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Abstract
We make progress on the fine-grained complexity of Maximum-Cardinality Matching on
graphs of bounded clique-width. Quasi linear-time algorithms for this problem have been recently
proposed for the important subclasses of bounded-treewidth graphs (Fomin et al., SODA’17)
and graphs of bounded modular-width (Coudert et al., SODA’18). We present such algorithm
for bounded split-width graphs – a broad generalization of graphs of bounded modular-width, of
which an interesting subclass are the distance-hereditary graphs. Specifically, we solve Maximum-
Cardinality Matching in O((k log2 k) ·(m+n) · logn)-time on graphs with split-width at most
k. We stress that the existence of such algorithm was not even known for distance-hereditary
graphs until our work. Doing so, we improve the state of the art (Dragan, WG’97) and we
answer an open question of (Coudert et al., SODA’18). Our work brings more insights on the
relationships between matchings and splits, a.k.a., join operations between two vertex-subsets in
different connected components. Furthermore, our analysis can be extended to the more general
(unit cost) b-Matching problem. On the way, we introduce new tools for b-Matching and
dynamic programming over split decompositions, that can be of independent interest.
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1 Introduction

The Maximum-Cardinality Matching problem takes as input a graph G = (V,E)
and it asks for a subset F of pairwise disjoint edges of maximum cardinality. This is
a fundamental problem with a wide variety of applications. Hence, the computational
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complexity of Maximum-Cardinality Matching has been extensively studied in the
literature. For instance, this was the first problem shown to be solvable in polynomial-
time [11]. Currently, the best-known algorithms for this problem run in O(m

√
n)-time on

n-vertex m-edge graphs [22]. Such superlinear running times can be prohibitive for some
applications. Intriguingly, Maximum-Cardinality Matching is one of the few remaining
fundamental graph problems for which we neither have proved the existence of a quasi
linear-time algorithm, nor a superlinear time complexity (conditional) lower-bound. This
fact has renewed interest in understanding what kind of graph structure makes this problem
difficult. Our present work is at the crossroad of two successful approaches to answer this
above question, namely, the quest for improved graph algorithms on special graph classes
and the much more recent program of “FPT in P”. We start further motivating these two
approaches before we detail our contributions.

1.1 Related work
Algorithmic on special graph classes. One of our initial motivations for this paper was to
design a quasi linear-time algorithm for Maximum-Cardinality Matching on distance-
hereditary graphs [1]. – Recall that a graph G is called distance-hereditary if the distances
in any of its connected induced subgraphs are the same as in G. – Distance-hereditary
graphs have already been well studied in the literature [1, 8, 17]. In particular, we can
solve Diameter in linear-time on this class of graphs [8]. For the latter problem on general
graphs, a conditional quadratic lower-bound has been proved in [24]. This result suggests
that several hard graph problems in P may become easier on distance-hereditary graphs.
Our work takes a new step toward better understanding the algorithmic properties of this
class of graphs. We stress that there exist linear-time algorithms for computing a maximum
matching on several subclasses of distance-hereditary graphs, such as: trees, cographs [26]
and (tent,hexahedron)-free distance-hereditary graphs [7]. However, the techniques used for
these three above subclasses are quite different from each other. As a byproduct of our main
result, we obtain an O(m logn)-time algorithm for Maximum-Cardinality Matching on
distance-hereditary graphs. In doing so, we propose one interesting addition to the list of
efficiently solvable special cases for this problem.

Split Decomposition. In order to tackle with Maximum-Cardinality Matching on
distance-hereditary graphs, we consider the relationship between this class of graphs and split
decomposition. A split is a join that is also an edge-cut. By using pairwise non crossing splits,
termed “strong splits”, we can decompose any graph into degenerate and prime subgraphs,
that can be organized in a treelike manner. The latter is termed split decomposition [6],
and it is our main algorithmic tool for this paper. The split-width of a graph is the largest
order of a non degenerate subgraph in some canonical split decomposition. In particular,
distance-hereditary graphs are exactly the graphs with split-width at most two [23].

Many NP-hard problems can be solved in polynomial time on bounded split-width graphs
(e.g., Graph Coloring, see [23]). Recently, with Coudert, we designed FPT algorithms for
polynomial problems when parameterized by split-width [5]. It turns out that many “hard”
problems in P such as Diameter can be solved in O(kO(1) ·n+m)-time on graphs with split-
width at most k. However, we left this open for Maximum-Cardinality Matching. Indeed,
our main contribution in [5] was a Maximum-Cardinality Matching algorithm based on
the more restricted modular decomposition. Given this previous result, it was conceivable
that a Maximum-Cardinality Matching algorithm based on split decomposition could
also exist. However, we need to introduce quite different tools than in [5] in order to prove
in this work that it is indeed the case.
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Fully Polynomial Parameterized Algorithms. Our work with split-width fits in the recent
program of “FPT in P”. Specifically, given a graph invariant denoted π (in our case, split-
width), we address the question whether there exists a Maximum-Cardinality Matching
algorithm running in time O(kc · (n+m) · logO(1)(n)), for some constant c, on every graph G
such that π(G) ≤ k. Note that such an algorithm runs in quasi linear time for any constant
k, and that it is faster than the state-of-the art algorithm for Maximum-Cardinality
Matching whenever k = O(n 1

2c−ε), for some ε > 0. This kind of FPT algorithms for
polynomial problems have attracted recent attention [5, 16, 19, 20, 21]. We stress that
Maximum-Cardinality Matching has been proposed in [21] as the “drosophila” of the
study of these FPT algorithms in P. We continue advancing in this research direction.

Note that another far-reaching generalization of distance-hereditary graphs are the
graphs of bounded clique-width [17]. In [5], we initiated the complexity study of Maximum-
Cardinality Matching – and other graph problems in P – on bounded clique-width
graph classes. The latter research direction was also motivated by the recent O(k2 · n logn)-
time algorithm for Maximum-Cardinality Matching on graphs of treewidth at most
k, see [13, 19]. Turning our attention on denser graph classes of bounded clique-width, we
proved in [5] that Maximum-Cardinality Matching can be solved in O(k4 · n+m)-time
on graphs with modular-width at most k. We stress that distance-hereditary graphs have
unbounded treewidth and unbounded modular-width. Furthermore, clique-width is upper-
bounded by split-width [23], whereas split-width is upper-bounded by modular-width [5]. As
our main contribution in this paper, we present a quasi linear-time algorithm in order to
solve some generalization of Maximum-Cardinality Matching on bounded split-width
graphs – thereby answering positively to the open question from [5], while improving the
state-of-the-art. Our result shows interesting relationships between graph matchings and
splits, the latter being an important particular case of the join operation that is used in order
to define clique-width. The fine-grained complexity of Maximum-Cardinality Matching
parameterized by clique-width, however, remains open.

1.2 Our contributions
We consider a vertex-weighted generalization for Maximum-Cardinality Matching that
is known as the unit-cost b-Matching problem [12]. Roughly, every vertex v is assigned some
input capacity bv, and the goal is to compute edge-weights (xe)e∈E so that: for every v ∈ V
the sum of the weights of its incident edges does not exceed bv, and

∑
e∈E xe is maximized.

We prove a simple combinatorial lemma that essentially states that the cardinality of a
maximum b-matching in a graph grows as a piecewise linear function in the capacity bw

of any fixed vertex w. This nice result (apparently never noticed before) holds for any
graph. As such, we think that it could provide a nice tool for the further investigations on
b-Matching. Then, we derive from our combinatorial lemma a variant of some reduction
rule for Maximum-Cardinality Matching that we first introduced in the more restricted
case of modular decomposition [5]. Altogether combined, this allows us to reduce the solving
of b-Matching on the original graph G to solving b-Matching on supergraphs of every its
split components. We expect our approach to be useful in other matching and flow problems.

Overall, our main result is that b-Matching can be solved in O((k log2 k) · (m + n) ·
log ||b||1)-time on graphs with split-width at most k (Theorem 17). It implies that Maximum-
Cardinality Matching can be solved in O((k log2 k) · (m+n) · logn)-time on graphs with
split-width at most k. Since distance-hereditary graphs have split-width at most two, we so
obtain the first known quasi linear-time algorithms for Maximum-Cardinality Matching
and b-Matching on distance-hereditary graphs.

ISAAC 2018
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Figure 1 A graph and its split decomposition. Split marker vertices that correspond to a same
simple decomposition are identified by two rectangles with the same color.

We introduce the required terminology and basic results in Section 2, where we also
sketch the main ideas behind our algorithm (Section 2.3). Then, Section 3 is devoted to a
combinatorial lemma that is the key technical tool in our subsequent analysis. In Section 4,
we present our algorithm for b-Matching on bounded split-width graphs. We conclude
in Section 5 with some open questions. Due to space restrictions, some of the proofs are
omitted. Full proofs can be found in our technical report [9].

2 Preliminaries

We use standard graph terminology from [3]. Graphs in this study are finite, simple (hence
without loops or multiple edges), and connected – unless stated otherwise. Furthermore we
make the standard assumption that graphs are encoded as adjacency lists. Given a graph
G = (V,E) and a vertex v ∈ V , we denote its neighbourhood by NG(v) = {u ∈ V | {u, v} ∈
E} and the set of its incident edges by Ev(G) = {{u, v} | u ∈ NG(v)}. When G is clear from
the context we write N(v) and Ev instead of NG(v) and Ev(G). Similarly, we define the
neighbourhood of any vertex-subset S ⊆ V as NG(S) =

(⋃
v∈S NG(v)

)
\ S.

2.1 Split-width
Let a split in a graph G = (V,E) be a partition V = U∪W such that: min{|U |, |W |} ≥ 2; and
there is a complete join between the vertices of NG(U) and NG(W ). A simple decomposition
of G takes as input a split (U,W ), and it outputs two subgraphs GU = G[U ∪ {w}] and
GW = G[W ∪ {u}] where u,w /∈ V are fresh new vertices such that NGU

(w) = U and
NGW

(u) = W . The vertices u,w are termed split marker vertices. A split decomposition
of G is obtained by applying recursively some sequence of simple decompositions (e.g., see
Fig. 1). We name split components the subgraphs in a given split decomposition of G.

It is often desirable to apply simple decompositions until all the subgraphs obtained
cannot be further decomposed. In the literature there are two cases of “indecomposable”
graphs. Degenerate graphs are such that every bipartition of their vertex-set is a split. They
are exactly the complete graphs and the stars [6]. A graph is prime for split decomposition
if it has no split. We can define the following two types of split decomposition:

Canonical split decomposition. Every graph has a canonical split decomposition
where all the subgraphs obtained are either degenerate or prime and the number of
subgraphs is minimized. Furthermore, the canonical split decomposition of a given graph
can be computed in linear-time [4].
Minimal split decomposition. A split-decomposition is minimal if all the subgraphs
obtained are prime. A minimal split-decomposition can be computed from the canonical
split-decomposition in linear-time [6]. Doing so, we avoid handling with the particular
cases of stars and complete graphs in our algorithms. The set of prime graphs in any
minimal split decomposition is unique up to isomorphism [6].
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For instance, the split decomposition of Fig. 1 is both minimal and canonical.

I Definition 1. The split-width of G, denoted by sw(G), is the minimum k ≥ 2 such that
any prime subgraph in the canonical split decomposition of G has order at most k.

We refer to [23] for some algorithmic applications of split decomposition. In particular,
graphs with split-width at most two are exactly the distance-hereditary graphs, a.k.a
the graphs whose all connected induced subgraphs are distance-preserving [1]. Distance-
hereditary graphs contain many interesting subclasses of their own such as cographs (a.k.a.,
P4-free graphs) and 3-leaf powers. Furthermore, since every degenerate graph has a split
decomposition where all the components are either triangles or paths of length three, every
component in a minimal split decomposition of G has order at most max{3, sw(G)}.

Split decomposition tree. A split decomposition tree of G is a tree T where the nodes
are in bijective correspondance with the subgraphs of a given split decomposition of G,
and the edges of T are in bijective correspondance with the simple decompositions used
for their computation. More precisely, if the considered split decomposition is reduced
to G then T is reduced to a single node; Otherwise, let (U,W ) be a split of G and let
GU = (U ∪ {w}, EU ), GW = (W ∪ {u}, EW ) be the corresponding subgraphs of G. We
construct the split decomposition trees TU , TW for GU and GW , respectively. Furthermore,
the split marker vertices u and w are contained in a unique split component of GW and
GU , respectively. We obtain T from TU and TW by adding an edge between the two nodes
that correspond to these subgraphs. The split decomposition tree of the canonical split
decomposition, resp. of a minimal split decomposition, can be constructed in linear-time [23].

2.2 Matching problems
A matching in a graph is a set of edges with pairwise disjoint end vertices.

I Problem 2 (Maximum-Cardinality Matching).
Input: A graph G = (V,E).
Output: A matching of G with maximum cardinality.

The Maximum-Cardinality Matching problem can be solved in O(m
√
n)-time [22].

We do not use this result directly in our paper. However, we do use in our analysis the
notion of augmenting paths, that is a cornerstone of most matching algorithms. Namely,
let G = (V,E) be a graph and F ⊆ E be a matching of G. A vertex is termed matched
if it is incident to an edge of F , and exposed otherwise. An F -augmenting path is a path
where the two ends are exposed, all edges {v2i, v2i+1} are in F and all edges {v2j−1, v2j}
are not in F . We can observe that, given an F -augmenting path P = (v1, v2, . . . , v2`), the
matching E(P )∆F (obtained by replacing the edges {v2i, v2i+1} with the edges {v2j−1, v2j})
has larger cardinality than F .

I Lemma 3 (Berge, [2]). A matching F in G = (V,E) is maximum if and only if there is
no F -augmenting path.

It is folklore that the proof of Berge’s lemma also implies the existence of many vertex-
disjoint augmenting paths for small matchings. More precisely:

I Lemma 4 (Hopcroft-Karp, [18]). Let F1, F2 be matchings in G = (V,E). If |F1| = r, |F2| =
s and s > r, then there exist at least s− r vertex-disjoint F1-augmenting paths.

ISAAC 2018
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b-Matching. More generally given a graph G = (V,E), let b : V → N assign a nonnegative
integer capacity bv for every vertex v ∈ V . A b-matching is an assignment of nonnegative
integer edge-weights (xe)e∈E such that, for every v ∈ V , we have

∑
e∈Ev

xe ≤ bv. We define
the x-degree of vertex v as degx(v) =

∑
e∈Ev

xe. Furthermore, the cardinality of a b-matching
is defined as ||x||1 =

∑
e∈E xe. We will consider the following graph problem:

I Problem 5 (b-Matching).
Input: A graph G = (V,E); an assignment function b : V → N.
Output: A b-matching of G with maximum cardinality.

For technical reasons, we will also use the following variant of b-Matching. Let c : E → N
assign a cost to every edge. The cost of a given b-matching x is defined as c · x =

∑
e∈E cexe.

I Problem 6 (Maximum-Cost b-Matching).
Input: A graph G = (V,E); assignment functions b : V → N and c : E → N.
Output: A maximum-cardinality b-matching of G where the cost is maximized.

I Lemma 7 ( [14, 15]). For every G = (V,E) and b : V → N, c : E → N, we can solve
Maximum-Cost b-Matching in O(nm log2 n)-time.

In particular, we can solve b-Matching in O(nm log2 n)-time.

There is a nonefficient (quasi polynomial) reduction from b-Matching to Maximum-
Cardinality Matching that we will use in our analysis (e.g., see [25]). More precisely,
let G, b be any instance of b-Matching. The “expanded graph” Gb is obtained from G and
b as follows. For every v ∈ V , we add the nonadjacent vertices v1, v2, . . . , vbv

in Gb. Then,
for every {u, v} ∈ E, we add the edges {ui, vj} in Gb, for every 1 ≤ i ≤ bu and for every
1 ≤ j ≤ bv. It is easy to transform any b-matching of G into an ordinary matching of Gb,
and vice-versa.

2.3 High-level presentation of the algorithm
In order to discuss the difficulties we had to face on, we start giving an overview of the FPT
algorithms that are based on split decomposition.

We first need to define a vertex-weighted variant of the problem that needs to be solved
for every component of the decomposition separately (possibly more than once). This
is because there are split marker vertices in every component that substitute the other
remaining components; intuitively, the weight of such a vertex encodes a partial solution
for the union of split components it has substituted.
Then, we take advantage of the treelike structure of split decomposition in order to solve
the weighted problem, for every split component sequentially, using dynamic programming.
Roughly, this part of the algorithm is based on a split decomposition tree. Starting from
the leaves of that tree (resp. from the root), we perform a tree traversal. For every split
component, we can precompute its vertex-weights from the partial solutions we obtained
for its children (resp., for its father) in the split decomposition tree.

Our approach. In our case, a natural vertex-weighted generalization for Maximum-Cardi-
nality Matching is the unit-cost b-Matching problem [12]. Independently from this
work1, the authors in [20] proposed a new Maximum-Cardinality Matching algorithm

1 Our preliminary version of this paper was released on arXiv one day before theirs.



G. Ducoffe and A. Popa 30:7

on graphs of bounded modular-width that is also based on a reduction to b-Matching.
Unlike this work, the algorithm of [20] cannot be applied to the more general case of bounded
split-width graphs. Indeed, the main technical difficulty for the latter graphs – not addressed
in [20] – is how to precompute efficiently, for every component of their split decomposition,
the specific instances of b-Matching that need to be solved. To see that, consider the
bipartition (U,W ) that results from the removal of a split. In order to compute the b-
Matching instances on side U , we should be able (after processing the other side W ) to
determine the number of edges of the split that are matched in a final solution. Guessing
such number looks computationally challenging. We avoid doing so by storing a partial
solution for every possible number of split edges that can be matched. However, this simple
approach suffers from several limitations. For instance, we need a very compact encoding for
partial solutions – otherwise we could not achieve a quasi linear-time complexity. Somehow,
we also need to consider the partial solutions for all the splits that are incident to the same
component all at once.

This is where we use a result from Section 3, namely, that for every fixed vertex w

in a graph, the maximum-cardinality of a b-matching is a piecewise-linear function in the
capacity bw of this vertex. Roughly, in any given split component Ci, we consider all the
vertices w substituting a union of other components. The latter vertices are in one-to-one
correspondence with the strong splits that are incident to the component. We expand
every such vertex w to a module that contains O(1) vertices for every straight-line section
of the corresponding piecewise-linear function. We want to stress that to the best of our
knowledge, the combination of dynamic programming over split decomposition with the
recursive computation of some piecewise-linear functions is an all new algorithmic technique.

3 Changing the capacity of one vertex

We first consider an auxiliary problem on b-matching that can be of independent interest. Let
G = (V,E) be a graph, w ∈ V and b : V \ w → N be a partial assignment. We denote µ(t)
the maximum cardinality of a b-matching of G provided we set to t the capacity of vertex
w. Clearly, µ is nondecreasing in t. Our main result in this section is that the function µ is
essentially piecewise linear (Proposition 11). We start by introducing some useful lemmata.

I Lemma 8. µ(t+ 1)− µ(t) ≤ 1.

I Lemma 9. If µ(t+ 2) = µ(t) then we have µ(t+ i) = µ(t) for every i ≥ 0.

I Lemma 10. If µ(t+ 1) = µ(t) then we have µ(t+ 3) = µ(t+ 2).

These above results are obtained by studying vertex-disjoint augmenting paths in some
“expanded graphs” Gb,t (cf. Lemmata 3 and 4).

I Proposition 11. There exist integers c1, c2 such that:

µ(t) =


µ(0) + t if t ≤ c1

µ(c1) +
⌊

t−c1
2
⌋

= µ(0) + c1 +
⌊

t−c1
2
⌋
if c1 < t ≤ c1 + 2c2

µ(c1 + 2c2) = µ(0) + c1 + c2 otherwise.

Furthermore, the triple (µ(0), c1, c2) can be computed in O(nm log2 n log ||b||1)-time.

ISAAC 2018
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Figure 2 An example with (µ(0), c1, c2) = (1, 1, 1). Vertices are labeled with their capacity. Thin
and bold edges have respective weights 0 and 1.

Proof. Let c1 be the maximum integer t such that µ(t) = µ(0) + t. This value is well-defined
since µ must stay constant whenever t ≥

∑
v∈NG(w) bv (saturation of all the neighbours).

Furthermore, by Lemma 8 we have µ(t) = µ(0) + t for every 0 ≤ t ≤ c1. Then, let tmax be
the least integer t such that, for every i ≥ 0 we have µ(tmax + i) = µ(tmax). Again, this value
is well-defined since we have the trivial upper-bound tmax ≤

∑
v∈NG(w) bv. Furthermore,

since µ is strictly increasing between 0 and c1, tmax ≥ c1. Let c′2 = tmax − c1. We claim
that c′2 = 2c2 is even. For that, we need to observe that µ(c1) = µ(c1 + 1) by maximality
of c1. Using Lemma 10, we prove by induction µ(c1 + 2i) = µ(c1 + 2i + 1) for every
i ≥ 0. The latter proves, as claimed, c′2 = 2c2 is even by minimality of c′2. Moreover,
for every 0 ≤ i < c2 we have by Lemma 9 µ(c1 + 2i) < µ(c1 + 2(i + 1)) (since otherwise
tmax ≤ c1 +2i). By Lemma 10 we have µ(c1 +2i) = µ(c1 +2i+1). Finally, by Lemma 8 we get
µ(c1 +2(i+1)) ≤ µ(c1 +2i+1)+1 = µ(c1 +2i)+1, therefore µ(c1 +2(i+1)) = µ(c1 +2i)+1.
Altogether combined, it implies that µ(c1 + 2i) = µ(c1 + 2i + 1) = µ(c1) + i for every
0 ≤ i ≤ c2, that proves the first part of our result.

We can compute µ(0) with any b-Matching algorithm after we set the capacity of w to 0.
The value of c1 can be computed within O(log c1) calls to a b-Matching algorithm, as follows.
Starting from c′1 = 1, we multiply the current value of c′1 by 2 until we reach a value c′1 > c1
such that µ(c′1) < µ(0) + c′1. Then, we perform a binary search between 0 and c′1 in order to
find the largest value c1 such that µ(c1) = µ(0) + c1. Once c1 is known, we can use a similar
approach in order to compute c2. Overall, since c1 + 2c2 = tmax ≤

∑
v∈NG(w) bv = O(||b||1),

we are left with O(log ||b||1) calls to any b-Matching algorithm. Therefore, by Lemma 7,
we can compute the triple (µ(0), c1, c2) in O(nm log2 n log ||b||1)-time. J

4 The algorithm

We present in this section a quasi linear-time algorithm for computing a maximum-cardinality
b-matching on any bounded split-width graph (Theorem 17). Given a graph G, our algorithm
takes as input the split decomposition tree T of any minimal split decomposition of G.
We root T in an arbitrary component C1. Then, starting from the leaves, we compute by
dynamic programming on T the cardinality of an optimal solution. This first part of the
algorithm is involved, and it uses the results of Section 3. It is based on a new reduction
rule that we introduce in Definition 12. Finally, starting from the root component C1, we
compute a maximum-cardinality b-matching of G, b by reverse dynamic programming on
T . This second part of the algorithm is simpler than the first one, but we need to carefully
upper-bound its time complexity. In particular, we also need to ensure that some additional
property holds for the b-matchings we compute at every component.
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Figure 3 The reduction of Definition 12.

4.1 Reduction rule
Recall that an edge between a rooted subtree and its parent in T corresponds to a split
(U,W ) of G. After we processed the side U (corresponding to this subtree) we account for all
the partial solutions found for GU by transforming the split marker vertex u into a module 2,
as follows:

I Definition 12. For any instance G = (V,E), b and any split (U,W ) of G let C = NG(W ) ⊆
U, D = NG(U) ⊆W . Let GU = (U ∪{w}, EU ), GW = (W ∪{u}, EW ) be the corresponding
subgraphs of G. We define the pairs GU , b

U and HW , bW as follows:
For every v ∈ U we set bU

v = bv; the capacity of the split marker vertex w is left unspecified.
Let (µU (0), cU

1 , c
U
2 ) be as defined in Proposition 11 w.r.t. GU , b

U and w.
The auxiliary graph HW is obtained from GW by replacing the split marker vertex u by
a module Mu = {u1, u2, u3}, NHW

(Mu) = NGW
(u) = D; we also add an edge between

u2, u3. For every v ∈W we set bW
v = bv; we set bW

u1
= cU

1 , b
W
u2

= bW
u3

= cU
2 .

See Fig. 3 for an illustration. We will show throughout this section that our gadget
somewhat encodes all the partial solutions for side U . Formally, the following relationship
holds between solutions for G, b and solutions for HW , bW :

I Proposition 13. Given a graph G = (V,E) and a capacity function b, let (U,W ) be a
split of G and let HW , bW be as in Definition 12. If x and xW are maximum-cardinality
b-matchings for the pairs G, b and HW , bW , respectively, then we have:

||x||1 = ||xW ||1 + µU (0)− cU
2

In what follows, we prove the first direction of Proposition 13 using classical flow techniques.
We postpone the proof of the other direction since, for that one, we need to prove intermediate
lemmata that will be also used in the proof of Theorem 17.

I Lemma 14. Let x be a b-matching for G, b. There exists a b-matching xW for HW , bW

such that ||xW ||1 ≥ ||x||1 + cU
2 − µU (0).

The following Sections 4.2 and 4.3 detail the intermediate results that we will use in order
to prove the other direction of Proposition 13 (as well as Theorem 17).

4.2 b-matchings with additional properties
We consider an intermediate modification problem on the b-matchings of some “auxiliary
graphs” that we define next. Let Ci be a split component in a given split decomposition
of G. The subgraph Ci is obtained from a sequence of simple decompositions. For a given
subsequence of the above simple decompositions (corresponding to the edges between Ci and

2 Recall that M is a module if for every x, y ∈ M we have N(x) \M = N(y) \M .
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its children in T ) we apply the reduction rule of Definition 12. Doing so, we obtain a pair
Hi, b

i with Hi being a supergraph of Ci obtained by replacing some split marker vertices
uit
, 1 ≤ t ≤ `, by the modules Mit

= {u1
it
, u2

it
, u3

it
}. By construction u2

it
, u3

it
are adjacent

and they have the same capacity.
We seek for a maximum-cardinality b-matching xi for the pair Hi, b

i such that the
following properties hold for every 1 ≤ t ≤ `:

(symmetry) degxi(u2
it

) = degxi(u3
it

).
(saturation) if degxi(u1

it
) < c1

it
then, degxi(u2

it
) = xi

{u2
it

,u3
it
}.

We prove next that for every fixed t, any xi can be processed in O(|Euit
(Ci)|)-time so that

both the saturation property and the symmetry property hold for Mit . However, ensuring
that these two above properties hold simultaneously for every t happens to be trickier. We
manage to do so by reducing to Maximum-Cost b-Matching (i.e., internal edges in the
modules are assigned a larger cost than the other edges).

I Lemma 15. In O(|V (Hi)| · |E(Hi)| · log2 |V (Hi)|)-time, we can compute a maximum-
cardinality b-matching xi for the pair Hi, b

i such that both the saturation property and the
symmetry property hold for every Mit , 1 ≤ t ≤ `.

4.3 Merging the partial solutions together
Finally, before we can describe our main algorithm (Theorem 17) we need to consider the
intermediate problem of merging two partial solutions. Let (U,W ) be a split of G and
let GU = (U ∪ {w}, EU ), GW = (W ∪ {u}, EW ) be the corresponding subgraphs of G.
Consider some partial solutions xU and xW obtained, respectively, for the pairs GU , b

U and
GW , bW (for some bU , bW to be defined later). Assuming an appropriate data-structure for
b-matchings, this merging stage can be solved with a greedy algorithm.

I Lemma 16. Suppose that bU (resp., bW ) satisfies bU
v ≤ bv for every v ∈ U (resp., bW

v ≤ bv

for every v ∈W ). Let xU , xW be b-matchings for, respectively, the pairs GU , b
U and GW , bW

such that degxU (w) = degxW (u) = d.
Furthermore, for any graph H let ϕ(H) = |E(H)|+ 4 · (sc(H)− 1), with sc(H) being the

number of split components in any minimal split decomposition of H 3.
Then, in at most O(ϕ(G)− ϕ(GU )− ϕ(GW ))-time, we can obtain a valid b-matching x

for the pair G, b such that ||x||1 = ||xU ||1 + ||xW ||1 − d.

Overall, since there are at most n− 2 components in any minimal split decomposition of
G [23], the merging stages take total time O(ϕ(G)) = O(n+m).

4.4 Main result
We are now ready to prove Proposition 13. This algorithmic proof is the cornerstone of our
main result.

Proof of Proposition 13. We have ||xW ||1 ≥ ||x||1 − µU (0) + cU
2 by Lemma 14. In order to

prove the converse inequality, we can assume w.l.o.g. that xW satisfies both the saturation
property and the symmetry property w.r.t. the module Mu (otherwise, by Lemma 15, we
can process xW so that it is the case). We partition ||xW ||1 as follows: µW =

∑
e∈E(W ) x

W
e ,

c′1 = degxW (u1) ≤ cU
1 and c′2 = degxW (u2)− xW

{u2,u3} = degxW (u3)− xW
{u2,u3} ≤ c

U
2 . Since we

3 We recall that the set of prime graphs in any minimal split decomposition is unique up to isomorphism [23].
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xW

2

2

saturation of u

2

2

1 symmetrization

2

2

xU

4

x

Figure 4 The construction of x′. Vertices with capacity greater than 1 are labeled with their
capacity. Thin and bold edges have respective weights 0 and 1.

assume that xW satisfies both the saturation property and the symmetry property w.r.t. Mu,
we have c′2 > 0 only if c′1 = cU

1 . Furthermore, we observe that u2 and u3 must be saturated
(otherwise, we could increase the cardinality of the b-matching by setting xW

{u2,u3} = cU
2 − c′2).

Therefore, we get:

||xW ||1 = µW + c′1 + 2c′2 + (cU
2 − c′2) = µW + c′1 + c′2 + cU

2 .

We define bW
u = bU

w = c′1 + 2c′2. Then, we proceed as follows (see Fig. 4 for an illustration).
We transform xW into a b-matching for the pair GW , bW by setting xW

{u,v′} = xW
{u1,v′} +

xW
{u2,v′} + xW

{u3,v′} for every v′ ∈ NGW
(u) = D. Note that we have degxW (u) = bW

u = c′1 +
2c′2. Furthermore, the cardinality of the b-matching has decreased by xW

{u2,u3} = cU
2 − c′2.

Let xU be a b-matching for the pair GU , b
U of maximum cardinality µU (c′1 + 2c′2). Since

c′1 ≤ cU
1 , c′2 > 0 only if c′1 = cU

1 , and c′2 ≤ cU
2 , the following can be deduced from

Proposition 11: ||xU ||1 = µU (c′1 + 2c′2) = µU (0) + c′1 + c′2; and the split marker vertex w
is saturated in xU , i.e., degxU (w) = bU

w = c′1 + 2c′2.
Since we have degxW (u) = degxU (w) = c′1 +2c′2, we can define a b-matching x′ for the pair G, b
by applying Lemma 16. Doing so, we get ||x||1 ≥ ||x′||1 = ||xU ||1 +

(
||xW ||1 − (cU

2 − c′2)
)
−

(c′1 + 2c′2) = µU (0) + c′1 + c′2 + ||xW ||1 − (cU
2 + c′1 + c′2) = ||xW ||1 + µU (0)− cU

2 . J

We finally prove (in a similar way as above) the main result in this paper.

I Theorem 17. For every pair G = (V,E), b with sw(G) ≤ k, we can solve b-Matching in
O((k log2 k) · (m+ n) · log ||b||1)-time.

Setting bv = 1 for every v ∈ V , we obtain the following implication of Theorem 17:

I Corollary 18. For every graph G = (V,E) with sw(G) ≤ k, we can solve Maximum-
Cardinality Matching in O((k log2 k) · (m+ n) · logn)-time.

5 Open questions

We presented an algorithm for solving b-Matching on distance-hereditary graphs, and more
generally on any graph with bounded split-width. In contrast to our result, we stress that as
already noticed in [20], Maximum-Weight Matching cannot be solved faster on complete
graphs, and so, on distance-hereditary graphs, than on general graphs. An interesting
open question would be to know whether b-Matching can be solved in linear time on
bounded split-width graphs. In a companion paper [10], we prove with a completely different
approach that Maximum-Cardinality Matching can be solved in O(n + m)-time on
distance-hereditary graphs. However, it is not clear to us whether similar techniques can be
used for bounded split-width graphs in general.
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