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Abstract
Consider a geometric range space (X,A) where X is comprised of the union of a red set R and
blue set B. Let Φ(A) define the absolute difference between the fraction of red and fraction of blue
points which fall in the range A. The maximum discrepancy range A∗ = arg maxA∈(X,A) Φ(A).
Our goal is to find some Â ∈ (X,A) such that Φ(A∗)−Φ(Â) ≤ ε. We develop general algorithms
for this approximation problem for range spaces with bounded VC-dimension, as well as signific-
ant improvements for specific geometric range spaces defined by balls, halfspaces, and axis-aligned
rectangles. This problem has direct applications in discrepancy evaluation and classification, and
we also show an improved reduction to a class of problems in spatial scan statistics.
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1 Introduction

Let X be a set of m points in Rd for constant d. Let X = R ∪B be the union (possibly not
disjoint) of two sets R, the red set, and B, the blue set. Also consider an associated range
space (X,A); we are particularly interested in range spaces defined by geometric shapes such
as rectangles in Rd (X,Rd), disks in R2 (X,D), and d-dimensional halfspaces (X,Hd).

Let µR(A) = |R ∩A|/|R| and µB(A) = |B ∩A|/|B| be the fraction of red or blue points,
respectively, in the range A. We study the discrepancy function ΦX(A) = |µR(A)− µB(A)|,
when for brevity is typically write as just Φ(A). A typical goal is to compute the range
A∗ = arg maxA∈AΦ(A) and value Φ∗ = Φ(A∗) that maximizes the given function Φ. Our
goal is to find a range Âε that satisfies Φ(Âε) ≥ Φ(A∗)− ε.

The exact version of this problem arises in many scenarios, formally as the classic
discrepancy maximization problem [3, 7]. The rectangle version is a core subroutine in
algorithms ranging from computer graphics [8] to association rules in data mining [9]. Also,
for instance, in the world of discrepancy theory [20, 6], this is the task of evaluating how large
the discrepancy for a given coloring is. For the halfspace setting, this maps to the minimum
disagreement problem in machine learning (i.e., building a linear classifier) [16]. When Φ is
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32:2 Computing Approximate Statistical Discrepancy

replaced with a statistically motivated form [12, 13], then this task (typically focusing on
disks or rectangles) is the core subroutine in the GIScience goal of computing the spatial
scan statistic [11, 22, 2, 1] to identify spatial anomalies. Indeed this statistical problem can
be reduced the approximate variant with the simple discrepancy maximization form [2].

The approximate versions of these problems are often just as useful. Low-discrepancy
colorings [20, 6] are often used to create the associated ε-approximations of range spaces, so
an approximate evaluation is typically as good. It is common in machine learning to allow ε

classification error. In spatial scan statistics, the approximate versions are as statistically
powerful as the exact version and significantly more scalable [19].

While the exact versions take super-linear polynomial time in m, e.g., the rectangle
version with linear functions takes Ω(m2) time conditional on a result of Backurs et al. [3],
we show approximation algorithms with O(m + poly(1/ε)) runtime. This improvement is
imperative when considering massive spatial data, such as geotagged social media, road
networks, wildlife sightings, or population/census data. In each case the size m can reach
into the 100s of millions.

While most prior work has focused on improving the polynomials on the exact algorithms
for various shapes [14, 25] or on using heuristics to ignore regions [28, 22], little work exists
on approximate versions. These include [1] which introduced generic sampling bounds, [19]
which showed that a two-stage random sampling can provide some error guarantees, and
[27] which showed approximation guarantees under the Bernoulli model. In this paper, we
apply a variety of techniques from combinatorial geometry to produce significantly faster
algorithms; see Table 1.

Our results. Our work involves constructing a two-part coreset of the initial range space
(X,A); it approximates the ground set X and the set of ranges A. This needs to be done
in a way so that ranges can still be effectively enumerated and µR(A) and µB(A) values
tabulated. We develop fast coreset constructions, and then extend and adapt exact scanning
algorithms to the sparsified range space.

We develop notation and review known solutions in Section 2; also see Table 1. Then we
describe a general sampling result in Section 3 for ranges with bounded VC-dimension. In
particular, many of these results can be seen as formalizations and refinements (in theory
and practice) of the two-stage random sampling ideas introduced in [19].

In Section 3.1 we describe improvements for halfspaces and disks. The details, defer to
the full version [17], first improve upon the sampling analysis to approximate ranges H2. By
carefully annotating and traversing the dual arrangement from the approximate range space,
we improve further upon the general construction.

Then in Section 4 we describe our improved results for rectangles. We significantly extend
the exact algorithm of Barbay et al. [4] and obtain an algorithm that takes O(m+ 1

ε2 log 1
ε ).

This is improved to O(m+ 1
ε2 log log 1

ε ) with some more careful analysis in the full version
[17]. This nearly matches a new conditional lower bound of Ω(m+ 1

ε2 ), assuming current
algorithms for APSP are optimal [3].

In Section 5 we show how to approximate a statistical discrepancy function (sdf, defined
in Section 5) Φ, as well as any general function Φ. These require altered scanning approaches
and the sdf-approximation requires a reduction to a number of calls to the generic (“linear”)
Φ. We reduce the number of needed calls to generic Φ functions from O( 1

ε log 1
ε ) [2] to O( 1√

ε
).

Finally, in Section 6 we show on rectangles strong empirical improvement over state of
the art [19].
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Table 1 Algorithm times for (ε-approximately) maximizing different range spaces. Here dimension
d, VC-dimension ν, and probability of failure are all constants. For (X,R2) we show it takes
Ω(m+ 1/ε2) time, assuming hardness of APSP.

Known Exact Known Approx [19] New Runtime Bounds
General Range Space O(mν+1) – O

(
m+ 1

εν+2 logν 1
ε

)
Halfspaces Rd O(md) [8] – O

(
m+ 1

εd+1/3 log2/3 1
ε

)
Disks R2 O(m3) [8] O(m+ 1

ε4 log3 1
ε
) O

(
m+ 1

ε3+1/3 log2/3 1
ε

)
Rectangles R2 O(m2) [4] O(m+ 1

ε4 log 1
ε
) [2, 1] O(m+ 1

ε2 log log 1
ε
)

Rectangles (sdf) R2 O(m4) O(m+ 1
ε4 log4 1

ε
) O

(
m+ 1

ε2.5

)
Rectangles (General) R2 O(m4) O(m+ 1

ε4 log4 1
ε
)) O

(
m+ 1

ε4

)
Y

 D(Y )

A  D(A) A

 T(A)

Figure 1 First two panels show that (R2,D) has a conforming map ψD defined by the smallest
enclosing disk. The last panel shows a range space (X, T ) corresponding to triangles, and that a
mapping ψT defined by minimum area triangle is not conforming; it does not recover A.

2 Background on Geometric Range Spaces

To review, a range space (X,A) is composed of a ground set X (for instance a set of points
in Rd) and a family of subsets A of that set. In this paper we are interested in geometrically
defined range spaces (X,A), where X ⊂ Rd. We formalize the requirements of this geometry
via a conforming geometric mapping ψ; see Figure 1. Specifically, it maps from a subset
Y ⊂ X to subset of Rd. Typically, the result is a Lebesgue measureable subset of Rd, for
instance ψD(Y ), defined for disk range space (X,D), could map to the smallest enclosing
disk of Y .

We say this mapping ψA is conforming to A if for any N ⊂ X it has the properties:
for any subset A ∈ (N,A) then ψA(A) ∩N = A [the mapping recovers the same subset]
for any subset Y ⊂ X then ψA(Y ) ∩X ∈ (X,A) [the mapping is always in (X,A)]

2.1 Basic Combinatorial Properties of Geometric Range Spaces
We highlight two general combinatorial properties of geometric range spaces. These are
critical in sparsification of the data and ranges, and enumeration of the ranges.

Sparsification. An ε-sample S ⊂ X of a range space (X,A) preserves the density for all
ranges as maxA∈A | |X∩A||X| −

|S∩A|
|S| | ≤ ε. An ε-net N ⊂ X of a range space (X,A) hits large

ranges, specifically for all ranges A ∈ A such that |X∩A| ≥ ε|X| we guarantee that N∩A 6= ∅.
Consider range space (X,A) with VC-dimension ν. Then a random sample S ⊂ X of size
O( 1

ε2 (ν + log 1
δ ) is an ε-sample with probability at least 1− δ [26, 15]. Also a random sample

N ⊂ X of size O(νε log 1
εδ ) is an ε-net with probability at least 1 − δ. For our ranges of

interest, the VC-dimensions of (X,Hd), (X,D), and (X,Rd) are d, 3, and 2d.

Enumeration. For the ranges spaces we will consider that each range can be defined by a
basis B; where B is a point set. Given a geometric conforming map ψ and subset Y , a range
space’s basis B ⊂ Y is such that ψ(B) = ψ(Y ), but on a strict subset B′ ⊂ B, then ψ(B′)

ISAAC 2018
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Figure 2 First panel shows N ⊂ X. Second panel shows the set of disks {ψD(A) | A ∈ (N,D|N )}
induced by N . The third panel shows a range Y ⊂ X (defined by disk in blue). It has symmetric
difference over X (in orange) of size 4 with the one defined by the disk ψD(A) (in green) induced by
a subset A ⊂ (N,D|N ).

is different (and usually smaller under some measure) than ψ(B). We will use β to denote
the maximum size of the basis for any subset Y ⊂ X. For instance for ψD then β = 3, for
ψRd then β = 2d, and for ψHd then β = d. Recall, by Sauer’s Lemma [23], if a range space
(X,A) has VC-dimension ν, then β ≤ ν.

This implies that for m = |X| points, there are at most
(
m
β

)
= O(mβ) different ranges to

consider. We assume β is constant; then it is possible to construct ψ(Y ) in O(|Y |) time, and
to determine if ψ(Y ) contains a point x ∈ X in O(1) time. This means we can enumerate all
O(mβ) possible bases in O(mβ) time, construct their maps ψ(B) in as much time, and for all
of them count which points are inside, and evaluate each Φ(A) to find A∗, in O(mβ+1) time.

For the specific range spaces we study, the time to find A∗ ∈ A can be improved by
faster enumeration techniques. For Hd, Dobkin and Eppstein [7] reduced the runtime to
find A∗ from O(md+1) to O(md); this implies for D the runtime is reduced from O(m4) to
O(m3). For Rd, Barbay et al. [4] show how to find A∗ in O(md) time; this was recently
shown tight [3] in R2, assuming APSP takes cubic time.

2.2 Coverings
Our main approach towards efficient approximate range maximization, is to sparsify the range
space (X,A). This will have two parts. The first is simply replacing X with an ε-sample.
The second is sparsifying the ranges A, using a concept we refer to as an ε-covering.

Recall that the symmetric difference of two sets A4B is (A ∪B) \ (A ∩B). Define an
ε-covering (X,A4) of a range space (X,A) where (X,A4) ⊂ (X,A), so that for any A ∈ A
there exists a A′ ∈ A4 such that |A4A′| ≤ ε|X|. See Figure 2 for an illustration of this
concept. If a range space satisfies the above condition for any one specific range A, but not
necessarily all ranges A ∈ A simultaneously, then it is a weak ε-covering of (X,A).

We will use subsets of the ground set to define subsets of the ranges. For a subset N ⊂ X,
let A|N = {A∩N | A ∈ A} be the restriction of A to the points in N . We will define (X,A4)
using A|N or a subset thereof. However, as each A ∈ A|N is a subset of N , which itself is a
subset of X, we need a conforming map ψA to take a region A ∈ A4 and map it back to
some region in A, a subset of X. Given A′|N (which is A|N or a subset) we define (X,A4) as

(X,A4) = {X ∩ ψA(A) | A ∈ (N,A′|N )}.

A small sized ε-covering is implied by a result of Haussler [10]. For every range space
(X,A) of VC-dimension ν, with m = |X|, there always exist a maximal set of ranges A4
of size O(( m

k+ν )ν) where for every pair of ranges A,A′ ∈ A4 the symmetric difference
|A4A′| ≥ k. Setting k = mε then ( m

k+ν )ν = O( 1
εν ), so A4 is an ε-covering.
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Symmetric difference nets. We can construct an ε-net over the symmetric difference range
space of A and then use these points to define A4.

For a family of ranges A, let SA be the family of ranges made up of the symmetric
difference of ranges of A. Specifically SA = {A14A2 | A1, A2 ∈ A}. If range space (X,A)
has VC-dimension ν, then (X,SA) has VC-dimension at most O(ν log ν) [21]. Thus for
constant ν we can use asymptotically the same size random sample as before. Matheny et
al. [19] pointed out two important properties connecting nets over symmetric difference range
spaces and ε-coverings and then finding Âε.
(P1) An ε-net N for (X,SA) induces (N,A|N ) which is an ε-covering of (X,A) [19].
(P2) Given an ε

2 -covering (N,A4) and an ε
2 -sample S over (X,A) then for any range

A ∈ (X,A), there exists a range ψA(A′)∩X for A′ ∈ A|N so
∣∣∣ |A∩X||X| −

|ψA(A′)∩S|
|S|

∣∣∣ ≤ ε [19].
For an appropriate constant C, by constructing (ε/C)-nets NR and NB, of size n, on

the red (R,SA) and blue (B,SA) points, also constructing (ε/C)-samples of size s on (R,A)
and (B,A), and invoking (P2) on the results, Matheny et al. [19] observed we can maximize
Φ(ψA(A′) ∩ S) over A′ ∈ A|NR ∪ A|NB to find an ε-approximate Âε. They construct the
ε-nets and ε-samples using random sampling, and apply the results to scan disk D and
rectangle R2 range spaces towards finding Âε. Enumerating all ranges in A′ ∈ A|NR ∪ A|NB
and counting the intersections with the (ε/C)-samples, when C is a constant, is sufficient
to find an Âε in time O(m + |N |2|S| logn) = O(m + 1

ε4 log3 1
ε ) for disks (X,D) and time

O(m+ |N |4 + |S| logn) = O(m+ 1
ε4 log4 1

ε ) for rectangles (X,R2).
We can ignore the distinct red and blue points, and focus on three aspects of this problem

which can be further optimized: (1) More efficiently constructing a sparse set of ε-covering
ranges (X,A4). (2) More efficiently constructing a smaller ε-sample S of (X,A). (3) More
efficiently scanning the resulting (S,A4).

3 General Results via ε-Coverings

For general range spaces of contant VC-dimension ν we can directly apply the work of
Matheny et al. [19] to get a bound. A random sample N of size O(ν log ν

ε log ν
ε ) induces an

ε-covering (X,A|N ) with constant probability by (P1). A random sample S of size O( νε2 )
induces an ε-sample with constant probability. By (P2), scanning the ranges in (X,A|N ),
evaluating Φ(A) on each ranges A using S, and returning the maximum Âε induces the
ε-approximation of Φ(A∗) as we desire. Including the time to calculate N and S we obtain
the following result.

I Theorem 1. Consider a range space (X,A) with constant VC-dimension ν, with |X| = m,
and conforming map ψA. For A∗ = arg maxA∈A Φ(A), with probability at least 1− δ, in time
O(m+ 1

εν+2 logν 1
ε log 1

δ ), we can find a range Âε so that |Φ(A∗)− Φ(Âε)| ≤ ε.

Proof. First compute random samples N and S of size O( 1
ε log 1

ε ) and O( 1
ε2 ) respectively.

The algorithm naively considers all O(( 1
ε log 1

ε )ν) subsets B ⊂ N of size ν, and calculates
the quantity Φ(S ∩ ψA(B)). By (P2), this can be used to ε-approximate Φ(A) for any range
A ∈ A which has less than ε-symmetric difference with ψA(B). Moreover, since (X,A|N )
is an ε-cover, with constant probability any range A is within symmetric difference of at
most εm of one induced by some subset B. Thus, with constant probability we observe some
range Âε = X ∩ ψA(B) for which |Φ(A∗)− Φ(Âε)| ≤ ε (after adjusting constants in the size
of N and S). To amplify the probability of success to 1− δ, we repeat this process O(log 1

δ )
times, and return the Âε with median score. J

ISAAC 2018
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3.1 Halfspaces
The above general result applied to halfspaces (X,Hd), would require O(m+ 1

εd+2 logd 1
ε log 1

δ )
time. We improve this runtime to O(m+ 1

εd+1 log 1
δ ). First, a recent paper [18] shows that

with constant probability an ε-sample S for (X,H2) of size s = O( 1
ε4/3 log2/3 1

ε ) can be
constructed in O(m+ 1

ε2 log( 1
ε )) time. Second we create a weak ε-covering of (X,Hd) using

(X,Hd|N ) for a random sample N . We show this only requires a random sample of size
O(d

2

ε log d) = O(1/ε). Then, we show how to enumerate these ranges (X,Hd|N ) while
maintaining the counts from S (an ε-sample of only (X,H2)) with less overhead than the
previous brute force approaches. Ultimately this requires time O(m+ 1

εd+1/3 log2/3 1
ε ), with

constant probability. For space, the details are in the full version [17].
Moreover, this can be applied to disks (X,D) in O(m+ 1

ε3+1/3 log2/3 1
ε ) time.

4 Rectangles

For the case of rectangles (X,Rd), we will describe two classes of algorithms. One simply
creates an ε-cover (X,Rd|N ) and evaluates each rectangle A in this cover on an ε-sample S as
before. The other takes specific advantage of the orthogonal structure of the rectangles and of
“linearity” of Φ; this algorithm can find the maximum in Φ among ranges in (X,Rd|N ) without
considering every possible range. Our techniques are inspired by several algorithms [4, 24, 8]
for the exact maximization problem, but requires new ideas to efficiently take advantage
of using both N and S. Common to all techniques will be an efficient way to compute an
ε-cover based on a grid.

Grid ε-covers for rectangles. We create a grid G defined as the cross-product of r = O(1/ε)
cells along each axis. Straightforward details of its construction and use are in the full version
[17]. We label the rectangular ranges of X restricted to this grid boundary as (X,Rd|G); it is
an ε-cover of (X,Rd). The main results of this ε-cover are in the next lemma and theorem.

I Lemma 2. For range space (X,Rd) where |X| = m, the construction of grid G takes
O(m logm+ 1

εd
) time, has O(1/ε) cells on each side, and induces an ε-cover (X,Rd|G) of

(X,Rd) for constant d > 1.

I Theorem 3. Consider a range space (X,Rd) with |X| = m and an Lipschitz-continuous
function Φ with maximum range A∗ = arg maxA∈Rd Φ(A). With probability at least 1−1/e1/ε,
in time O(m+ 1

ε2d ) we can find a range Âε so that |Φ(A∗)− Φ(Âε)| ≤ ε.

4.1 Algorithms for Decomposable Functions
Here we exploit a critical “linear” property of Φ that a rectangle A can be decomposed
into any two parts A1 and A2 and Φ(A) = Φ(A1) + Φ(A2). Technically, we solve both
Φ+(A) = µR(A) − µB(A) and Φ−(A) = µB(A) − µR(A) separately, and take their max.
In particular, this allows us (following exact algorithms [4]) to decompose the problem
along a separating line. The solution then either lies completely on one half, or spans
the line. In the exact case on s points, this ultimately leads to a run time recurrence of
T1(s) = 2T1(s/2) + T2(s) where T2(s) is the time to compute the problem spanning the line.
The line spanning problem can then be handled using a different recurrence that leads to
T2(s) = O(s2) and a total runtime for the problem of T1(s) = 2T1(s/2) +O(s2) = O(s2) [4].

First we show we can efficiently construct a special sample S of size s = O(1/(ε2 log 1
ε )),

but this still would requires runtime of roughly 1/ε4.
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Our approximate algorithm will significantly improve upon this be compressing the
representation at various points, but requiring some extra bookkeeping and a bit more
complicated recurrence to analyze. In short, we can map S to an r× r grid (using Lemma 2),
and then the recurrence only depends on the dyadic y-intervals of the grid. We can compress
each such interval to have only εs/ log r error, since each query only touches about log r
of these intervals. The challenge then falls to maintaining this compressed structure more
efficiently during the recurrence.

The dense exact case on an r×r grid is also well studied. There exists a practically efficient
O(r3) time method [5] based on Kadane’s algorithm (which performs best as gridScan_linear;
see Section 6), and a more complicated method taking O(r3( log log r

log r ) 1
2 ) time [24]. By allowing

an approximation, we ultimately reduce this runtime to O(r2 log r) = O( 1
ε2 log 1

ε ).
We will focus on the 2d case. This is where the advantage over the Theorem 3 bound of

O(m+1/ε4) is most notable. Generalization to high dimensions is straightforward: enumerate
over pairs of grid cells to define the first d − 2 dimensions, then apply the 2-dimensional
result on the remaining dimensions.

Tree and slab approximation. The algorithm builds a binary tree over the rows (the y
values) of G. We will assume that the number of cells in each axis r = O(1/ε) is a power of
2 (otherwise we can round up), so it is a perfectly balanced binary tree.

At the ith level of the tree, each node contains r/2i rows and there are 2i nodes. We
refer to the family of rows represented by a subtree as a slab. Any grid-aligned rectangle
A = [x1, x2] × [y1, y2] can be defined as the intersection of [x1, x2] with at most 2 log2 r

slabs in the y-coordinate – the classic dyadic decomposition. This implies we can tolerate
ηs = O(εs/ log r) additive error in each slab to have at most O(εs) additive error overall
(which implies the percentage of red and of blue points in each range has additive O(ε) error).

Since the rectangle will span the entire vertical extent (y direction) of each slab in this
decomposition, the additive error of a slab can be obtained along just the horizontal (x)
direction. Thus, we can scan cells from left to right within a slab, and only retain the
cumulative weight in a cell when it exceeds ηs. We refer to this operation as η-compression.
We denote each column (and x value) within a slab where it has retained a non-zero value as
active, all other columns are inactive. We store the active cells in a linked list.

Since there are Θ(s/r) points per row, it implies we can approximate each slab consisting
of 1 row (a leaf of the tree, level log2 r) with weights in only O(1/(rη)) = O(log r) cells (since
r = O( 1

ε )). And a slab at level i (originally with Θ(s/2i) points) can be approximated by
accumulating weight in O(min{r, 1/(η2i)}) cells. For level i > log 1/ηr, this compresses the
points in that slab.

I Lemma 4. In O(r2) time, we can compress all slabs in the tree, so a slab at level i contains
`i = O(min{r, 1/(η2i)}) active columns where η = O(ε/ log r).

ISAAC 2018
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Interval Preprocessing and Merging. Now consider a subproblem, where we seek to find a
rectangle A = [x1, x2]× [y1, y2] to maximize the total weight, restricted to a given horizontal
extent [y1, y2] (e.g., within a slab). We reduce this to a 1d problem by summing the weights
for each x-coordinate to wx =

∑
y∈[y1,y2] wx,y. Then there is an often-used [4, 7, 2] way to

preprocess intervals [x′1, x′2] so they can be merged and updated. It maintains 3 maximal
weight subintervals: (1) the maximal weight subinterval in [x′1, x′2], (2) the maximal weight
interval including the left boundary x′1, and (3) the maximal weight interval including the
right boundary x′2. Given two preprocessed adjacent intervals [x′1, x′2] and [x′2 + 1, x′3], we
can update these subintervals to [x′1, x′3] in O(1) time [4]. Thus given a horizontal extent
with a active intervals, we can find the maximum weight subinterval in O(a) time.

Recursive construction. Now we can describe our recursive algorithm for finding the
maximal weight rectangle on the grid G. We find the maximum weight rectangle through
3 options: (1) completely in the top child’s subtree, (2) completely in the bottom child’s
subtree, (3) overlapping both the top and bottom child’s subtree. The total time can be
written as a recurrence as T1(r) = 2T1(r/2) + T2(r), where T2 is the time to solve case (3).

Case (3) requires another recurrence to understand, and it closely follows the “strip-
constrained” algorithm of Barbay et al. [4]; our version will account for the dense grid.

We consider the Strip-constrained grid search problem: First fix a strip M which
is a consecutive set of rows. Then consider two slabs T and B where T is directly above (on
top of) M and B is directly below M . A column of M is active if it is active in T or B.
Counts in active columns of M are maintained, and intervals of M described by consecutive
inactive columns have been merged. The goal is to find the maximum weight rectangle with
vertical span [y1, y2] where y2 is in T and y1 is in B (it must cross M).

We specifically want to solve this problem when M is empty, T is the top child and B
the bottom child of the root, and all columns are initially active. We call this the case of
size r since there are still r rows.

I Lemma 5. The Strip-constrained grid search problem of size r over an η-compressed binary
tree takes O(r/η) time.

Proof. Following Barbay et al. [4] we split the problem into 4 subcases, following the subtrees
of the slabs. Slab T has a top Tt and bottom Tb sub-slab, and similarly Bt and Bb for B. Then
we consider 4 recursive cases with new strip M ′: (1) slabs Tt and Bb with M ′ = Tb ∪M ∪Bt,
(2) slabs Tb and Bb with M ′ = M ∪Bt, (3) slabs Tt and Bt with M ′ = Tb ∪M , and (4) slabs
Tb and Bt with M ′ = M . The cost in a recursive step is the preprocessing of the new slab
M ′. We will describe the largest case (1); the others are similar.

Strip M already maintains preprocessed intervals of inactive columns. When Tb or Bt has
an active column which is inactive in Tt and Bb, we treat this as a new inactive interval that
needs to be maintained within M ′. The weights from Tb and Bt are added to that in the
column for M . If inactive intervals of M ′ are then adjacent to each other, they are merged,
in O(1) time each. This completes the recursive step for case (1).

In the base case when slabs T and B are single rows (at depth O(log r)), the range
maximum is restricted to use their active columns. We sum weights on active columns
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in T , B, and M . Then also considering the inactive intervals on M , invoke the interval
merging procedure [4] to find the maximal range, in time proportional to the number of
active intervals, in O(1/(2log rη) = O(1/(rη)) time.

The cost of recursing in any case is also proportional to the number of active columns
since this bounds the number of potential merges, and the time it takes to scan the linked
lists of active columns to detect where the merging is needed. At level i this is bounded by
`i = min{r, 1/(η2i)} ≤ O(1/(η2i)).

At each level i there are 4i recursive sub instances and at most O(1/(2iη)) active columns,
and therefore merging takes Zi = 4iO(1/(2iη)) = 2iO(1/η) time. The cost is asymptotically
dominated by the last level, which takes time 2log2 rO(1/η) = O(r/η). J

Letting η = ε/(log r) = O(1/(r log r)) (since r = O(1/ε)) as it is in Lemma 4 we have a
bound of T2(r) = O(r2 log r). We can solve the first recurrence of T1(r) = 2T1(r/2) +T2(r) =
2T1(r/2) + O(r2 log r) = O(r2 log r). Using r = O(1/ε) this bounds the overall runtime of
finding maxR∈(S,Rd|G) Φ(R) as O( 1

ε2 log 1
ε ).

I Theorem 6. Consider (X,R2) with |X| = m and A∗ = arg maxA∈R2 Φ(A). With probabil-
ity at least 1−δ, in time O(m+ 1

ε2 log 1
ε log 1

δ ), we can find a range Âε so |Φ(A∗)−Φ(Âε)| ≤ ε.

In the full version [17], we reduce this time to O(m+ 1
ε2 log log 1

ε log 1
δ ).

For (X,Rd) and d constant, the runtime increases to O(m+ 1
ε2d−2 + 1

ε2 log log 1
ε log 1

δ ).

Conditional lower bound. Backurs et al. [3] recently showed Ω(m2) time is required to
solve for A∗ = arg maxA∈(X,R2) Φ(A), assuming that all pairs shortest path (APSP) requires
cubic time. We can show this implies that our algorithm is nearly tight. If we set ε = 1/4m
then if any algorithm could find an Âε such that Φ(Âε) ≥ Φ(A∗)− ε, then it would imply
that |µR(A∗)−µB(A∗)| − |µR(Â)−µB(Â)| ≤ ε. And hence the difference in counts of points
in each pair µR and µB is off by at most 2εm = 2(1/4m)m = 1/2. Thus it must be the
optimal solution. If this can run in o(m+ 1/ε2) time, it implies an o(m2) algorithm, which
implies a subcubic algorithm for APSP, which is believed impossible.

I Theorem 7. For (X,R2) with |X| = m, and A∗ = arg maxA∈R2 Φ(A). It takes Ω(m+ 1
ε2 )

time to find a range Âε so that |Φ(A∗)− Φ(Âε)| ≤ ε, assuming APSP takes Ω(n3) time.

5 Statistical Discrepancy Function Approximation

In this section we address approximating maxA∈(X,A) Φ(A) when it is a more general function
of µR(A), and µB(A). Rewrite Φ(A) = φ(µR(A), µB(A)), and in this section it will be more
convenient to discuss φ(r, b) where r = µR(A) and b = µB(A).

We say φ is (τ, γ)-linear if it can be represented with up to ε-error as the upper envelope
of γ functions of slope at most τ . We can then simply maximize each function individually,
and return the maximum overall score. When γ and τ are constant (as with φ(r, b) = |r− b|),
we simply say the function is linear.

First observe that Theorem 1, algorithms in Section 3.1 (see full version [17]), and
Theorem 3 simply evaluate Φ(A), so if this can be done in constant time, and the slope τ is
constant, then these results automatically hold. However, Theorem 6 requires the linearity
property.

For the spatial scan statistic application, the most common function [12] is defined
φK(r, b) = r ln r

b + (1 − r) ln 1−r
1−b , and is non-linear. We define a more general class of

statistical discrepancy functions (sdf), which includes φK . Such φ have domain r, b ∈ [0, 1],
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Figure 3 For Lemma 8.

φ(r, b) = 0 when r = b and this is its minimum, and φ(r, b) is convex on (0, 1)2. Moreover, for
these functions, it suffices too consider a range [ξ, 1− ξ]2 for small constant ξ (c.f. [2, 1, 19]),
and that in this range φ is τ -Lipschitz where τ is a constant depending only ξ.

Agarwal et al. [2] approximated such functions by considering O( 1
ε log 1

ε ) linear functions,
each tangent to φ, so their upper envelope φ̃ satisfied max(r,b)∈[ξ,1−ξ]2 |φ(r, b)− φ̃(r, b)| ≤ ε.

We will construct an approximation of φ with linear functions with a very different
approach. Unlike the previous approach which only considers the function φ, our approach
adapts the set of linear functions to the function φ and data (X,A). It uses O(1/

√
ε) linear

functions.

Function approximation. Consider the distinct ranges in (X,A); each range A corresponds
to a point pA = (µR(A), µB(A)). Let P = {pA | A ∈ (X,A)} be this set of points. Then pA∗ ,
must lie on CH(P ), the convex hull of P , where A∗ = arg maxA∈(X,A) Φ(A).

Moreover, each point p on CH(P ) maximizes some linear function, f(r, b) = αr + βb. If
p = arg maxp′∈P f(rp, bp), then it also maximizes fc(r, b) = (α/c)r+(β/c)b for any c > 0. We
can therefore restrict our attention (by implicit choice of c) to only functions with α2 +β2 = 1.
These functions correspond to a dot product 〈(α, β), (r, b)〉 and are maximized by points on
CH(P ) where (α, β) is between two adjacent normals on the boundary of CH(P ).

To further simplify, we now parameterize these functions by an angle θ = arccos(−α)
(where still α2 + β2 = 1). We focus on θ ∈ [0, π/2] as we can always repeat the procedure on
the other 3 quadrants.

Now let f∗θ be any linear function such that pA∗ = arg maxp∈P f∗θ (p) is maximized by the
point pA∗ corresponding to the optimal range A∗.

I Lemma 8. Consider p1 = arg maxp∈P fθ1(p) and p2 = arg maxp∈P fθ2(p) so that pA∗ =
arg maxp∈P f∗θ (p) and θ1 ≤ θ ≤ θ2. Then φ(pA∗) ≤ max{φ(pi), φ(pj)}+τ · ‖p1−p2‖

2 tan( θ2−θ1
2 ).

Proof. Define a triangle through points p1, p2, and a point p3. The point p3 is defined at
the intersections of the normals to fθ1 at p1 and to fθ2 at p2. We refer to “above” in the
normal direction of the edge between p1 and p2, and in the direction of p3.

First we show that pA∗ must be inside the triangle. If it is above the edge connecting p1
and p3, then it would be arg maxp∈P fθ1(p). Similarly it cannot be above the edge connecting
p2 and p3. Also, it must be above the edge connecting p1 and p2, since otherwise by convexity
max(φ(p1), φ(p2)) > φ(pA∗) and one of p1 or p2 would maximize f∗θ .

We say the height of the triangle h is defined as the distance from p3 to q3, where q3 is
the closest point on the edge through p1 and p2.

Let ∠1 be the internal triangle angle at p1, and ∠2 at p2. Then (θ2 − θ1) = ∠1 + ∠2.
Now h = ||p1 − q3|| tan(∠1) = ||p2 − q3|| tan(∠2) which, fixing ‖p1 − p2‖, is maximized when
∠1 = ∠2 = (θ2−θ1)

2 . Summing h ≤ ||p1−q3|| tan((θ2−θ1)/2) and h ≤ ||p2−q3|| tan((θ2−θ1)/2)
it can be seen that h ≤ 1

2 (||p1−q3||+||p2−q3||) tan((θ2−θ1)/2) = 1
2 (||p1−p2||) tan((θ2−θ1)/2).

Finally, we argue that min{φ(pA∗)− φ(p1), φ(pA∗)− φ(p2)} ≤ τ · h. Let γ be the iso-curve
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of φ at value φ(pA∗). It must pass above p1 and p2, otherwise they would be the maximum.
It also must pass within a distance of h from either p1 or p2 since γ is convex, it contains
pA∗ , and pA∗ is within h of the edge between p1 and p2. Then the lemma follows since φ is
τ -Lipschitz. J

To choose a set of linear functions we start with two linear functions f0 and fπ/2, whose
maximum in P are points p1 and p′1. These induce a triangle as in the proof of Lemma 8,
and pA∗ must be in this triangle. If its height h = ‖p1−p′1‖

2 tan(π4 ) > ε/τ , then we choose a
new function fπ/4 (at the midpoint of the two angles) whose maximum is point p2. Now
recurse on triangles defined by p1 and p2, and by p2 and p′1.

I Lemma 9. The recursive algorithm considers at most
√
τ/ε functions to maximize.

Proof. Index the points found by the algorithm {p1, p2, . . . , pk+1} in the order they appear on
the convex hull. Each consecutive pair pi and pi+1 defines a triangle with height at most ε/τ .
Let `i = ‖pi − pi+1‖ and γi = θi+1 − θi where the pi and pi+1 where chosen by maximizing
functions fθi and fθi+1 , respectively. It follows that

∑k
i=1 `i ≤ 2 and

∑k
i=1 γi = π/2. We also

have for each triangle that ε
τ ≤

`i
2 tan(γi2 ) ≤ `i

2 ·
2γi
π . Thus for each term we have `i ≥ επ

τ
1
γi
,

and summing over k terms
∑k
i=1

επ
τ

1
γi
≤
∑k
i=1 `i ≤ 2. Now in the inequality 2τ

επ ≥
∑k
i=1

1
γi

such that
∑k
i=1 γi = π/2, then k is the largest when all of the γi have the same value γi = π

2k .
In this case, then 2τ

επ ≥
∑k
i=1

1
γi

=
∑k
i=1

2k
π = k2 2

π . Solving for k reveals k ≤
√
ε/τ . J

Now we analyze the full algorithm for maximizing a statistical discrepancy function
over (X,Rd) with τ and d as constants. We first invoke Lemma 2 to construct the grid in
O(m+ 1

ε2 log 1
ε log 1

δ + 1
εd

) time. We then use Theorem 6 in F = O( 1
ε2d−2 log 1

ε ) time to find
the approximate maximum range for any linear function Φ′.

Then we run the above recursive triangle algorithm repeatedly on the constructed grid,
and each function maximization takes F time. By Lemma 9 we need to make O(

√
1/ε) calls.

And by Lemma 8 one of the function calls must find an approximately correct answer.

I Theorem 10. Consider a range space (X,Rd) with |X| = m and d constant. For a statisti-
cal discrepancy function Φ with τ constant and with maximum range A∗ = arg maxA∈Rd Φ(A),
then with probability at least 1− δ, in time O(m+ 1

ε2d−1.5 log 1
ε + 1

ε2 log 1
ε log 1

δ ), we can find
a range Âε so that |Φ(A∗)− Φ(Âε)| ≤ ε.

6 Experiments on Rectangles

We implemented 5 rectangle scanning algorithms. For baselines, we consider (1) Scanning
all rectangles without sampling (based on common software for disks [13]) (SatScan (no
sampling)), (2) Scanning all rectangles on one random sample [1] (SatScan), and (3) Scanning
all rectangles on two random samples N and S [19] (netScan). Then we compare our
algorithms which first round to a grid then (4) Efficiently enumerate the grid rectangles
(gridScan, Theorem 3), or (5) Evaluate the maximum grid rectangle in O(r3) time [5] for a
linear φ (gridScan_linear, Section 4.1) and using the linearization for non-linear φ (Section
5). This is the core operation within spatial scan statistics; it is typically run 1000 times
to detect a region and determine significance [12], therefore scalability of this operation is
paramount. Solutions with approximate φ within ε-error retain high statistical power [19],
so it will be useful to directly compare the runtime performance of these algorithms which
allow approximation.
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Table 2 Runtimes on 1000 points with 1% error, over 20 trials; roughly n = 19 and s = 350.

SatScan (no sampling) SatScan netScan gridScan gridScan_linear
Time (sec) 5287 7.44 .0279 .0194 .0082
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Figure 4 Trend of time versus error for on linear (left) and non-linear (right) functions.

First, fixing a tolerable error at 1% of φ(A∗), we run each algorithm on m = 1000
points, for a planted range with 5% of the data, and use φ as the Kuldorff scan statistic [12].
The results are in Table 2. All sampling methods drastically improve over the brute force
approach, and using two-level sampling significantly improves over one random sample. Our
method (gridScan_linear) improves over the previous best (netScan) by a factor of about 3.5.

We also compare the time-accuracy trade-off for sampling-based algorithms on m = 1
million points. SatScan without sampling is not tractable at this scale, so is not compared.
We again plant a random rectangle A overlapping 1% of the data. Within A, points are
made red (measured value 1) at rate 0.08, and outside at rate 0.01. The runtime includes
the time to construct the grid, but not time to generate the initial sample – common to all
algorithms. We calculate Φ(A∗)−Φ(Â) for the planted A∗ and found Â regions, using a linear
φ(m, b) = 1√

2 (m− b) function and the non-linear Kuldorff [12] φ function. Figure 4 shows a
kernel regression trend line (with 1 std-dev error bars) for 300 trials with various n, s values,
always maintaining n ≈

√
s as suggested the samping theorems. Again gridScan_linear is much

faster than gridScan, which is slightly faster than netScan, which is significantly faster than
SatScan. The improvement is more pronounced in the non-linear setting where φ is steeper;
this is perhaps surprisingly even true for gridScan_linear which has an extra

√
1/ε-factor in

runtime in that case due to the multiple linear functions considered.
Ultimately, these plots show that discrete geometric approaches providing asymptotically

efficient algorithms also give significant empirical improvements, even compared to the
ubiquitous and simple random sampling approaches.
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