Competitive Searching for a Line on a Line Arrangement

Quirijn Bouts

ASML Veldhoven, the Netherlands

Thom Castermans ${ }^{1}$

TU Eindhoven, the Netherlands
t.h.a.castermans@tue.nl

Arthur van Goethem

TU Eindhoven, the Netherlands
a.i.v.goethem@tue.nl

Marc van Kreveld ${ }^{2}$
Utrecht University, the Netherlands
m.j.vankreveld@uu.nl

Wouter Meulemans ${ }^{3}$
TU Eindhoven, the Netherlands w.meulemans@tue.nl

Abstract

We discuss the problem of searching for an unknown line on a known or unknown line arrangement by a searcher S, and show that a search strategy exists that finds the line competitively, that is, with detour factor at most a constant when compared to the situation where S has all knowledge. In the case where S knows all lines but not which one is sought, the strategy is 79 -competitive. We also show that it may be necessary to travel on $\Omega(n)$ lines to realize a constant competitive ratio. In the case where initially, S does not know any line, but learns about the ones it encounters during the search, we give a 414.2 -competitive search strategy.

2012 ACM Subject Classification Theory of computation \rightarrow Design and analysis of algorithms
Keywords and phrases Competitive searching, line arrangement, detour factor, search strategy
Digital Object Identifier 10.4230/LIPIcs.ISAAC.2018.49
Acknowledgements This work was started during the $2^{\text {nd }}$ AGA Workshop, in Jan./Feb. 2017. The authors thank two anonymous reviewers for their extensive and detailed comments.

1 Introduction

Given a set L of n lines $\ell_{0}, \ell_{1}, \ldots \ell_{n-1}$ in the plane, consider the arrangement \mathcal{A} that they form as a geometric graph. Technically, \mathcal{A} is not a graph due to half-infinite edges, but in our problem we can end each line at its extreme intersection points, and hence we can use the term graph without complications. We consider paths on \mathcal{A}. The cost of a path on \mathcal{A} is the Euclidean length of that path. The distance between two points on \mathcal{A} is the cost (or length) of the shortest path that stays on \mathcal{A} between those points.

[^0]
© Quirijn Bouts, Thom Castermans, Arthur van Goethem, Marc van Kreveld, and Wouter Meulemans;
licensed under Creative Commons License CC-BY
29th International Symposium on Algorithms and Computation (ISAAC 2018).

LIPICs Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

Assume that a searcher S is located on some vertex or edge of the graph. Denote its initial position by O. The searcher S can only travel on the arrangement and is hence restricted to paths on \mathcal{A}. Searcher S is looking for a target line $\ell_{t} \in L$, but does not know which of the lines in L corresponds with ℓ_{t}. The searcher S will recognize ℓ_{t} when it reaches any point on ℓ_{t} (necessarily at an intersection point with another line). We call this special line the target line, and assume that O does not lie on ℓ_{t}. If it would, the problem would be solved immediately. We consider two versions of the problem: one where S knows the lines in L and therefore \mathcal{A} completely, and one where S only knows about the existence and parameters of a line once it reaches some point on it.

We will show that a search strategy exists by which S can reach the target line competitively in both versions. In other words, S can reach the target line with a detour factor bounded by a constant, when compared to the shortest path on \mathcal{A} to the target line. Competitive analysis is commonly used to compare "the cost of not knowing" with "the cost of knowing". The maximum detour factor of a search strategy is known as its competitive ratio. The competitive ratio of a search problem is the infimum of the competitive ratios of all search strategies that solve that search problem.

The best known search problem is perhaps the one-dimensional problem of finding a point on a line from a starting position. If we know the distance d, but not whether it is to the left or to the right, the optimal strategy is to go left over a distance d and then right over a distance $2 d$. We find the point with competitive ratio 3 , which is optimal. If we don't know the distance but we do know some (very) small lower bound ϵ on the distance, it is best to go ϵ to the left, then back and another 2ϵ to the right, then back and another 4ϵ to the left, and so on. This doubling strategy gives a competitive ratio of 9 , which is known to be optimal as proved by Beck and Newman [4] in 1970, see also [2, 13].

The problem of searching for a line in the plane without obstacles was studied by BaezaYates et al. [2] in various settings. The settings refer to the knowledge we have of the line, which can be its slope, its distance, both, or neither. If the slope of the line is known, the problem reduces to the one-dimensional problem just discussed. If only the distance is known, the optimal competitive ratio is $6.39 \ldots$. The problem of searching for a line a given distance away was posed by Bellman [5] in 1956 and solved by Isbell [20] in 1957. It is a classic in recreational mathematics and often posed as a swimmer in the fog, trying to reach the (straight) shore which is a known unit distance away, while swimming the least in the worst case. If the slope nor the distance of a line to be found is known, the best known competitive ratio is $13.81 \ldots$, which is realized by a logarithmic spiral search strategy.

Competitive analysis of algorithms was introduced by Sleator and Tarjan for analyzing the list update problem [24]. Here the lack of knowledge is the next online requests. In geometric situations, the lack of knowledge is often the environment itself or the location of something to be found (by seeing or reaching it). The main motivation of such problems comes from the navigation of robots in unknown environments. More generally, searching for a target in environments where either the target or the environment is unknown is a basic problem, and competitive analysis is a fundamental way to understand what is in principle possible in such exploration problems. We list a few main results on searching and competitive analysis in geometric and geometric-graph environments; for an extensive overview see also [15]. We begin by noting that there is no c-competitive search strategy to find an unknown target node in a known graph, for example when the graph is a star.

When searching for an unknown target on a line, but additional information on the distance to the target is known, alternative results can be obtained [8, 17]. Demaine et al. [13] show that searching for an unknown target on a line with cost depending on both

Figure 1 Half-lines cannot be searched c-competitively.
search distance and turns can be done competitively with cost $9 O P T+2 d$, where d is the cost of one turn. Searching on multiple rays is studied in various papers [8, 13, 16, 23]; Kao et al. [22] give an optimal randomized algorithm. In yet other variants one can search with multiple searchers [3, 16].

Kalyanasundaram and Pruhs [21] consider visibility-based searching for a recognizable point in an unknown scene with convex obstacles. Their result on the competitive factor is not constant, but depends on the number of obstacles and their aspect ratio. Blum et al. [6] investigate similar problems for different classes of obstacles. Hoffmann et al. [18] show that an unknown simple polygon can be discovered completely with a competitive ratio of 26.5. There are various other visibility-based search problems addressed with competitive analysis (e.g.,[14, 19]).

A different setting where competitive strategies are investigated is routing in geometric graphs. Here an unknown geometric graph is given along with a source and target with known coordinates. We route a package from source to target over the nodes, but learn about the existence and coordinates of a node when we are at a neighbor. For triangulations, no c-competitive strategy exists, but for special triangulations like Delaunay and certain other geometric graphs, a constant competitive strategy does exist [7, 9, 10, 11, 12]. Searching for an unknown target on a planar straight line graph with discovery based on Pókemon Go was investigated with competitive analysis recently [25].

Contributions. In Section 2 we give a preliminary result where we use only two lines and obtain a competitive ratio depending on their angle. Moreover, we show that, if we want to obtain a constant competitive ratio that does not depend on parameters of the arrangement, then the search strategy must allow for traversing at least half the lines in an arrangement. In Section 3 we describe and analyze such a strategy and show that this leads to a 79 -competitive strategy. This is an upper bound on the relative cost of not knowing which line is sought. (Note that for slightly more complex objects like half-lines, no constant-competitive strategy exists by mimicking a star graph, see Figure 1.) In Section 4 we generalize the problem to the situation where the searcher does not know all lines beforehand. They learn about the existence of a line and its parameters only when the line is reached. We show that in this case a search strategy exists with competitive ratio 414.2. This is an upper bound on the relative cost of not knowing the lines at all.

Although our search problems and competitive ratios are new, the existing literature implies lower bounds for our versions. When all lines are known, we have a lower bound of 9 , because the problem is at least as hard as the one-dimensional problem of finding a point on a line. Moreover, it is essentially also at least as hard as finding a fully unknown line in the plane, because we could be given a very dense set of lines where all movement is approximately possible and every line could be the target. The best known competitive ratio is $13.81 \ldots$ to find an unknown line, but this is not known to be optimal so it does not provide a true lower bound. In case we do not know the lines of the arrangement at all, we inherit the lower bound of searching on four rays (half-lines) for a point, which is 19.96.. [1, 13]. The

Figure 2 Sketch of worst case.
line arrangement consists of two perpendicular lines, we start on their intersection, and we must explore. If we do not follow the optimal strategy for four rays, the target line was just out of reach at the place where we went less far, and perpendicular to that ray. With more than four rays, lines will intersect more than one ray and the argument no longer works.

2 Competitive searching on an arrangement

As a warm-up, assume that S starts at the intersection of two lines ℓ_{1} and ℓ_{2} whose smaller intersection angle is $\alpha \leq \pi / 2$. Furthermore, S only traverses ℓ_{1} and ℓ_{2}, disregarding all other lines for traversal.

- Theorem 1. The target line can be found with competitive ratio at most $29 / \sin (\alpha / 2)$.

Proof. Denote the starting point by O and the target line by ℓ_{t}. As a lower bound for reaching ℓ_{t} we use the Euclidean distance between O and ℓ_{t}, denoted by x, because a line ℓ_{3} through O and normal to ℓ_{t} could exist.

Note that ℓ_{t} must intersect at least one of ℓ_{1} and ℓ_{2}. Let y be the distance on ℓ_{1} or ℓ_{2} to the closest intersection point u of ℓ_{t} with ℓ_{1} and/or ℓ_{2}. Since α is the smaller angle, the worst case occurs when the target line ℓ_{t} spans a triangle with the two initial lines ℓ_{1} and ℓ_{2} with an angle of $\pi-\alpha$; the worst ratio between x and y occurs when this triangle is equilateral with apex O. This is illustrated in Figure 2. By elementary geometry, we then have $y \leq x / \sin (\alpha / 2)$.

The strategy to find ℓ_{t} is as follows. Let d be the distance between O and the vertex v on ℓ_{1} or ℓ_{2} closest to it. First, S travels to v and back to O. Then S travels the same distance d in each of the other three directions on ℓ_{1} and ℓ_{2}, and back to O each time. After that we double d and repeat. S has achieved its goal when it reaches u, and therefore ℓ_{t}.

We can view the traversal of S on ℓ_{1} and ℓ_{2} as the traversal on four half-lines induced by O. One of these half-lines crosses ℓ_{t} at distance y. This is, by definition, where u is. By the doubling strategy, S will have traversed a total distance less than $5 y$ on the half-line with u. On each of the other half-lines, S has traversed at most a distance of $8 y$. Summing up yields that the searcher travelled at most a distance of $29 y$; using $y \leq x / \sin (\alpha / 2)$, we find that the competitive ratio, bounded by $29 y / x$, gives the claimed bound of $29 / \sin (\alpha / 2)$.

We note that a tighter analysis of the same strategy will give a slightly better competitive ratio, and a different strategy where we traverse the half-lines over different distances will also give a better competitive ratio. However the strategy is not c-competitive for any constant c, since α can be arbitrarily small. Moreover, since this is a special case of the problem, we explore this strategy no further.

Below, we show that for any constant c, any c-competitive strategy must traverse $\Omega(n)$ lines. So the strategy of the proof of Theorem 1 cannot work, not even with the usage of some carefully chosen additional lines besides ℓ_{1} and ℓ_{2}.

Figure 3 Placement of ℓ_{i} and h_{i}, given ℓ_{i+1} and h_{i+1}. Line ℓ_{i} is defined by the point with x-coordinate $d_{i+1} /(2 c)$ on h_{0} and the point with x-coordinate $2 c d_{i+1}$ on h_{i+1}. Line h_{i} is placed such that $\operatorname{dist}\left(h_{0} \cap \ell_{i+1}, p_{i}\right)<d_{i+1} /(2 c)$.

- Theorem 2. For any constant $c \geq 1$, there is an arrangement \mathcal{A} of n lines such that any c-competitive strategy must traverse at least $n / 2=\Omega(n)$ lines of \mathcal{A} in the worst case.

Proof. We construct an arrangement \mathcal{A} of $n=2 m+1$ lines. The line h_{0} is the x-axis, and searcher S starts on h_{0} at the origin O. Let h_{1}, \ldots, h_{m} be horizontal lines that together with h_{0} have a bottom-to-top order $h_{0}, h_{1}, \ldots, h_{m}$. Let $\ell_{1}, \ldots, \ell_{m}$ be m lines with positive slope ≤ 1, such that the upper envelope of $\ell_{1}, \ldots, \ell_{m}$ is a convex increasing function that contains all these lines in the same order. We ensure that these lines intersect h_{0} on the positive side and in the order $\ell_{1}, \ldots, \ell_{m}$. The construction will be such that the part of ℓ_{i} between its intersection with h_{i} and its intersection with ℓ_{i-1} must be used by S to reach h_{i} with detour no more than c, because even the intersection of ℓ_{i-1} with h_{i} has an x-coordinate that is too high.

In more detail, we construct the lines incrementally from m down to 1 , in pairs ℓ_{i} and then h_{i}, see Figure 3. We start with $\ell_{m}: y=x-2$ and $h_{m}: y=1$. Assume ℓ_{i+1} and h_{i+1} are placed, and their intersection point p_{i+1} is such that $d_{i+1}=\operatorname{dist}\left(O, h_{0} \cap \ell_{i+1}\right)>$ $\operatorname{dist}\left(h_{0} \cap \ell_{i+1}, p_{i+1}\right)$ (for ℓ_{m} and h_{m} we made sure of this condition). Then we define ℓ_{i} by constructing two points on it. One is the point $\left(d_{i+1} /(2 c), 0\right)$ on h_{0}; the other is the point on h_{i+1} with x-coordinate $2 c d_{i+1}$. This defines ℓ_{i}. The line h_{i} is chosen horizontal and low enough so that $\operatorname{dist}\left(h_{0} \cap \ell_{i}, p_{i}\right)<\operatorname{dist}\left(O, h_{0} \cap \ell_{i}\right)=d_{i+1} /(2 c)$. Note that $d_{m}=2$ and $d_{i}=2 /(2 c)^{m-i}$.

To argue that this arrangement forces a searcher S to walk on every line ℓ_{i} (and also h_{0} where S starts), we observe that we can reach the line h_{i} in distance at most d_{i+1} / c simply by following h_{0} and ℓ_{i} only (we can do a little bit better but for the proof this is not needed). To reach $h_{i} c$-competitively we must thus travel less than d_{i+1} along \mathcal{A}.

We cannot use line ℓ_{i+1} or any higher-indexed line, because all their vertices have x coordinates at least d_{i+1} so it must take d_{i+1} or more to even reach ℓ_{i+1} or a later line. Thus if we do not use ℓ_{i}, we must reach line h_{i} on line ℓ_{i-1} or a lower-indexed line. By construction the intersection of ℓ_{i-1} and h_{i} has x-coordinate d_{i+1}. Thus reaching h_{i} from ℓ_{i-1} is not c-competitive. Furthermore, any line ℓ_{j} with $1 \leq j<i-1$ must intersect h_{i} right of the intersection with ℓ_{i-1} and thus for the same reason reaching h_{i} via ℓ_{j} cannot be c-competitive.

In other words, we must use ℓ_{i} to get c-competitively to h_{i}, and any of the m horizontal lines h_{1}, \ldots, h_{m} can be the target line. Hence, a c-competitive strategy must visit and walk on each of $\ell_{1}, \ldots, \ell_{m}$. As S starts on h_{0}, it thus walks on at least $m+1 \geq n / 2$ lines.

Figure 4 (a) Explored paths of length D_{1} reaching the maximum (minimum) x - and y-coordinate.
(b) The paths of doubling lengths D_{1}, \ldots, D_{4} to the highest points $p_{1}^{+y}, \ldots, p_{4}^{+y}$.

3 A c-competitive search strategy on a known arrangement

We continue with the general case where S may start anywhere on any line and we make no assumptions on the angles between intersecting lines. For convenience we will assume the starting point to be at the origin O and the line crossing through O to be ℓ_{0}. If multiple lines cross the origin, we pick ℓ_{0} to be the line that intersects any other line closest to O. We will assume ℓ_{0} is horizontal. As the problem is rotation and translation invariant these assumptions do not change the problem. As before let d be the distance to the closest intersection point on ℓ_{0}.

Consider the following search strategy for S. Searcher S iteratively explores the arrangement starting from the origin. In iteration i four paths of length $2^{i} \cdot d$ are explored starting at O. These paths are picked such that they maximize (minimize) the x - respectively y-coordinate that S can achieve on the arrangement within distance $2^{i} \cdot d$ from O (see Figure $4(\mathrm{a})$). Specifically this results in the following strategy. First, S traverses ℓ_{0} over a distance $2 d$ in the direction $+x$ and then returns back to O. Second, S traverses ℓ_{0} for a distance $2 d$ in the direction $-x$ and back. Third, S determines the point on \mathcal{A} with maximum y-coordinate it can reach when traversing over a distance $2 d ; S$ goes there and back. Symmetrically, S also visits the point with lowest y-coordinate reachable within distance $2 d$ from O. Upon returning to the origin the allowed distance is doubled and the process is repeated until S finds ℓ_{t}.

Let D_{i} be the distance travelled in iteration i. Let the points where S ends when searching over a distance D_{i} with minimum and maximum x - and y-coordinate be denoted p_{i}^{-x}, p_{i}^{+x}, p_{i}^{-y}, and p_{i}^{+y}, respectively. Figure $4(\mathrm{~b})$ shows the four paths to $p_{1}^{+y}, \ldots, p_{4}^{+y}$. Notice that the path for D_{i+1} does not necessarily follow the path for D_{i} as a less steep line may be followed to reach a steeper line sooner.

- Lemma 3. The y-coordinate of p_{i}^{+y} is at least twice that of p_{i-1}^{+y}. The symmetric statement holds for p_{i}^{-y} and p_{i-1}^{-y}.

Proof. Observe that for any p_{i-1}^{+y}, the last line traversed on the path to p_{i-1}^{+y} must have the steepest absolute slope. If not, we could get higher by staying on the line with steepest slope. When we traverse a distance D_{i} instead of D_{i-1}, we have the option of staying on this steepest absolute slope line, and since $D_{i}=2 D_{i-1}$, we get at least twice as high just by staying on the line that contains p_{i-1}^{+}.

Let Q_{i} be the convex quadrilateral with the points $p_{i}^{-x}, p_{i}^{+x}, p_{i}^{-y}$, and p_{i}^{+y} as vertices and let R_{i} be the axis-parallel rectangle with these four points on its boundary (see Figure 5).

Figure 5 Illustration of the quadrilaterals Q_{1} and Q_{2} and the respective axis-parallel bounding rectangles R_{1} and R_{2}. Notice that consecutive quadrilaterals need not be contained in each other.

Figure 6 Even with the (impossible) worstcase placement of p_{i+2}^{+y} rectangle R_{i} is still contained in Q_{i+2}.

Trivially $Q_{i} \subset R_{i}$ and from Lemma 3 it immediately follows that $R_{1} \subset R_{2} \subset \cdots \subset R_{k}$.

- Lemma 4. $R_{i} \subset Q_{i+2}$.

Proof. Without loss of generality only consider the half-plane above ℓ_{0}. We show that the triangle $p_{i+2}^{-x} p_{i+2}^{+y} p_{i+2}^{+x}$ contains the rectangle with bottom vertices p_{i}^{-x} and p_{i}^{+x} and top side through p_{i}^{+y}. We know that $p_{i+2}^{-x} p_{i+2}^{+x}$ is exactly four times the length of $p_{i}^{-x} p_{i}^{+x}$ as ℓ_{0} is horizontal. By Lemma 3 the y-coordinate of p_{i+2}^{+y} is at least four times that of p_{i}^{+y} (see Figure 6). By triangle inequality the x-coordinate of p_{i+2}^{+y} must be between p_{i+2}^{-x} and p_{i+2}^{+x}.

Let x be the x-coordinate of p_{i}^{+x}, and $r=(-x, y)$ the vertex at the top-left corner of R_{i}. Consider the side $p_{i+2}^{-x} p_{i+2}^{+y}$ of the triangle and the line $p_{i+2}^{-x} r$. The slope of $p_{i+2}^{-x} r$ is $y /(3 x)$. The slope of $p_{i+2}^{-x} p_{i+2}^{+y}$ depends on the exact location of p_{i+2}^{+y}. In the (impossible) worst case p_{i+2}^{+y} is located at $(4 x, 4 y)$. Thus the slope of $p_{i+2}^{-x} p_{i+2}^{+y}$ is at least $y /(2 x)$ and r is below $p_{i+2}^{-x} p_{i+2}^{+y}$. Containment of R_{i} in Q_{i+2} trivially follows.

We observe that if the target line ℓ_{t} intersects Q_{i} then ℓ_{t} will be found in iteration i or before. Hence the distance travelled by the searcher is upper-bounded by the distance travelled up to and including iteration i. Suppose the searcher S finds the target line ℓ_{t} in iteration k. We will use the rectangle R_{k-3} as a lower bound on the length of the shortest path to ℓ_{t} to prove an upper bound on the competitive ratio.

- Lemma 5. The target line ℓ_{t} intersects Q_{k} and does not intersect R_{k-3}.

Proof. If ℓ_{t} intersects Q_{k-1}, then ℓ_{t} would have been found in phase $k-1$. Since $R_{k-3} \subset Q_{k-1}$, the lemma follows.

As ℓ_{t} does not intersect R_{k-3} the closest point of ℓ_{t} to O must be outside of R_{k-3}. But then the shortest path to ℓ_{t} must have length larger than D_{k-3}. Assume for contradiction that the closest point p_{t} on ℓ_{t} has distance less than D_{k-3}. As in iteration $k-3$ we followed the paths that maximize (minimize) the x - and y-coordinate, p_{t} could be reached and must thus be contained in R_{k-3}. Contradiction. Thus D_{k-3} is a lower bound on the distance from O to ℓ_{t}, and $D_{k-3}=D_{k} / 8$.

For an upper bound, we consider the distance we have travelled. Except for the last iteration, we traversed four paths of length D_{i} in two directions in each iteration. Thus in previous iterations we traversed $8 \sum_{i=1}^{k-1} D_{i}$. In the last iteration in the worst-case we discover ℓ_{t} while traversing the fourth path all the way to its end. Hence we traverse three paths of length D_{k} twice, and the last path of length D_{k} once. The total travel is thus at most:

$$
8 \sum_{i=1}^{k-1} D_{i}+7 D_{k}
$$

Using the summation $\sum_{i=0}^{k-1} z^{i}=\frac{z^{k}-1}{z-1}$ and $D_{i}=2^{i} d$ we can rewrite this to $15 \cdot 2^{k} d-16 d<$ $15 D_{k}$. We thus upper-bound the competitive ratio by 120 .

A more careful analysis shows that Lemma 4 is true even if we do not double D_{i} but enlarge by only a factor $\sqrt{3}$. Let $D_{1}=\sqrt{3} d$ and $D_{i}=\sqrt{3} D_{i-1}$ for $i \geq 2$, so $D_{i}=\sqrt{3}^{i} \cdot d$, and suppose S finds ℓ_{t} in iteration k. Then $D_{k-3}=\sqrt{3}^{k-3} d$ is a lower bound for reaching ℓ_{t}. With the described strategy S travels at most

$$
8 \sum_{i=1}^{k-1} \sqrt{3}^{i} d+7 \sqrt{3}^{k} d<8 \frac{\sqrt{3}^{k} d}{\sqrt{3}-1}+7 \sqrt{3}^{k} d
$$

The competitive ratio becomes

Another improvement comes from organizing the four traversals in a phase conveniently so that we do not have to go back to O at the end. In every even phase i we start with going to p_{i}^{+x}, then we do p_{i}^{+y} and p_{i}^{-y} in any order, and end with going to p_{i}^{-x}. In every odd phase j we go to p_{j}^{-x} first and to p_{j}^{+x} last. It is easy to see that we do not have to go back at the end of any phase, because we go out over the exact same stretch in the next phase anyway. Instead of traversing $8 D_{i}$ in a phase i, we now traverse $(7-1 / \sqrt{3}) \cdot D_{i}$. This also holds for the last phase D_{k}. With some basic calculation we obtain:

- Theorem 6. A 79-competitive search strategy exists to find an unknown target line in an arrangement of lines.

Alternatively, we may also triple D_{i} because then $R_{i} \subset Q_{i+1}$; a lower constant factor than 3 will not ensure that $R_{i} \subset Q_{i+1}$ so that will not give improvements. The competitive ratio we get is worse, however, than when using $\sqrt{3}$ and $R_{i} \subset Q_{i+2}$.

We note that if we know the exact distance to the line, we can use some of the ideas just given. By the observations above, we can find the unknown line by going three times as far in each direction. For the last direction S does not need to go back, so in total we will find the line with competitive ratio 21 .

4 A c-competitive search strategy on an unknown arrangement

In this section we consider the situation where the searcher S does not know the arrangement beforehand. In particular, we assume S learns the slope and intercept of a line, only when S reaches it. The question arises whether we can adapt our competitive strategy to still realize a constant competitive ratio. The exact same strategy cannot be used, because we can no longer determine the points p^{+y} and p^{-y} before we start walking.

First of all, this problem suffers from a technicality that has been observed in similar problems: as soon as we decide to walk any distance from the starting location in some direction on the starting line, the target line could have been arbitrarily much closer in the other direction [2]. So a constant competitive ratio cannot exist. This technicality is commonly circumvented by assuming that the target line is at least some known - possibly extremely small - distance away from the start. We will assume this as well.

Assume the starting location is at the origin O and lies on a horizontal line ℓ_{0}. We start by finding the closest intersection to O. If it is at distance d, then we let $D_{1}=2 d$. Similar to the strategy for known arrangements in iteration i we aim to find the leftmost, rightmost,

Figure 7 The line sets L_{1} and L_{2}, only some lines in L_{2} are shown. Two paths maximizing the achieved height in the vertical slab $[-D, D]$: A path on $L_{1} \cup L_{2}$ of length D (blue) reaching height h_{2} and a path on L_{1} of length $2 t D+2 D$ (red) reaching height h_{1}. We show $h_{1} \geq h_{2}$.
lowest, and highest point we can reach with distance D_{i}. We, however, choose our movement as to also discover a suitable set of "nearby" lines to which we must necessarily restrict our movement as we do not know about the existence of other lines. We show that with this smaller set of lines we can still achieve the height that we could have reached with knowledge of all lines; however, we traverse a constant factor further to ensure this.

We start by walking left and right from O over a distance $t D$ for some constant $t \geq 1$ to be specified later. In doing so, we discover a subset L_{1} of the lines. Let $L_{2}=L \backslash L_{1}$, see Figure 7. Let h_{2} be the height we could achieve within distance D if we had full knowledge of the arrangement. Let the sequence of lines used to reach h_{2} be $\ell_{0}, \ell_{1}, \ell_{2}, \ldots, \ell_{j}$. We know that ℓ_{j} is the steepest line among these, by the proof of Lemma 3 .

We want to reach the highest point in the vertical slab $[-D, D]$ using lines from L_{1} only. Clearly within a distance D we can get at most as high as h_{2}. Instead we allow a traversal of distance $2 t D+2 D$ along the lines of L_{1}. Let h_{1} be the maximum height we can achieve while ending in the vertical slab $[-D, D]$ and when travelling over distance at most $2 t D+2 D$ along only lines of L_{1}.

- Lemma 7. $h_{2} \leq h_{1}$ if $t \geq 2$.

Proof. Assume for contradiction that $h_{2}>h_{1}$. Let $\ell_{0}, \ell_{1}, \ldots \ell_{j}$ be the lines on a path of length D to height h_{2} on $L=L_{1} \cup L_{2}$. Either $\ell_{j} \in L_{1}$ or $\ell_{j} \in L_{2}$.

Assume first that $\ell_{j} \in L_{1}$. Specifically then there is a point p we can reach along ℓ_{j} that lies in the slab $[-D, D]$ at height h_{2}. However, ℓ_{j} intersects ℓ_{0} at most $t D$ from the origin. Thus we can follow ℓ_{0} to the intersection with ℓ_{j}, and then follow ℓ_{j} to height h_{2}. As $h_{2} \leq D$ this takes at most $t D+(t+1) D$ horizontal movement and D vertical movement (see Figure 8). The total distance traversed along lines from L_{1} is upper bounded by $2 t D+2 D$, therefore $h_{1} \geq h_{2}$. Contradiction.

Next, assume that $\ell_{j} \in L_{2}$. The line ℓ_{j} must intersect the rectangle $[-D, D] \times\left[0, h_{2}\right]$ since the path of length D reaching h_{2} cannot leave this rectangle. The maximum slope of a line $\ell_{j} \in L_{2}$ that intersects this rectangle is $\frac{h_{2}}{(t-1) D}$ as such a line must intersect ℓ_{0} at least $t D$ from the origin.

We must have that ℓ_{j} has the steepest absolute slope. If a previously traversed line had a steeper absolute slope we could follow it to get higher while staying in the slab $[-D, D]$. Thus the largest (absolute) slope of any line traversed to get to h_{2} is $\frac{h_{2}}{(t-1) D}$. Take $t \geq 2$, then the largest slope is at most $\frac{h_{2}}{D}$. In the (unachievable) best case we traverse this slope for the full length of the path to height h_{2}, however then we still reach a height less than h_{2}. Contradiction.

Our constant competitive strategy, using $t=2$, is therefore as follows: Go left over $2 D$, then right over $4 D$, then back to the starting point over $2 D$, and form the set L_{1}.

Figure 8 Assume for contradiction that $h_{2}>h_{1}$. The last line traversed to get to height h_{2} within distance D on $L_{1} \cup L_{2}$ must then be from L_{2}. If $\ell_{j} \in L_{1}$ then $h_{1} \geq h_{2}$ as we can traverse only ℓ_{0} and ℓ_{j} to reach the same height within distance $2 t D+2 D$.

Figure 9 Even with the worst-case placement of r_{k+2}^{+y}, R_{k} is still contained in U_{k+2}.

Use these lines, using distance $6 D$ to get as high as possible in the vertical slab $[-D, D]$, and the same distance to get as low as possible, and back. In total we traverse a distance $8 D+12 D+12 D=32 D$ in one phase. Then double D and repeat.

We once again argue that the true minimum and maximum x and y coordinates reachable in some phase i are covered completely by a quadrilateral on the discovered minima and maxima in a later phase. Let U_{k} be the quadrilateral created by our exploration of four paths on L_{1} in phase k.

- Lemma 8. $R_{k} \subset U_{k+2}$

Proof. The proof of the lemma is identical to the proof of Lemma 4, with the following minor changes. See Figure 9 for an illustration of the proof.

Let r_{i}^{+y} be the highest point reachable in the slab $\left[-D_{i}, D_{i}\right]$ during phase i. Once again let p_{i}^{+y} be the highest point achievable in distance D_{i} on the complete arrangement. From Lemma 7 we conclude that the y-coordinate of p_{k+2}^{+y} is less or equal than that of r_{k+2}^{+y}. We also know that the x-coordinate of r_{k+2}^{+y} lies in the slab $\left[-D_{k+2}, D_{k+2}\right]$ so we do not need the triangle inequality of the proof. The proof follows directly.

We can now use the same method of analysis as for the case of a fully known line arrangement, except that we have to take into account that the searcher must move more in
every phase. Once again we can scale the distance walked in an iteration by a factor of $\sqrt{3}$ instead of 2 to improve the bound. For a line found in iteration i we traverse at most:

$$
32 \sum_{i=1}^{k-1} D_{i}+36 D_{k}<32 \frac{\sqrt{3}^{k} d}{\sqrt{3}-1}+36 \sqrt{3}^{k} d
$$

A line found in iteration i is at least at a distance of $D_{k-3}=\sqrt{3}^{k-3} d$. Thus we obtain the following result.

- Theorem 9. A 414.2-competitive search strategy exists to find an unknown target line in an unknown arrangement of lines, where a line becomes known once we reach it.

5 Conclusions

We have developed and analyzed search strategies for reaching an unknown target line in an arrangements of lines. We did so by considering the competitive ratio: the worst-case ratio between the distance travelled by the searcher and the length of the shortest path from the searcher's start location to the target line. We gave a search strategy for the case of known arrangements that achieves a competitive ratio of 79. Then we generalized our strategy so that it is competitive on line arrangements that are not known beforehand. The parameters of a line become known only when the line is reached. In this case we gave a 414.2-competitive search strategy. There is a considerable gap between the known lower bounds and upper bounds.

Future work. In our work we assumed that the speed on every line is the same. When we drop this assumption we do not know whether searching for a line can be done competitively even if we know all lines and all speeds. Certain properties still hold, for example, if we search for the largest y-coordinate, then we can get twice as far if we double the travel time. However, a diagonal with high speed may cause the furthest reachable point in both horizontal and vertical direction to be along this diagonal, essentially preventing growth of the explored region into other directions. When we search with a cost T from O, the relevant points to visit seem to be the vertices of a convex polygon that is the convex hull of all points reachable at cost T. This polygon can have more than constantly many vertices so we cannot visit all in a phase. It is unclear how to choose a constant-size subset so that the resulting, smaller convex hull at least contains the full convex hull from a previous iteration.

We note that searching (connected) arrangements of simple geometric objects like line segments, circles, and half-lines cannot be done with a constant competitive strategy. But it is possible that if we impose restrictions on the arrangement, constant-competitive search strategies can be developed.

__ References

1 Steve Alpern and Shmuel Gal. The Theory of Search Games and Rendezvous, volume 55. Springer Science \& Business Media, 2006.
2 Ricardo Baeza-Yates, Joseph Culberson, and Gregory Rawlins. Searching in the Plane. Information \& Computation, 106(2):234-252, 1993.
3 Ricardo Baeza-Yates and René Schott. Parallel searching in the plane. Computational Geometry, 5(3):143-154, 1995.
4 Anatole Beck and D.J. Newman. Yet more on the linear search problem. Israel Journal of Mathematics, 8(4):419-429, 1970.

5 Richard Bellman. A minimization problem. Bulletin of the American Mathematical Society, 62(3):270, 1956.
6 Avrim Blum, Prabhakar Raghavan, and Baruch Schieber. Navigating in unfamiliar geometric terrain. SIAM Journal on Computing, 26(1):110-137, 1997.
7 Prosenjit Bose, Andrej Brodnik, Svante Carlsson, Erik D. Demaine, Rudolf Fleischer, Alejandro López-Ortiz, Pat Morin, and J. Ian Munro. Online routing in convex subdivisions. International Journal of Computational Geometry and Applications, 12(4):283-295, 2002.
8 Prosenjit Bose, Jean-Lou De Carufel, and Stephane Durocher. Searching on a line: A complete characterization of the optimal solution. Theoretical Computer Science, 569:2442, 2015.
9 Prosenjit Bose, Jean-Lou De Carufel, Stephane Durocher, and Perouz Taslakian. Competitive online routing on Delaunay triangulations. International Journal of Computational Geometry \mathcal{E}^{3} Applications, 27(04):241-253, 2017.
10 Prosenjit Bose, Rolf Fagerberg, André van Renssen, and Sander Verdonschot. Optimal local routing on Delaunay triangulations defined by empty equilateral triangles. SIAM Journal on Computing, 44(6):1626-1649, 2015.
11 Prosenjit Bose and Pat Morin. Competitive online routing in geometric graphs. Theoretical Computer Science, 324(2-3):273-288, 2004.
12 Prosenjit Bose and Pat Morin. Online routing in triangulations. SIAM Journal on Computing, 33(4):937-951, 2004.
13 Erik D. Demaine, Sándor P. Fekete, and Shmuel Gal. Online searching with turn cost. Theoretical Computer Science, 361(2-3):342-355, 2006.
14 Sándor P. Fekete, Rolf Klein, and Andreas Nüchter. Online searching with an autonomous robot. Computational Geometry, 34(2):102-115, 2006.
15 Subir Kumar Ghosh and Rolf Klein. Online algorithms for searching and exploration in the plane. Computer Science Review, 4(4):189-201, 2010.
16 Mikael Hammar, Bengt J. Nilsson, and Sven Schuierer. Parallel searching on m rays. Computational Geometry, 18(3):125-139, 2001.
17 Christoph A. Hipke, Christian Icking, Rolf Klein, and Elmar Langetepe. How to Find a Point on a Line Within a Fixed Distance. Discrete Applied Mathematics, 93(1):67-73, 1999.
18 Frank Hoffmann, Christian Icking, Rolf Klein, and Klaus Kriegel. The Polygon Exploration Problem. SIAM Journal on Computing, 31(2):577-600, 2001.
19 Christian Icking, Rolf Klein, Elmar Langetepe, Sven Schuierer, and Ines Semrau. An optimal competitive strategy for walking in streets. SIAM Journal on Computing, 33(2):462486, 2004.
20 J.R. Isbell. An optimal search pattern. Naval Research Logistics Quarterly, 4(4):357-359, 1957.

21 Bala Kalyanasundaram and Kirk Pruhs. A Competitive Analysis of Algorithms for Searching Unknown Scenes. Computational Geometry, 3:139-155, 1993.
22 Ming-Yang Kao, John H. Reif, and Stephen R. Tate. Searching in an unknown environment: An optimal randomized algorithm for the cow-path problem. Information and Computation, 131(1):63-79, 1996.
23 Alejandro López-Ortiz and Sven Schuierer. The ultimate strategy to search on m rays? Theoretical Computer Science, 261(2):267-295, 2001.
24 Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update and paging rules. Communications of the ACM, 28(2):202-208, 1985.
25 Marc van Kreveld. Competitive Analysis of the Pokémon Go Search Problem. In Abstracts of the 33rd European Workshop on Computational Geometry, pages 25-28, 2017. http://csconferences.mah.se/eurocg2017/proceedings.pdf.

[^0]: 1 The Netherlands Organisation for Scientific Research (NWO) supports T.C. under project no. 314.99.117.
 ${ }^{2}$ Supported by the Netherlands Organisation for Scientific Research on grant no. 612.001.651.
 ${ }^{3}$ Supported by the Netherlands eScience Center (NLeSC) on project 027.015.G02.

