
Polyline Drawings with Topological Constraints

Emilio Di Giacomo
Università degli Studi di Perugia, Perugia, Italy
emilio.digiacomo@unipg.it

https://orcid.org/0000-0002-9794-1928

Peter Eades
University of Sydney, Sydney, Australia
peter.d.eades@gmail.com

Giuseppe Liotta
Università degli Studi di Perugia, Perugia, Italy
giuseppe.liotta@unipg.it

https://orcid.org/0000-0002-2886-9694

Henk Meijer
University College Roosevelt, Middelburg, The Netherlands
h.meijer@ucr.nl

Fabrizio Montecchiani
Università degli Studi di Perugia, Perugia, Italy
fabrizio.montecchiani@unipg.it

https://orcid.org/0000-0002-0543-8912

Abstract
Let G be a simple topological graph and let Γ be a polyline drawing of G. We say that Γ partially
preserves the topology of G if it has the same external boundary, the same rotation system, and
the same set of crossings as G. Drawing Γ fully preserves the topology of G if the planarization of
G and the planarization of Γ have the same planar embedding. We show that if the set of crossing-
free edges of G forms a connected spanning subgraph, then G admits a polyline drawing that
partially preserves its topology and that has curve complexity at most three (i.e., at most three
bends per edge). If, however, the set of crossing-free edges of G is not a connected spanning
subgraph, the curve complexity may be Ω(

√
n). Concerning drawings that fully preserve the

topology, we show that if G has skewness k, it admits one such drawing with curve complexity
at most 2k; for skewness-1 graphs, the curve complexity can be reduced to one, which is a tight
bound. We also consider optimal 2-plane graphs and discuss trade-offs between curve complexity
and crossing angle resolution of drawings that fully preserve the topology.
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(a) (b)

Figure 1 (a) A topological graph G that requires at least 1 bend in any polyline drawing that
fully preserves its topology. (b) A straight-line drawing that partially preserves the topology of G.

1 Introduction

A fundamental result in graph drawing is the so-called “stretchability theorem” [12, 17, 18]:
Every planar simple topological graph admits a straight-line drawing that preserves its
topology. One may ask whether a similar theorem holds for non-planar simple topological
graphs. Motivated by the fact that a straight-line drawing may not be possible even for a
planar graph plus an edge [10], we allow bends along the edges and measure the quality of
the computed drawings in terms of their curve complexity, defined as the maximum number
of bends per edge.

Let G be a simple topological graph and let Γ be a polyline drawing of G. (Note that,
by definition of simple topological graph, G has neither multiple edges nor self-loops; see
also Section 2 for formal definitions.) Drawing Γ fully preserves the topology of G if the
planarization of G (i.e., the planar simple topological graph obtained from G by replacing
crossings with dummy vertices) and the planarization of Γ have the same planar embedding.
Eppstein et al. [11] prove the existence of a simple arrangement of n pseudolines that, when
drawn with polylines, it requires at least one pseudoline to have Ω(n) bends. It is not
hard to see that the result by Eppstein et al. implies the existence of an n-vertex simple
topological graph such that any polyline drawing that fully preserves its topology has curve
complexity Ω(n) (see Corollary 2 in Section 2). This lower bound naturally suggests two
research directions: (i) “Trade” curve complexity for accuracy in the preservation of the
topology and (ii) Describe families of simple topological graphs for which polyline drawings
that fully preserve their topologies and that have low curve complexity can be computed.

Concerning the first research direction, we consider the following relaxation of topology
preserving drawing. A polyline drawing of a simple topological graph G partially preserves
the topology of G if it has the same rotation system, the same external boundary, and the
same set of crossings as G, while it may not preserve the order of the crossings along an edge.
It may be worth recalling that some (weaker) notions of topological equivalence between
graphs have been already considered in the literature. For example, Kynčl [15, 16] and
Aichholzer et al. [1, 2] study weakly isomorphic simple topological graphs: Two simple
topological graphs are weakly isomorphic if they have the same set of vertices, the same set of
edges, and the same set of edge crossings. Note that a drawing Γ that partially preserves the
topology of a simple toplogical graph G is weakly isomorphic to G and, in addition, it has
the same rotation system and the same external boundary as G. Also, Kratochvíl, Lubiw,
and Nešetřil [14] define the notion of abstract topological graph as a pair (G,χ), where G is a
graph and χ is a set of pairs of crossing edges; a strong realization of G is a drawing Γ of G
such that two edges of Γ cross if and only if they belong to χ. The problem of computing a
drawing that partially preserves a topology may be rephrased as the problem of computing
a strong realization of an abstract topological graph for which a rotation system and an
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external boundary are given in input. A different relaxation of the topology preservation is
studied by Durocher and Mondal, who proved bounds on the curve complexity of drawings
that preserve the thickness of the input graph [9].

Concerning the second research direction, we investigate the curve complexity of polyline
drawings that fully preserve the topology of meaningful families of beyond-planar graphs,
that are families of non-planar graphs for which some crossing configurations are forbidden
(see, e.g., [4, 8] for surveys and special issues on beyond-planar graph drawing). In particular,
we focus on graphs with skewness k, i.e., non-planar graphs that can be made planar by
removing at most k edges, and on 2-plane graphs, i.e., non-planar graphs for which any edge
is crossed at most twice. Note that a characterization of those graphs with skewness one
having a straight-line drawing that fully preserves the topology is presented in [10]. Also, all
1-plane graphs (every edge can be crossed at most once) admit a polyline drawing with curve
complexity one that fully preserves the topology and such that any crossing angle is π

2 [6].
Our results can be listed as follows. Let G be a simple topological graph.
If the subgraph of G formed by the uncrossed edges and all vertices of G, called planar
skeleton, is connected, then G admits a polyline drawing with curve complexity three that
partially preserves its topology. If the planar skeleton is biconnected the curve complexity
can be reduced to one, which is worst-case optimal (Section 3).
For the case that the planar skeleton of G is not connected, we prove that the curve
complexity may be Ω(

√
n) (Section 3).

If G has skewness k, then G admits a polyline drawing with curve complexity 2k that
fully preserves its topology. When k = 1, the curve complexity can be reduced to one,
which is worst-case optimal (Section 4).
If G is optimal 2-plane (i.e., it is 2-plane and it has 5n − 10 edges), then G admits a
drawing that fully preserves its topology and with two bends in total, and a drawing that
fully preserves its topology, with at most two bends per edge, and with optimal crossing
angle resolution. The number of bends per edge can be reduced to one while maintaining
the crossing angles arbitrarily close to π

2 (Section 4).

We conclude the introduction with an example about the difference between a drawing
that fully preserves and one that partially preserves a given topology. Figure 1a shows a
simple topological graph for which every polyline drawing fully preserving its topology has
at least one bend on some edge. Figure 1b shows a drawing of the same graph that partially
preserve its topology and has no bends.

For space reasons some proofs have been omitted and the corresponding statements are
marked with an asterisk (*). Missing details can be found in [13].

2 Preliminaries

A simple topological graph is a drawing of a graph in the plane such that: (i) vertices are
distinct points, (ii) edges are Jordan arcs that connect their endvertices and do not pass
through other vertices, (iii) any two edges intersect at most once by either making a proper
crossing or by sharing a common endvertex, and (iv) no three edges pass through the same
crossing. A simple topological graph has neither multiple edges (otherwise there would be
two edges intersecting twice), nor self-loops (because the endpoints of a Jordan arc do not
coincide). A simple topological graph is planar if no two of its edges cross. A planar simple
topological graph G partitions the plane into topological connected regions, called faces of G.
The unbounded face is called the external face. The planar embedding of a simple planar
topological graph G fixes the rotation system of G, defined as the clockwise circular order of
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(a) (b)

Figure 2 (a) An arrangement of pseudolines L. (b) The graph GL associated with L.

the edges around each vertex, and the external face of G. The planar skeleton of a simple
topological graph G is the subgraph of G that contains all vertices and only the uncrossed
edges of G. A simple topological graph obtained from G by adding uncrossed edges (possibly
none) is called a planar augmentation of G.

Let L be an arrangement of n pseudolines; a polyline realization ΓL of L represents each
pseudoline as a polygonal chain while preserving the topology of L. The curve complexity of
ΓL is the maximum number of bends per pseudoline in ΓL. The curve complexity of L is the
minimum curve complexity over all polyline realizations of L. The graph associated with L is
a simple topological graph GL defined as follows. Let C be a circle of sufficiently large radius
such that all crossings of L are inside C and every pseudoline intersects the boundary of C
exactly twice. Replace each crossing between C and a pseudoline with a vertex, remove the
portions of each pseudoline that are outside C, add an apex vertex v outside C, and connect
v to the vertices of C with crossing-free edges. See Fig. 2 for an example.

I Lemma 1 (*). Let L be an arrangement of n pseudolines and let GL be the simple
topological graph associated with L. Every polyline drawing of GL that fully preserves its
topology has curve complexity Ω(f(n)) if and only if L has curve complexity Ω(f(n)).

Lemma 1 and the result of Eppstein et al. [11] proving the existence of an arrangement
of n pseudolines with curve complexity Ω(n) imply the following.

I Corollary 2. There exists a simple topological graph with n vertices such that any drawing
that fully preserves its topology has curve complexity Ω(n).

In the next section we study a relaxation of the concept of topology preservation by which
we derive constant upper bounds on the curve complexity.

3 Polyline Drawings that Partially Preserve the Topology

A polygon P is star-shaped if there exists a set of points, called the kernel of P , such that for
every point z in this set and for each point p of on the boundary of P , the segment zp lies
entirely within P . A simple topological graph is outer if all its vertices are on the external
boundary and all the edges of the external boundary are uncrossed. Let G be an outer simple
topological graph with n ≥ 3 vertices and let P be a star-shaped n-gon. A drawing Γ of G
that extends P is such that the n vertices of G are placed at the corners of P , and every
edge of G is drawn either as a side of P or inside P .

I Lemma 3. Let G be an outer simple topological graph with n ≥ 3 vertices and let P be a
star-shaped n-gon. There exists a polyline drawing of G with curve complexity at most one
that partially preserves the topology of G and that extends P .
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Figure 3 Illustration for the proof of Lemma 3. (a) The two polygons defined by the addition of
edge (vi, vj). (b) Case 1: (vh, vl) is contained in P2. (c) Case 2: (vh, vl) intersects (vi, vj).

Proof. We explain how to compute a drawing with the desired properties for the complete
graph Kn. Clearly a drawing of G can be obtained by removing the missing edges. Identify
each vertex of Kn with a distinct corner of P , and let {v0, v1, . . . , vn−1} be the n vertices of
Kn in the clockwise circular order they appear along the boundary of P . Note that every
edge (vi, vi+1), for i = 0, 1, . . . , n− 1 (indices taken modulo n), coincides with a side of P
and hence it is drawn as a straight-line segment. We now show how to draw all the edges
between vertices at distance greater than one. The distance between two vertices vi and vj
is the number of vertices encountered along P when walking clockwise from vi (excluded) to
vj (included). We orient each edge (vi, vj) from vi to vj if the distance between vi and vj is
smaller than or equal to the distance between vj and vi. The span of an oriented edge (vi, vj)
is equal to the distance between vi and vj . We add all oriented edges (vi, vj) by increasing
value of the span. Let c be an interior point of the kernel, for example its centroid. For any
pair of vertices vi and vj , let bi,j be the bisector of the angle swept by ri = cvi when rotated
clockwise around c until it overlaps with rj = cvj . We denote by Γk the drawing after the
addition of the first k ≥ 0 edges and maintain the following invariant for Γk.

For each oriented edge (vi, vj) not yet in Γk, there is a point pi,j on bi,j such that (vi, vj)
can be drawn with a bend at any point of the segment σi,j = cpi,j intersecting any edge
of Γk at most once (either at a crossing or at a common endpoint).

We will refer to the segment σi,j described in the invariant as the free segment of (vi, vj).
Since P is star-shaped, the invariant holds for Γ0; in particular the free segment of every
(vi, vj) is the intersection of bi,j with the kernel.

Let (vi, vj) be the k-th edge to be added and assume that the invariant holds for Γk−1.
We place the bend point of (vi, vj) at any point of the segment σi,j . By the invariant, the
resulting edge intersects any other existing edge at most once. We now prove that the
invariant is maintained. The drawing of the edge (vi, vj) divides the polygon P in two
sub-polygons (see Fig. 3a). We denote by P1 the one that contains the portion of the
boundary of P that is traversed when going clockwise from vi to vj , and by P2 the other
one. Notice that the point c is contained in P2. Let (vh, vl) be any oriented edge not in Γk.
Before the addition of (vi, vj), by the invariant there was a free segment σh,l for (vh, vl). By
construction, (vi, vj) intersects σh,l at most once. If (vi, vj) and σh,l intersect in a point p,
let p′ be any point between c and p on σh,l and let σ′h,l = cp′; if they do not intersect let
σ′h,l = σh,l. In both cases σ′h,l is completely contained in P2. We claim that σ′h,l is a free
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Figure 4 A simple topological graph with a triconnected planar skeleton that does not admit a
straight-line drawing that partially preserves its topology.

segment for (vh, vl). Because of the order used to add the edges, the span of (vh, vl) is at
least the span of (vi, vj). This implies that vh and vl cannot both belong to P1 (as otherwise
the span of (vh, vl) would be smaller than the span of (vi, vj)). We distinguish two cases.
Case 1: Both vh and vl belong to P2 (possibly coinciding with vi or vj). Refer to Fig. 3b.

For any point b of σ′h,l, the polyline π consisting of the two segments vhb and bvl is
completely contained in P2 and therefore does not intersects the edge (vi, vj) (except
possibly at a common end-vertex if vh or vl coincide with vi or vj). By the invariant, π
intersects any other existing edge at most once. Thus, σ′h,l is a free segment.

Case 2: One between vh and vl belongs to P1 and the other one belongs to P2. Refer to
Fig. 3c. For any point b of σ′h,l, the polyline π consisting of the two segments vhb and bvl
intersects the edge (vi, vj) exactly once. By the invariant, π intersects any other existing
edge at most once. Thus, σ′h,l is a free segment.

From the argument above we obtain that the final drawing of Kn has curve complexity
one and extends P . By removing the edges of Kn not in G, we obtain a polyline drawing Γ
of G with curve complexity one that extends P . Moreover, Γ partially preserves the topology
of G. Namely, the circular order of the edges around each vertex and the external boundary
are preserved by construction. Furthermore, since G is outer, any two of its edges cross if and
only if their four end-vertices appear interleaved when walking along its external boundary.
This property is preserved in Γ, because the order of the vertices along P is the same as the
order of the vertices along the external boundary of G, and because any two edges cross at
most once (either at a crossing or at a common endpoint). J

We use Lemma 3 to compute a polyline drawing Γ with constant curve complexity for
any simple topological graph G that has a biconnected planar skeleton σ(G). We triangulate
each face of σ(G) and compute a straight-line drawing of this triangulation, which contains a
drawing of σ(G) where each face is a star-shaped polygon. Then, since each edge of G \ σ(G)
is inside one face of σ(G), we draw these edges by using Lemma 3. Drawing Γ has curve
complexity one, which is worst-case optimal, even if the planar skeleton is triconnected (see,
e.g., Fig. 4).

I Theorem 4 (*). Let G be a simple topological graph that admits a planar augmentation
whose planar skeleton is biconnected. Then G has a polyline drawing with curve complexity
at most one that partially preserves its topology. The curve complexity is worst-case optimal.

If σ(G) is connected, we can draw G with three bends per edge.

I Theorem 5 (*). Let G be a simple topological graph that admits a planar augmentation
whose planar skeleton is connected. Then G has a polyline drawing with curve complexity at
most three that partially preserves its topology.



E. Di Giacomo, P. Eades, G. Liotta, H. Meijer, and F. Montecchiani 39:7

(a) (b) (c)

Figure 5 (a) A simple topological graph G. The planar skeleton σ(G) of G is shown in black.
(b) Augmentation of σ(G) to make it biconnected. (c) Augmentation of G. Each edge of G \ σ(G)
(in gray) is crossed by the augmenting edges at most twice.

Proof sketch. LetG′ be a planar augmentation ofG whose planar skeleton σ(G′) is connected.
The idea is to add a set E∗ of edges to make σ(G′) biconnected and then use Theorem 4.
For each face f (possibly including the external one) whose boundary contains at least one
cutvertex we execute the following procedure. Walk clockwise along the boundary of f and
let v0, v1, v2, . . . , vk be the sequence of vertices in the order they are encountered during
this walk, where the vertices that are encountered more than once (i.e., the cutvertices)
appear in the sequence only when they are encountered for the first time. For each pair of
consecutive vertices vi−1 and vi (for i = 1, 2, . . . , k) in the above sequence, if vi−1 and vi are
not adjacent in σ(G′), add to E∗ the edge (vi−1, vi). See Fig. 5a and 5b for an example. If
we add the edges of E∗ to G′ (embedded in the same way with respect to σ(G′)), we obtain
a new topological graph such that the edges of E∗ cross the edges of G′ \ σ(G) (see Fig. 5c).
Replacing each of the crossings created by the addition of E∗ with dummy vertices, we
obtain a new topological graph G′′ whose planar skeleton is biconnected. By Theorem 4 G′′
admits a drawing that partially preserves its topology and such that each edge has at most
one bend. Replacing dummy vertices with bends, we obtain a drawing of G′ that partially
preserves its topology. An edge e is split in at most three “pieces” in G′′. The two “pieces”
that are incident to the original vertices are not crossed in G′′ and therefore they belong to
σ(G′′) and are drawn without bends. The third “piece” is not in σ(G′′) and is drawn with at
most one bend. Thus, e has at most three bends. J

Theorems 4 and 5 show that constant curve complexity is sufficient for drawings that
partially preserve the topology of graphs whose planar skeleton is connected. It is worth
remarking that a drawing that fully preserves the topology may require Ω(n) curve complexity
even if the planar skeleton is connected. Namely, the planar skeleton of the graphs associated
with arrangements of pseudolines is always biconnected and, by Corollary 2, there exists one
such graph that has Ω(n) curve complexity.

One may wonder whether the constant curve complexity bound of Theorems 4 and 5 can
be extended to the case on non-connected planar skeletons. This question is answered in the
negative by the next theorem.

I Theorem 6 (*). There exists a simple topological graph with n vertices such that any
drawing that partially preserves its topology has curve complexity Ω(

√
n).

Proof sketch. Let L be an arrangement of pseudolines and let GL be the graph associated
with L. By Lemma 1 any drawing that fully preserves the topology of GL cannot have a

ISAAC 2018
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(a) (b)

Figure 6 (a) Straight-line drawing of the graph GL of Fig. 2b. (b) The graph GL for the
arrangement of Fig. 2a.

better curve complexity than L. On the other hand if we only want to partially preserve
the topology, GL can be realized without bends (see Fig. 6a for a straight-line drawing of
the graph of Fig. 2b). We now describe how to construct a supergraph GL of GL, such that
in any drawing of GL that partially preserves its topology, the topology of the subgraph
GL is fully preserved. Refer to Fig. 6b for an illustration concerning the graph of Fig. 2b.
The set E∗ of crossing edges of GL forms a set of cells inside the cycle C of GL (these cells
correspond to the internal faces of the planarization of GL). For each of these cells, we add a
vertex inside the cell and we connect two such vertices if the corresponding cells share a side.
For those cells that have as a side an edge e of C we add an edge between the vertex added
inside that cell and the two end-vertices of e. Let GL be the resulting topological graph and
let ΓL be a drawing that partially preserves the topology of GL. It can be proved that the
sub-drawing ΓL of ΓL representing GL fully preserves the topology of GL.

Denote by LN the arrangement of N pseudolines defined by Eppstein et al. [11]. By the
argument above, any polyline drawing that partially preserves the topology of the graph
GLN

contains a sub-drawing of GLN
that fully preserves its topology and that hence has

curve complexity Ω(N) by Lemma 1. The number of vertices of GLN
is 2N + 1 and the

number of cells is Θ(N2). This implies that the number of vertices of GLN
is n = Θ(N2).

Thus, any drawing that partially preserves the topology of GLN
has curve complexity

Ω(N) = Ω(
√
n). J

Based on Theorem 6 one may wonder whether O(
√
n) curve complexity is sufficient when

the skeleton is not connected. The following theorem states a preliminary result in this
direction, extending Theorem 5 to the case that the planar skeleton consists of at most c
connected components.

I Theorem 7 (*). Let G be a simple topological graph that admits a planar augmentation
whose planar skeleton has c connected components. Then G has a polyline drawing with curve
complexity at most 4c− 1 that partially preserves its topology.

4 Polyline Drawings that Fully Preserve the Topology

In this section we study polyline drawings of constant curve complexity for two meaningful
families of beyond-planar graphs. Namely, we consider k-skew graphs and 2-plane graphs. A
simple topological graph G = (V,E) is k-skew if there is a set F ⊆ E of k edges such that
G′ = (V,E \ F ) does not contain crossings. A simple topological graph is 2-plane if every
edge is crossed by at most two other edges. A 2-plane graph with n vertices can have at most
5n− 10 edges and it is called optimal 2-plane if it has exactly 5n− 10 edges. We prove that
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(a) (b) (c)

Figure 7 (a) A topological graph G with a set F of 2 edges (in green) whose deletion makes G
planar. (b) A topological graph G′′ formed from G by splitting the edges of F with a dummy vertex
and adding a sleeve around each portion of the split edges. (c) The graph obtained by deleting the
interior of each sleeve in G′′ and triangulating the graph except for the faces formed by the sleeves.

the graphs belonging to these two families admit a polyline drawing that fully preserves the
topology and has constant curve complexity. A tool that we are going to use is the algorithm
of Chiba et al. [7] that receives as input a 3-connected plane graph G whose external face
has k ≥ 3 vertices, and a convex polygon P with k corners. The algorithm computes a
straight-line drawing Γ of G that fully preserves the topology of G, it has polygon P as its
external face, and all internal faces are convex. Moreover, if three consecutive vertices belong
to a same face and are collinear in the computed drawing, we can slightly perturb one of
them without destroying the convexity of the other faces. Thus, we can assume that all faces
of Γ are strictly convex.

We first show that a k-skew topological graph admits a polyline drawing that fully
preserves the topology of G and has at most 2k bends per edge. The technique is based on
an approach that we call the sleeve method and that is illustrated in the following.

The sleeve method. Suppose that G is a topological graph such that the removal of the
edge (s, t) makes G without crossings. Let Eχ be the set of edges that cross (s, t) and suppose
that α is a crossing between edges (s, t) and (u, v) ∈ Eχ in G. If the clockwise order of the
vertices around α is 〈s, u, t, v〉, then u is a left vertex and v is a right vertex (with respect
to the ordered pair (s, t) and the crossing α). We add a “sleeve” around (s, t), as follows.
Number the edges of Eχ = {e1, e2, . . . , ep} in the order of their crossings α1, α2, . . . , αp along
(s, t), so that ei = (ui, vi) crosses (s, t) at αi, ui is left, and vi is right. We subdivide each edge
(ui, vi) with dummy vertices u′i and v′i so that the edge (ui, vi) becomes a path (ui, u′i, v′i, vi)
with the crossing point αi in between u′i and v′i. Note that after this subdivision, u′i is left
and v′i is right, and ui and vi are neither left nor right. Next we add a path pL that begins
at s and visits each of the left dummy vertices u′i in the order u1, u2, . . . , up, and ends at t.
Similarly we add a path pR that visits s, all the right vertices, and then t. We call the cycle
formed by pL and pR a sleeve. Note that the interior of the sleeve contains the edges (u′i, v′i)
and the edge (s, t), but no other vertices or edges. The next theorem explains how to draw
k-skew graphs with curve complexity 2k.

I Theorem 8. Every k-skew simple topological graph admits a polyline drawing with curve
complexity at most 2k that fully preserves its topology.

Proof. Suppose that G = (V,E) is a topological graph and there is a set F ⊆ E of k edges
such that deleting all the edges in F from G gives a planar topological graph. An example
with k = 2 is in Fig. 7a. Replace each crossing between a pair of edges in F with a dummy
vertex, and let G′ be the resulting graph. In G′ there is a set F ′ of edges such that no two

ISAAC 2018
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Figure 8 (a) A 1-skew graph with an inconsistent vertex (larger and purple). (b) A 1-skew graph
with an internal inconsistent face (shaded), in which every vertex is consistent.

edges in F ′ cross, and deleting all the edges in F ′ from G′ gives a planar topological graph.
Here |F ′| ≤ k + 2c, where c is the number of crossings between edges in F . Also, note that
the number of such crossings on each edge in F is at most k − 1. Now add a sleeve around
each edge (s, t) ∈ F ′ using the sleeve method, and let G′′ be the resulting graph (see Fig. 7b).
Note that two such sleeves do not share any edge, and they share at most one vertex. Delete
the interior of each sleeve in G′′ to give a planar topological graph G′′′. Note that each sleeve
of G′′ gives a face of G′′′. Now triangulate G′′′ except for the faces of G′′′ formed by the
sleeves (see Fig. 7c).

The resulting graph Giv is triconnected by Barnette’s Theorem [3], since two faces share
at most one edge or at most one vertex. We can construct a planar drawing Γiv of Giv using
the convex drawing algorithm of Chiba et al. [7]. Each face of Γiv is convex, including each
face that comes from a sleeve. Drawing the edges of G′′ inside each sleeve as straight-line
segments gives a straight-line drawing of G′′. Deleting the dummy edges of the sleeves, and
replacing the dummy vertices of the sleeves by bends, we have a polyline drawing Γ of G that
fully preserves the embedding of G. The only bends are (1) at the crossing points between
edges of F , and (2) at the dummy vertices of the sleeves. Let e be an edge of G. If e ∈ E \F ,
then e crosses at most k edges (those in F ) and each of these crossings creates two dummy
vertices in a sleeve of G′′, thus resulting in 2k bends. If e ∈ F , then it has bends at the
crossings with other edges of F , which are at most k − 1. J

By Theorem 8 we can draw a 1-skew topological graph with two bends per edge. We now
prove that these graphs can be drawn using only one bend per edge. To this aim we first
recall some results from [10]. We say that a vertex is inconsistent with respect to the edge
(s, t) if it is both left and right with respect to (s, t), and consistent otherwise. For example,
the graph in Fig. 8a has an inconsistent vertex. Observe that in a straight-line drawing of a
topological graph, an inconsistent vertex would have to be both left and right of the straight
line through s and t. This gives the following necessary condition.

I Lemma 9 ([10]). A 1-skew simple topological graph with an inconsistent vertex has no
straight-line drawing that fully preserves its topology.

Without additional assumptions, the converse of Lemma 9 is false. For an example,
consider Fig. 8b; this graph has no straight-line drawing, even though all vertices are
consistent. The problem is that the internal face (s, u, t, v) has both left and right vertices;
as such, this face is inconsistent. To explore the converse of Lemma 9, we can assume that
the topological graph is maximal 1-skew (that is, no edge can be added while retaining the
property of being 1-skew). Namely, it has been proven that every 1-skew simple topological
graph G with no inconsistent vertices can be augmented with dummy edges so that the
resulting graph has no inconsistent vertices, it is maximal 1-skew, and it fully preserves the
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Figure 9 (a) A left half-sleeve is added to the graph G in Fig. 8(b) to form G∗L. (b) G∗LLR has an
internal inconsistent face. (c) A right half-sleeve is added to the graph G in Fig. 8(b) to form G∗R.
(d) G∗RLR has no internal inconsistent face.

topology of its subgraph G [10] . Note that both the simple topological graphs in Fig. 8 are
maximal 1-skew. We denote the set of left (resp. right) vertices of a 1-skew topological graph
G by VL (resp. VR), the subgraph of G induced by VL ∪ {s, t} (resp. VR ∪ {s, t}) by GL
(resp. GR), the union of GL and GR by GLR. Note that GL and GR are induced subgraphs,
but GLR is not necessarily induced as a subgraph of G. The following is proved in [10].

I Lemma 10 ([10]). Let G be a maximal 1-skew graph with all vertices consistent. Then:
(a) GLR has exactly one inconsistent face, and this face contains both s and t; and
(b) G has a straight-line drawing that fully preserves its topology if and only if the inconsistent

face of GLR is the external face (of GLR).

Let (s, t) be the edge of G whose removal makes G planar. It is clear that after adding a
sleeve around edge (s, t), the conditions of Lemma 10 are satisfied and thus, we can compute
a straight-line drawing, which after removing the dummy vertices of the sleeve, gives rise to
a drawing with at most two bends per edge. To prove that one bend per edge suffices, we
need a more subtle argument.

I Theorem 11 (*). Every 1-skew simple topological graph admits a polyline drawing with
curve complexity at most one that fully preserves its topology. The curve complexity is
worst-case optimal.

Proof sketch. Instead of placing a sleeve around the edge (s, t), we use a “half-sleeve”,
as follows. Again let Eχ be the set of edges that cross (s, t). We 1-subdivide each edge
(u, v) ∈ Eχ with a dummy vertex on the left side of the crossing between (u, v) and (s, t),
then add a path pL that begins at s and visits each of the left dummy vertices in the order
that their incident edges cross (s, t), and ends at t. Denote the graph obtained from G by
adding this “left half-sleeve” as above by G∗L. Similarly, we could add a “right half-sleeve”
to obtain a topological graph G∗R. It is clear that every vertex in both G∗L and G∗R is
consistent. Note also that we have only added one dummy vertex on each edge (u, v) ∈ Eχ;
we aim to draw each of these edges with only one bend per edge. However, it is not clear
that the internal faces of G∗LLR and G∗RLR are consistent. Consider, for example, the graph
G in Fig. 8(b). For this graph, Fig 9 shows G∗L, G∗R, G∗LLR and G∗RLR. Note that G∗LLR has
an internal inconsistent face, while G∗RLR does not. One can show that at most one of the
graphs G∗LLR and G∗RLR has an internal inconsistent face. Thus, by Lemma 10, one of these
two graphs admits a straight-line drawing which becomes a drawing with curve complexity
one after the removal of the dummy vertices used to construct the half-sleeve. J

We conclude this section with our results about optimal 2-plane graphs.
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I Theorem 12 (*). Every optimal 2-plane graph has a polyline drawing Γ that fully preserves
its topology and that has one of the following properties:
(a) Γ has two bends in total.
(b) Γ has curve complexity one and every crossing angle is at least π

2 − ε, for any ε > 0.
(c) Γ has curve complexity two and every crossing angle is exactly π

2 .

5 Open Problems

Theorem 6 proves a lower bound of Ω(
√
n) on the curve complexity of polyline drawings that

partially preserve the topology and that do not have a connected skeleton. It may be worth
understanding whether this bound is tight.

Theorem 12 proves that for optimal 2-plane graphs a crossing angle resolution arbitrarily
close to π

2 can be achieved with curve complexity one, while optimal crossing angle of π2 is
achieved at the expenses of curve complexity two. Can optimal crossing angle resolution
and curve complexity one be simultaneously achieved? A positive answer to this question is
known if the planar skeleton of the graph is a dodecahedron [5].

Finally, a natural research direction suggested by the research in this paper is to extend
the study of the curve complexity of drawings that fully preserve the topology to other families
of beyond-planar topological graphs. For example, it would be interesting to understand
whether Theorem 12 can be extended to non-optimal 2-plane graphs.

References

1 Bernardo M. Ábrego, Oswin Aichholzer, Silvia Fernández-Merchant, Thomas Hackl, Jürgen
Pammer, Alexander Pilz, Pedro Ramos, Gelasio Salazar, and Birgit Vogtenhuber. All Good
Drawings of Small Complete Graphs. In EuroCG 2015, pages 57–60, 2015.

2 Oswin Aichholzer, Thomas Hackl, Alexander Pilz, Gelasio Salazar, and Birgit Vogtenhuber.
Deciding monotonicity of good drawings of the complete graph. In EGC 2015, pages 33–36,
2015.

3 David W. Barnette. 2-Connected Spanning Subgraphs of Planar 3-Connected Graphs. J.
Combin. Theory Ser. B, 61(2):210–216, 1994.

4 Michael A. Bekos, Michael Kaufmann, and Fabrizio Montecchiani. Guest Editors’ Foreword
and Overview. J. Graph Algorithms Appl., 22(1):1–10, 2018.

5 Michael A. Bekos, Michael Kaufmann, and Chrysanthi N. Raftopoulou. On Optimal 2- and
3-Planar Graphs. In SOCG 2017, volume 77 of LIPIcs, pages 16:1–16:16. LZI, 2017.

6 Steven Chaplick, Fabian Lipp, Alexander Wolff, and Johannes Zink. 1-Bend RAC Drawings
of NIC-Planar Graphs in Quadratic Area. In GD 2018. Springer, To appear.

7 Norishige Chiba, Kazunori Onoguchi, and Takao Nishizeki. Drawing plane graphs nicely.
Acta Inform., 22(2):187–201, 1985.

8 Walter Didimo, Giuseppe Liotta, and Fabrizio Montecchiani. A Survey on Graph Drawing
Beyond Planarity. CoRR, abs/1804.07257, 2018. arXiv:1804.07257.

9 Stephane Durocher and Debajyoti Mondal. Relating Graph Thickness to Planar Layers
and Bend Complexity. In ICALP 2016, volume 55 of LIPIcs, pages 10:1–10:13. LZI, 2016.

10 Peter Eades, Seok-Hee Hong, Giuseppe Liotta, Naoki Katoh, and Sheung-Hung Poon.
Straight-Line Drawability of a Planar Graph Plus an Edge. In WADS 2015, pages 301–313.
Springer, 2015.

11 David Eppstein, Mereke van Garderen, Bettina Speckmann, and Torsten Ueckerdt. Convex-
Arc Drawings of Pseudolines. CoRR, abs/1601.06865, 2016. arXiv:1601.06865.

12 István Fáry. On straight line representations of planar graphs. Acta Univ. Szeged. Sect.
Sci. Math., 11:229–233, 1948.

http://arxiv.org/abs/1804.07257
http://arxiv.org/abs/1601.06865


E. Di Giacomo, P. Eades, G. Liotta, H. Meijer, and F. Montecchiani 39:13

13 Emilio Di Giacomo, Petere Eades, Giuseppe Liotta, Henk Meijer, and Fabrizio Montec-
chiani. Polyline Drawings with Topological Constraints. CoRR, abs/1809.08111, 2018.
arXiv:1809.08111.

14 Jan Kratochvíl, Anna Lubiw, and Jaroslav Nešetřil. Noncrossing Subgraphs in Topological
Layouts. SIAM J. Discrete Math., 4(2):223–244, 1991.

15 Jan Kynčl. Simple Realizability of Complete Abstract Topological Graphs in P. Discrete
Comput. Geom., 45(3):383–399, 2011.

16 Jan Kynčl. Enumeration of simple complete topological graphs. European Journal of
Combinatorics, 30(7):1676–1685, 2009.

17 Sherman K. Stein. Convex maps. Proc. Am. Math. Soc., 2(3):464–466, 1951.
18 Klaus Wagner. Bemerkungen zum Vierfarbenproblem. Jahresber. Dtsch. Math. Ver., 46:26–

32, 1936.

ISAAC 2018

http://arxiv.org/abs/1809.08111

	Introduction
	Preliminaries
	Polyline Drawings that Partially Preserve the Topology
	Polyline Drawings that Fully Preserve the Topology
	Open Problems

