoints of e are contained in the same connected
component, say γ, of Π. Recall that U(γ) is closed. If e is contained in the interior of U(γ),
we do nothing since Fγ covers γ ∪ e. We can check this in constant time. Details can be
found in the full version. If e is not contained in the interior of U(γ), we trace the edges
of the new face in time linear in the complexity of the new face using the data structures
presented at the beginning of Section 3 in the full version. Then we compute the vertical
decomposition of the face in the same time [5], and insert them to T . This takes time linear
in the number of the new trapezoids inserted to T , which is O(n) in total over all updates
by Lemmas 1 and 4, and the fact that no trapezoid is removed from T . As new trapezoids
are inserted to T , we update the stabbing-lowest data structure on T .

For the correctness, we have the following lemma. A proof can be found in the full
version.

I Lemma 4. For each connected component γ of Π, there is a set Fγ of connected subdivisions
covering γ such that Tγ consists of the cells of the vertical decompositions of the subdivisions
of Fγ at any moment.

Let S(n), Q(n) and U(n) be the size, the query time and the update time of an insertion-
only stabbing-lowest data structure for n trapezoids, respectively. In the case of the data
structure described in Section 4, we have S(n) = O(n logn), Q(n) = O(log2 n) and U(n) =
O(logn log logn). Recall that the total number of trapezoids inserted to T is O(n). We have
the following lemma.

I Lemma 5. We can construct a data structure of size O(S(n)) so that the connected
component of Π containing the outer boundary of the face containing q can be found in
O(Q(n)) worst case time for any point q in the plane, where n is the number of edges at the
moment. Each update takes O(U(n)) amortized time.

3.2 LocateCC(γ): Find the Face Containing a Query Point in Πγ

For each connected component γ of Π, we maintain a data structure, which is denoted by
LocateCC(γ), for finding the face of Πγ containing a query point. Here, we need two
update operations for LocateCC(·): inserting a new edge to LocateCC(·) and merging
two data structures LocateCC(γ1) and LocateCC(γ2) for two connected components γ1
and γ2 of Π. Notice that we do not need to support edge deletion since Π is incremental.

ISAAC 2018
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No known point location data structure supports the merging operation explicitly. Instead,
one simple way is to make use of the edge insertion operation which is supported by most of
the known point location data structures. For merging two data structures, we simply insert
every edge in the connected component of smaller size to the data structure for the other
connected component. By using a simple charging argument, we can show that the amortized
update time (insertion and merging) is O(U ′(n) logn), where U ′(n) is the insertion time of
the dynamic point location data structure we use. If we use the data structure by Arge et
al. [1], the query time is O(logn log∗ n) and the amortized update time is O(log2 n).

In this section, we improve the update time at the expense of increasing the query time.
Because FindCC(Π) requires O(log2 n) query time, we are allowed to spend more time on a
point location query on γ. The data structure proposed in this section supports O(log2 n)
query time. The amortized update time is O(logn log logn).

Data structure and query algorithm. LocateCC(γ) allows us to find the face of Πγ

containing a query point. Since γ is connected and we maintain the outer boundary of each
face of Π, it suffices to construct a vertical ray shooting structure for the edges of γ. Recall
that the boundary of a face of Πγ coincides with the outer boundary of a face of Π. The
vertical ray shooting problem is decomposable in the sense that we can answer a query on
S1∪S2 in constant time once we have the answers to queries on S1 and S2 for any two sets S1
and S2 of line segments in the plane. Thus we can use an approach by Bentley and Saxe [3].

We decompose the edge set of γ into subsets of distinct sizes such that each subset consists
of exactly 2i edges for some index i ≤ dlogne. Note that there are O(logn) subsets in the
decomposition. We use B(γ) to denote the set of such subsets, and B to denote the union of
B(γ) for all connected components γ of Π. LocateCC(γ) consists of O(logn) static vertical
ray shooting data structures, one for each subset in B(γ). To answer a query on γ, we apply
a vertical ray shooting query on each subset of B(γ), and choose the one lying immediately
above the query point. This takes O(Qs(n) logn) time, where Qs(n) denotes the query time
of the static vertical ray shooting data structure we use.

For a static vertical ray shooting data structure Ds(β) for β ∈ B, we present a variant of
the (dynamic) vertical ray shooting data structure of Arge et al. [1]. It supports O(logn)
query time, and an efficient merging operation. In the update procedure, we merge two
subsets β1 and β2 in B into one, and merge their static vertical ray shooting data structures.
If we construct Ds(β1 ∪ β2) from scratch, the total update time is Ω(n log2 n) because the
construction of a vertical ray shooting data structure on N segments takes Ω(N logN) time
for any data structure. To improve this update time, we maintain a set of sorted lists of
edges, which we call the backbone tree, so that we can merge two static ray shooting data
structures more efficiently. Notice that the edges of Π cannot be consistently sorted with
respect to the y-axis in advance. This happens if no vertical line crosses two edges of Π.
The y-order of the two edges depends on the edges to be inserted. In our case, we maintain
sets of edges which can be consistently sorted (i.e., edges intersecting a common vertical
line), and maintain their sorted lists. Details can be found in the full version. Proofs of the
following lemmas can also be found in the full version.

I Lemma 6. Given Ds(β) for every subset β ∈ B, we can find the edge lying immediately
above a query point among the edges of a connected component γ of Π in O(log2 n) time.

I Lemma 7. Given Ds(β1) and Ds(β2) for two subsets β1 and β2 of B, we can construct
Ds(β) in O(|β| log logn) time, where β = β1 ∪ β2.
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Update algorithm. We have two update operations, the insertion of edges and vertices. We
do not need to update LocateCC(·) in the case of a vertex insertion. Details can be found
in the full version. We use Π to denote the subdivision of complexity n before e is inserted.

Suppose that we are given an edge e and we are to update LocateCC(·). Specifically,
we update the static vertical ray shooting data structures for some subsets of B and the
backbone tree. We find the connected components of Π incident to e in O(logn) time. There
are three cases: there is no such connected component, there is only one such connected
component, or there are two such connected components. We show how to update the data
structure only for the last case. Details for the other cases can be found in the full version.

For the last case, let γ1 and γ2 be two connected components incident to e. They are
merged into one connected component together with e. If every subset in B(γ1) and B(γ2)
has distinct size, we just collect every static vertical ray shooting data structure constructed
on a subset in B(γ1) ∪ B(γ2), and insert e to the data structure. Then we are done. If not,
we first choose the largest subsets, one from B(γ1) and one from B(γ2), of the same size,
say 2i. Then we construct a new vertical ray shooting data structure on the union β′ of the
two subsets in O(2i+1 log logn) time. If there is a subset in B(γ1) or B(γ2) of size 2i+1 other
than β′, we again merge them together to form a subset of size 2i+2. We repeat this until
every subset in B(γ1) and B(γ2) of size at least 2i has distinct size. Then we consider the
largest subsets, one from B(γ1) and one from B(γ2), of the same size again. Note that the
size of the two subsets is less than 2i. We merge them, and repeat the merge procedure. We
do this for every pair of subsets in B(γ1) and B(γ2) of the same size. Finally, we have the
set B(γ1 ∪ γ2) of subsets of the edges of γ1 ∪ γ2 of distinct sizes, and the static vertical ray
shooting data structure for each subset in B(γ1 ∪ γ2). Then we insert e to the data structure.
Details can be found in the full version.

I Lemma 8. The total time for updating every vertical ray shooting data structure in the
course of n edge insertions is O(n logn log logn).

I Lemma 9. We can maintain a data structure of size O(n log logn) in an incremental
planar subdivision Π so that the edge of γ lying immediately above q can be found in O(log2 n)
time for any edge e and any connected component γ of Π. The amortized update time of this
data structure is O(logn log logn).

4 Incremental Stabbing-Lowest Data Structure for Trapezoids

In this section, we are given a set T of trapezoids which is initially empty. Then we are to
process the insertions of trapezoids to T so that the lowest trapezoid in T stabbed by a
query point can be found efficiently. Recall that the upper and lower sides of the trapezoids
we consider in this paper do not cross each other. To make the description easier, we
present a simplified version of our data structure supporting O(log2 n log logn) query time
and O(logn log logn) insertion time in the main text. By using an interval tree of fan-out
logε n, we can improve the query time by a factor of log logn. Details can be found in the
full version.

Data structure. The base tree is an interval tree of the upper and lower sides of the
trapezoids of T . Since the left and right sides of the trapezoids are parallel to the y-axis, a
node of the interval tree stores the upper side of a trapezoid of T if and only if it stores the
lower side of the trapezoid. Here, instead of storing the upper and lower sides of a trapezoid,
we store the trapezoid itself in such a node. In this way, a trapezoid � of T is stored in at
most one node of the interval tree. For details, refer to Section 2.
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Figure 4 The segment tree constructed on the intersections of the trapezoids of S(v) with `(v).

We construct a secondary structure associated with a node v of the base tree as follows.
Let S(v) be the set of the trapezoids stored in v. Every trapezoid of S(v) intersects a common
vertical line `(v). Thus, their upper and lower sides can be sorted in their y-order. See
Figure 4. Let I(v) be the set of the intersections of the trapezoids of S(v) with `(v). Note
that it is a set of intervals of `(v). We construct a segment tree T (v) of I(v). A node u of
T (v) corresponds to an interval region(u) contained in `(v). Every interval of I(v) stored in
u contains region(u). An interval I ∈ I(v) has its corresponding trapezoid � in S(v) such
that � ∩ `(v) = I. We let I have the key which is the x-coordinate of the left side of �.

For each node u of T (v), we construct a tertiary data structure so that given a query
value x the interval with lowest upper endpoint can be found efficiently among the intervals
stored in u and having their keys less than x. Imagine that we sort the intervals of I(v)
stored in u with respect to their keys, and denote them by 〈I1, . . . , Ik〉. And we use �i ∈ T
to denote the trapezoid corresponding to the interval Ii (i.e., `(v) ∩�i = Ii) for i = 1, . . . , k.
The tertiary data structure is just a sublist of 〈I1, . . . , Ik〉. Specifically, suppose x is at least
the key of Ii and at most the key of Ii+1 for some i. Then every interval in 〈I1, I2, . . . , Ii〉
has its key at most x. Thus the answer to the query is the one with lowest upper endpoint
among 〈I1, I2, . . . , Ii〉. Using this observation, we construct a sublist of 〈I1, . . . , Ik〉 as follows.
We choose the interval, say Ii, if its upper endpoint is the lowest among the upper endpoints
of the intervals in 〈I1, . . . Ii〉. We maintain the sublist consisting of the chosen intervals.
Notice that the sublist has monotonicity with respect to their upper endpoints. That is, the
upper endpoint of Ii lies lower than the upper endpoint of Ii′ if Ii comes before Ii′ in the
sublist. This property makes the update procedure efficient.

By applying binary search on the sublist with respect to the keys, we can find the interval
with lowest endpoint among the intervals stored in u and having the keys less than x. For
each node of the base tree, we maintain a structure for dynamic fractional cascading [12] on
the segment tree so that the binary search on the sublist associated with each node of the
segment tree can be done in O(logn log logn) time in total. Then we also do this for the
right sides of the trapezoids of S(v).

A tricky problem here is that a query point q and the upper or lower side of a trapezoid
in S(v) cannot be ordered with respect to the y-axis in general. This happens if the left
side of the trapezoid lies to the right of q. See Figure 4. This makes it difficult to follow a
search path in the segment tree associated with v. To resolve this, we find the side e lying
immediately above q among the upper and lower sides of the trapezoids in S(v), and then
follow the search path of q′ = e ∩ `(v). To do this, we construct a vertical ray shooting data
structure on the upper and lower sides of the trapezoids in S(v). Details can be found in the
full version.
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Query algorithm. Using this data structure, we can find the lowest trapezoid in T stabbed
by a query point q as follows. We follow the base tree (interval tree) along the search
path π of q of length O(logn). For each node of π, we consider its associated secondary
structures, and we find the lowest trapezoid stabbed by q among the trapezoids stored in the
node. And we return the lowest one among all trapezoids we obtained from the nodes of π.
We spend O(logn log logn) time on each node in π, which leads to the total query time of
O(log2 n log logn).

We have a segment tree on the intersections of the trapezoids of S(v) with `(v) for a
node v in π. We first find the upper or lower side e of a trapezoid of S(v) immediately
lying above q among them in O(logn) time using the vertical ray shooting data structure
associated with v, and let q′ be the intersection point between e and `(v). See Figure 4. We
show that the lowest trapezoid stabbed by q is stored in a node in the search path of q′. A
proof can be found in the full version. Thus, it suffices to consider O(logn) nodes w in the
segment tree with q′ ∈ region(w). Then we find the successor of the x-coordinate of q on
the sublist associated with each such node. By construction, the trapezoid corresponding to
the successor is the lowest trapezoid stabbed by q among all trapezoids stored in w. Using
dynamic fractional cascading, we can find it in O(log logn) time for each node after spending
O(logn) time for the initial binary search of only one node in the segment tree. Thus we
can find all successors in O(logn log logn) time.

I Lemma 10. Using the data structure described in this section, we can find the lowest
trapezoid stabbed by a query point in O(log2 n log logn) time.

Update algorithm. We assume that the trapezoids to be inserted are known in advance
so that we can keep the base tree and all segment trees balanced. We can get rid of this
assumption with standard technique using weight-balanced B-trees. We show how to do this
in the full version. Let � be a trapezoid to be inserted to the data structure. We find the
node v of maximum depth in the base tree such that region(v) contains � in O(logn) time.
The trapezoid � is to be stored only in this node.

We update the secondary structure (segment tree) for S(v) by inserting �. We find the
set W of O(logn) nodes in the segment tree where � is to be inserted. Each node w ∈W is
associated with a sorted list L(w) of intervals stored in w. We decide if we store � ∩ `(v) in
L(w). To do this, we find the position for � in L(w) by applying binary search on L(w) with
respect to the key. Here we do this for every node in W , and thus we can apply fractional
cascading. The key of each interval in the sorted lists is in R. Thus we can apply (dynamic)
fractional cascading so that each binary search takes O(log logn) time after spending O(logn)
time on the initial binary search on a node of W [12].

Let 〈I1, . . . , Ik〉 be the sorted list of the intervals stored in w. The list L(w) is a sublist
of this list, say 〈Ii1 , . . . , Iit〉. Let Iij be the predecessor of � ∩ `(v). We determine if � is
inserted to the list in constant time: if the upper side of � lies below the upper side of the
trapezoid �ij+1 with �ij+1 = Iij+1 ∩ `(v), we insert � ∩ `(v) to the list. Otherwise, the list
stored in w remains the same. If we insert � ∩ `(v) to the list, we check if it violates the
monotonicity of L(w). To do this, we consider the trapezoid �′ whose corresponding interval
lies before � one by one from �ij . If the upper side of �′ lies above �, we remove �′ from
the list. Each insertion into and deletion from L(w) takes O(log logn) time [12]. We do this
until the upper side of �′ lies below the upper side of �. The total update time for the
insertion of � is O(logn+N log logn), where N is the number of the trapezoids deleted due
to �. We show that the sum of N over all n insertions is O(n logn) in the full version. Thus
the amortized update time is O(logn log logn) time.
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In the full version, we show how to improve the query time by a factor of O(log logn).
Therefore, we have the following lemma.

I Lemma 11. We can maintain an O(n logn)-size data structure on an incremental set of
n trapezoids supporting O(logn log logn) amortized update time so that given a query point
q, the lowest trapezoid stabbed by q can be computed in O(log2 n) time.
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