
Algorithms for Coloring Reconfiguration Under
Recolorability Constraints

Hiroki Osawa
Graduate School of Information Sciences, Tohoku University, Japan
osawa@ecei.tohoku.ac.jp

Akira Suzuki1

Graduate School of Information Sciences, Tohoku University, Japan
a.suzuki@ecei.tohoku.ac.jp

https://orcid.org/0000-0002-5212-0202

Takehiro Ito2

Graduate School of Information Sciences, Tohoku University, Japan
takehiro@ecei.tohoku.ac.jp

https://orcid.org/0000-0002-9912-6898

Xiao Zhou3

Graduate School of Information Sciences, Tohoku University, Japan
zhou@ecei.tohoku.ac.jp

Abstract
Coloring reconfiguration is one of the most well-studied reconfiguration problems. In the
problem, we are given two (vertex-)colorings of a graph using at most k colors, and asked to
determine whether there exists a transformation between them by recoloring only a single vertex
at a time, while maintaining a k-coloring throughout. It is known that this problem is solvable
in linear time for any graph if k ≤ 3, while is PSPACE-complete for a fixed k ≥ 4. In this paper,
we further investigate the problem from the viewpoint of recolorability constraints, which forbid
some pairs of colors to be recolored directly. More specifically, the recolorability constraint is
given in terms of an undirected graph R such that each node in R corresponds to a color, and
each edge in R represents a pair of colors that can be recolored directly. In this paper, we give
a linear-time algorithm to solve the problem under such a recolorability constraint if R is of
maximum degree at most two. In addition, we show that the minimum number of recoloring
steps required for a desired transformation can be computed in linear time for a yes-instance. We
note that our results generalize the known positive ones for coloring reconfiguration.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases combinatorial reconfiguration, graph algorithm, graph coloring

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2018.37

1 Partially supported by JST CREST Grant Number JPMJCR1402, and JSPS KAKENHI Grant Numbers
JP17K12636 and JP18H04091, Japan.

2 Partially supported by JST CREST Grant Number JPMJCR1402, and JSPS KAKENHI Grant Numbers
JP16K00004 and JP18H04091, Japan.

3 Partially supported by JSPS KAKENHI Grant Number JP16K00003, Japan.

© Hiroki Osawa, Akira Suzuki, Takehiro Ito, and Xiao Zhou;
licensed under Creative Commons License CC-BY

29th International Symposium on Algorithms and Computation (ISAAC 2018).
Editors: Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou Liao; Article No. 37; pp. 37:1–37:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/162456739?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:osawa@ecei.tohoku.ac.jp
mailto:a.suzuki@ecei.tohoku.ac.jp
https://orcid.org/0000-0002-5212-0202
mailto:takehiro@ecei.tohoku.ac.jp
https://orcid.org/0000-0002-9912-6898
mailto:zhou@ecei.tohoku.ac.jp
https://doi.org/10.4230/LIPIcs.ISAAC.2018.37
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


37:2 Algorithms for Coloring Reconfiguration Under Recolorability Constraints

(a)

1 2

34

(b)

2
1

43
1

4

3
2

4 3
2

1 4
2

1 4
3

1

2
3

12
3

4

f0f1 f6f7

f2 f3 f4 f5

(c)

Figure 1 (a) An input graph G, (b) a recolorability graph R with four colors 1, 2, 3 and 4, and
(c) an (f0 → f7)-reconfiguration sequence.

1 Introduction

Combinatorial reconfiguration [10, 11, 13] has been studied intensively in the field of theoretical
computer science. In a typical reconfiguration problem, we are given two feasible solutions of a
search problem instance (e.g., graph colorings, independent sets, satisfying truth assignments),
and asked to check the existence of a step-by-step transformation between them such that all
intermediate results are also feasible and each step conforms to a fixed reconfiguration rule,
that is, an adjacency relation defined on feasible solutions of the original search problem
instance.

For example, the coloring reconfiguration problem is one of the most well-studied
reconfiguration problems, defined as follows [3, 7]. For an integer k ≥ 1, we are given two
k-colorings f0 and fr of the same graph G, and asked to determine whether there exists a
sequence 〈f0, f1, . . . , f`〉 of k-colorings of G such that f` = fr and fi is obtained from fi−1 by
recoloring a single vertex of G for each i ∈ {1, 2, . . . , `}. Figure 1(c) shows an example of a
desired sequence 〈f0, f1, . . . , f7〉 of 4-colorings, where G is a complete graph K3 as illustrated
in Figure 1(a).

The complexity of coloring reconfiguration has been clarified based on several
“standard” measures (e.g., the number of colors [3, 7, 12] and graph classes [1, 2, 5, 8, 9, 16])
which are used well also for analyzing the original search problem. On the other hand,
in [14], we have introduced a new concept, called the recolorability constraint on colors, to
analyze the complexity of coloring reconfiguration more precisely. This concept is
newly tailored for coloring reconfiguration, and forbids some pairs of colors to be
recolored directly.

1.1 Our problem
For an integer k ≥ 1, let C be the color set of k colors 1, 2, . . . , k. Let G be a graph with
vertex set V (G) and edge set E(G). Recall that a k-coloring of G is a mapping f : V (G)→ C

such that f(v) 6= f(w) holds for any edge vw ∈ E(G). The recolorability on C is given in
terms of an undirected graph R, called the recolorability graph on C, such that V (R) = C;
each edge ij ∈ E(R) represents a “recolorable” pair of colors i, j ∈ V (R) = C. Then, two
k-colorings f and f ′ of G are adjacent (under R) if the following two conditions hold:
(a)

∣∣{v ∈ V (G) : f(v) 6= f ′(v)}
∣∣ = 1, that is, f ′ can be obtained from f by recoloring a single

vertex v ∈ V (G); and
(b) if f(v) 6= f ′(v) for a vertex v ∈ V (G), then f(v)f ′(v) ∈ E(R), that is, the colors f(v)

and f ′(v) form a recolorable pair.



H. Osawa, A. Suzuki, T. Ito, and X. Zhou 37:3

1 2 3 1 2

(a) (b)

3 2

(c)

Figure 2 (a) Recolorability graph R with three colors 1, 2 and 3, and (b) and (c) 3-colorings f0

and fr of a graph consisting of a single edge, respectively.

For each i ∈ {1, 2, . . . , 7}, two 4-colorings fi−1 and fi in Figure 1(c) are adjacent under the
recolorability graph R in Figure 1(b). Note that the known adjacency relation for coloring
reconfiguration requires only Condition (a) above, that is, we can recolor a vertex from
any color to any color directly. Observe that this corresponds to the case where R is a
complete graph of size k, and hence our adjacency relation generalizes the known one.

Given a graph G, two k-colorings f0 and fr of G, and a recolorability graph R on C, the
coloring reconfiguration problem under recolorability is the decision problem
of determining whether there exists a sequence 〈f0, f1, . . . , f`〉 of k-colorings of G such
that f` = fr and fi−1 and fi are adjacent under R for all i ∈ {1, 2, . . . , `}; such a desired
sequence is called an (f0 → fr)-reconfiguration sequence, and its length (i.e., the number of
recoloring steps) is defined as `. For example, the sequence 〈f0, f1, . . . , f7〉 in Figure 1(c) is
an (f0 → f7)-reconfiguration sequence whose length is seven.

We emphasize that the concept of recolorability constraints changes the reachability of
k-colorings drastically. For example, the (f0 → f7)-reconfiguration sequence in Figure 1(c) is
a shortest one between f0 and f7 under the recolorability graph R in Figure 1(b). However,
in coloring reconfiguration (in other words, if R would be K4 and would have the
edge joining colors 1 and 3), we can recolor the (top) vertex of G from 1 to 3 directly. As
another example, the instance illustrated in Figure 2 is a no-instance for our problem, but is
a yes-instance for coloring reconfiguration with k = 3.

1.2 Related and known results
As we mentioned, coloring reconfiguration has been studied intensively [1, 2, 3, 4, 5, 7,
8, 9, 12, 15, 16]. In particular, a sharp analysis has been obtained from the viewpoint of the
number k of colors: Bonsma and Cereceda [3] proved that coloring reconfiguration is
PSPACE-complete even for a fixed k ≥ 4. On the other hand, Cereceda et al. [7] proved that
coloring reconfiguration is solvable in polynomial time for any graph if k ∈ {1, 2, 3}.
Brewster et al. [6] generalized this sharp analysis to circular coloring reconfiguration.
We also note that Johnson et al. [12] gave a linear-time algorithm to solve coloring
reconfiguration for any graph and k ∈ {1, 2, 3}; indeed, their algorithm can determine in
linear time whether an (f0 → fr)-reconfiguration sequence exists or not, and can compute
its shortest length in linear time if it exists.

In [14], we introduced the concept of recolorability constraints, and showed the compu-
tational hardness of coloring reconfiguration under recolorability based on the
graph structure of recolorability graphs R. More specifically, we proved that the problem is
PSPACE-complete if (1) R is of maximum degree at least four, or (2) R contains a connected
component having at least two cycles. These results are strong in the sense that they show
the PSPACE-completeness for all recolorability graphs satisfying (1) or (2). Furthermore,
the latter result (2) implies that the problem is PSPACE-complete if R = K4. Therefore, the
results (1) and (2) generalize the known PSPACE-completeness for coloring reconfig-
uration with k ≥ 4. In this sense, the results in [14] gave a sharper analysis and a better
understanding of the computational hardness of coloring reconfiguration.

ISAAC 2018



37:4 Algorithms for Coloring Reconfiguration Under Recolorability Constraints

1.3 Our contribution
Despite the concept of recolorability graphs R generalized and sharpened the known PSPACE-
completeness successfully, there is no algorithmic (positive) result for coloring recon-
figuration under recolorability except for the special case of R = K3 obtained from
coloring reconfiguration [7, 12]. In this paper, we thus study the polynomial-time
solvability of our problem, and generalize the known algorithmic results from the viewpoint
of the graph structure of recolorability graphs. Specifically, our main result can be stated as
the following theorem:

I Theorem 1. Suppose that a recolorability graph R is of maximum degree at most two, and
let k = |V (R)|. For any graph G with n vertices and m edges, coloring reconfiguration
under recolorability can be solved in O(k + n+m) time. Furthermore, if an (f0 → fr)-
reconfiguration sequence exists for two k-colorings f0 and fr of G, then

its shortest length can be computed in O(k + n+m) time; and
a shortest (f0 → fr)-reconfiguration sequence can be output in O(kn(n+m)) time.

We emphasize that Theorem 1 holds for any graph G, and only the structure of R is
restricted. Since K3 is of maximum degree two, Theorem 1 generalizes the known positive
results for coloring reconfiguration [7, 12]. Note that k is not always a constant (indeed,
can be larger than n).

In this paper, we prove Theorem 1 as follows. We start by giving an observation that a
recolorability graph R can be assumed to be connected without loss of generality (Section 2).
Then, since the maximum degree of R is two, R is either a path or a cycle. In Section 3, we
will prove Theorem 1 for the case where R is a path. Sections 4 and 5 are devoted to the
case where R is a cycle; the algorithm in Section 4 only checks whether a given instance is a
yes-instance or not, and the one in Section 5 computes the shortest length for a yes-instance.

Due to the page limitation, proofs of the claims marked with (*) are omitted from this
extended abstract.

2 Preliminaries

Since we deal with (vertex-)coloring, we may assume without loss of generality that an input
graph G is simple, connected and undirected. Let n = |V (G)| and m = |E(G)|. For a vertex
subset V ′ ⊆ V (G), we denote by G[V ′] the subgraph of G induced by V ′.

For a graph G and a recolorability graph R on C, we define the R-reconfiguration graph
on G, denoted by CR(G), as follows: CR(G) is an undirected graph such that each node of
CR(G) corresponds to a k-coloring of G, and two nodes in CR(G) are joined by an edge if their
corresponding k-colorings are adjacent under R. We sometimes call a node in CR(G) simply
a k-coloring if it is clear from the context. A path in CR(G) from a k-coloring f to another
one f ′ is called an (f → f ′)-reconfiguration sequence. Note that any (f → f ′)-reconfiguration
sequence is reversible, that is, the path in CR(G) forms an (f ′ → f)-reconfiguration sequence,
too. Then, the coloring reconfiguration problem under recolorability can be seen
as the decision problem of determining whether CR(G) contains an (f0 → fr)-reconfiguration
sequence for two given k-colorings f0 and fr of G. Note that the problem does not ask for an
actual (f0 → fr)-reconfiguration sequence as the output. We always denote by f0 and fr two
given k-colorings of G as an input of the problem. For two k-colorings of f and f ′ in CR(G),
we denote by dist(f, f ′) the shortest length (i.e., the minimum number of edges in CR(G)) of
an (f → f ′)-reconfiguration sequence if it exists; otherwise we let dist(f, f ′) = +∞.



H. Osawa, A. Suzuki, T. Ito, and X. Zhou 37:5

We note that a given recolorability graph R can be assumed to be connected without loss
of generality. To see this, first observe that no (f0 → fr)-reconfiguration sequence exists if
there is a vertex u ∈ V (G) such that the colors f0(u) and fr(u) belong to different connected
components of R. Next, consider any two vertices v, w ∈ V (G) such that the colors f0(v)
and f0(w) belong to different connected components R1 and R2 of R, respectively. Then,
since V (R1) ∩ V (R2) = ∅, we can independently recolor vertices v and w. In this way, we
can assume without loss of generality that R is connected.

To describe our algorithms, we sometimes use the notion of digraphs (i.e., directed graphs).
For an undirected graph G, we denote by −→G a digraph whose underlying graph is G, and
also denote by A(−→G) the arc set of −→G . We denote by vw an edge joining two vertices v and
w in an undirected graph, while by (v, w) an arc from v to w in a digraph. In this paper, we
say that a digraph −→G is connected if −→G is weakly connected, that is, the underlying graph G
is connected. A vertex v in a digraph −→G is called a source vertex if the in-degree of v is zero,
while it is called a sink vertex if the out-degree of v is zero. A sequence v0a1v1a2v2 . . . alvl

of vertices v0, v1, . . . , vl and arcs a1, a2, . . . , al in
−→
G is called a forward walk from v0 on −→G

if it forms a directed walk from v0 to vl (with repeated arcs and vertices allowed), that is,
ai is the arc from vi−1 to vi for all i ∈ {1, 2, . . . , l}; while it is called a backward walk to
v0 on −→G if it is a directed walk from vl to v0, that is, ai is the arc from vi to vi−1 for all
i ∈ {l, l − 1, . . . , 1}.

3 Algorithms for Path Recolorability

In this section, we consider the case where R is a path. We first prove that the existence of
an (f0 → fr)-reconfiguration sequence can be checked in linear time, as follows.

I Theorem 2. Coloring reconfiguration under recolorability for any graph G
can be solved in O(k + n+m) time if a recolorability graph R is a path.

We prove Theorem 2 by giving such an algorithm. We first rename the colors in R

so that the colors 1, 2, . . . , k appear in a numerical order along the path R, and modify
two k-colorings f0 and fr accordingly; this can be done in O(k + n) time. Then, the most
important property for the path recolorability is that any recoloring step preserves the “order”
of colors assigned to two adjacent vertices in G: If a k-coloring f of G assigns colors to
two adjacent vertices v, w ∈ V (G) such that f(v) < f(w), then f ′(v) < f ′(w) holds for any
k-coloring f ′ such that an (f → f ′)-reconfiguration sequence exists. Indeed, this property
yields the following necessary and sufficient condition, which can be checked in O(m) time;
and hence Theorem 2 holds.

I Lemma 3 (*). An (f0 → fr)-reconfiguration sequence exists on CR(G) if and only if
fr(v) < fr(w) holds for any vw ∈ E(G) such that f0(v) < f0(w).

We next give a linear-time algorithm to compute dist(f0, fr); together with Theorem 2,
this completes the proof of Theorem 1 for the path recolorability.

I Theorem 4. Suppose that a recolorability graph R is a path, and let f0 and fr be two
k-colorings of a graph G such that an (f0 → fr)-reconfiguration sequence exists on CR(G).
Then,
(a) dist(f0, fr) =

∑
v∈V (G) |fr(v)− f0(v)|;

(b) dist(f0, fr) can be computed in O(k + n+m) time; and
(c) a shortest (f0 → fr)-reconfiguration sequence can be output in O(kn(n+m)) time.

ISAAC 2018



37:6 Algorithms for Coloring Reconfiguration Under Recolorability Constraints

By Theorem 2 we can check in O(k + n + m) time if an (f0 → fr)-reconfiguration
sequence exists on CR(G). Then, Theorem 4(b) immediately follows from Theorem 4(a).
Therefore, we will prove Theorem 4(a) and (c), as follows: Observe that dist(f0, fr) ≥∑

v∈V (G) |fr(v)− f0(v)| holds, because each recoloring step can change the current color of
a vertex v ∈ V (G) to its adjacent color in R, and hence each vertex v ∈ V (G) requires at
least |fr(v)− f0(v)| recoloring steps. Therefore, the following lemma completes the proof of
Theorem 4.

I Lemma 5 (*). There exists an (f0 → fr)-reconfiguration sequence on CR(G) of length∑
v∈V (G) |fr(v)− f0(v)|. Furthermore, it can be output in O(kn(n+m)) time.

4 Algorithm for Reachability on Cycle Recolorability

In this section, we consider the case where R is a cycle, and show that the existence of an
(f0 → fr)-reconfiguration sequence can be checked in linear time; the shortest length will be
discussed in the next section. We prove the following theorem in this section.

I Theorem 6. Coloring reconfiguration under recolorability for any graph G
can be solved in O(k + n+m) time if a recolorability graph R is a cycle.

Since K3 is a cycle, Theorem 6 immediately implies the following corollary.

I Corollary 7 ([12]). Coloring reconfiguration with k = 3 can be solved in linear time.

We will prove Theorem 6 by giving such an algorithm, as follows. In Section 4.1, we give
a simple necessary condition for a yes-instance based on the concept of “frozen” vertices;
the idea is simple, but we need a nice characterization of frozen vertices for checking the
condition in linear time. In Section 4.2, we then give a necessary and sufficient condition
for a yes-instance by defining a potential function which appropriately characterizes the
reconfigurability of k-colorings; however, this condition cannot be checked in linear time by
a naive way. In Section 4.3, we thus explain how to check the condition in linear time.

We rename the colors in R so that the colors 1, 2, . . . , k appear in a numerical order along
the cycle R, and modify two k-colorings f0 and fr accordingly; this can be done in O(k + n)
time. For notational convenience, we define the successor color c+ and the predecessor color
c− for a color c ∈ V (R), as follows:

c+ =
{
c+ 1 if c < k;
1 if c = k,

and c− =
{
c− 1 if c > 1;
k if c = 1.

We use this notation also for a color assigned by a k-coloring: For a k-coloring f of a graph
G and a vertex v in G, we denote by f(v)+ and f(v)− the successor and predecessor colors
for f(v), respectively. In this and later sections, we call a k-coloring of G simply a coloring.

4.1 Frozen vertices
We now define the concept of “frozen” vertices [7] from the viewpoint of recoloring, which
plays an important role in our algorithm. For a coloring f of a graph G and a recolorability
graph R on C, a vertex v ∈ V (G) is said to be frozen on f (under R) if f(v) = f ′(v) holds
for any coloring f ′ of G such that CR(G) has an (f → f ′)-reconfiguration sequence. For a
coloring f of G, we denote by Frozen(f) the set of all vertices in G that are frozen on f .
The following lemma gives a simple necessary condition, which immediately follows from the
definition of frozen vertices.



H. Osawa, A. Suzuki, T. Ito, and X. Zhou 37:7

1
2

3

i

k
1

2

k

2
3

i

k
1

1

k

i+ j j

j+

-

j-

(a) (b)

Figure 3 Characterization of frozen vertices.

I Lemma 8. Suppose that there exists an (f → f ′)-reconfiguration sequence for two colorings
f and f ′ of a graph G. Then, Frozen(f) = Frozen(f ′), and f(v) = f ′(v) holds for every
vertex v in Frozen(f).

Note that it is not trivial to compute Frozen(f) for a coloring f in linear time. However,
we will give a characterization of frozen vertices (in Lemma 9), which enables us to compute
all of them in linear time (as proved in Lemma 10). We note that Lemma 9 generalizes the
characterization of frozen vertices on coloring reconfiguration with k = 3 given by
Cereceda et al. [7].

To characterize the frozen vertices, we introduce some notation and terms. For a graph
G and its coloring f , let −→H f be the digraph with vertex set V (−→H f ) = V (G) and arc set

A(−→H f ) = {(v, w) : vw ∈ E(G) and f(v)+ = f(w)}.

Notice that an arc (v, w) ∈ A(−→H f ) implies that f(v) = f(w)−, and represents that, if we
wish to recolor v from f(v) to f(v)+, we need to recolor w from f(w) (= f(v)+) to f(w)+

in advance. The forward blocking graph from v on a coloring f , denoted by −→B+(v, f), is
the subgraph of −→H f consisting of all forward walks from v on −→H f . Similarly, the backward
blocking graph to v on a coloring f , denoted by −→B−(v, f), is the subgraph of −→H f consisting
of all backward walks to v on −→H f . Then, we have the following lemma. (See also Figure 3.)

I Lemma 9 (*). A vertex v ∈ V (G) is frozen on f if and only if it satisfies the following
conditions (a) or (b):
(a) v is contained in a directed cycle in −→H f ; or
(b) −→H f has a forward walk from v to a vertex in a directed cycle, and also has a backward

walk from a vertex in a directed cycle to v.

Based on Lemma 9, we have the following lemma.

I Lemma 10 (*). Frozen(f) can be computed in O(m) time for any coloring f of a graph G.

4.2 Necessary and sufficient condition
In the remainder of this section, by Lemma 8 we assume that Frozen(f0) = Frozen(fr) and
f0(v) = fr(v) for each vertex v ∈ Frozen(f0); otherwise it is a no-instance. In this subsection,
we will give a necessary and sufficient condition for a yes-instance.

We define some notation to describe the condition. Let G be an undirected graph, and
let −→H be any digraph whose underlying graph is a subgraph of G. For a coloring f of G and
each arc (u, v) ∈ A(−→H ), we define the potential pf ((u, v)) of (u, v) on f , as follows:

pf ((u, v)) =
{
f(v)− f(u) if f(v) > f(u);
f(v)− f(u) + k if f(v) < f(u).

ISAAC 2018



37:8 Algorithms for Coloring Reconfiguration Under Recolorability Constraints

Note that f(u) 6= f(v) holds since uv ∈ E(G). In addition, observe that

pf ((u, v)) + pf ((v, u)) = k (1)

holds for any pair of parallel arcs (u, v) and (v, u) if such a pair exists. The potential
pf (−→H ) of −→H on f is defined to be the sum of potentials of all arcs of −→H on f , that is,
pf (−→H ) =

∑
(u,v)∈A(−→H) pf ((u, v)).

Let C be a cycle in an undirected graph G. Then, there are only two possible orientations
of C such that they form directed cycles, that is, either the clockwise direction or the
anticlockwise direction; we always denote by −→C and ←−C such the two possible orientations of
C. The following lemma immediately follows from Eq. (1).

I Lemma 11. Let f be a coloring of an undirected graph G. Then, pf (−→C )+pf (←−C ) = k|E(C)|
for every cycle C in G.

For a coloring f of an undirected graph G, we define a supergraph Gf of G as follows4:
let V (Gf ) = V (G), and we arbitrarily add new edges between frozen vertices on G so that
Frozen(f) induces a connected subgraph in the resulting graph. Then, since there are at most
|V (G)| frozen vertices, Gf has |V (G)| vertices and at most |E(G)|+ |V (G)| − 1 edges. Note
that Gf = G if Frozen(f) = ∅. Recall that two given colorings f0 and fr of G are assumed
to satisfy Frozen(f0) = Frozen(fr) and f0(v) = fr(v) for every vertex v in Frozen(f0). We
can thus assume Gf0 = Gfr , and hence simply denote it by Gf . Furthermore, since newly
added edges join only frozen vertices, we have the following lemma.

I Lemma 12. There exists an (f0 → fr)-reconfiguration sequence on CR(G) if and only if
there exists an (f0 → fr)-reconfiguration sequence on CR(Gf).

We are now ready to claim our necessary and sufficient condition, as follows.

I Theorem 13. Let f0 and fr be two colorings of a graph G such that Frozen(f0) = Frozen(fr),
and f0(v) = fr(v) for all vertices v ∈ Frozen(f0). Then, an (f0 → fr)-reconfiguration sequence
exists on CR(G) if and only if pf0(−→C ) = pfr

(−→C ) holds for every cycle C in Gf .

Before proving the theorem, we note that Theorem 13 is independent from the choice of
the two orientations of a cycle C, because Lemma 11 implies that pf0(−→C ) = pfr (−→C ) holds if
and only if pf0(←−C ) = pfr

(←−C ) holds. We also note that Theorem 13 does not directly yield a
linear-time algorithm.

We first prove the only-if direction of Theorem 13. Suppose that there exists an (f0 → fr)-
reconfiguration sequence on CR(G). Then, Lemma 12 implies that CR(Gf) contains an
(f0 → fr)-reconfiguration sequence 〈f0, f1, . . . , f`〉, where f` = fr, and hence the only-if
direction of Theorem 13 can be obtained from the following lemma.

I Lemma 14 (*). Suppose that two colorings f and f ′ are adjacent on CR(Gf). Then,
pf (−→C ) = pf ′(−→C ) holds for every cycle C in Gf .

We then prove the if direction of Theorem 13: If pf0(−→C ) = pfr (−→C ) holds for every cycle C
in Gf , then an (f0 → fr)-reconfiguration sequence exists on CR(Gf); Lemma 12 then implies
that CR(G) contains an (f0 → fr)-reconfiguration sequence.

4 We note that our construction of Gf is different from that by Cereceda et al. [7] so that the running
time of our algorithm does not depend on k.



H. Osawa, A. Suzuki, T. Ito, and X. Zhou 37:9

Our proof is constructive, that is, we give an algorithm which indeed finds an (f0 → fr)-
reconfiguration sequence on CR(Gf). We say that a vertex v is fixed if it is colored with
fr(v) and our algorithm decides not to recolor v anymore. Thus, all frozen vertices are fixed.
Our algorithm maintains the set of fixed vertices, denoted by F . The following Algorithm 1
transforms f0 into a coloring f ′0 of Gf so that F 6= ∅, as the initialization.

Algorithm 1 Initialization for Algorithm 2.

1. If Frozen(f0) 6= ∅, then let F = Frozen(f0) and f ′0 = f0.
2. Otherwise let F = {v} for an arbitrarily chosen vertex v ∈ V (G). Let f = f0, and obtain

f ′0 such that f ′0(v) = fr(v), as follows:
2-1. If f(v) = fr(v), then let f ′0 = f and stop the algorithm.
2-2. Otherwise recolor a sink vertex w (possibly v itself) of −→B+(v, f) to f(w)+. Let f be

the resulting coloring, and go to Step 2-1.

Note that we can always find a sink vertex w in Step 2-2 of Algorithm 1, because otherwise−→
B+(v, f) contains a directed cycle; by Lemma 9 the vertices in the directed cycle are frozen,
and hence this contradicts the assumption that Frozen(f0) = ∅ holds in Step 2. We note the
following properties.

I Lemma 15. Let F ⊆ V (Gf) be the vertex subset obtained by Algorithm 1, and let f ′0 be
the coloring of Gf obtained by Algorithm 1. Then, the induced subgraph Gf [F ] is connected,
and pf ′

0
(−→C ) = pf0(−→C ) = pfr

(−→C ) for any cycle C in Gf .

Proof. Recall that Gf was obtained by adding new edges to G so that Gf [Frozen(f0)] is
connected. Thus, Gf [F ] = Gf [Frozen(f0)] is connected if Frozen(f0) 6= ∅. If Frozen(f0) = ∅,
then F consists of a single vertex v; and hence Gf [F ] is connected also in this case.

Notice that Algorithm 1 constructs an (f0 → f ′0)-reconfiguration sequence on CR(Gf).
Then, Lemma 14 implies that pf ′

0
(−→C ) = pf0(−→C ) = pfr

(−→C ) for any cycle C in Gf . J

We now give our main procedure, called Algorithm 2, which finds an (f ′0 → fr)-
reconfiguration sequence on CR(Gf). The algorithm attempts to extend the vertex set
F to V (Gf) so that each vertex v in F is fixed (and hence is colored with fr(v)); we eventu-
ally obtain the target coloring fr when F = V (Gf). Recall that our algorithm never recolors
any vertex v in F , and all frozen vertices are contained in F . Let f = f ′0, and apply the
following procedure.

Algorithm 2 Finding an (f ′0 → fr)-reconfiguration sequence on CR(Gf).

1. If F = V (Gf) holds, then stop the algorithm.
2. Otherwise pick an arbitrary vertex v ∈ V (Gf) \ F which is adjacent with at least one

vertex u ∈ F .
2-1. If f(v) = fr(v), then add v to F and go to Step 1.
2-2. Otherwise

if pf ((u, v)) < pfr
((u, v)), then recolor a sink vertex w (possibly v itself) of

−→
B+(v, f) to f(w)+; and
if pf ((u, v)) > pfr

((u, v)), then recolor a source vertex w (possibly v itself) of
−→
B−(v, f) to f(w)−.

Let f be the resulting coloring, and go to Step 2-1.

ISAAC 2018



37:10 Algorithms for Coloring Reconfiguration Under Recolorability Constraints

To prove that Algorithm 2 correctly finds an (f ′0 → fr)-reconfiguration sequence on
CR(Gf), it suffices to show that there always exists a non-fixed sink/source vertex in Step 2-2
under the condition that pf ′

0
(−→C ) = pf0(−→C ) = pfr (−→C ) holds for any cycle C in Gf . Therefore,

the following lemma completes the proof of the if direction of Theorem 13.

I Lemma 16 (*). Every application of Step 2 of Algorithm 2 produces a set F of fixed
vertices and a coloring f of Gf satisfying the following (a) and (b): For each edge uv in Gf

such that u ∈ F and v /∈ F ,
(a) if pf ((u, v)) < pfr

((u, v)), then −→B+(v, f) is a directed acyclic graph such that no vertex
in −→B+(v, f) is contained in F ; and

(b) if pf ((u, v)) > pfr ((u, v)), then −→B−(v, f) is a directed acyclic graph such that no vertex
in −→B−(v, f) is contained in F .

4.3 Proof of Theorem 6
We finally prove Theorem 6 by giving such an algorithm. Our algorithm first checks the
simple necessary condition described in Lemma 8. By Lemma 10 this step can be done in
O(m) time. Note that we can obtain the vertex subsets Frozen(f0) and Frozen(fr) in this
running time. Then, we determine whether a given instance is a yes-instance or not, based
on the necessary and sufficient condition described in Theorem 13. However, recall that the
condition in Theorem 13 cannot be checked in linear time by a naive way. Below, we give a
linear-time algorithm to check the condition.

Let T be an arbitrary spanning tree of the graph Gf . For an edge e ∈ E(Gf) \E(T ), we
denote by CT,e the unique cycle obtained by adding the edge e to T . The following lemma
shows that it suffices to check the necessary and sufficient condition only for the number
|E(Gf) \ E(T )| of cycles.

I Lemma 17 (*). Let T be any spanning tree of Gf . Then, pf0(−→C ) = pfr
(−→C ) holds for every

cycle C of Gf if and only if pf0(−→C T,e) = pfr
(−→C T,e) holds for every edge e ∈ E(Gf) \ E(T ).

Lemma 17 and the following lemma imply that there is a linear-time algorithm to check
the necessary and sufficient condition described in Theorem 13. Therefore, the following
lemma completes the proof of Theorem 6.

I Lemma 18 (*). Let T be any spanning tree of Gf . Then, pf0(−→C T,e) and pfr (−→C T,e) for all
e ∈ E(Gf) \ E(T ) can be computed in O(n+m) time in total.

5 Algorithm for Shortest Sequence on Cycle Recolorability

In this section, we consider the case where R is a cycle, and explain how to compute the
length of a shortest reconfiguration sequence.

Let Pu,v be a path in an undirected graph G connecting vertices u and v. We denote
by −→P u,v the directed path from u to v. The following theorem characterizes the shortest
length of an (f0 → fr)-reconfiguration sequence, which generalizes the characterization for
coloring reconfiguration with k = 3 [7, 12].

I Theorem 19 (*). Suppose that a recolorability graph R is a cycle, and let f0 and fr be
two colorings of a graph G such that an (f0 → fr)-reconfiguration sequence exists on CR(G).
Then, the following (a) and (b) hold:



H. Osawa, A. Suzuki, T. Ito, and X. Zhou 37:11

(a) If Frozen(f0) 6= ∅, then it holds for an arbitrary chosen vertex u ∈ Frozen(f0) that

dist(f0, fr) =
∑

v∈V (G)

∣∣pfr (−→P u,v)− pf0(−→P u,v)
∣∣,

where Pu,v is an arbitrary chosen path in G connecting u and v.
(b) If Frozen(f0) = ∅, then there exist two integers ρu,1 and ρu,2 for an arbitrary chosen

vertex u ∈ V (G) such that

dist(f0, fr) = min
{ ∑

v∈V (G)

∣∣pfr
(−→P u,v)− pf0(−→P u,v) + ρu,1

∣∣,
∑

v∈V (G)

∣∣pfr
(−→P u,v)− pf0(−→P u,v) + ρu,2

∣∣},
where Pu,v is an arbitrary chosen path in G connecting u and v.

We finally claim that dist(f0, fr) can be computed in linear time, based on Theorem 19,
and that a shortest (f0 → fr)-reconfiguration sequence can be output in polynomial time.

I Lemma 20 (*). For any vertex u ∈ V (G), two integers ρu,1 and ρu,2 of Theorem 19(b)
can be obtained in O(n+m) time. Furthermore,
(a) dist(f0, fr) can be computed in O(n+m) time; and
(b) a shortest (f0 → fr)-reconfiguration sequence can be output in O(kn(n+m)) time.

6 Concluding Remarks

In this paper, we have generalized and sharpened the positive results [7, 12] obtained
for coloring reconfiguration, from the viewpoint of recolorability constraints. We
emphasize that our algorithms run in linear time to simply answer the decision problem
coloring reconfiguration under recolorability, or to compute the shortest length
of (f0 → fr)-reconfiguration sequences.

One may expect that a shortest (f0 → fr)-reconfiguration sequence can be output also
in linear time. However, Cereceda et al. [7] showed that there exists an infinite family
of yes-instances for coloring reconfiguration with k = 3 whose shortest (f0 → fr)-
reconfiguration sequence requires Ω(n2) length.

Together with our sister paper [14], we have clarified several tractable/intractable cases
of coloring reconfiguration under recolorability. Our analyses are summarized in
Table 1, and give a better understanding of the complexity of coloring reconfiguration.
However, the complexity status remains open for the case where a connected recolorability
graph R is of maximum degree three and has at most one cycle.

Table 1 Complexity of coloring reconfiguration under recolorability, where a recolor-
ability graph R is assumed to be connected without loss of generality.

Maximum degree of R R contains at most one cycle R contains at least two cycles
two Linear time [this paper] (no such R exists)
three ? PSPACE-complete [14]
at least four PSPACE-complete [14] PSPACE-complete [14]

ISAAC 2018



37:12 Algorithms for Coloring Reconfiguration Under Recolorability Constraints

References
1 Marthe Bonamy and Nicolas Bousquet. Recoloring graphs via tree decompositions. Eur.

J. Comb., 69:200–213, 2018. doi:10.1016/j.ejc.2017.10.010.
2 Marthe Bonamy, Matthew Johnson, Ioannis Lignos, Viresh Patel, and Daniël Paulusma.

Reconfiguration graphs for vertex colourings of chordal and chordal bipartite graphs. J.
Comb. Optim., 27(1):132–143, 2014. doi:10.1007/s10878-012-9490-y.

3 Paul S. Bonsma and Luis Cereceda. Finding Paths between graph colourings: PSPACE-
completeness and superpolynomial distances. Theor. Comput. Sci., 410(50):5215–5226,
2009. doi:10.1016/j.tcs.2009.08.023.

4 Paul S. Bonsma, Amer E. Mouawad, Naomi Nishimura, and Venkatesh Raman. The Com-
plexity of Bounded Length Graph Recoloring and CSP Reconfiguration. In Marek Cygan
and Pinar Heggernes, editors, Parameterized and Exact Computation - 9th International
Symposium, IPEC 2014, Wroclaw, Poland, September 10-12, 2014. Revised Selected Pa-
pers, volume 8894 of Lecture Notes in Computer Science, pages 110–121. Springer, 2014.
doi:10.1007/978-3-319-13524-3_10.

5 Paul S. Bonsma and Daniël Paulusma. Using Contracted Solution Graphs for Solving
Reconfiguration Problems. In Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier,
editors, 41st International Symposium on Mathematical Foundations of Computer Science,
MFCS 2016, August 22-26, 2016 - Kraków, Poland, volume 58 of LIPIcs, pages 20:1–20:15.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.MFCS.
2016.20.

6 Richard C. Brewster, Sean McGuinness, Benjamin Moore, and Jonathan A. Noel. A dicho-
tomy theorem for circular colouring reconfiguration. Theor. Comput. Sci., 639:1–13, 2016.
doi:10.1016/j.tcs.2016.05.015.

7 Luis Cereceda, Jan van den Heuvel, and Matthew Johnson. Finding paths between 3-
colorings. Journal of Graph Theory, 67(1):69–82, 2011. doi:10.1002/jgt.20514.

8 Tatsuhiko Hatanaka, Takehiro Ito, and Xiao Zhou. The List Coloring Reconfiguration Prob-
lem for Bounded Pathwidth Graphs. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, 98-A(6):1168–1178, 2015. URL: http://search.
ieice.org/bin/summary.php?id=e98-a_6_1168, doi:10.1587/transfun.E98.A.1168.

9 Tatsuhiko Hatanaka, Takehiro Ito, and Xiao Zhou. Parameterized complexity of the list
coloring reconfiguration problem with graph parameters. Theor. Comput. Sci., 739:65–79,
2018. doi:10.1016/j.tcs.2018.05.005.

10 Jan van den Heuvel. The complexity of change. In Simon R. Blackburn, Stefanie Gerke, and
Mark Wildon, editors, Surveys in Combinatorics 2013, volume 409 of London Mathematical
Society Lecture Note Series, pages 127–160. Cambridge University Press, 2013. doi:10.
1017/CBO9781139506748.005.

11 Takehiro Ito, Erik D. Demaine, Nicholas J. A. Harvey, Christos H. Papadimitriou, Martha
Sideri, Ryuhei Uehara, and Yushi Uno. On the complexity of reconfiguration problems.
Theor. Comput. Sci., 412(12–14):1054–1065, 2011. doi:10.1016/j.tcs.2010.12.005.

12 Matthew Johnson, Dieter Kratsch, Stefan Kratsch, Viresh Patel, and Daniël Paulusma.
Finding Shortest Paths Between Graph Colourings. Algorithmica, 75(2):295–321, 2016.
doi:10.1007/s00453-015-0009-7.

13 Naomi Nishimura. Introduction to Reconfiguration. Algorithms, 11(4):52, 2018. doi:
10.3390/a11040052.

14 Hiroki Osawa, Akira Suzuki, Takehiro Ito, and Xiao Zhou. Complexity of Coloring Reconfig-
uration under Recolorability Constraints. In Yoshio Okamoto and Takeshi Tokuyama, edit-
ors, 28th International Symposium on Algorithms and Computation, ISAAC 2017, Decem-
ber 9-12, 2017, Phuket, Thailand, volume 92 of LIPIcs, pages 62:1–62:12. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.ISAAC.2017.62.

http://dx.doi.org/10.1016/j.ejc.2017.10.010
http://dx.doi.org/10.1007/s10878-012-9490-y
http://dx.doi.org/10.1016/j.tcs.2009.08.023
http://dx.doi.org/10.1007/978-3-319-13524-3_10
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.20
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.20
http://dx.doi.org/10.1016/j.tcs.2016.05.015
http://dx.doi.org/10.1002/jgt.20514
http://search.ieice.org/bin/summary.php?id=e98-a_6_1168
http://search.ieice.org/bin/summary.php?id=e98-a_6_1168
http://dx.doi.org/10.1587/transfun.E98.A.1168
http://dx.doi.org/10.1016/j.tcs.2018.05.005
http://dx.doi.org/10.1017/CBO9781139506748.005
http://dx.doi.org/10.1017/CBO9781139506748.005
http://dx.doi.org/10.1016/j.tcs.2010.12.005
http://dx.doi.org/10.1007/s00453-015-0009-7
http://dx.doi.org/10.3390/a11040052
http://dx.doi.org/10.3390/a11040052
http://dx.doi.org/10.4230/LIPIcs.ISAAC.2017.62


H. Osawa, A. Suzuki, T. Ito, and X. Zhou 37:13

15 Marcin Wrochna. Homomorphism Reconfiguration via Homotopy. In Ernst W. Mayr
and Nicolas Ollinger, editors, 32nd International Symposium on Theoretical Aspects of
Computer Science, STACS 2015, March 4-7, 2015, Garching, Germany, volume 30 of
LIPIcs, pages 730–742. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. doi:
10.4230/LIPIcs.STACS.2015.730.

16 Marcin Wrochna. Reconfiguration in bounded bandwidth and tree-depth. J. Comput. Syst.
Sci., 93:1–10, 2018. doi:10.1016/j.jcss.2017.11.003.

ISAAC 2018

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.730
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.730
http://dx.doi.org/10.1016/j.jcss.2017.11.003

	Introduction
	Our problem
	Related and known results
	Our contribution

	Preliminaries
	Algorithms for Path Recolorability
	Algorithm for Reachability on Cycle Recolorability
	Frozen vertices
	Necessary and sufficient condition
	Proof of Theorem 6

	Algorithm for Shortest Sequence on Cycle Recolorability
	Concluding Remarks

