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Abstract
The fuzzy K-means problem is a popular generalization of the well-known K-means problem to
soft clusterings. We present the first coresets for fuzzy K-means with size linear in the dimension,
polynomial in the number of clusters, and poly-logarithmic in the number of points. We show
that these coresets can be employed in the computation of a (1 + ε)-approximation for fuzzy
K-means, improving previously presented results. We further show that our coresets can be
maintained in an insertion-only streaming setting, where data points arrive one-by-one.
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1 Introduction

Clustering is a widely used technique in unsupervised machine learning. The goal is to divide
some set of objects into groups, the so-called clusters, such that objects in the same cluster
are more similar to each other than to objects in other clusters. Nowadays, clustering is
ubiquitous in many research areas, such as data mining, image and video analysis, information
retrieval, and bioinformatics. The most common approach are hard clusterings, where the
input is partitioned into a given number of clusters, i.e. each point belongs to exactly one
of the clusters. The K-means problem is the most well-known hard clustering problem. It
has been studied extensively from practical and theoretic points of view. However, in some
applications it is beneficial to be less decisive and allow points to belong to more than one
cluster. This idea leads to so-called soft clusterings. In the following, we study a popular
soft clustering problem, the fuzzy K-means problem.

The fuzzy K-means objective function goes back to work by Dunn and Bezdek et al. [4, 10].
Today, it has found numerous practical applications, for example in data mining [19], image
segmentation [27], and biological data analysis [9]. Practical applications generally use the
fuzzy K-means algorithm, an iterative relocation scheme similar to Lloyd’s algorithm [25] for
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K-means, to tackle the problem. The fuzzy K-means algorithm has been proven to converge
to a local minimum or a saddle point of the objective function [4, 5]. Distinguishing whether
the fuzzy K-means algorithm has reached a local minimum or a saddle point is a problem
which got some attention on its own [20, 24]. Moreover, it is known that the algorithm
converges locally, i.e. started sufficiently close to a minimizer, the iteration sequence converges
to that particular minimizer [17]. However, from a theoretician’s point of view this algorithm
has the major downside that stationary points of the objective function can be arbitrarily
worse than a globally optimal solution [6]. Currently, the only paper on algorithms with
approximation guarantees for the fuzzy K-means problem is [6], where the authors present a
PTAS assuming a constant number of clusters.

Clustering is usually applied when huge amounts of data need to be processed. This has
sparked significant interest in researching clustering in a streaming model, where the data
does not fit into memory. A lot of research has been done on this setting for K-means. In
a single pass setting, where we are only allowed to read the data set once, the K-means
objective function can be approximated up to a constant factor, by choosing O(K log(K))
means, instead of K [1]. This has been improved to an algorithm computing exactly K
means but still maintaining a constant factor approximation [7, 28]. There, the authors
considered a streaming setting where points arrive one-by-one and they are allowed to use
O(K log(N)) memory, where N is the total number of points.

The goal of a coreset is to find a small representation of a large data set, retaining the
characteristics of the original data. Coresets have emerged as a key technique to tackle the
streaming model. The idea is to treat the computation of the coreset as an online problem
where points arrive in some kind of stream. If, after having read the whole stream, the
computed coreset is small enough to fit into memory, then standard algorithms can be used
to solve the problem almost optimally for the points in the stream. Usually, the algorithm
does not know the size of the stream beforehand and hence, always maintains a coreset of
the points seen so far.

The first coreset construction for K-means is due to Har-Peled and Mazumdar, and is of
size O(log(N)) [16]. They also showed how to maintain a coreset, with size poly-logarithmic
in N , of a data stream, by combining their notion of a coreset with the merge-and-reduce
technique by Bentley and Saxe [3]. This construction was improved to a coreset with size
independent of N [15]. Feldman and Langberg presented a general framework computing
coresets for a large class of hard clustering problems with size independent of N [12].
Later, Feldman et al. presented coresets with size independent of N and D by using a
construction based on low-rank approximation [14]. Furthermore, they generalize Har-Peled
and Mazumdar’s application of the merge-and-reduce technique, showing how coresets with
certain properties can be maintained in a streaming setting. The results of this paper are
based on Chen’s sampling based construction, which yields coresets with size poly-logarithmic
in N , K, and D [8]. Applying the merge-and-reduce technique, Chen’s coresets can also be
used to maintain a poly-logarithmic sized coreset of a data stream.

There has been some work on applying the fuzzy K-means algorithm to large data sets.
Hore et al. [21] presented a single pass variant of the algorithm, which processes the data
chunk-wise. This idea was refined and extended to a single pass and online kernel fuzzy
K-means algorithm [18]. However, these are still variants of the fuzzy K-means algorithm,
hence provide no guarantees for the quality of solutions. So far, no coreset constructions
have been presented for the fuzzy K-means problem, and the literature is not rich on coreset
constructions for soft clustering problems, in general. There is a construction for the problem
of estimating mixtures of semi-spherical Gaussians which yields coresets with size independent
of N [11]. This result was generalized to a large class of hard and soft clustering problems
based on µ-similar Bregman divergences [26].
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1.1 Our Result
We prove the existence of small coresets for the fuzzy K-means problem. In Section 3, we
show that, by adjusting some parameters of Chen’s construction [8], we obtain a coreset
for the fuzzy K-means problem with size still poly-logarithmic in N . Our proof technique
is a non-trivial combination of the notion of negligible fuzzy clusters [6] and weak coresets
[13]. This results in a general weak-to-strong lemma (cf. Lemma 7), which states that
weak coresets for the fuzzy K-means problem fulfilling certain conditions are already strong
coresets. Afterwards, we argue that our adaptation of Chen’s algorithm yields a weak
coreset satisfying all conditions of the weak-to-strong theorem (a comprehensive proof can
be found in the full version). In Section 4, we substantiate the usefulness of our result by
presenting two applications of coresets for fuzzy K-means. First, we improve the analysis
of a previously presented [6] PTAS for fuzzy K-means, removing the dependency on the
weights of the data points from the runtime. Running this algorithm on our coreset instead
of the original input improves upon the runtime of previously known (1 + ε)-approximation
schemes. The improvement lies in the exponential term, which we reduce from NO(poly(K,1/ε))

to log(N)O(poly(K,1/ε)), while maintaining non-exponential dependence on D. Second, we
argue that an application of the merge-and-reduce technique enables us to maintain a fuzzy
K-means coreset in a streaming model, where points arrive one-by-one.

2 Preliminaries

Let X ⊂ RD be a set of points in D-dimensional space and w : X → N be an integer weight
function on the points. Using integer weights eases the notation of our exposition. We later
argue how our results generalize to rational weights. Unweighted data sets are denoted by
using the weight function 1 mapping every input to 1. We call w(X) =

∑
x∈X w(x) the total

weight of X and denote the maximum and minimum weights by wmax(X) = maxx∈X w(x)
and wmin(X) = minx∈X w(x).

I Definition 1 (Fuzzy K-means). Let m ∈ R>1 and K ∈ N. The fuzzy K-means problem is
to find a set of means M = {µk}k∈[K] ⊂ RD and a membership function r : X × [K]→ [0, 1]
minimizing

φ(X,w,M, r) =
∑
x∈X

w(x)
∑
k∈[K]

r(x, k)m ‖x− µk‖2

subject to

∀x ∈ X :
∑
k∈[K]

r(x, k) = 1 .

The parameter m is called fuzzifier. It determines the softness of an optimal clustering
and is not subject to optimization, since the cost of any solution can always be decreased by
increasing m. In the case m = 1, the cost can not be decreased by assigning membership of a
point to any mean except its closest. Consequently, optimal solutions of the fuzzy K-means
problem for m = 1 coincide with optimal solutions for the K-means problem on the same
instance. Hence, in the following we always assume m to be some constant larger than 1.

Similar to the classic K-means problem, it is easy to optimize means or memberships
of fuzzy K-means, assuming the other part of the solution is fixed [4]. This means, given
some set of means M we call a respective optimal membership function r∗M induced by M
and set φ(X,w,M) := φ(X,w,M, r∗M ). Analogously, given some membership function r we
call a respective optimal set of means M∗r induced by r and set φ(X,w, r) := φ(X,w,M∗r , r).
Finally, given some optimal solution M∗, r∗ we denote φopt(X,w) := φ(X,w,M∗, r∗).

ISAAC 2018



46:4 Coresets for Fuzzy K-Means with Applications

2.1 Fuzzy Clusters
Recall that, in a soft-clustering, there is no partitioning of the input points. Instead, we
describe the kth cluster of a fuzzy clustering as a vector of the fractions of points assigned to
it by the membership function. We denote the size (or the total weight) of the kth cluster by
r(X,w, k) =

∑
x∈X w(x)r(x, k)m. Given a set of means M , we denote the cost of the kth

cluster by φk(X,w,M, r) =
∑
x∈X w(x)r(x, k)m ‖x− µk‖2.

2.2 K-Means Notation
We denote the distance of a point to a set of means M by d(x,M) = minµ∈M{‖x− µ‖}
and the K-means cost by km(X,w,M) =

∑
x∈X w(x)d(x,M)2. Let C ⊆ X be some cluster,

then km(C,w) =
∑
x∈C w(x) ‖x− µw(C)‖2, where µw(C) =

∑
x∈C w(x)x/w(C).

3 Coresets for Fuzzy K-Means

A coreset is a representation of a data set that preserves properties of the original data set
[16]. Formally, we require the cost of a set of means with respect to the coreset to be close
to the cost the same set of means incurs on the original data.

I Definition 2 (Coreset). Let ε ∈ (0, 1). A set S ⊂ RD together with a weight function
wS : S → N is called an ε-coreset of (X,w) for the fuzzy K-means problem if

∀M ⊂ RD, |M | ≤ K : φ(S,wS ,M) ∈ [1± ε]φ(X,w,M) , (1)

We sometimes refer to a coreset as a strong coreset.

In the following, we show how to construct coresets for the fuzzy K-means problem
with high probability. To this end, our proof consists of two independent steps. First, we
show that it is sufficient to construct a so-called weak coreset [13] for the fuzzy K-means
problem fulfilling certain properties. Second, we present an adaptation of Chen’s coreset
construction for K-means [8] which computes weaks coresets with the desired properties,
with high probability.

I Theorem 3. There is an algorithm that, given a set X ⊂ RD, K ∈ N, δ ∈ (0, 1), and
ε ∈ (0, 1), computes an ε-coreset (S,wS), with S ⊆ X and wS : S → N, of (X,1) for the
fuzzy K-means problem, with probability at least 1− δ, such that

|S| ∈ O
(
log(N) log(log(N))2ε−3DK4m−1 log(δ−1)

)
.

The algorithms’ runtime is O(NDK log(δ−1) + |S|).

This result trivially generalizes to integer weighted data sets, by treating each point
x ∈ X as w(x) copies of the same point. However, in that case we have to replace each
occurrence on N in the runtime of the algorithm and the size of the coreset by w(X). For
rational weights, we normalize the weight function. This incurs an additional multiplicative
factor of wmax(X)/wmin(X) to each occurrence of N .

3.1 From Weak to Strong Coresets
Weak coresets are a relaxation of the previously introduced (strong) coresets. Consider a set
of points together with a weight function and a set of solutions. This forms a weak coreset if
the set of solutions contains a solution close to the optimum and the coreset property (1) is
satisfied for all solutions from the solution set.
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I Definition 4 (Weak Coresets). A set S ⊂ RD together with a weight function wS : S → N
and a set of solutions Θ ⊆ {θ | θ ⊂ RD, |θ| ≤ K} is called a weak ε-coreset of (X,w) for the
fuzzy K-means problem if

∃M ∈ Θ : φ(S,wS ,M) ≤ (1 + ε) · φopt(X,w) and
∀M ∈ Θ : φ(S,wS ,M) ∈ [1± ε]φ(X,w,M) .

In contrast to the definition of weak coresets for the K-means problem [13], we consider
elements M of a given set of solutions Θ instead of subsets of a set of candidate means. This
is just a slight generalization which allows us to characterize solutions more precisely.

One difficulty when analysing the fuzzy K-means objective function is that, in optimal
solutions, clusters are never empty. Consider a set of means, where there exists a mean which
is far away from every point. In an optimal hard clustering, this mean’s cluster is empty
and we can safely ignore it in the analysis. For fuzzy K-means, this is not the case. In an
optimal solution, every point has a non-trivial membership to this mean, thus it cannot be
ignored (or removed from the solution) without increasing the cost. Bounding the cost of
means with small membership mass proves to be rather difficult. A central concept we use
to control the cost of such means are fuzzy clusters which are almost empty, or negligible.

I Definition 5 (negligible). Let M ⊂ RD with |M | ≤ K. We say the kth cluster of a
membership function r : X × [|M |]→ [0, 1] is (K, ε)-negligible if

∀x ∈ X : r(x, k) ≤ ε

4mK2 .

In the following, we omit the parameters (K, ε) if they are clear from context.

We cannot preclude the possibility that an optimal fuzzy K-means clustering contains a
negligible cluster. However, we can circumvent negligible clusters altogether, by observing that
we can remove a mean inducing a negligible cluster without increasing the cost significantly.

I Theorem 6 ([6]). Let M ⊂ RD with |M | ≤ K and ε ∈ (0, 1). There exists a set of means
M ′ ⊆M with

φ(X,w,M ′) ≤ (1 + ε)φ(X,w,M) ,

such that the optimal membership function with respect to M ′ contain no negligible clusters.

Given some set of means, the optimal memberships of a point depend only on the location
of the point relative to the means and not on its weight or any other points in the data set
[4]. This means that negligible clusters are, in some sense, transitive. That is: If a cluster
induced by some set of means is negligible, then it is also negligible with respect to any subset
of X and the same set of means. Using this observation we can prove our key weak-to-strong
result.

I Lemma 7 (weak-to-strong). Let ε ∈ (0, 1) and

Θ(K,ε)(X) :=
{
M ⊂ RD

∣∣∣∣ |M | ≤ K and M induces no negligible
cluster with respect to X

}
.

If S ⊆ X and wS : S → N, such that (S,wS ,Θ(K,ε)(X)) is weak ε-coreset of (X,w) for the
fuzzy K-means problem, then (S,wS) is a strong (3ε)-coreset of (X,w) for the fuzzy K-means
problem.

ISAAC 2018
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Proof. We need to verify that the coreset property (1) holds for all solutions M ⊂ RD with
|M | ≤ K. Since (S,wS ,Θ(K,ε)(X)) is a weak ε-coreset we only have to show this for all
M 6∈ Θ(K,ε)(X). From Theorem 6, we know that there exists M ′ ∈ Θ(K,ε)(X), M ′ ⊆M with
φ(X,w,M ′) ≤ (1 + ε)φ(X,w,M).

We obtain the upper bound by observing that

φ(S,wS ,M) ≤ φ(S,wS ,M ′) (M ′ ⊆M)
≤ (1 + ε)φ(X,w,M ′) (weak coreset property)
≤ (1 + ε)2φ(X,w,M) (choice of M ′)
≤ (1 + 3ε)φ(X,w,M) . (ε ∈ (0, 1))

The lower bound is slightly more involved. Again, from Theorem 6, we obtain that there
exists M ′S ∈ Θ(K,ε)(S), M ′S ⊆M with φ(S,wS ,M ′S) ≤ (1 + ε)φ(S,wS ,M). Recall that, for
each point, the membership induced by some set of means only depends on the point itself
and the given set of means. In particular, this membership does not depend on the weight of
the point, nor on other data points. Hence, if there is no point in X such that the induced
membership with respect to some mean µk ∈M is larger than some constant, then there is
no point in S ⊆ X, such that the induced membership to µk ∈M is larger than this constant.
Since M ′ ∈ Θ(K,ε)(X), it holds that all means in M \M ′ induce negligible clusters on S and
thus M ′S ⊆M ′. We conclude

φ(S,wS ,M) ≥ 1
1 + ε

φ(S,wS ,M ′S) (choice of M ′S)

≥ 1
1 + ε

φ(S,wS ,M ′) (M ′S ⊆M ′)

≥ 1− ε
1 + ε

φ(X,w,M ′) (weak coreset property)

≥ 1− ε
1 + ε

φ(X,w,M) (M ′ ⊆M)

≥ (1− 3ε)φ(X,w,M) . (ε ≥ 0)

J

3.2 Weak Coresets for Solutions with Non-Negligible Clusters
In the following, we explain how to adapt Chen’s coreset construction for theK-means problem
[8] to construct a set S ⊆ X and weight function wS : S → N such that (S,wS ,Θ(K,ε)(X))
is a weak ε-coreset of (X,1) for the fuzzy K-means problem. Applying Lemma 7 to this
construction yields Theorem 3. We give a high-level description of Chen’s algorithm. In
the first step, we compute an (α, β)-bicriteria approximation of the K-means problem with
respect to X, i.e. a set M approximating an optimal K-means solution within factor α and
with |M | ≤ βK, such that α, β ∈ O(1).

In the second step, the input points are partitioned based on concentric balls around the
means of the bicriteria approximation with exponentially increasing radii. By Xi,j we denote
the intersection of X with the jth annulus around the ith mean. Then, we sample points
from each Xi,j uniformly and independently at random. Finally, each point sampled from
Xi,j is evenly weighted, such that the sum of these weights is equal to the number of original
data points in Xi,j . These sampled points together with the weights form the coreset.
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There is no natural adaptation of the first step to fuzzy K-means since, so far, there exists
no bicriteria approximation algorithm for the fuzzy K-means problem with constant α and β.
However, we know that the K-means cost of all sets of means M is no larger than |M |m−1

times the fuzzy K-means cost of M [6]. Hence, an (α, β)-bicriteria approximation for the
K-means problem is an (α · (βK)m−1, β)-bicriteria approximation for the fuzzy K-means
problem on the same instance. We can counteract this very coarse bound on the cost in the
second step by sampling roughly a factor of KO(m) more points than the original algorithm.

I Lemma 8. The algorithm described in the previous paragraph computes S ⊆ X and
wS : S → N such that (S,wS ,Θ(K,ε)(X)) is a weak ε-coreset of (X,1) for the fuzzy K-means
problem, with high probability.

Proof Sketch. Let M ∈ Θ(K,ε)(X) be a set of means inducing no negligible clusters. We
consider large balls around each mean of the bicriteria-approximation. As in Chen’s original
proof, we establish the coreset property for the case where at least one mean of a given
solution is outside of these balls and the case where all means are contained in the union of
these balls.

For the first case, assume thatM contains at least one mean, say µk, outside of (sufficiently
large) balls around the means of the bicriteria approximation. Since µk has a non negligible
portion of the membership of at least one point from which it is far away, we can bound the
cost of M from below. This lower bound is significantly larger than the distances of data
points to their respective representative in the coreset. Using this, we can easily verify the
coreset property with respect to M .

For the second case, assume that all means of M lie in the union of these balls. In this
case, we do not need to use that clusters induce non-negligible memberships. Instead, we
can basically follow the arguments of Chen’s original proof. However, the cost estimations
are more technically involved due to the difficult structure of the fuzzy K-means objective
function. A detailed exposition of our proof can be found in the full version.

The size of the coreset and the runtime of the algorithm are as claimed in Theorem 3. J

4 Applications

In the following, we present two applications of our coresets for fuzzy K-means. In general,
our coresets can be plugged in before any application of an algorithm that tries to solve
fuzzy K-means and can handle weighted data sets. If the applied algorithm’s runtime does
not depend on the actual weights, then this leads to a significant reduction in runtime. We
show that this yields a faster PTAS for fuzzy K-means than the ones presented before [6].
Furthermore, we argue that our coresets can be maintained in an insertion-only streaming
setting.

4.1 Speeding up Aproximation
We start by presenting an improved analysis of a simple sampling-based PTAS for the fuzzy
K-means problem. Our analysis exploits that the algorithm can ignore the weights of the
data points and still obtain an approximation guarantee of (1 + ε) for the weighted problem.
This means, that the algorithm’s runtime is independent of the weights, and thus can be
significantly reduced by applying it to a coreset instead of the original data. The first
ingredient is the following, previosuly presented, soft-to-hard lemma.

ISAAC 2018
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Algorithm 1: Derandomized Sampling.
Input: X ⊂ RD, K ∈ N, ε ∈ (0, 1)

1 T ← {µ1(S) | S ⊆ X, |S| = 64K
ε }

/* S as multisets – Points can occur multiple times in each S and are
counted with multiplicity. */

2 M ← arg minT⊆T ,|T |=K{φ(X,w, T )}
3 return M

I Lemma 9 ([6]). Let ε ∈ (0, 1), r : X × [K]→ [0, 1] be a membership function and let M∗r
be a set of means induced by r.

If ∀k ∈ [K] : r(X,w, k) ≥ 16Kwmax(X)/ε, then there exist pairwise disjoint sets
C1, . . . , CK ⊆ X such that for all k ∈ [K]

w(Ck) ≥ r(X,w, k)
2 ,

‖µw(Ck)− µk‖2 ≤ ε

r(X,w, k)φk(X,w,M∗r , r), and

km(Ck) ≤ 4K · φk(X,w,M∗r , r) .

We combine this with a classic concentration bound by Inaba et al.

I Lemma 10 ([22]). Let P ⊂ RD, n ∈ N, δ ∈ (0, 1), and let S be a set of n points drawn
uniformly at random from P . Then we have

Pr
(
‖µ1(S)− µ1(P )‖2 ≤ 1

δn

km(P,1)
|P |

)
≥ 1− δ .

I Corollary 11. Let X ⊂ RD, w : X → N, K ∈ N, ε ∈ (0, 1), and let C1, . . . , CK ⊆ X be
non-empty subsets of X. There exist K multisets S1, . . . , SK ⊆ X, such that

∀k ∈ [K] : |Sk| =
2
ε
and ‖µ1(Sk)− µw(Ck)‖2 ≤ εkm(Ck, w)

w(Ck) .

We can find means of subsets obtained from applying the soft-to-hard lemma to the
clusters of an optimal fuzzy K-means solution by derandomizing Inaba’s sampling technique.

I Theorem 12. Algorithm 1 computes M ⊂ RD with |M | = K, such that

φ(X,w,M) ≤ (1 + ε)φopt(X,w)

in time DNO(K2/ε).

Proof. We analyse the result M of Algorithm 1. Let M∗, r∗ be an optimal solution to the
fuzzy K-means problem on X, w. Let Xc be a modified point set, which contains c copies of
every point x ∈ X, where

c =
⌈

γKwmax(X)
εmink∈[K] r∗(X,w, k)

⌉
,

for some large enough constant γ. For all sets of means M and all membership functions r,
we have φ(Xc, w,M, r) = c · φ(X,w,M, r). Thus, M∗ and r∗ (where r∗(y, k) = r∗(x, k) for
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all k ∈ [K] and x ∈ X, y ∈ Xc with x = y) are also optimal for the modified instance Xc.
Observe, that for all k ∈ [K] we have

r∗(Xc, w, k) ≥
∑
x∈X

γKwmax(X)
εmink∈[K] r∗(X,w, k)w(x)r∗(x, k)m ≥ γKwmax(X)

ε
≥ 64Kwmax(X)

ε
.

Observe, that M∗ is a set of means induced by r∗. Hence, by applying Lemma 9 with respect
to Xc, w, r∗, and ε/4 we obtain that there exist disjoint sets C1, . . . , CK ⊆ Xc such that for
all k ∈ [K] we have

w(Ck) ≥ r∗(Xc, w, k)
2 , (2)

‖µw(Ck)− µ∗k‖
2 ≤ ε

4r∗(Xc, w, k)φk(Xc, w,M
∗, r∗) , and (3)

km(Ck, w) ≤ 4K · φk(Xc, w,M
∗, r∗) . (4)

Next, we apply Corollary 11 to Xc, w, K, ε/(32K), and C1, . . . , CK . We obtain that there
exist S1, . . . , SK ⊆ Xc such that for all k ∈ [K] we have |Sk| = 64K/ε and

‖µ1(Sk)− µw(Ck)‖2 ≤ ε/(32K) km(Ck, w)/w(Ck) . (5)

Since Xc consists of copies of points from X, we conclude that S1, . . . , SK ⊆ X, if we treat
the Sk as multisets, i.e. allow the same point to appear multiple times in the same set. Hence,
by choice of M , as made by Algorithm 1, we have φ(X,w,M) ≤ φ(X,w, {µ1(Sk)}k∈[K]).
Plugging all this together, we can bound the cost of M as follows

φ(X,w,M) ≤ φ(X,w, {µ1(Sk)}k∈[K]) = 1
c
φ(Xc, w, {µ1(Sk)}k∈[K])

≤ 1
c
φ(Xc, w, {µ1(Sk)}k∈[K], r

∗) = 1
c

∑
x∈Xc

∑
k∈[K]

w(x)r∗(x, k)m ‖x− µ1(Sk)‖2

≤ φ(X,w, r∗) + 2
c

∑
x∈Xc

∑
k∈[K]

w(x)r∗(x, k)m ‖µ∗k − µw(Ck)‖2

+ 2
c

∑
x∈Xc

∑
k∈[K]

w(x)r∗(x, k)m ‖µw(Ck)− µ1(Sk)‖2

(by 2-approximate triangle inequality)

≤ φopt(X,w) + ε

2c
∑
k∈[K]

φk(Xc, w,M
∗, r∗) (by (3))

+ ε

c16K
∑
k∈[K]

km(Ck, w)
w(Ck)

∑
x∈Xc

w(x)r∗(x, k)m (by (5))

≤ (1 + ε/2)φopt(X,w) + ε

2c
∑
k∈[K]

φk(Xc, w,M
∗, r∗) (by (2) and (4))

= (1 + ε)φopt(X,w) .

Bounding the runtime of Algorithm 1 is straightforward. We have to evaluate the cost of
|T |K different fuzzy K-means solution, each evaluation costing O(NDK). Hence, the total
runtime is bounded by O(NDK |T |K) = O(NDK(N64K/ε)K) = DNO(K2/ε). J

Recall, that the runtime of Algorithm 1 is independent of point weights. Hence, we obtain
a more efficient algorithm by first computing a coreset using Theorem 3 and then applying
Algorithm 1 to this coreset instead of the original data set. In the following, we formally
only state an unweighted version of our result.

ISAAC 2018
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I Corollary 13. There exists an algorithm which, given X ⊂ RD, K ∈ N, and ε ∈ (0, 1),
computes a set M ⊂ RD with |M | = K, such that with constant probability

φ(X,1,M) ≤ (1 + ε)φopt(X,1)

in time O(NDK) + (log(N)D)O(K2/ε log(K/ε)).

Proof. Given X, K, and ε, apply Theorem 3 (with ε/3) to obtain, with constant probability,
an ε/3-coreset (S,wS) of (X,1). Let M be the output of Algorithm 1 given S, wS , and ε/3
and let M∗X be an optimal set of means with respect to X. We obtain

φ(S,wS ,M) ≤ (1 + ε/3)φopt(S,wS) ≤ (1 + ε/3)φ(S,wS ,M∗X)
≤ (1 + ε/3)2φopt(X,1) ≤ (1 + ε)φopt(X,1) .

The overall runtime isO(NDK)+D(|S|)O(K2/ε) = O(NDK)+(log(N)D)O(K2/ε log(K/ε)). J

The algorithm from Corollary 13 can also be applied to weighted data sets. However, its
runtime is not independent of these weights. We argued that the runtime of the PTAS from
Theorem 12 is independent of any weights, but this is not true for the coreset construction.
Hence, weight functions have an impact on the runtime as discussed in Section 3 in regard
to the coreset construction.

Nonetheless, our algorithm has significant advantages over previously presented (1 + ε)-
approximation algorithms for fuzzy K-means. The runtimes of all algorithms presented in
[6] have an exponential dependency on the dimension D or contain a term NO(poly(K,1/ε)).
Our result constitutes the first algorithm with a non-exponential dependence on D whose
only exponential term is of the form log(N)O(poly(K,1/ε)).

Strictly speaking, applying Algorithm 1 directly to X is faster if D ∈ Ω(N). However,
in that case we can apply the lemma of Johnson and Lindenstrauss [23] to replace D by
log(N)/ε2

4.2 Streaming Model

We give a brief overview of the method to maintain coresets in a streaming model presented
in [14]. It is an improved version of the techniques previously used by [8] and [16]. The
central observation is that the union of coresets of two input data sets is a coreset of the
union of the data sets. Whenever a sufficient (depending on the coreset construction) number
of points has arrived in the stream, we compute a coreset of these points. After two coresets
have been computed, we merge them into a larger coreset of all points that have arrived,
so far. Following two of these merge operations, we merge the two larger coresets into one
even larger one. This continues in the fashion of a binary tree. Since our coresets for fuzzy
K-means fulfil all requirements to apply this approach, it can also be used to maintain fuzzy
K-means coresets in the streaming model.

I Theorem 14. Given N data points in a stream (one-by-one) and ε ∈ (0, 1) one can
maintain, with high probability, an ε-coreset for the fuzzy K-means problem, of the points
seen so far, using O(DK4m−1 · polylog(N/ε)) memory. Arriving data points cause an update
with an amortized runtime of O(DK · polylog(NDK/ε)).
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5 Discussion and Outlook

We proved that a parameter tuned version of Chen’s construction yields the first coresets
for the fuzzy K-means problem. While there are a plethora of coreset constructions for
K-means, Chen’s construction is the best purely sampling based approach. More efficient
techniques, for example ε-nets [15] or subspace approaches like low-rank approximation [14],
heavily rely on the partitioning of the input set that a K-means solution induces. So far,
we have not found a way to apply these to the, already notoriously hard to analyse, fuzzy
K-means objective function. This is because the membership function essentially introduces
an unknown weighting on the points. Hence, when the data set is partitioned or projected
into some subspace without respecting this weighting, we introduce a factor KO(1) to the
cost estimation. It has proven difficult to control these additional factors. Partly for these
reasons, there is still a large number of open questions regarding fuzzy K-means.

In this paper, we almost match the asymptotic runtime of the fastest (1+ε)-approximation
algorithms forK-means. However, even assuming constantK, our algorithms lack practicality
due to the large constants hidden in the O. Hence, this raises interesting follow-up questions.
Is there an efficient approximation algorithm for fuzzyK-means with a constant approximation
factor? What can be done in terms of bicriteria algorithms, i.e. if we are allowed to chose
more than K means? In regard to the complexity of fuzzy K-means it is interesting to
examine whether one can show that there is no true PTAS (polynomial runtime in N , D,
and K) for fuzzy K-means, as it was shown for K-means [2]. Finally, can we relate the
hardness of fuzzy K-means directly to K-means?
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