
Streaming Algorithms for Planar Convex Hulls
Martín Farach-Colton1

Department of Computer Science, Rutgers University, Piscataway, USA
farach@cs.rutgers.edu

Meng Li
Department of Computer Science, Rutgers University, Piscataway, USA
ml910@cs.rutgers.edu

Meng-Tsung Tsai2

Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan
mtsai@cs.nctu.edu.tw

Abstract
Many classical algorithms are known for computing the convex hull of a set of n point in R2

using O(n) space. For large point sets, whose size exceeds the size of the working space, these
algorithms cannot be directly used. The current best streaming algorithm for computing the
convex hull is computationally expensive, because it needs to solve a set of linear programs.

In this paper, we propose simpler and faster streaming and W-stream algorithms for com-
puting the convex hull. Our streaming algorithm has small pass complexity, which is roughly a
square root of the current best bound, and it is simpler in the sense that our algorithm mainly re-
lies on computing the convex hulls of smaller point sets. Our W-stream algorithms, one of which
is deterministic and the other of which is randomized, have nearly-optimal tradeoff between the
pass complexity and space usage, as we established by a new unconditional lower bound.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Convex Hulls, Streaming Algorithms, Lower Bounds

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2018.47

Related Version A full version of the paper is available at https://arxiv.org/abs/1810.
00455.

1 Introduction

The convex hull of a set P of points in R2 is the smallest convex set that contains P . We
denote the convex hull of P by conv(P) and denote the set of extreme points in conv(P) by
ext(P). Let n = |P | and h = |ext(P)|. Note that h ≤ n because ext(P) is a subset of P . By
computing the convex hull of P , we mean outputting the points in ext(P) in clockwise order.

There is a long line of research on computing the convex hull using O(n) space. In the
RAM model, Graham [20] gave the first algorithm, called the Graham Scan, with running
time O(n logn). Subsequently, several algorithms were devised with the same running time,
but with different approaches [2, 6, 26, 34]. In the output-sensitive model, where the running
time depends on n and h, Jarvis [25] proposed the Gift Wrapping algorithm, which has

1 This research was supported in part by NSF CCF 1637458, NIH 1 U01 CA198952-01, a NetAPP Faculty
Fellowship and a gift from Dell/EMC.

2 This research was supported in part by the Ministry of Science and Technology of Taiwan under contract
MOST grant 107-2218-E-009- 026-MY3, and the Higher Education Sprout Project of National Chiao
Tung University and Ministry of Education (MOE), Taiwan.

© Martín Farach-Colton, Meng Li, and Meng-Tsung Tsai;
licensed under Creative Commons License CC-BY

29th International Symposium on Algorithms and Computation (ISAAC 2018).
Editors: Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou Liao; Article No. 47; pp. 47:1–47:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/162456749?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:farach@cs.rutgers.edu
mailto:ml910@cs.rutgers.edu
mailto:mtsai@cs.nctu.edu.tw
https://doi.org/10.4230/LIPIcs.ISAAC.2018.47
https://arxiv.org/abs/1810.00455
https://arxiv.org/abs/1810.00455
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

47:2 Streaming Algorithms for Planar Convex Hulls

running time O(nh). This algorithm was later improved by Kirkpatrick and Seidel [28] and
Chan [12], both of which achieve running time of O(n log h). In the online model, where input
points are given one by one and algorithms need to compute the convex hull of points seen
so far, Overmars and van Leeuween’s algorithm [33] can update the convex hull in O(log2 n)
time per incoming point. Brodal and Jacob [9] reduced the update time to O(logn).

Streaming Model. The algorithms mentioned above all require s = Ω(n) working space
(memory) in the worst case. Therefore, none of these can handle the case when s� n, that
is, when either n is very large (a massive data set) or s is very small (such as in embedded
systems). In order to explore the convex hull problem with such a memory restriction,
we consider the standard streaming models [5, 15, 16, 32, 36], where the n given points are
stored on a read-only or writable tape in an arbitrary order. If the tape is read-only, then
the model is simply called the streaming model [5, 32]. Otherwise the tape is writable,
and the model is called the W-stream model [15, 16, 36]. We refer to algorithms in the
streaming model as streaming algorithms and algorithms in the W-stream model as
W-stream algorithms. In both models, algorithms can manipulate the working space
while reading the points sequentially from the beginning of the tape to the end; however,
only algorithms in the W-stream model can modify the tape, detailed in Section 4. Hence,
algorithms in this model cannot access the input randomly, which is different from the model
for in-place algorithms [8,10]. The extreme points are written to a write-only stream. The
pass complexity of an algorithm refers to the number of times the algorithms scans the
tape from the beginning to the end. The goal is to devise streaming and W-stream algorithms
that have small pass and space complexities.

No single-pass streaming algorithm can compute the convex hull using o(n) space because
it is no easier than sorting n positive numbers in R. Since sorting n numbers using s spaces
requires Ω(n/s) passes [31], computing the convex hull in a single pass requires linear space.
However, Chan and Chen [13] showed that the space requirement can be significantly reduced
if multi-pass algorithms are allowed. Specifically, their streaming algorithm uses O(δ−2)
passes, O(δ−2hnδ) space, and O(δ−2n logn) time for any constant δ ∈ (0, 1). On the other
hand, to have small space complexity, one can appeal to a general scheme to convert PRAM
algorithms to W-stream algorithms established by Demetrescu et al. [15], summarized in
Section 4. Using this technique yields a W-stream algorithm that uses O((n/s) log h) passes
and O(s) space where s can be as small as constant.

Our Contribution. We devise a new O(n log h)-time RAM algorithm to compute the convex
hull (Section 2). Then, we adapt the RAM algorithm to both models.

In the streaming model, the pass complexity of our algorithm is roughly a square root of
that of Chan and Chen’s algorithm [13] if both have the same space usage. We have:

I Theorem 1. Given a set P of n points in R2 on a read-only tape where |ext(P)| = h, there
exists a deterministic streaming algorithm to compute the convex hull of P in O(δ−1) passes
using O(min{δ−1hnδ logn, n}) space and O(δ−2n logn) time for every constant δ ∈ (0, 1).

In the W-stream model, we adapt the RAM algorithm to two W-stream algorithms. One
uses O(s) space for any s = Ω(logn) and the other uses O(s) space for any s = Ω(1). The
pass complexity of our W-stream algorithms are O(dh/se logn) and O(h/s+ logn), which
are smaller than O((n/s) log h), the best pass complexity among those W-stream algorithms
that are converted from PRAM algorithms in algebraic decision tree model [15], when s ≤ h.

M. Farach-Colton, M. Li, and M.-T. Tsai 47:3

The first W-stream algorithm is deterministic, and we get:

I Theorem 2. Given a set P of n points in R2 where |ext(P)| = h, there exists a deterministic
W-stream algorithm to compute the convex hull of P in O(dh/se logn) passes using O(s)
space and O(n log2 n) time for any s = Ω(logn).

Next, we randomize the above W-stream algorithm. A logarithmic factor can be shaved
off from the pass complexity with probability 1− 1/nΩ(1), abbreviated as w.h.p. We have:

I Theorem 3. Given a set P of n points in R2 where |ext(P)| = h, there exists a randomized
W-stream algorithm to compute the convex hull of P in p passes using O(s) space and
O(n log2 n) time for any s = Ω(1), where p = O(h/s+ logn) w.h.p.

We prove that our W-stream algorithms have nearly-optimal tradeoff between pass and
space complexities by showing Theorem 4, which generalizes Guha and McGregor’s lower
bound (Theorem 8 in [22]). We remark that this lower bound is sharp because it matches
the bounds of our randomized W-stream algorithm when h = Ω(s logn).

I Theorem 4. Given a set P of n points in R2 where |ext(P)| = h = Ω(1), any streaming
(or W-stream) algorithm that computes the convex hull of P with success rate ≥ 2/3, and
uses s bits requires Ω(dh/se) passes.

We note here that space is measured in terms of bits for lower bounds and in terms of
points for upper bounds. This asymmetry is a common issue for geometric problems because
most geometric problems are analyzed under the RealRAM model, where precision of points
(or other geometric objects) is unbounded.

Applications. Our W-stream algorithms can handle the case for s ≤ h because it outputs
extreme points on the fly. This output stream can be used as an input stream for another
streaming algorithm, such as for diameter [37] and minimum enclosing rectangle [38], both
of which rely on Shamos’ rotating caliper method [37]. Theorems 2 and 3 imply Corollary 5.

I Corollary 5. Given a set P of n points in R2 where |ext(P)| = h, there exists a deterministic
W-stream algorithm to compute the diameter and minimum enclosing rectangles of P in
O(dh/se logn) passes using O(s) space and O(n log2 n) time for every s = Ω(logn). Given
randomness, the pass complexity can be reduced to O(h/s+ logn) w.h.p.

Approximate Convex Hulls. Given the hardness result shown in Theorem 4, we know that
one cannot have a constant-pass streaming algorithm that uses o(h) space to compute the
convex hull. In view of this, to have constant-pass o(h)-space streaming algorithms, one may
consider computing an approximate convex hulls. There are several results studying on how
to efficiently find an approximate convex hull in the streaming model, based on a given error
measurement. The error criterion varies from the Euclidean distance [24], and Hausdorff
metric distance [29,30], to the relative area error [35]. These algorithms use a single pass,
O(s) space, and can bound the given error measurement by a function of s.

Paper Organization. In Section 2, we present a new O(n log h)-time RAM algorithm to
compute the convex hull. Then, in Section 3, we present a constant-pass streaming algorithm.
In Section 4, we present two W-stream algorithms, both of which use O(s) space where s can
be as small as O(logn). Finally, in Section 5, we generalize the previous lower bound result.

ISAAC 2018

47:4 Streaming Algorithms for Planar Convex Hulls

Table 1 Categorization of four O(n log h)-time algorithms for convex hull.

Find r hull edges, and recurse. Find r extreme points, and recurse.

r = 1 Kirkpatrick and Seidel 1986 [28] Chan 1995 [11]
any r ≥ 1 Chan and Chen 2007 [13] This paper

2 Yet another O(n log h)-time algorithm in the RAM model

Our streaming algorithm is based on a RAM algorithm, which we present in this section.
This RAM algorithm is a modification of Kirkpatrick and Seidel’s ultimate convex hull
algorithm in the RAM model [28]. Chan and Chen’s streaming algorithm [13] is also based on
Kirkpatrick and Seidel’s algorithm, and thus the structure of these two streaming algorithms
have some similarities. The changes are made so that our streaming algorithm does not have
to rely on solving linear programs, thus reducing the computation cost compared to Chan
and Chen’s algorithm.

In what follows, we only discuss how to compute the upper hull because the lower hull
can be computed analogously. Formally, computing the upper hull U(P) of a point set P
means outputting that part of the extreme points v1, v2, . . . , vt ∈ ext(P) in clockwise order
so that v1 is the leftmost point in P and vt is the rightmost point in P , tie-breaking by
picking the point with the largest y-coordinate, so that all points in P lie below or on the
line passing through vi, vi+1 for each 1 ≤ i < t. Note that each of v1, v2, . . . , vt has a unique
x-coordinate, and each line that passes through vi and vi+1 for 1 ≤ i < t has a finite slope.

Roughly speaking, Kirkpatrick and Seidel’s ultimate convex hull algorithm [28] evenly
divides the point set into two subsets by a vertical line ` : x = µ, finds the hull edge in the
upper hull that crosses `, and recurses on the two separated subsets. By appealing to the
point-line duality, finding the crossing hull edge is equivalent to solving a linear program.
Chan and Chen’s streaming algorithm is adapted from this implementation of the ultimate
convex hull algorithm. Their algorithm evenly divides the point set into r + 1 subsets for
r ≥ 1 by r vertical lines, finds the hull edges in the upper hull that cross these vertical lines,
and recurses on the r + 1 separated subsets. Finding these r crossing hull edges is equivalent
to solving r linear programs, where the constraint sets for each are the same but the objective
functions are different.

In [11, Section 2], Chan gives another version of Kirkpatrick and Seidel’s ultimate convex
hull algorithm, that finds a suitable (possibly random) extreme point, divides the point set
into two by x-coordinate, and recurses. The extreme point can be found by elementary
techniques. Our streaming algorithm is adapted from the latter algorithm. It finds r suitable
extreme points for r ≥ 1, divides the point set into r+1 subsets by x-coordinate, and recurses
on each subset. Though this generalization sounds straightforward, finding the r suitable
extreme points needs a different approach from that for finding a single suitable extreme
point. We reduce finding these r suitable extreme points to computing the upper hulls of
n/(r + 1) small point sets. This reduction is the key observation of our RAM algorithm and
is described in detail in the subsequent paragraphs. These four algorithms are categorized in
Table 1.

Given r, our algorithm partitions P arbitrarily into G1, G2, . . . , Gn/(r+1) so that each Gj
has size in [1, r + 1], and then computes the upper hull of each Gj . Let Q be the union of
the slopes of the hull edges in the upper hull of G1, G2, . . . , Gn/(r+1), which is a multiset.
Let σk be the slope of rank k|Q|/(r + 1) in Q, for k ∈ [1, r], in other words, σk is the kth
(r + 1)-quantile in Q. To simplify the presentation, let σ0 = −∞ and σr+1 =∞. Let sk be

M. Farach-Colton, M. Li, and M.-T. Tsai 47:5

the extreme point in P that supports slope σk, for each k ∈ [0, r + 1]. That is, for every
point p ∈ P draw a line passing through p with slope σk, and pick sk as the point whose line
has the highest y-intercept. We define s0 = pL, the point with the smallest x-coordinate, and
sr+1 = pR, the point with the largest x-coordinate. If any sk has more than one candidates,
pick the point that has the largest y-coordinate. Let x(p) denotes the x-coordinate of point
p, and let σ(p, q) denote the slope of the line that passes through points p and q.

We use these s1, s2, . . . , sr as the r suitable extreme points with which to refine P
into P1, P2, . . . , Pr+1 where we say the si are suitable in that each Pk has size bounded
by O(|P |/(r + 1)). Initially, set Pk = ∅ for all k ∈ [1, r + 1]. The refinement applies the
cascade-pruning described in Lemma 7 on Gj for each j ∈ [1, n/(r + 1)], which uses the
known pruning technique stated in Lemma 6 as a building block, and works as follows:

Step 1. Compute the extreme points v1, v2, . . . , vt ∈ U(Gj) in clockwise order.
Step 2. Set Pk ← Pk ∪ {vi : i ∈ [α, β], x(sk−1) < x(vi) < x(sk)} for each k ∈ [1, r + 1],
where vα (resp. vβ) is the extreme point in Gj that supports σk−1 (resp. σk).

The pruning in Step 2 is two-fold. For any i < α, if x(vi) ≤ x(sk−1), then vi cannot be
placed in Pk. Otherwise x(vi) > x(sk−1), Case 2 of Lemma 7 applies. Again, vi cannot be
placed in Pk. Similarly, vi for any i > β cannot be placed in Pk either. Finally, remove the
points that lie below or on the line passing through sk−1, sk from Pk for each k ∈ [1, r + 1].

I Lemma 6 (Chan, [11]). Given a point set P ⊂ R2 and a slope σ, let s be the extreme point
in P that supports σ. Then, for any pair of points p, q ∈ P where x(p) < x(q),

Case 1. If σ(p, q) ≤ σ and x(q) ≤ x(s), then q /∈ U(P).
Case 2. If σ(p, q) ≥ σ and x(p) ≥ x(s), then p /∈ U(P).

I Lemma 7 (Cascade-pruning). Given a point set P ⊂ R2 and a slope σ, let s be the
extreme point in P that supports σ. Then, for any G ⊆ P whose U(G) = {v1, v2, . . . , vt},
x(v1) < x(v2) < · · · < x(vt), and where δ ∈ [1, t] is such that vδ is the extreme point in G

that supports σ, we have:
Case 1. If x(vi) ≤ x(s) for some i ∈ [δ + 1, t], then vδ+1, . . . , vi /∈ U(P).
Case 2. If x(vi) ≥ x(s) for some i ∈ [1, δ − 1], then vi, . . . , vδ−1 /∈ U(P).

Proof. Observe that σ(vj , vj+1) ≥ σ for all j ∈ [1, δ − 1] and σ(vj−1, vj) ≤ σ for all
j ∈ [δ + 1, t] because v1, v2, . . . , vt are extreme points in U(G) in clockwise order and vδ is
the extreme point in G that supports σ. Since there is an i ∈ [δ+ 1, t] such that x(vi) ≤ x(s),
we have x(vj) ≤ x(s) for each j ∈ [δ + 1, i]. The above are exactly the conditions of Case
1 in Lemma 6 for all point pairs (vj−1, vj) whose j ∈ [δ + 1, i]. Thus, vj /∈ U(P) for all
j ∈ [δ + 1, i]. The other case can be proved analogously. J

We get the exact bound for each Pk in Lemma 8, noting that |Pk| ≤ 3
4 |P | for r = 1.

I Lemma 8. |Pk| ≤ (2
r+1 −

1
(r+1)2)|P | ≤ 2|P |/(r + 1) for each k ∈ [1, r + 1].

Proof. To ensure that, for every k ∈ [1, r + 1], Pk is a small fraction of P , we use the
cascade-pruning procedure described in Lemma 7. Let {v1, v2, . . . , vt} be U(Gj) for some
j ∈ [n/(r + 1)] where x(v1) < x(v2) < · · · < x(vt). Let vαj

(resp. vβj
) be the extreme point

in Gj that supports σk−1 (resp. σk).
Let nj be the number of points in Pk ∩ Gj . Recall that Pk does not contain any vi

for any i /∈ [αj , βj], and hence nj ≤ βj − αj + 1. Observe that point pair (vi, vi+1) has
slope in the open interval (σk−1, σk) for each i ∈ [αj , βj − 1]. Since σk−1 (resp. σk) is the

ISAAC 2018

47:6 Streaming Algorithms for Planar Convex Hulls

RAM Algorithm: Compute the upper hull U(P) of P .
1 Let G1, G2, . . . , Gn/(r+1) be any partition of P such that each Gj has size in [1, r+ 1];
2 Q← ∅;
3 foreach Gj in the partition do
4 Compute the upper hull v1, v2, . . . , vt of Gj ;
5 for i = 1 to t− 1 do
6 σ ← the slope of the line passing through vi, vi+1;
7 Q← Q ∪ {σ};
8 end
9 end

10 for k = 1 to r do
11 σk ← the k|Q|/(r + 1)-th smallest slope in Q;
12 sk ← the extreme point in P that supports σk;
13 end
14 (s0, σ0, sr+1, σr+1)← (pL,−∞, pR,∞);
15 for k = 1 to r + 1 do
16 Pk ← ∅;
17 foreach Gj in the partition do
18 Compute the upper hull v1, v2, . . . , vt of Gj ;
19 Find the extreme point vα (resp. vβ) in Gj that supports σk−1 (resp. σk);
20 Pk ← Pk ∪ {vα, vα+1, . . . , vβ};
21 end
22 Remove the points that lie below or on the line passing through sk−1, sk from Pk;
23 if Pk 6= ∅ then
24 Recurse on Pk ∪ {sk−1, sk};
25 end
26 end

(k − 1)|Q|/(r + 1)-th largest slope (resp. the k|Q|/(r + 1)-th largest slope) in Q, Q has at
most |Q|/(r + 1) slopes in the open interval (σk−1, σk). This yields that

n/(r+1)∑
j=1

nj − 1 ≤ |Q|
r + 1 ⇒

n/(r+1)∑
j=1

nj ≤
|Q|
r + 1 + n

r + 1 ≤
r|P |

(r + 1)2 + |P |
r + 1

The last inequality holds because |Q| ≤ r|P |/(r + 1), and it establishes that the number of
points from all Gj ’s that comprise Pk for each k ∈ [1, r + 1] is at most 2|P |/(r + 1). J

For each k ∈ [1, r + 1], if Pk 6= ∅, then our algorithm recurses on Pk ∪ {sk−1, sk}. This
ensures that every subproblem has an input that contains some intermediate extreme point(s),
i.e. not the leftmost and rightmost extreme points, and any two subproblems where one is
not an ancestor or a descendant of the other have an empty intersection in their intermediate
extreme point set. As a result,

I Lemma 9. Our algorithm has O(h) leaf subproblems.

Here we analyze the running time of the RAM algorithm for the case of r = O(1) and
defer the discussion for the case of r = ω(1) until the section on streaming algorithms. Let
TC be the recursive computation tree of the RAM algorithm. The root of TC represents
the initial problem of the recursive computation. Every node in TC has at most r + 1 child
nodes, each of which represents a recursive subproblem.

M. Farach-Colton, M. Li, and M.-T. Tsai 47:7

For a computation node with the input point set P whose |P | < r, we use any O(|P | log r)-
time algorithm to compute the convex hull. Otherwise, we need to compute |P |/(r + 1)
convex hulls of point sets of size at most r+ 1, which runs in O(|P | log r) time (Lines 1-9). In
addition, the quantile selection in Q has the running time O(|Q| log r) = O(|P | log r) (Line
11). The r suitable extreme points can be found in O(|P | log r) time by Lemma 15 (Line 12).
The pruning procedure can be done in O(|P | log r) time by a simple merge (Lines 15-26).
Hence, each computation node needs O(|P | log r) time.

Since each child subproblem has an input set Pk∪{sk−1, sk} of size at most 2|P |/(r+1)+2
(Lemma 8), the running time of child subproblem is an (2/(r + 1))-fraction of its parent
subproblem. Hence, TC is an (2/(r + 1))-fading computation tree where Edelsbrunner and
Shi [17] define a recursive computation tree to be α-fading for some α < 1 if the running time
of a child subproblem is an α-fraction of its parent. In [11], Chan extends Edelsbrunner and
Shi’s results and obtains that, if an α-fading recursive computation tree has L leaf nodes and
the total running time of the nodes on each level is at most F , then the recursive computation
tree has total running time O(F logL). Our algorithm has O(h) leave nodes (Lemma 9) and
O(|P | log r) time for the computation nodes on each level because two subproblems on the
same level have their inputs only intersected at one of their extreme points. We get:

I Theorem 10. The RAM algorithm runs in O(n log h log r) time, and for r = O(1) it is
an O(n log h)-time algorithm.

3 A Simpler and Faster Streaming Algorithm

In this section, we show how to adapt our RAM algorithm to the streaming model. Our
streaming algorithm is the same as our RAM algorithm, but we execute the subproblems on
TC in BFS order. That is, starting from the root of TC , all subproblems on TC of the same
level are solved together in a round, then their invoked subproblems are solved together in
the next round, and so on. We will see in a moment that our algorithm needs to scan the
input O(1) times for each round. Therefore, to have an O(1)-pass streaming algorithm, our
approach requires r = nδ for some positive constant δ < 1. By setting r = nδ, we have:

I Lemma 11. By setting the parameter r to be nδ for any constant δ ∈ (0, 1), the recursive
computation tree TC has O

(
δ−1h

)
nodes.

Proof. This lemma holds because TC has depth O(logr n) = O(δ−1) by Lemma 8 and TC
has O(h) leaf nodes by Lemma 9. J

We assign a unique identifier z ∈ [1, |TC |] to each of |TC | = O(δ−1h) subproblems. Let
Sz be the subproblem on TC whose identifier is z. For each z ∈ [1, |TC |], Sz has input point
set Pz. Pz is a subsequence of P and is given to Sz as an input stream of |Pz| points. Our
algorithm will generate Pz more than once for Sz to access, for all z ∈ [1, |TC |]. The data
structures used in Sz also are suffixed with z. To compute Sz, naively we need O(|Pz|)
space. We will see in a moment that given Pz, how to solve Sz using O(r log r|Pz|) space
in O(r log |Pz| + |Pz| log r) time. We will also see how to generate the input for all the
subproblems on TC of depth d > 0 in O(1) passes. We now establish all these claims,
after which we will be ready to prove Theorem 1. We decompose Sz into the following
three subtasks and describe the algorithms for the subtasks in the subsequent subsections.
(1) Given Pz, obtain the r quantile slopes σ1, σ2, . . . , σr. (2) Given Pz and σ1, σ2, . . . , σr,
obtain the r suitable extreme points s1, s2, . . . , sr. (3) After the ancestor subproblems of Sz
(excluding Sz) are all solved, generate Pz.

ISAAC 2018

47:8 Streaming Algorithms for Planar Convex Hulls

3.1 Obtaining the r quantile slopes
To find the r quantile slopes for Sz (Lines 1-11 in the RAM algorithm) using small space, we
use a Greenwald and Khanna [21] quantile summary structure, abbreviated as QSz. This
summary is a data structure that supports two operations: insert a slope (QSz.insert(σ))
and query for (an estimate of) the t-th smallest slope (QSz.query(t)) in Qz. Given access
to QSz, we do not have to store the entire Pz to obtain the r quantile slopes. Instead, we
invoke QSz.insert(σ) for each slope σ ∈ Qz. After updating all slopes in Qz, we obtain an
estimate of the (r + 1)-quantile of Qz by invoking QSz.query(k|Qz|/(r + 1)) for all k ∈ [1, r].

QSz.query(k|Qz|/(r + 1)) returns an estimate σ̂k that has an additive error c|Qz| in the
rank, where c is a parameter to be determined. We set c = ε/(r+ 1) for some constant ε > 0
so that the additive error cannot increase the depth of TC by more than a constant factor.
Precisely, because the obtained σ̂k has the rank in the range [(k−ε)|Qz|/(r+1), (k+ε)|Qz|/(r+
1)] for each k ∈ [1, r], we need to replace Lemma 8 with Corollary 12. Such a replacement
increases the depth of TC from O(logr n) = O(δ−1) to O(logr/(1+ε) n) = O(δ−1) + o(1).

I Corollary 12. |Pk| ≤ (2+2ε
r+1 −

1
(r+1)2)|P | ≤ 2(1 + ε)|P |/(r + 1) for each k ∈ [1, r + 1].

The summary QSz needs O
(1
c log(c|Qz|)

)
space, and therefore the space usage for each

subproblem is O((r/ε) log((ε/r)|Qz|)). In [39], it shows that Greenwald and Khanna’s
quantile summary needs O(log |Qz|) time for an update and O(log r + log log(|Qz|/r)) for a
query. Because Sz conducts O(r) updates and O(r) queries, we get:

I Lemma 13. Given Pz, some streaming algorithm can find the r approximate quantile
slopes in Qz to within any O(1) factor in O(r log(|Pz|+ r)) time using O(r log(|Pz|/r)) space.

3.2 Obtaining the r suitable extreme points
To find the r suitable extreme points in Pz (Line 12 in the RAM algorithm), a naive
implementation, which would update the supporting points of σ̂k for all k ∈ [1, r] once for
each point p ∈ Pz, needs O(r|Pz|) running time. To reduce the running time to the claimed
time complexity O(r log |Pz|+ |Pz| log r), we need the following observation.

I Observation 14. For any non-singleton set G whose extreme points in the upper hull U(G)
from left to right are v1, v2, . . . , vt, the point in G that supports a given slope σ is

s =

v1 if σ > σ(v1, v2)
vt if σ < σ(vt−1, vt)
vi if σ(vi−1, vi) ≥ σ ≥ σ(vi, vi+1) for some i ∈ [2, t− 2]

To find the extreme points in Pz that supports σ̂k for all k ∈ [1, r], we compute the
extreme points v1, v2, . . . , vt in Pz from left to right, generate a (sorted) list `A of slopes
σ(v1, v2), σ(v2, v3), . . . , σ(vt−1, vt), and merge `A with another (sorted) list `B of the approx-
imate (r + 1)-quantile slopes σ̂1, σ̂2, . . . , σ̂r. By Observation 14, the point ŝk in Pz that
supports σ̂k for each k ∈ [1, r] can be easily determined by the its predecessor and successor
in `A. Scanning the merged list suffices to get ŝ1, ŝ2, . . . , ŝk. Though the above reduces the
time complexity to O(r + |Pz| log |Pz|), the space complexity O(|Pz|) is much higher than
the claimed space complexity O(r log r|Pz|) for r � |Pz|. To remedy, again, we reduce this
problem to computing the upper hulls of |Pz|/(r + 1) smaller point sets. First, we partition
Pz arbitrarily into G1, G2, . . . , G|Pz|/(r+1) so that each group Gi has size |Gi| ∈ [1, r + 1]
points. Then, for each Gi we apply the above accordingly. We get:

I Lemma 15. Given Pz and sorted σ1, . . . , σr, some streaming algorithm can find the extreme
points in Pz that support σi for all i ∈ [1, r] in O(r + |Pz| log r) time using O(r) space.

M. Farach-Colton, M. Li, and M.-T. Tsai 47:9

3.3 Generating the input point set Pz for each subproblem Sz

Recall that we execute the subproblems in TC in BFS order. Upon executing the subproblems
of depth d for any d > 0, all the subproblems of depth < d are done and the associated r
quantile slopes and r suitable extreme points are memoized in memory. For d = 0, we need
to generate the input for the initial problem So, i.e. P , so scanning over P suffices.

Given the associated r quantile slopes and r suitable extreme points for all the subproblems
of depth less than d, to generate the input point sets for all the subproblems of depth d, we
can directly execute Lines 15-26 in the RAM algorithm for all the subproblems of depth
less than d and ignore Lines 1-14 because the intermediate values, the quantile slopes and
suitable extreme points, are already computed and kept in memory. Initially, we allocate a
buffer Bz of size r+ 1 for each subproblem Sz of depth less than d so as to temporarily store
the incoming input points, i.e. points in Pz. Then, we scan P on the input tape once and
for each input point p in P , we place p in the buffer Bo of So. Once any buffer Bz gets full
or the input terminates, we let Bz be some Gi, a part in the partition of Pz, and apply the
pruning procedure stated in Lines 15-26 in the RAM algorithm. Those points that survive
the pruning are flushed, one by one, into the buffers of Sz’s child subproblems. We apply
the above iteratively until we reach the end of the input tape. The space usage counted on
each Sz is O(|Bz|) = O(r) and the overall running time to generate the input point set for
all the subproblems of depth d > 0 is O(dn log r) because all the subproblems of each depth
i ∈ [1, d− 1] computes the upper hull of points sets, disjoint subsets of P . Hence, we get:

I Lemma 16. Some streaming algorithm can generate the input for all depth-d subproblems
on TC for each d ∈ [0, depth(TC)] using O(1) passes, O(hr) space, and O(dn log r) time.

Proof of Theorem 1. For r = nδ, TC has O(δ−1h) nodes and depth O(δ−1) by Lemma 11, 8.
Hence, the space complexity of our streaming algorithm is the sum of O(δ−1h) times the space
complexity in Lemma 13, 15, and O(δ−1) times the space complexity in Lemma 16. The overall
space complexity is O(δ−1hnδ logn). One can obtain the space bound O(min{δ−1hnδ logn,
n}) by checking whether ~nδ logn > n before proceeding to the subproblems on the next
depth, where ~ is the number of subproblems executed so far and thus ~ = O(δ−1h). If so,
we compute the convex hull by a RAM algorithm. Analogously, we have that the pass (resp.
time) complexity of our streaming algorithm is O(δ−1) (resp. O(δ−2n logn)). J

4 A W-Stream Algorithm Of Nearly-Optimal Pass-Space Tradeoff

Demetrescu et al. [15] establish a general scheme to convert PRAM algorithms to W-stream
algorithms. Theorem 17 is an implication of their main result.

I Theorem 17 (Demetrescu et al. [15]). If there exists a PRAM algorithm that uses m
processors to compute the convex hull of n given points in t rounds, then there exists an
O(s)-space O(mt/s)-pass W-stream algorithm to compute the convex hull.

There is a long line of research that studies how to compute the convex hull of n given
points efficiently in parallel [1, 3, 4, 14,19,23]. In particular, Akl’s PRAM algorithm [1] uses
O(nε) processors and runs in O(n1−ε log h) time for any ε ∈ (0, 1). Converting Akl’s PRAM
algorithm to a W-stream algorithm by Theorem 17, we have:

I Corollary 18. There exists an O((n/s) log h)-pass W-stream algorithm that can compute
the convex hull of n given points using O(s) space.

ISAAC 2018

47:10 Streaming Algorithms for Planar Convex Hulls

The optimal work, i.e. the total number of primitive operations that the processors
perform, for any parallel algorithm in the algebraic decision tree model to compute the
convex hull is O(n log h) [23,28]. Therefore the W-stream algorithm stated in Corollary 18 is
already the best possible among those W-stream algorithms that are converted from a PRAM
algorithm in the algebraic decision tree model by Theorem 17. However, in this Section, we
will show that such a tradeoff between pass complexity and space usage is suboptimal by
devising a W-stream algorithm that has a better pass-space tradeoff. Together with the
results shown in Section 5, we have that the pass-space tradeoff of our W-stream algorithm
is nearly optimal.

4.1 Deterministic W-stream Algorithm
Our deterministic W-stream algorithm is the same as our streaming algorithm, except for
the following differences:

We set r = 1 (rather than r = nδ) for our deterministic W-stream algorithm. Thus,
by Corollary 12 depth(TC) increases from O(δ−1) to O(logn), but the space usage of
subproblem Sz decreases from O(nδ logn) to O(logn) for each z ∈ [1, |TC |]. Moreover,
if the extreme point in the input P that supports the approximate median slope is the
leftmost point pL or the rightmost point pR, i.e. the degenerate case, we replace it with
the extreme point that supports σ(pL, pR). In this way, each subproblem on TC has a
unique extreme point and therefore the number of subproblems on TC is O(h).
Our streaming algorithm executes the subproblems on TC in BFS order, that is, all
subproblems of depth d are executed in a round for each d ∈ [0, depth(TC)]. In contrast,
our deterministic W-stream algorithm refines a single round into subrounds, in each of
which it takes care of O(s/ logn) subproblems, so as to bound the working space by O(s).
Note that algorithms in the W-stream model are capable of modifying the input tape.
Formally, while scanning the input tape in the i-th pass, algorithms can write something
on a write-only output stream; in the (i+ 1)-th pass, the input tape read by algorithms
is the output tape written in the i-th pass. Hence, our deterministic W-stream algorithm
is able to assign an attribute to each point p ∈ P to indicate that p is an input of a
certain subproblem. Moreover, our deterministic W-stream algorithm can write down the
parameters for every subproblem on the output tape. In each subround, our deterministic
W-stream algorithm needs to scan the input twice. The first pass is used to load the
parameters of subproblems to be solved in the current subround. The second pass is
used to scan the input tape and process the points that are the input points for the
subproblems to be solved in the current subround.

Proof of Theorem 2. Suppose there are hd subproblems of depth d on TC for each d ∈
[0, depth(TC)], then our deterministic W-stream algorithm has to execute

∑
d

⌈
hd

bs/Θ(logn)c

⌉
=

O (dh/se logn) subrounds for any s = Ω(logn). Because our deterministic W-stream al-
gorithm scans the input tape twice for each subround, the pass complexity is O(dh/se logn).

As shown in Section 3, subproblem Sz needs O(|Pz| log |Pz|) running time. Since the
input of subproblems of depth d on TC are disjoint subsets of P , for each d ∈ [0, |TC |]. We
get that the time complexity is O(n log2 n). J

4.2 Randomized W-stream Algorithm
Observe that for r = 1, finding the r approximate quantile slopes in Qz is exactly finding the
approximate median slope in Qz. Our algorithms mentioned previously all use Greenwald
and Khanna quantile summary structure, which needs O(logn) space. In our randomized

M. Farach-Colton, M. Li, and M.-T. Tsai 47:11

W-stream algorithm, we replace the Greenwald and Khanna quantile summary with a random
slope in Qz, thereby reducing the space usage to O(1). As noted by Bhattacharya and Sen [7],
such a replacement cannot increase the depth of TC by more than a constant factor w.h.p.

Proof of Theorem 3. Similar to the arguments used in the proof of Theorem 2, the pass com-
plexity of our randomized W-stream algorithm is

∑
d∈[0,depth(TC)]

⌈
hd

bs/Θ(1)c

⌉
=

O (h/s+ logn) for any s = Ω(1) w.h.p. and the time complexity is O(n log2 n) w.h.p. J

5 Unconditional Lower Bound

In this section, we will show that any streaming (or W-stream) algorithm that can compute
the convex hull with success rate > 2/3 using O(s) space requires Ω(dh/se) passes (i.e.
Theorem 4). This establishes the near-optimality of our proposed algorithms. We note here
that the lower bound holds even if the output is |ext(P)|, rather than the set ext(P).

We construct a point set U so that it is hard to compute the convex hull of point set
P = Q ∪ {(1, 0), (−1, 0)} for all Q ⊆ U . Let C1, C2 be concentric half circles. The radius
of C1 equals 1 and that of C2 is any value in (k, 1) for some k to be determined later. Let
a0, a1, . . . , an+1 be points distributed evenly on C1 so that a0 = (1, 0) and an+1 = (−1, 0).
Define b0, b1, . . . , bn+1 on C2 similarly. Let k be the distance between the origin O and the
line ←−−→aiai+2 for any i ∈ [0, n− 1]. Let U be the set {ai : i ∈ [1, n]} ∪ {bi : i ∈ [1, n]}.

We need the following geometric property of points in U for the hardness proof.

I Lemma 19. For every Q ⊆ U , let R = ext(Q ∪ {(1, 0), (−1, 0)}). We have that (1)
ai ∈ Q⇒ ai ∈ R, and (2) (bi ∈ Q⇒ bi ∈ R) iff ai /∈ Q.

Proof. Due to space constraints, we defer the proof to the full version of this paper [18]. J

Lemma 19 implies the fact that, for every Q ⊆ U , |ext(Q ∪ {(1, 0), (−1, 0)})| = |Q|+ 2 if
and only if ai and bi are not both contained in Q for each i. Given this fact, we are ready to
perform a reduction from the set disjointness problem (a two-party communication game)
to computing the convex hull in the streaming (and W-stream) model. Set disjointness is
defined as follows. Alice has a private (αn)-size subset A of [n], and Bob has another private
(αn)-size subset B of [n] for some constant α < 1/2. The goal is to answer whether A and
B have an non-empty intersection. Based on the hardness result of set-disjointness, due to
Kalyanasundaram and Schintger [27], we are ready to prove Theorem 4.

Proof of Theorem 4. Due to space constraints, we defer the proof to the full version of this
paper [18]. J

References
1 S. G. Akl. Optimal parallel algorithms for computing convex hulls and for sorting. Com-

puting, 33(1):1–11, 1984.
2 A. M. Andrew. Another efficient algorithm for convex hulls in two dimensions. Information

Processing Letters, 9(5):216–219, 1979.
3 M. J. Atallah and M. T. Goodrich. Efficient parallel solutions to some geometric problems.

Journal of Parallel and Distributed Computing, 3(4):492–507, 1986.
4 M. J. Atallah and M. T. Goodrich. Parallel Algorithms for Some Functions of Two Convex

Polygons. In the 24th Annual Allerton Conference on Comm., Control and Comput., 1986.
5 B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in data

stream systems. In PODS, pages 1–16, 2002.

ISAAC 2018

47:12 Streaming Algorithms for Planar Convex Hulls

6 C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The quickhull algorithm for convex hulls.
ACM Transactions on Mathematical Software, 22(4):469–483, 1996.

7 B. K. Bhattacharya and S. Sen. On a Simple, Practical, Optimal, Output-Sensitive Ran-
domized Planar Convex Hull Algorithm. J. Algorithms, 25(1):177–193, 1997.

8 P. Bose, A. Maheshwari, P. Morin, J. Morrison, M. Smid, and J. Vahrenhold. Space-efficient
Geometric Divide-and-conquer Algorithms. CGTA, 37(3):209–227, 2007.

9 G. S. Brodal and R. Jacob. Dynamic planar convex hull. In FOCS, pages 617–626, 2002.
10 H. Brönnimann, J. Iacono, J. Katajainen, P. Morin, J. Morrison, and G. T. Toussaint.

Space-efficient planar convex hull algorithms. Theor. Comput. Sci., 321(1):25–40, 2004.
11 T. M. Chan. Output-sensitive construction of convex hulls. PhD thesis, UBC, 1995.
12 T. M. Chan. Optimal output-sensitive convex hull algorithms in two and three dimensions.

Discrete and Computational Geometry, 16:361–368, 1996.
13 T. M. Chan and E. Y. Chen. Multi-Pass Geometric Algorithms. D&CG, 37(1):79–102,

2007. doi:10.1007/s00454-006-1275-6.
14 A. Chow. Parallel Algorithms for Geometric Problems. PhD thesis, UIUC, 1980.
15 C. Demetrescu, B. Escoffier, G. Moruz, and A. Ribichini. Adapting parallel algorithms to

the W-Stream model, with applications to graph problems. TCS, 411:3994–4004, 2010.
16 C. Demetrescu, I. Finocchi, and A. Ribichini. Trading off space for passes in graph stream-

ing Problems. In SODA, pages 714–723, 2006.
17 H. Edelsbrunner and W. Shi. An O(n log2 h) Time Algorithm for the Three-Dimensional

Convex Hull Problem. SIAM Journal on Computing, 20(2):259–269, 1991.
18 Martin Farach-Colton, Meng Li, and Meng-Tsung Tsai. Streaming algorithms for planar

convex hulls. CoRR, abs/1810.00455, 2018. arXiv:1810.00455.
19 M. Ghouse and M. T. Goodrich. In-place techniques for parallel convex-hull algorithm. In

SPAA, pages 192–203, 1991.
20 R. L. Graham. An efficient algorithm for determining the convex hull of a finite planar set.

Information Processing Letters, 1:132–133, 1972.
21 M. Greenwald and S. Khanna. Space-efficient online computation of quantile summaries.

In SIGMOD, pages 58–66, 2001.
22 S. Guha and A. McGregor. Tight Lower Bounds for Multi-pass Stream Computation Via

Pass Elimination. In ICALP, pages 760–772, 2008.
23 N. Gupta and S. Sen. Optimal, output-sensitive algorithms for constructing planar hulls

in parallel. Computational Geometry, 8(3):151–166, 1997.
24 J. Hershberger and S. Suri. Adaptive sampling for geometric problems over data streams.

Computational Geometry, 39(3):191–208, 2008.
25 R. A. Jarvis. On the identification of the convex hull of a finite set of points in the plane.

Information Processing Letters, 2:18–21, 1973.
26 M. Kallay. The complexity of incremental convex hull algorithms in Rd. Information

Processing Letters, 19(4):197, 1984.
27 B. Kalyanasundaram and G. Schintger. The Probabilistic Communication Complexity of

Set Intersection. SIAM J. Discret. Math., 5(4):545–557, 1992.
28 D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm? SIAM

Journal on Computing, 15(1):287–299, 1986.
29 M. A. Lopez and S. Reisner. Efficient approximation of convex polygons. International

Journal of Computational Geometry & Applications, 10(05):445–452, 2000.
30 M. A. Lopez and S. Reisner. Hausdorff approximation of convex polygons. Computational

Geometry, 32(2):139–158, 2005.
31 J. I. Munro and M. S. Paterson. Selection and sorting with limited storage. In the 19th

Symposium on Foundations of Computer Science (FOCS), pages 253–258, 1978.
32 S. Muthu. Data streams: algorithms and applications. Now Publishers, 2006.

http://dx.doi.org/10.1007/s00454-006-1275-6
http://arxiv.org/abs/1810.00455

M. Farach-Colton, M. Li, and M.-T. Tsai 47:13

33 M. H. Overmars and J. van Leeuwen. Maintenance of configurations in the plane. Journal
of Computer and System Sciences, 23(2):166–204, 1981.

34 F. P. Preparata and S. J. Hong. Convex hulls of finite sets of points in two and three
dimensions. Communications of the ACM, 20(2):87–93, 1977.

35 R. A. Rufai and D. S. Richards. A Streaming Algorithm for the Convex Hull. In the 27th
Canadian Conference on Computational Geometry (CCCG), pages 165–172, 2015.

36 J. M. Ruhl. Efficient Algorithms for New Computational Models. PhD thesis, MIT, 2003.
37 M. I. Shamos. Computational Geometry. PhD thesis, Yale University, 1978.
38 G. T. Toussaint. Solving geometric problems with the rotating calipers. In IEEE 2nd

Mediterranean Electrotechnical Conference (MELECON), 1983.
39 C. N. Yu, M. Crouch, R. Chen, and A. Sala. Online algorithm for approximate quantile

queries on sliding windows. In SEA, pages 369–384, 2016.

ISAAC 2018

	Introduction
	Yet another O(n log h)-time algorithm in the RAM model
	A Simpler and Faster Streaming Algorithm
	Obtaining the r quantile slopes
	Obtaining the r suitable extreme points
	Generating the input point set P_z for each subproblem S_z

	A W-Stream Algorithm Of Nearly-Optimal Pass-Space Tradeoff
	Deterministic W-stream Algorithm
	Randomized W-stream Algorithm

	Unconditional Lower Bound

