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Abstract
We discuss the problem of searching for an unknown line on a known or unknown line arrangement
by a searcher S, and show that a search strategy exists that finds the line competitively, that is,
with detour factor at most a constant when compared to the situation where S has all knowledge.
In the case where S knows all lines but not which one is sought, the strategy is 79-competitive.
We also show that it may be necessary to travel on Ω(n) lines to realize a constant competitive
ratio. In the case where initially, S does not know any line, but learns about the ones it encounters
during the search, we give a 414.2-competitive search strategy.
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1 Introduction

Given a set L of n lines `0, `1, . . . `n−1 in the plane, consider the arrangement A that they
form as a geometric graph. Technically, A is not a graph due to half-infinite edges, but in
our problem we can end each line at its extreme intersection points, and hence we can use
the term graph without complications. We consider paths on A. The cost of a path on A is
the Euclidean length of that path. The distance between two points on A is the cost (or
length) of the shortest path that stays on A between those points.
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49:2 Competitive Searching for a Line on a Line Arrangement

Assume that a searcher S is located on some vertex or edge of the graph. Denote its initial
position by O. The searcher S can only travel on the arrangement and is hence restricted to
paths on A. Searcher S is looking for a target line `t ∈ L, but does not know which of the
lines in L corresponds with `t. The searcher S will recognize `t when it reaches any point
on `t (necessarily at an intersection point with another line). We call this special line the
target line, and assume that O does not lie on `t. If it would, the problem would be solved
immediately. We consider two versions of the problem: one where S knows the lines in L and
therefore A completely, and one where S only knows about the existence and parameters of
a line once it reaches some point on it.

We will show that a search strategy exists by which S can reach the target line competitively
in both versions. In other words, S can reach the target line with a detour factor bounded
by a constant, when compared to the shortest path on A to the target line. Competitive
analysis is commonly used to compare “the cost of not knowing” with “the cost of knowing”.
The maximum detour factor of a search strategy is known as its competitive ratio. The
competitive ratio of a search problem is the infimum of the competitive ratios of all search
strategies that solve that search problem.

The best known search problem is perhaps the one-dimensional problem of finding a
point on a line from a starting position. If we know the distance d, but not whether it is to
the left or to the right, the optimal strategy is to go left over a distance d and then right
over a distance 2d. We find the point with competitive ratio 3, which is optimal. If we don’t
know the distance but we do know some (very) small lower bound ε on the distance, it is
best to go ε to the left, then back and another 2ε to the right, then back and another 4ε to
the left, and so on. This doubling strategy gives a competitive ratio of 9, which is known to
be optimal as proved by Beck and Newman [4] in 1970, see also [2, 13].

The problem of searching for a line in the plane without obstacles was studied by Baeza-
Yates et al. [2] in various settings. The settings refer to the knowledge we have of the line,
which can be its slope, its distance, both, or neither. If the slope of the line is known, the
problem reduces to the one-dimensional problem just discussed. If only the distance is known,
the optimal competitive ratio is 6.39.... The problem of searching for a line a given distance
away was posed by Bellman [5] in 1956 and solved by Isbell [20] in 1957. It is a classic
in recreational mathematics and often posed as a swimmer in the fog, trying to reach the
(straight) shore which is a known unit distance away, while swimming the least in the worst
case. If the slope nor the distance of a line to be found is known, the best known competitive
ratio is 13.81..., which is realized by a logarithmic spiral search strategy.

Competitive analysis of algorithms was introduced by Sleator and Tarjan for analyzing
the list update problem [24]. Here the lack of knowledge is the next online requests. In
geometric situations, the lack of knowledge is often the environment itself or the location of
something to be found (by seeing or reaching it). The main motivation of such problems
comes from the navigation of robots in unknown environments. More generally, searching
for a target in environments where either the target or the environment is unknown is a
basic problem, and competitive analysis is a fundamental way to understand what is in
principle possible in such exploration problems. We list a few main results on searching
and competitive analysis in geometric and geometric-graph environments; for an extensive
overview see also [15]. We begin by noting that there is no c-competitive search strategy to
find an unknown target node in a known graph, for example when the graph is a star.

When searching for an unknown target on a line, but additional information on the
distance to the target is known, alternative results can be obtained [8, 17]. Demaine et
al. [13] show that searching for an unknown target on a line with cost depending on both
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Figure 1 Half-lines cannot be searched c-competitively.

search distance and turns can be done competitively with cost 9OPT + 2d, where d is the
cost of one turn. Searching on multiple rays is studied in various papers [8, 13, 16, 23]; Kao
et al. [22] give an optimal randomized algorithm. In yet other variants one can search with
multiple searchers [3, 16].

Kalyanasundaram and Pruhs [21] consider visibility-based searching for a recognizable
point in an unknown scene with convex obstacles. Their result on the competitive factor
is not constant, but depends on the number of obstacles and their aspect ratio. Blum et
al. [6] investigate similar problems for different classes of obstacles. Hoffmann et al. [18] show
that an unknown simple polygon can be discovered completely with a competitive ratio of
26.5. There are various other visibility-based search problems addressed with competitive
analysis (e.g.,[14, 19]).

A different setting where competitive strategies are investigated is routing in geometric
graphs. Here an unknown geometric graph is given along with a source and target with
known coordinates. We route a package from source to target over the nodes, but learn about
the existence and coordinates of a node when we are at a neighbor. For triangulations, no
c-competitive strategy exists, but for special triangulations like Delaunay and certain other
geometric graphs, a constant competitive strategy does exist [7, 9, 10, 11, 12]. Searching for
an unknown target on a planar straight line graph with discovery based on Pókemon Go was
investigated with competitive analysis recently [25].

Contributions. In Section 2 we give a preliminary result where we use only two lines and
obtain a competitive ratio depending on their angle. Moreover, we show that, if we want to
obtain a constant competitive ratio that does not depend on parameters of the arrangement,
then the search strategy must allow for traversing at least half the lines in an arrangement. In
Section 3 we describe and analyze such a strategy and show that this leads to a 79-competitive
strategy. This is an upper bound on the relative cost of not knowing which line is sought.
(Note that for slightly more complex objects like half-lines, no constant-competitive strategy
exists by mimicking a star graph, see Figure 1.) In Section 4 we generalize the problem to
the situation where the searcher does not know all lines beforehand. They learn about the
existence of a line and its parameters only when the line is reached. We show that in this
case a search strategy exists with competitive ratio 414.2. This is an upper bound on the
relative cost of not knowing the lines at all.

Although our search problems and competitive ratios are new, the existing literature
implies lower bounds for our versions. When all lines are known, we have a lower bound
of 9, because the problem is at least as hard as the one-dimensional problem of finding a
point on a line. Moreover, it is essentially also at least as hard as finding a fully unknown
line in the plane, because we could be given a very dense set of lines where all movement is
approximately possible and every line could be the target. The best known competitive ratio
is 13.81... to find an unknown line, but this is not known to be optimal so it does not provide
a true lower bound. In case we do not know the lines of the arrangement at all, we inherit the
lower bound of searching on four rays (half-lines) for a point, which is 19.96... [1, 13]. The
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Figure 2 Sketch of worst case.

line arrangement consists of two perpendicular lines, we start on their intersection, and we
must explore. If we do not follow the optimal strategy for four rays, the target line was just
out of reach at the place where we went less far, and perpendicular to that ray. With more
than four rays, lines will intersect more than one ray and the argument no longer works.

2 Competitive searching on an arrangement

As a warm-up, assume that S starts at the intersection of two lines `1 and `2 whose smaller
intersection angle is α ≤ π/2. Furthermore, S only traverses `1 and `2, disregarding all other
lines for traversal.

I Theorem 1. The target line can be found with competitive ratio at most 29/sin(α/2).

Proof. Denote the starting point by O and the target line by `t. As a lower bound for
reaching `t we use the Euclidean distance between O and `t, denoted by x, because a line `3
through O and normal to `t could exist.

Note that `t must intersect at least one of `1 and `2. Let y be the distance on `1 or
`2 to the closest intersection point u of `t with `1 and/or `2. Since α is the smaller angle,
the worst case occurs when the target line `t spans a triangle with the two initial lines `1
and `2 with an angle of π − α; the worst ratio between x and y occurs when this triangle is
equilateral with apex O. This is illustrated in Figure 2. By elementary geometry, we then
have y ≤ x/sin(α/2).

The strategy to find `t is as follows. Let d be the distance between O and the vertex v on
`1 or `2 closest to it. First, S travels to v and back to O. Then S travels the same distance
d in each of the other three directions on `1 and `2, and back to O each time. After that we
double d and repeat. S has achieved its goal when it reaches u, and therefore `t.

We can view the traversal of S on `1 and `2 as the traversal on four half-lines induced
by O. One of these half-lines crosses `t at distance y. This is, by definition, where u is. By
the doubling strategy, S will have traversed a total distance less than 5y on the half-line
with u. On each of the other half-lines, S has traversed at most a distance of 8y. Summing
up yields that the searcher travelled at most a distance of 29y; using y ≤ x/sin(α/2), we find
that the competitive ratio, bounded by 29y/x, gives the claimed bound of 29/sin(α/2). J

We note that a tighter analysis of the same strategy will give a slightly better competitive
ratio, and a different strategy where we traverse the half-lines over different distances will also
give a better competitive ratio. However the strategy is not c-competitive for any constant c,
since α can be arbitrarily small. Moreover, since this is a special case of the problem, we
explore this strategy no further.

Below, we show that for any constant c, any c-competitive strategy must traverse Ω(n)
lines. So the strategy of the proof of Theorem 1 cannot work, not even with the usage of
some carefully chosen additional lines besides `1 and `2.
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di+1di = di+1/(2c)0

`i+1

hi+1 pi+1

`i
pihi

h0
2cdi+1

O

Figure 3 Placement of `i and hi, given `i+1 and hi+1. Line `i is defined by the point with
x-coordinate di+1/(2c) on h0 and the point with x-coordinate 2cdi+1 on hi+1. Line hi is placed such
that dist(h0 ∩ `i+1, pi) < di+1/(2c).

I Theorem 2. For any constant c ≥ 1, there is an arrangement A of n lines such that any
c-competitive strategy must traverse at least n/2 = Ω(n) lines of A in the worst case.

Proof. We construct an arrangement A of n = 2m+ 1 lines. The line h0 is the x-axis, and
searcher S starts on h0 at the origin O. Let h1, . . . , hm be horizontal lines that together with
h0 have a bottom-to-top order h0, h1, . . . , hm. Let `1, . . . , `m be m lines with positive slope
≤ 1, such that the upper envelope of `1, . . . , `m is a convex increasing function that contains
all these lines in the same order. We ensure that these lines intersect h0 on the positive side
and in the order `1, . . . , `m. The construction will be such that the part of `i between its
intersection with hi and its intersection with `i−1 must be used by S to reach hi with detour
no more than c, because even the intersection of `i−1 with hi has an x-coordinate that is too
high.

In more detail, we construct the lines incrementally from m down to 1, in pairs `i and
then hi, see Figure 3. We start with `m : y = x − 2 and hm : y = 1. Assume `i+1 and
hi+1 are placed, and their intersection point pi+1 is such that di+1 = dist(O, h0 ∩ `i+1) >
dist(h0 ∩ `i+1, pi+1) (for `m and hm we made sure of this condition). Then we define `i by
constructing two points on it. One is the point (di+1/(2c), 0) on h0; the other is the point
on hi+1 with x-coordinate 2cdi+1. This defines `i. The line hi is chosen horizontal and
low enough so that dist(h0 ∩ `i, pi) < dist(O, h0 ∩ `i) = di+1/(2c). Note that dm = 2 and
di = 2/(2c)m−i.

To argue that this arrangement forces a searcher S to walk on every line `i (and also h0
where S starts), we observe that we can reach the line hi in distance at most di+1/c simply
by following h0 and `i only (we can do a little bit better but for the proof this is not needed).
To reach hi c-competitively we must thus travel less than di+1 along A.

We cannot use line `i+1 or any higher-indexed line, because all their vertices have x-
coordinates at least di+1 so it must take di+1 or more to even reach `i+1 or a later line.
Thus if we do not use `i, we must reach line hi on line `i−1 or a lower-indexed line. By
construction the intersection of `i−1 and hi has x-coordinate di+1. Thus reaching hi from
`i−1 is not c-competitive. Furthermore, any line `j with 1 ≤ j < i − 1 must intersect hi

right of the intersection with `i−1 and thus for the same reason reaching hi via `j cannot be
c-competitive.

In other words, we must use `i to get c-competitively to hi, and any of the m horizontal
lines h1, . . . , hm can be the target line. Hence, a c-competitive strategy must visit and walk
on each of `1, . . . , `m. As S starts on h0, it thus walks on at least m+ 1 ≥ n/2 lines. J

ISAAC 2018
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(b)

O

p+y
3

p+y
2

p+y
1

p+y
4

O

D1

(a)

`0

Figure 4 (a) Explored paths of length D1 reaching the maximum (minimum) x- and y-coordinate.
(b) The paths of doubling lengths D1, . . . , D4 to the highest points p+y

1 , . . . , p+y
4 .

3 A c-competitive search strategy on a known arrangement

We continue with the general case where S may start anywhere on any line and we make no
assumptions on the angles between intersecting lines. For convenience we will assume the
starting point to be at the origin O and the line crossing through O to be `0. If multiple
lines cross the origin, we pick `0 to be the line that intersects any other line closest to O.
We will assume `0 is horizontal. As the problem is rotation and translation invariant these
assumptions do not change the problem. As before let d be the distance to the closest
intersection point on `0.

Consider the following search strategy for S. Searcher S iteratively explores the ar-
rangement starting from the origin. In iteration i four paths of length 2i · d are explored
starting at O. These paths are picked such that they maximize (minimize) the x- respect-
ively y-coordinate that S can achieve on the arrangement within distance 2i · d from O

(see Figure 4(a)). Specifically this results in the following strategy. First, S traverses `0
over a distance 2d in the direction +x and then returns back to O. Second, S traverses
`0 for a distance 2d in the direction −x and back. Third, S determines the point on A
with maximum y-coordinate it can reach when traversing over a distance 2d; S goes there
and back. Symmetrically, S also visits the point with lowest y-coordinate reachable within
distance 2d from O. Upon returning to the origin the allowed distance is doubled and the
process is repeated until S finds `t.

Let Di be the distance travelled in iteration i. Let the points where S ends when searching
over a distance Di with minimum and maximum x- and y-coordinate be denoted p−x

i , p+x
i ,

p−y
i , and p+y

i , respectively. Figure 4(b) shows the four paths to p+y
1 , . . . , p+y

4 . Notice that
the path for Di+1 does not necessarily follow the path for Di as a less steep line may be
followed to reach a steeper line sooner.

I Lemma 3. The y-coordinate of p+y
i is at least twice that of p+y

i−1. The symmetric statement
holds for p−y

i and p−y
i−1.

Proof. Observe that for any p+y
i−1, the last line traversed on the path to p+y

i−1 must have the
steepest absolute slope. If not, we could get higher by staying on the line with steepest
slope. When we traverse a distance Di instead of Di−1, we have the option of staying on
this steepest absolute slope line, and since Di = 2Di−1, we get at least twice as high just by
staying on the line that contains p+

i−1. J

Let Qi be the convex quadrilateral with the points p−x
i , p+x

i , p−y
i , and p+y

i as vertices
and let Ri be the axis-parallel rectangle with these four points on its boundary (see Figure 5).
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Q1 Q2

R1

R2

Figure 5 Illustration of the quadrilaterals Q1

and Q2 and the respective axis-parallel bounding
rectangles R1 and R2. Notice that consecutive quad-
rilaterals need not be contained in each other.

p−x
i+2

Qi+2

p+x
i+2

p+y
i+2

Ri

y

≥ 4y

3x x

r

4x

Figure 6 Even with the (impossible) worst-
case placement of p+y

i+2 rectangle Ri is still
contained in Qi+2.

Trivially Qi ⊂ Ri and from Lemma 3 it immediately follows that R1 ⊂ R2 ⊂ · · · ⊂ Rk.

I Lemma 4. Ri ⊂ Qi+2.

Proof. Without loss of generality only consider the half-plane above `0. We show that the
triangle p−x

i+2p
+y
i+2p

+x
i+2 contains the rectangle with bottom vertices p−x

i and p+x
i and top side

through p+y
i . We know that p−x

i+2p
+x
i+2 is exactly four times the length of p−x

i p+x
i as `0 is

horizontal. By Lemma 3 the y-coordinate of p+y
i+2 is at least four times that of p+y

i (see
Figure 6). By triangle inequality the x-coordinate of p+y

i+2 must be between p−x
i+2 and p+x

i+2.
Let x be the x-coordinate of p+x

i , and r = (−x, y) the vertex at the top-left corner of Ri.
Consider the side p−x

i+2p
+y
i+2 of the triangle and the line p−x

i+2r. The slope of p−x
i+2r is y/(3x).

The slope of p−x
i+2p

+y
i+2 depends on the exact location of p+y

i+2. In the (impossible) worst case
p+y

i+2 is located at (4x, 4y). Thus the slope of p−x
i+2p

+y
i+2 is at least y/(2x) and r is below

p−x
i+2p

+y
i+2. Containment of Ri in Qi+2 trivially follows. J

We observe that if the target line `t intersects Qi then `t will be found in iteration i

or before. Hence the distance travelled by the searcher is upper-bounded by the distance
travelled up to and including iteration i. Suppose the searcher S finds the target line `t in
iteration k. We will use the rectangle Rk−3 as a lower bound on the length of the shortest
path to `t to prove an upper bound on the competitive ratio.

I Lemma 5. The target line `t intersects Qk and does not intersect Rk−3.

Proof. If `t intersectsQk−1, then `t would have been found in phase k−1. SinceRk−3 ⊂ Qk−1,
the lemma follows. J

As `t does not intersect Rk−3 the closest point of `t to O must be outside of Rk−3. But
then the shortest path to `t must have length larger than Dk−3. Assume for contradiction
that the closest point pt on `t has distance less than Dk−3. As in iteration k − 3 we followed
the paths that maximize (minimize) the x- and y-coordinate, pt could be reached and must
thus be contained in Rk−3. Contradiction. Thus Dk−3 is a lower bound on the distance from
O to `t, and Dk−3 = Dk/8.

For an upper bound, we consider the distance we have travelled. Except for the last
iteration, we traversed four paths of length Di in two directions in each iteration. Thus in
previous iterations we traversed 8

∑k−1
i=1 Di. In the last iteration in the worst-case we discover

`t while traversing the fourth path all the way to its end. Hence we traverse three paths of
length Dk twice, and the last path of length Dk once. The total travel is thus at most:

8
k−1∑
i=1

Di + 7Dk

ISAAC 2018
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Using the summation
∑k−1

i=0 z
i = zk−1

z−1 and Di = 2id we can rewrite this to 15 ·2kd−16d <
15Dk. We thus upper-bound the competitive ratio by 120.

A more careful analysis shows that Lemma 4 is true even if we do not double Di but
enlarge by only a factor

√
3. Let D1 =

√
3d and Di =

√
3Di−1 for i ≥ 2, so Di =

√
3i · d,

and suppose S finds `t in iteration k. Then Dk−3 =
√

3k−3
d is a lower bound for reaching `t.

With the described strategy S travels at most

8
k−1∑
i=1

√
3

i
d+ 7

√
3

k
d < 8

√
3k
d√

3− 1
+ 7
√

3
k
d

The competitive ratio becomes

8
√

3kd√
3−1 + 7

√
3k
d

√
3k−3

d
= ( 8√

3− 1
+ 7)
√

3
3
< 94

Another improvement comes from organizing the four traversals in a phase conveniently
so that we do not have to go back to O at the end. In every even phase i we start with
going to p+x

i , then we do p+y
i and p−y

i in any order, and end with going to p−x
i . In every odd

phase j we go to p−x
j first and to p+x

j last. It is easy to see that we do not have to go back
at the end of any phase, because we go out over the exact same stretch in the next phase
anyway. Instead of traversing 8Di in a phase i, we now traverse (7− 1/

√
3) ·Di. This also

holds for the last phase Dk. With some basic calculation we obtain:

I Theorem 6. A 79-competitive search strategy exists to find an unknown target line in an
arrangement of lines.

Alternatively, we may also triple Di because then Ri ⊂ Qi+1; a lower constant factor
than 3 will not ensure that Ri ⊂ Qi+1 so that will not give improvements. The competitive
ratio we get is worse, however, than when using

√
3 and Ri ⊂ Qi+2.

We note that if we know the exact distance to the line, we can use some of the ideas just
given. By the observations above, we can find the unknown line by going three times as far
in each direction. For the last direction S does not need to go back, so in total we will find
the line with competitive ratio 21.

4 A c-competitive search strategy on an unknown arrangement

In this section we consider the situation where the searcher S does not know the arrangement
beforehand. In particular, we assume S learns the slope and intercept of a line, only when S
reaches it. The question arises whether we can adapt our competitive strategy to still realize
a constant competitive ratio. The exact same strategy cannot be used, because we can no
longer determine the points p+y and p−y before we start walking.

First of all, this problem suffers from a technicality that has been observed in similar
problems: as soon as we decide to walk any distance from the starting location in some
direction on the starting line, the target line could have been arbitrarily much closer in
the other direction [2]. So a constant competitive ratio cannot exist. This technicality is
commonly circumvented by assuming that the target line is at least some known – possibly
extremely small – distance away from the start. We will assume this as well.

Assume the starting location is at the origin O and lies on a horizontal line `0. We start
by finding the closest intersection to O. If it is at distance d, then we let D1 = 2d. Similar
to the strategy for known arrangements in iteration i we aim to find the leftmost, rightmost,
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O D tD−D−tD

h1L2

h2

L2

`0

lines in L1 intersect `0 here

Figure 7 The line sets L1 and L2, only some lines in L2 are shown. Two paths maximizing the
achieved height in the vertical slab [−D, D]: A path on L1 ∪ L2 of length D (blue) reaching height
h2 and a path on L1 of length 2tD + 2D (red) reaching height h1. We show h1 ≥ h2.

lowest, and highest point we can reach with distance Di. We, however, choose our movement
as to also discover a suitable set of “nearby” lines to which we must necessarily restrict our
movement as we do not know about the existence of other lines. We show that with this
smaller set of lines we can still achieve the height that we could have reached with knowledge
of all lines; however, we traverse a constant factor further to ensure this.

We start by walking left and right from O over a distance tD for some constant t ≥ 1 to
be specified later. In doing so, we discover a subset L1 of the lines. Let L2 = L \ L1, see
Figure 7. Let h2 be the height we could achieve within distance D if we had full knowledge
of the arrangement. Let the sequence of lines used to reach h2 be `0, `1, `2, . . . , `j . We know
that `j is the steepest line among these, by the proof of Lemma 3.

We want to reach the highest point in the vertical slab [−D,D] using lines from L1 only.
Clearly within a distance D we can get at most as high as h2. Instead we allow a traversal
of distance 2tD + 2D along the lines of L1. Let h1 be the maximum height we can achieve
while ending in the vertical slab [−D,D] and when travelling over distance at most 2tD+ 2D
along only lines of L1.

I Lemma 7. h2 ≤ h1 if t ≥ 2.

Proof. Assume for contradiction that h2 > h1. Let `0, `1, . . . `j be the lines on a path of
length D to height h2 on L = L1 ∪ L2. Either `j ∈ L1 or `j ∈ L2.

Assume first that `j ∈ L1. Specifically then there is a point p we can reach along `j

that lies in the slab [−D,D] at height h2. However, `j intersects `0 at most tD from the
origin. Thus we can follow `0 to the intersection with `j , and then follow `j to height h2. As
h2 ≤ D this takes at most tD+ (t+ 1)D horizontal movement and D vertical movement (see
Figure 8). The total distance traversed along lines from L1 is upper bounded by 2tD + 2D,
therefore h1 ≥ h2. Contradiction.

Next, assume that `j ∈ L2. The line `j must intersect the rectangle [−D,D] × [0, h2]
since the path of length D reaching h2 cannot leave this rectangle. The maximum slope of a
line `j ∈ L2 that intersects this rectangle is h2

(t−1)D as such a line must intersect `0 at least
tD from the origin.

We must have that `j has the steepest absolute slope. If a previously traversed line had
a steeper absolute slope we could follow it to get higher while staying in the slab [−D,D].
Thus the largest (absolute) slope of any line traversed to get to h2 is h2

(t−1)D . Take t ≥ 2,
then the largest slope is at most h2

D . In the (unachievable) best case we traverse this slope
for the full length of the path to height h2, however then we still reach a height less than h2.
Contradiction. J

Our constant competitive strategy, using t = 2, is therefore as follows: Go left over
2D, then right over 4D, then back to the starting point over 2D, and form the set L1.

ISAAC 2018
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O−D D

h2

h1

p

−tD tD

(t+ 1)D

tD

h2 ≤ D

`j

Figure 8 Assume for contradiction that h2 > h1. The last line traversed to get to height h2

within distance D on L1 ∪ L2 must then be from L2. If `j ∈ L1 then h1 ≥ h2 as we can traverse
only `0 and `j to reach the same height within distance 2tD + 2D.

O
Dk

Rk

hk
2

Uk+2 Qk+2

p+y
k

Qk

p+y
k+2

Dk

4Dk = Dk+24Dk = Dk+2

r+y
k+2

4hk
2 ≤ hk+2

1

Figure 9 Even with the worst-case placement of r+y
k+2, Rk is still contained in Uk+2.

Use these lines, using distance 6D to get as high as possible in the vertical slab [−D,D],
and the same distance to get as low as possible, and back. In total we traverse a distance
8D + 12D + 12D = 32D in one phase. Then double D and repeat.

We once again argue that the true minimum and maximum x and y coordinates reachable
in some phase i are covered completely by a quadrilateral on the discovered minima and
maxima in a later phase. Let Uk be the quadrilateral created by our exploration of four
paths on L1 in phase k.

I Lemma 8. Rk ⊂ Uk+2

Proof. The proof of the lemma is identical to the proof of Lemma 4, with the following
minor changes. See Figure 9 for an illustration of the proof.

Let r+y
i be the highest point reachable in the slab [−Di, Di] during phase i. Once again

let p+y
i be the highest point achievable in distance Di on the complete arrangement. From

Lemma 7 we conclude that the y-coordinate of p+y
k+2 is less or equal than that of r+y

k+2. We
also know that the x-coordinate of r+y

k+2 lies in the slab [−Dk+2, Dk+2] so we do not need
the triangle inequality of the proof. The proof follows directly. J

We can now use the same method of analysis as for the case of a fully known line
arrangement, except that we have to take into account that the searcher must move more in
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every phase. Once again we can scale the distance walked in an iteration by a factor of
√

3
instead of 2 to improve the bound. For a line found in iteration i we traverse at most:

32
k−1∑
i=1

Di + 36Dk < 32
√

3k
d√

3− 1
+ 36

√
3

k
d

A line found in iteration i is at least at a distance of Dk−3 =
√

3k−3
d. Thus we obtain the

following result.

I Theorem 9. A 414.2-competitive search strategy exists to find an unknown target line in
an unknown arrangement of lines, where a line becomes known once we reach it.

5 Conclusions

We have developed and analyzed search strategies for reaching an unknown target line in
an arrangements of lines. We did so by considering the competitive ratio: the worst-case
ratio between the distance travelled by the searcher and the length of the shortest path
from the searcher’s start location to the target line. We gave a search strategy for the case
of known arrangements that achieves a competitive ratio of 79. Then we generalized our
strategy so that it is competitive on line arrangements that are not known beforehand. The
parameters of a line become known only when the line is reached. In this case we gave a
414.2-competitive search strategy. There is a considerable gap between the known lower
bounds and upper bounds.

Future work. In our work we assumed that the speed on every line is the same. When we
drop this assumption we do not know whether searching for a line can be done competitively
even if we know all lines and all speeds. Certain properties still hold, for example, if we
search for the largest y-coordinate, then we can get twice as far if we double the travel
time. However, a diagonal with high speed may cause the furthest reachable point in both
horizontal and vertical direction to be along this diagonal, essentially preventing growth of
the explored region into other directions. When we search with a cost T from O, the relevant
points to visit seem to be the vertices of a convex polygon that is the convex hull of all
points reachable at cost T . This polygon can have more than constantly many vertices so we
cannot visit all in a phase. It is unclear how to choose a constant-size subset so that the
resulting, smaller convex hull at least contains the full convex hull from a previous iteration.

We note that searching (connected) arrangements of simple geometric objects like line
segments, circles, and half-lines cannot be done with a constant competitive strategy. But it
is possible that if we impose restrictions on the arrangement, constant-competitive search
strategies can be developed.
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