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Abstract
We consider the problem of augmenting an n-vertex tree with one shortcut in order to minimize
the diameter of the resulting graph. The tree is embedded in an unknown space and we have
access to an oracle that, when queried on a pair of vertices u and v, reports the weight of
the shortcut (u, v) in constant time. Previously, the problem was solved in O(n2 log3 n) time
for general weights [Oh and Ahn, ISAAC 2016], in O(n2 logn) time for trees embedded in a
metric space [Große et al., arXiv:1607.05547], and in O(n logn) time for paths embedded in a
metric space [Wang, WADS 2017]. Furthermore, a (1 + ε)-approximation algorithm running in
O(n+ 1/ε3) has been designed for paths embedded in Rd, for constant values of d [Große et al.,
ICALP 2015].

The contribution of this paper is twofold: we address the problem for trees (not only paths)
and we also improve upon all known results. More precisely, we design a time-optimal O(n2)
time algorithm for general weights. Moreover, for trees embedded in a metric space, we design
(i) an exact O(n logn) time algorithm and (ii) a (1 + ε)-approximation algorithm that runs in
O
(
n+ ε−1 log ε−1) time.

2012 ACM Subject Classification Theory of computation→ Graph algorithms analysis, Theory
of computation → Approximation algorithms analysis

Keywords and phrases Graph diameter, augmentation problem, trees, time-efficient algorithms

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2018.40

Related Version A full version of this paper can be found at https://arxiv.org/abs/1809.
08822.

1 Introduction

Consider a tree T = (V (T ), E(T )) of n vertices, with a weight δ(u, v) > 0 associated with
each edge (u, v) ∈ E(T ), and let c : V (T )2 → R≥0 be an unknown function that assigns
a weight to each possible shortcut (u, v) we could add to T . For a given path P of an
edge-weighted graph G, the length of P is given by the overall sum of its edge weights. We
denote by dG(u, v) the distance between u and v in G, i.e., the length of a shortest path
between u and v in G.1 The diameter of G is the maximum distance between any two
vertices in G, that is maxu,v∈V (G) dG(u, v).

In this paper we consider the Diameter-Optimal Augmentation Problem (Doap for short).
More precisely, we are given an edge-weighted tree T and we want to find a shortcut (u, v)
whose addition to T minimizes the diameter of the resulting (multi)graph, that we denote

1 If u and v are in two different connected components of G, then dG(u, v) =∞.
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by T + (u, v). We assume to have (unlimited access to) an oracle that is able to report the
weight of a queried shortcut in O(1) time.

Doap has already been studied before and the best known results are the following:
an O(n2 log3 n) time and O(n) space algorithm and a lower bound of Ω(n2) on the time
complexity of any exact algorithm [16];
an O(n2 logn) time algorithm for trees embedded in a metric space [11];
an O(n logn) time algorithm for paths embedded in a metric space [18];2
a (1 + ε)-approximation algorithm that solves the problem in O(n + 1/ε3) for paths
embedded in the Euclidean (constant) k-dimensional space [10].

In this paper we improve upon (almost) all these results. More precisely:
we design an O(n2) time and space algorithm that solves Doap. We observe that the
time complexity of our algorithm is optimal;
we develop an O(n logn) time and O(n) space algorithm that solves Doap for trees
embedded in a metric space;
we provide a (1 + ε)-approximation algorithm, running in O

(
n+ 1

ε log 1
ε

)
time and using

O(n+ 1/ε) space, that solves Doap for trees embedded in a metric space.
Our approaches are similar in spirit to the ones already used in [10, 11, 18], but we need
many new key observations and novel algorithmic techniques to extend the results to trees.
Our results leave open the problem of solving Doap in O(n2) time and truly subquadratic
space for general instances, and in o(n logn) time for trees embedded in a metric space.

Other related work. The variant of Doap in which we want to minimize the continuous
diameter, i.e., the diameter measured with respect to all the points of a tree (not only its
vertices), has been also addressed. Oh and Ahn [16] designed an O(n2 log3 n) time and O(n)
space algorithm. De Carufel et al. [3] designed an O(n) time algorithm for paths embedded
in the Euclidead plane. Subsequently, De Carufel et al. [4] extended the results to trees
embedded in the Euclidean plane by designing an O(n logn) time algorithm.

Several generalizations of Doap in which the graph (not necessarily a tree) can be
augmented with the addition of k edges have also been studied. In the more general setting,
the problem is NP-hard [17], not approximable within logarithmic factors [2], and some of
its variants – parameterized w.r.t. the overall cost of added shortcuts and resulting diameter
– are even W[2]-hard [8, 9]. Therefore, several approximation algorithms have been developed
for all these variations [2, 5, 7, 8, 14]. Finally, upper and lower bounds on the values of the
diameters of the augmented graphs have also been investigated in [1, 6, 13].

Our approaches. Große et al. [10] were the first to attack Doap for paths embedded in a
metric space. They gave an O(n logn) time algorithm for the corresponding search version
of the problem:

For a given value λ > 0, either compute a shortcut whose addition to the path induces
a graph of diameter at most λ, or return ⊥ if such a shortcut does not exist.

Then, by implementing their algorithm also in a parallel fashion and applying Megiddo’s
parametric-search paradigm [15], they solved Doap for paths embedded in a metric space
in O(n log3 n) time. Lately, Wang [18] improved upon this result in two ways. First, he
solved the search version of the problem in linear time. Second, he developed an ad-hoc

2 More precisely, c is a metric function and δ(u, v) = c(u, v), for every (u, v) ∈ E(G).
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algorithm that, using the algorithm for the search version of the problem black-box together
with sorted-matrix searching techniques and range-minima data structure, is able to: (i)
reduce the size of the solution-search-space from

(
n
2
)
to n in O(n logn) and (ii) evaluate the

quality of all the leftover solutions in O(n) time.
Our approach for Doap instances embedded in a metric space is close in spirit to the

approach used by Wang. In fact, we develop an algorithm that solves the search version of
Doap in linear time and we use such an algorithm black-box to solve Doap in O(n logn) time
and linear space by first reducing the size of the solution-search-space from

(
n
2
)
to n and then

by evaluating the quality of the leftover solutions in O(n logn) time. However, differently
from Wang’s approach, we use Hershberger data structure for computing the upper envelope
of a set of linear functions [12] rather than a range-minima data structure. Furthermore,
there are several issues we have to deal with due to the much more complex topology of
trees. We solve some of these issues using a lemma proved in [11] about the existence of
an optimal shortcut whose endvertices both belong to a diametral path of the tree. This
allows us to reduce our Doap instance to a node-weighted path instance of a similar problem,
that we call WDoap, in which the distance between two vertices is measured by adding
the weights of the two considered vertices to the length of a shortest path between them,
and the diameter is defined accordingly. However, it is not possible to use the algorithms
presented in [10, 18] black-box to solve WDoap. Therefore we need to design an ad-hoc
algorithm whose correctness strongly relies on the structural properties of diametral paths
and properties satisfied by node weights. Furthermore, most of the easy observations that
can be done for paths become non-trivial lemmas that need formal proofs for trees.

Our time-optimal algorithm that solves Doap for instances with general weights is based
on the following important observations. We reduce, in O(n2) time, a Doap instance to
another Doap instance in which the function c is graph-metric, i.e., c is an almost metric
function that satisfies a weaker version of the triangle inequality. Since our O(n logn) time
algorithm for Doap instances embedded in a metric space also works for graph-metric spaces,
we can use this algorithm black-box to solve the reduced Doap instance in O(n logn) time,
thus solving the original Doap instance in O(n2) time.

Finally, the (1 + ε)-approximation algorithm for trees embedded in a metric space is
obtained by proving that the diameter of the tree is at most three times the diameter, say
D∗, of an optimal solution. This allows us to partition the vertices along a diametral path
into O(1/ε) sets such that the distance between any two vertices of the same set is at most
O(εD∗). We choose a suitable representative vertex for each of the O(1/ε) sets and use our
O(n logn) time algorithm to find an optimal shortcut in the corresponding WDoap instance
restricted to the set of representative vertices. Since the representative vertices are O(1/ε),
the optimal shortcut in the restricted WDoap instance can be found in O(ε−1 log ε−1) time.
Furthermore, because of the choice of the representative vertex, we can show that the shortcut
returned is a (1 + ε)-approximate solution for the (unrestricted) WDoap instance of our
problem, i.e., a (1 + ε)-approximate solution for our original Doap instance.

Due to the lack of space, in this paper we only describe the O(n logn) time algorithm
for the instances embedded in a metric space and we refer to https://arxiv.org/abs/
1809.08822 for the full version of the paper. The rest of the paper is organized as follows:
in Section 2 we present some preliminary results among which the reduction from general
instances to graph-metric instances; in Section 3 we describe the reduction from Doap to
WDoap together with further simplifications; in Section 4 we design an algorithm that solves
a search version of WDoap in linear time; in Section 5 we develop an algorithm that solves
Doap for trees embedded in a graph-metric space.
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Figure 1 An example of a graph-metric function. The graph (a path in this specific example)
is given by the two solid edges of weight 2 each. The shortcuts are dashed. The example shows a
graph-metric function that does not satisfy the triangle inequality.

2 Preliminaries

To simplify the notation, we drop the subscript from dT (·, ·) whenever T is clear from the
contest and we denote dT+(u,v)(·, ·) by du,v(·, ·). The diameter of a graph G is denoted by
diam(G). A diametral path of G is a shortest path in G of length equal to diam(G). We say
that c is a graph-metric w.r.t. G, or simply a graph-metric when G is clear from the contest,
if, for every three distinct vertices u, v, and z of G, we have that

c(u, v) ≤ c(u, z) + d(z, v). (graph-triangle inequality)

We observe that a metric cost function is also graph-metric, but the opposite does not hold
in general (see Figure 1). The graph-metric closure induced by c is a function c̄ such that, for
every two vertices u and v of G, c̄(u, v) = min

{
dG(u, u′)+c(u′, v′)+dG(v′, v) | u′, v′ ∈ V (G)

}
.

The following lemma shows that we can restrict Doap to input instances where c is graph-
metric. We observe that the reduction holds for any graph and not only for trees.

I Lemma 1. Solving the instance 〈G, δ, c〉 of Doap is equivalent to solving the instance
〈G, δ, c̄〉 of Doap, where c̄ is the graph-metric closure induced by c.

Next lemma shows the existence of an optimal shortcut whose endvertices are both on a
diametral path of T for the case in which c is a graph-metric.

I Lemma 2. Let 〈T, δ, c〉 be an instance of Doap, where c is a graph-metric, and let
P = (v1, . . . , vN ) be a diametral path of T . There always exists an optimal shortcut (u∗, v∗)
such that u∗, v∗ ∈ V (P ).

3 Reduction from trees to node-weighted paths

In this section we show that a Doap instance embedded in a graph-metric space can be
reduced in linear time to a node-weighted instance of a similar problem. The Node-Weighted-
Diameter-Optimal Augmentation Problem (WDoap for short) is defined as follows:
Input: A path P = (v1, . . . , vN ), with a weight δ(vi, vi+1) > 0 associated with each edge

(vi, vi+1) of P , a weight w(vi) associated with each vertex vi such that 0 ≤ w(vi) ≤
min{d(v1, vi), d(vi, vN )}, and an oracle that is able to report the weight c(vi, vj) of a
queried shortcut in O(1) time, where c is a graph-metric;

Output: Two indices i∗ and j∗, with 1 ≤ i∗ < j∗ ≤ N , that minimize the function

D(i, j) := max
1≤k<h≤N

{
w(vk) + dvi,vj

(vk, vh) + w(vh)
}
.

We observe that w(v1) = w(vN ) = 0. Let 〈T, δ, c〉 be a Doap instance, where c is a graph-
metric. Let P = (v1, . . . , vN ) be a diametral path of T , Ti the tree containing vi in the forest
obtained by removing the edges of P from T , and w(vi) := maxv∈V (Ti) d(vi, v). We say that
〈P, δ, w, c〉 is the WDoap instance induced by 〈T, δ, c〉 and P . The following lemma holds.
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I Lemma 3. The WDoap instance 〈P, δ, w, c〉 induced by 〈T, δ, c〉 and P can be computed
in O(n) time. Moreover, diam

(
T + (vi, vj)

)
= D(i, j), for every 1 ≤ i < j ≤ N .

3.1 Further simplifications
In the rest of the paper, we show how to solve WDoap in O(N logN) time and linear space.
To avoid heavy notation, from now on we denote a vertex vi by using its associated index i.
All the lemmas contained in this subsection are non-trivial generalizations of observations
made in [10] for paths. We start proving a useful lemma.

I Lemma 4. Let i, j be two indices such that 1 ≤ i < j ≤ N . Let I = {1} ∪ {k | i < k ≤ N}
and let J = {N} ∪ {h | 1 ≤ h < j}. We have that

D(i, j) = max
k∈I,h∈J,k<h

{
w(k) + di,j(k, h) + w(h)

}
.

As we will see in a short, Lemma 4 allows us to decompose the function D(i, j) into four
monotone parts. First of all, for every i = 1, . . . , N , we define

ω(i) := max
{
w(j)− d(i, j) | 1 ≤ j ≤ N

}
.

Observe that, for every 1 ≤ i ≤ j ≤ N ,

ω(i) ≤ ω(j) + d(i, j). (node-triangle inequality)

Furthermore, ω(i) ≥ w(i), for every 1 ≤ i ≤ N , which implies ω(1) = ω(N) = 0. The
following lemma establishes the time complexity needed to compute all the values ω(i).

I Lemma 5. All the values ω(i), with 1 ≤ i ≤ N , can be computed in O(N) time.

For the rest of this section, unless stated otherwise, i and j are such that 1 ≤ i < j ≤ N .
The four functions used to decompose D(i, j) are the following (see also Figure 2)

U(i, j) := d(1, i) + c(i, j) + d(j,N);

S(i, j) := max
i≤h<j

(
ω(h) + min

{
d(1, h), d(1, i) + c(i, j) + d(h, j)

})
;

E(i, j) := max
i<k≤j

(
ω(k) + min

{
d(k,N), d(j,N) + c(i, j) + d(i, k)

})
;

C(i, j) := max
i<k<h<j

(
ω(k) + min

{
d(k, h), d(i, k) + c(i, j) + d(h, j)

}
+ ω(h)

)
.

Using both the graph-triangle inequality and the node-triangle inequality, we can observe
that all the four functions are monotonic. More precisely:

U(i, j + 1) ≤ U(i, j) ≤ U(i+ 1, j);
S(i− 1, j) ≤ S(i, j) ≤ S(i, j + 1);
E(i, j + 1) ≤ E(i, j) ≤ E(i− 1, j);
C(i+ 1, j) ≤ C(i, j) ≤ C(i, j + 1).

Moreover, we can prove the following lemma.

I Lemma 6. D(i, j) = max
{
U(i, j), S(i, j), E(i, j), C(i, j)

}
.

The following lemma allows us to efficiently compute the values U(i, j), S(i, j), and E(i, j).

I Lemma 7. After a O(N)-time precomputation phase, for every 1 ≤ i < j ≤ N , U(i, j) can
be computed in O(1) time, while both S(i, j) and E(i, j) can be computed in O(logN) time.

ISAAC 2018



40:6 Almost Optimal Algorithms for Diameter-Optimally Augmenting Trees

1 i j N

U(i, j)

1 i j Nh h′

S(i, j)

1 i j Nk h′

E(i, j)

1 i j Nk′ h′

C(i, j)

k h

Figure 2 The four functions used to decompose D(i, j). Node weights are omitted and shortest
paths are highlighted in bold. U(i, j) = d(1, i) + c(i, j) + d(j,N). S(i, j) is the maximum among all
the (node-weighed) distances between 1 and all the vertices of the cycle. In our example the distance
from 1 to h is d(1, h) + ω(h), while the distance from 1 to h′ is d(1, i) + c(i, j) + d(j, h′) + ω(h′).
E(i, j) is the maximum among all the distances between N and all the vertices of the cycle. In
our example the distance from N to k is d(k,N) + ω(k), while the distance from N to k′ is
d(j,N) + c(i, j) + d(i, k′) + ω(k′). Finally, C(i, j) is the maximum among all the distances between
pair of vertices in the cycle. In our example the distance from k to h is ω(k) + d(k, h) + ω(h), while
the distance from k′ to h′ is ω(k′) + d(i, k) + c(i, j) + d(j, h′) + ω(h′).

4 The linear time algorithm for the search version of WDoap

In this section we design an O(N) time algorithm for the following search version of WDoap:

For a given WDoap instance 〈P, δ, ω, c〉, where c is a graph-metric and ω satisfies the
node-triangle inequality, and a real value λ > 0, either find two indices 1 ≤ i < j ≤ N
such that D(i, j) ≤ λ, or return ⊥ if such two indices do not exist.

In the following we assume that d(1, N) > λ, as otherwise D(i, j) ≤ λ for any two indices
i and j. For the rest of this section, unless stated otherwise, i and j are two fixed indices
such that 1 ≤ i < j ≤ N . Let i < µi ≤ N be the minimum index, or N + 1 if such an index
does not exists, such that U(i, µi) ≤ λ. Our algorithm computes the index µi, for every
1 ≤ i < N . As U(i, j) ≥ U(i, j + 1) for every i < j < N , the following lemma holds.

I Lemma 8. U(i, j) ≤ λ iff µi ≤ j (see also Figure 3).

Moreover, as U(i, j) ≤ U(i + 1, j), we have that µi ≤ µi+1. Therefore, our algorithm can
compute all the indices µi in O(N) time by scanning all the vertices of P from 1 to N .

We introduce some new notation useful to describe our algorithm. We define ri as the
maximum index such that i < ri ≤ N and ω(i) + d(i, ri) + ω(ri) ≤ λ. If such an index
does not exist, we set ri = i. Similarly, we define `N as the minimum index such that
1 ≤ `N < N and ω(`N ) + d(`N , N) ≤ λ. If such an index does not exist, we set `N = N .
Observe that if j ≤ ri, then, using the node-triangle inequality, ω(i) + d(i, j) + ω(j) ≤
ω(i) + d(i, j) + d(j, ri) + ω(ri) = ω(i) + d(i, ri) + ω(ri) ≤ λ. Therefore,

ω(i) + d(i, j) + ω(j) ≤ λ iff j ≤ ri. (1)

Similarly, if `N ≤ i, then, using the node-triangle inequality, ω(i) + d(i,N) ≤ ω(`N ) +
d(`N , i) + d(i,N) = ω(`N ) + d(`N , N) ≤ λ. Therefore,

ω(i) + d(i,N) ≤ λ iff `N ≤ i. (2)
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1

1

1

N

N

N

i

i

i

µi

r1 σi

ρi

U(i, j) > λ U(i, j) ≤ λ

S(i, j) ≤ λ S(i, j) > λ

E(i, ρi) > λ E(i, ρi) ≤ λ

θρi `N

Figure 3 An example showing the properties satisfied by the functions U(i, j), S(i, j), and E(i, ρi).
The example shows a case in which ρi is defined. We observe that the search version of WDoap
admits a feasible solution consisting of a shortcut adjacent to i iff there exists an index j belonging
to the shaded area such that C(i, j) ≤ λ. Furthermore, among all the possible choices, ρi is the one
that minimizes the value C(i, j).

The algorithm computes all the indices ri, with 1 ≤ i < N , and the index `N . Since
ω(i) ≥ ω(i+ 1)− d(i, i+ 1), we have that ri ≤ ri+1. Therefore, all the ri’s can be computed
in O(N) time by scanning all the vertices of P in order from 1 to N . Clearly, also `N can
be computed in O(N) time by scanning all the vertices of P in order from N downto 1. As
d(1, N) > λ, we have that r1 < N and `N > 1. We define the following two functions

S̄(i, j) := d(1, i) + c(i, j) + d(r1 + 1, j
)

+ ω(r1 + 1)

and

Ē(i, j) := d(j,N) + c(i, j) + d(i, `N − 1) + ω(`N − 1).

Observe that both S̄(i, j) and Ē(i, j) can be computed in constant time. Moreover, using
the graph-triangle inequality, we have that

if r1 < j, then S̄(i, j) ≤ S̄(i, j + 1);
if i < `N , then Ē(i, j) ≤ Ē(i+ 1, j).

As the following lemma shows, the values S̄(i, j) and Ē(i, j) can be used to understand
whether S(i, j) ≤ λ and E(i, j) ≤ λ, respectively.

I Lemma 9. If U(i, j) ≤ λ, then:
S(i, j) ≤ λ iff i ≤ r1 and S̄(i, j) ≤ λ;
E(i, j) ≤ λ iff `N ≤ j and Ē(i, j) ≤ λ.

Let i < σi ≤ N be the maximum index, or i if such an index does not exist, such that
S̄(i, σi) ≤ λ. Analogously, let 1 ≤ θj < j be the minimum index, or j if such an index does
not exist, such that Ē(θj , j) ≤ λ. Our algorithm computes all the indices σi, with 1 ≤ i < N ,
and the indices θj , with 1 < j ≤ N . By the graph-triangle inequality, S̄(i, j) ≤ S̄(i+ 1, j) as
well as Ē(i, j) ≤ Ē(i, j − 1). As a consequence, σi+1 ≤ σi and θj−1 ≥ θj . Therefore, all the
σi’s can be computed in O(N) time by scanning all the vertices of P in order from 1 to N .
Similarly, all the θj ’s can be computed in O(N) time by scanning all the vertices of P in
order from N downto 1. The following lemma holds.

I Lemma 10. If U(i, j) ≤ λ, then:
S(i, j) ≤ λ iff i ≤ r1 and j ≤ σi (see also Figure 3);
E(i, j) ≤ λ iff `N ≤ j and θj ≤ i (see also Figure 3).

ISAAC 2018
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Let ρi be the minimum index, or ⊥ if such an index does not exist, such that µi ≤ ρi ≤ σi
and i ≥ θρi

. The algorithm computes ρi, for every i = 1, . . . , N . Since µi ≤ µi+1, σi+1 ≤ σi,
and θj−1 ≥ θj , all the indices ρi can be computed in O(N) time. The following lemma holds.

I Lemma 11. Let 〈P, δ, ω, c〉 be an instance of WDoap, where c is a graph-metric and
ω satisfies the node-triangle inequality, and let λ > 0. There exists an index 1 ≤ i < N ,
such that ρi is defined and C(i, ρi) ≤ λ iff the search version of WDoap on input instance
〈P, δ, ω, c, λ〉 admits a feasible solution.

In the following we show how to check whether C(i, ρi) ≤ λ in constant time after an O(N)
time preprocessing. For every 1 ≤ i < N such that ri < N , the algorithm computes

∆(i) = λ− ω(i) + d(i, ri + 1)− ω(ri + 1).

Moreover, the algorithm computes ∆min = min1≤i<N ∆(i). Finally, for every i = 1, . . . , N
for which ρi is defined, our algorithm checks whether d(i, ρi) + c(i, ρi) ≤ ∆min. If there exists
i such that d(i, ρi) + c(i, ρi) ≤ ∆min, then our algorithm returns (i, ρi). If this is not the case,
then our algorithm returns ⊥ . The following lemma proves the correctness of our algorithm.

I Lemma 12. Let 〈P, δ, ω, c〉 be an instance of WDoap, where c is a graph-metric and ω
satisfies the node-triangle inequality, and let λ > 0. The search version of WDoap on input
instance 〈P, δ, ω, c, λ〉 admits a feasible solution iff there exists an index 1 ≤ i < N , such that
ρi is defined and d(i, ρi) + c(i, ρi) ≤ ∆min.

We can conclude this section with the following theorem.

I Theorem 13. Let 〈P, δ, ω, c〉 be an instance of WDoap, where c is a graph-metric and ω
satisfies the node-triangle inequality, and let λ > 0. The search version of WDoap on input
instance 〈P, δ, ω, c, λ〉 can be solved in O(N) time and space.

5 The algorithm for WDoap

In this section we design an efficient O(N logN) time and O(N) space algorithm that finds
an optimal solution for instances 〈P, δ, ω, c〉 of WDoap, where c is a graph-metric and ω
satisfies the node-triangle inequality. In the rest of the paper we denote by D∗ the diameter
of an optimal solution to the problem instance and, of course, we assume that D∗ is not
known by the algorithm. For the rest of this section, unless stated otherwise, i and j

are two fixed indices such that 1 ≤ i < j ≤ N . Similarly to the notation already used
in the previous section, we define ri as the maximum index such that i < ri ≤ N and
ω(i) + d(i, ri) + ω(ri) ≤ D∗. If such an index does not exist, then ri = i. Analogously, we
define `N as the minimum index such that 1 ≤ `N < N and ω(`N ) + d(`N , N) ≤ D∗. If such
an index does not exist, then `N = N . Our algorithm consists of the following three phases:
1. a precomputation phase in which the algorithm computes all the indices ri, with 1 ≤ i < N ,

and the index `N ;
2. a search-space reduction phase in which the algorithm reduces the size of the solution

search space from
(
N
2
)
to N − 1 candidates;

3. an optimal-solution selection phase in which the algorithm builds a data structure that is
used to evaluate the leftover N − 1 solutions in O(logN) time per solution.

Each of the three phases requires O(N logN) time and O(N) space; furthermore, they all
make use of the linear time algorithm for the search version of WDoap black-box. In the
following we assume that d(1, N) > D∗, as otherwise, any shorcut returned by our algorithm
would be an optimal solution.
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5.1 The precomputation phase
We perform a binary search over the indices from 1 to N and use the linear time algorithm
for the search version of WDoap to compute the maximum index `N in O(N logN) time
and O(N) space. Indeed, when our binary search considers the index k as a possible choice
of `N , it is enough to call the linear time algorithm for the search version of WDoap with
parameter λ = ω(k)+d(k,N) and see whether the algorithm returns either a feasible solution
or ⊥. Due to the node-triangle inequality, in the former case we know that `N ≤ k, while in
the latter case we know that `N > k.

Now we describe how to compute all the indices ri. Because of the node-triangle
inequality ri < N iff i < `N . Therefore, we only have to describe how to compute ri
for every i < `N , since if i ≥ `N , then ri = N . We use the linear time algorithm for
the search version of WDoap and perform a binary search over the set of sorted values{
ω(i) + d(i, i+ 1) +ω(i+ 1) | 1 ≤ i < `N

}
to compute the largest value of the set that is less

than or equal to D∗, if any. This allows us to compute, in O(N logN) time and O(N) space,
the set of all indices i < `N for which ri = i. Now, for every index i < `N for which ri > i,
we set ai = i+ 1 and bi = N . Observe that ai ≤ ri ≤ bi. Next, using a two-round binary
search, we restrict all the intervals [ai, bi]’s by updating both ai and bi while maintaining
the invariant property ai ≤ ri ≤ bi at the same time.

Let X be the set of indices i, with 1 ≤ i < `N , for which bi ≥ ai+2. The first round of the
binary search ends exactly when X becomes empty. Each iteration of the first round works
as follows. For every i ∈ X, the algorithm computes the median index mi =

⌊
(ai + bi)/2

⌋
.

Next the algorithm computes the weighted median of the mi’s, say mτ , where the weight of
mi is equal to bi − ai. Let

X+
τ =

{
i ∈ X | ω(i) + d(i,mi) + ω(mi) ≥ ω(τ) + d(τ,mτ ) + ω(mτ )

}
and

X−τ =
{
i ∈ X | ω(i) + d(i,mi) + ω(mi) ≤ ω(τ) + d(τ,mτ ) + ω(mτ )

}
.

Observe that X = X+
τ ∪X−τ and τ ∈ X+, X−.

Now we call the linear time algorithm for the search version of WDoap with parameter
λ = ω(τ) + d(τ,mτ ) + ω(mτ ). If the algorithm finds two indices such that D(i, j) ≤ λ, then
we know that D∗ ≤ λ and therefore, for every i ∈ X+

τ , we update bi by setting it equal to mi.
If the algorithm outputs ⊥, then we know that D∗ > λ and therefore, for every i ∈ X−τ , we
update ai by setting it equal to mi. We observe that in either case, the invariant property
ai ≤ ri ≤ bi is kept because of (1). An iteration of the first round of the binary search ends
right after the removal of all the indices i such that bi = ai + 1 from X. Notice that, in the
worst case, the overall sum of the intervals widths at the end of a single iteration is (almost)
3/4 times the same value computed at the beginning of the iteration. This implies that
the first round of the binary search ends after O(logN) iterations. Furthermore, the time
complexity of each iteration is O(N). Therefore, the overall time needed for the first round
of the binary search is O(N logN).

The second round of the binary search works as follows. Because ai ≤ ri ≤ bi and
bi ≤ ai + 1 for every i < `N such that i < ri, we have that ri is equal to either ai or bi. To
understand whether either ri = ai or ri = bi, we sort the (at most) 2N values

Υ =
⋃

i<`N , i<ri

{
ω(i) + d(i, ai) + ω(ai), ω(i) + d(i, bi) + ω(bi)

}

ISAAC 2018
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and use binary search, together with the linear time algorithm for the search version of
WDoap, to compute the two consecutive distinct values D+, D− ∈ Υ such that D− < D∗ ≤
D+ (if D− does not exist, then we assume it to be equal to 0). Finally, we use the two values
D+ and D− to select either ai or bi. More precisely, if ai = bi, then ri = ai. If ai 6= bi, then
by the choice of D− and D+, either D− < ω(i) + d(i, ai) + ω(ai) ≤ D+ (i.e., ri = ai) or
D− < ω(i) + d(i, bi) + ω(bi) ≤ D+ (i.e., ri = bi). The time and space complexities of the
second round of the binary search are O(N logN) and O(N), respectively. We have proved
the following lemma.

I Lemma 14. The precomputation phase takes O(N logN) time and O(N) space.

5.2 The search-space reduction phase
In the search-space reduction phase the algorithm computes a set of N − 1 candidates as
optimal shortcut in O(N logN) time and O(N) space. Let f(i, j) := max

{
U(i, j), Ē(i, j)

}
.

Since both U(i, j) and Ē(i, j) are monotonically non-increasing w.r.t. j,3 f(i, j) is monotonic-
ally non-increasing w.r.t. j. For every 1 ≤ i < N , our algorithm computes the minimum index
1 < ψi ≤ N , if any, such that f

(
i, ψi

)
≤ D∗. As both S(i, j) and C(i, j) are monotonically

non-decreasing w.r.t. j, it follows that the set
{(
i, ψi

)
| 1 ≤ i < N

}
contains an optimal

solution to the problem instance.
We compute all the indices ψi’s using a two-round binary search techique similar to the

one we already used in the precomputation phase. First, we set ai = i+ 1 and bi = N , for
every 1 ≤ i < N . Observe that ai ≤ ψi ≤ bi. In the two-round binary search, we restrict all
the intervals [ai, bi]’s by updating both ai and bi while maintaining the invariant property
ai ≤ ψi ≤ bi at the same time.

Let X be the set of indices i for which bi ≥ ai + 2. The first round of the binary search
ends exactly when X becomes empty. Each iteration of the first round works as follows.
For every i ∈ X, the algorithm computes the median index mi =

⌊
(ai + bi)/2

⌋
. Next the

algorithm computes the weighted median of the mi’s, say mτ , where the weight of mi is
equal to bi − ai. Let

X+
τ =

{
i ∈ X | f(i,mi) ≥ f(τ,mτ )

}
and X−τ =

{
i ∈ X | f(i,mi) ≤ f(τ,mτ )

}
.

Observe that X = X+
τ ∪X−τ ; moreover, τ ∈ X+, X−.

Now we call the linear time algorithm for the search version of WDoap with parameter
λ = f(τ,mτ ). If the algorithm finds two indices such that D(i, j) ≤ λ, then we know that
D∗ ≤ f(τ,mτ ) and therefore, since f(i, j) ≤ f(i, j + 1), for every i ∈ X+

τ , we update bi by
setting it equal to mi. If the algorithm outputs ⊥, then we know that D∗ > f(τ,mτ ) and
therefore, by monotonicity of f , for every i ∈ X−τ , we update ai by setting it equal to mi. We
observe that in either case, the invariant property ai ≤ ψi ≤ bi is maintained. An iteration of
the first round of the binary search ends right after the removal of all the indices i such that
bi = ai + 1 from X. Notice that, in the worst case, the overall sum of the intervals widths at
the end of a single iteration is (almost) 3/4 times the same value computed at the beginning
of the iteration. This implies that the first round of the binary search ends after O(logN)
iterations. Furthermore, both the time and space complexities of each iteration is O(N).
Therefore, the overall time needed for the first round of the binary search is O(N logN).

3 Observe that E(i, j) = max{Ē(i, j), ω(`N )+d(`N , N)} because of the node-triangle inequality. However,
since we know that ω(`N ) + d(`N , N) ≤ D∗ by definition, we can check whether E(i, j) ≤ D∗ by simply
evaluating Ē(i, j).
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The second round of the binary search works as follows. Because ai ≤ ψi ≤ bi and
bi ≤ ai + 1, ψi is either equal to ai or to bi. To understand whether either ψi = ai or
ψi = bi, we sort the (at most) 2N values Υ =

⋃
1≤i<N

{
f(i, ai), f(i, bi)

}
and use binary

search, together with the linear time algorithm for the search version of WDoap, to compute
the two consecutive distinct values D+, D− ∈ Υ such that D− < D∗ ≤ D+ (if D− does not
exist, then we assume it to be equal to 0). Finally, we use the two values D+ and D− to
select either ai or bi. More precisely, if ai = bi, then ψi = ai. If ai 6= bi, then by the choice of
D− and D+, either D− < f(i, ai) ≤ D+ (i.e., ψi = ai) or D− < f(i, bi) ≤ D+ (i.e., ψi = bi).
The time and space complexities of the second round of the binary search are O(N logN)
and O(N), respectively. We have proved the following lemma.

I Lemma 15. The search-space reduction phase takes O(N logN) time and O(N) space.
Furthermore, there exists a shortcut (i∗, ψi∗) such that D

(
i∗, ψi∗

)
= D∗.

5.3 The optimal-solution selection phase

In the optimal-solution selection phase, we build a data structure in O(N logN) time and
use it to evaluate the quality of the N − 1 candidates (1, ψ1), . . . , (N − 1, ψN−1) in O(logN)
time per candidate. For every k = 1, . . . , N , we define

φk(x) := ω(k) + max
{
d(k, rk) + ω(rk), x− d(k, rk + 1) + ω(rk + 1)

}
.

Let U(x) := max
{
φk(x) | 1 ≤ k < `N

}
be the upper envelope of all the functions φk(x).

Observe that each φk(x) is itself the upper envelope of two linear functions. Therefore, U(x)
is the upper envelope of at most 2N − 2 linear functions. In [12] it is shown how to compute
the upper envelope of a set of O(N) linear functions in O(N logN) time and O(N) space.
In the same paper it is also shown how the value U(x) can be computed in O(logN) time,
for any x ∈ R.

We denote by xi = d(i, ψi) + c(i, ψi) the overall weight of the edges of the unique cycle in
P + (i, ψi). For every 1 ≤ i < N , we compute the value

ηi = max
{
U
(
i, ψi

)
, S
(
i, ψi

)
, E
(
i, ψi

)
,U(xi)

}
. (3)

The algorithm computes the index α that minimizes ηα and returns the shortcut (α,ψα) .

I Lemma 16. For every i, with 1 ≤ i < N , C(i, ψi) ≤ U(xi).

Let i∗ be the index such that D(i∗, ψi∗) = D∗, whose existence is guaranteed by Lemma 15.
The following lemma holds.

I Lemma 17. U(xi∗) ≤ D∗.

We can finally conclude this section by stating the main results of this paper.

I Theorem 18. WDoap can be solved in O(N logN) time and O(N) space.

I Theorem 19. Doap on trees embedded in a (graph-)metric space can be solved in O(n logn)
time and O(n) space.
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