
New and Improved Algorithms for Unordered Tree
Inclusion

Tatsuya Akutsu1

Bioinformatics Center, Institute for Chemical Research, Kyoto University
Kyoto 611-0011, Japan

Jesper Jansson
Department of Computing, The Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong, China

Ruiming Li
Bioinformatics Center, Institute for Chemical Research, Kyoto University
Kyoto 611-0011, Japan

Atsuhiro Takasu
National Institute of Informatics
Chiyoda-ku, Tokyo, 101-8430, Japan

Takeyuki Tamura2

Bioinformatics Center, Institute for Chemical Research, Kyoto University
Kyoto 611-0011, Japan

Abstract
The tree inclusion problem is, given two node-labeled trees P and T (the “pattern tree” and
the “text tree”), to locate every minimal subtree in T (if any) that can be obtained by applying
a sequence of node insertion operations to P . Although the ordered tree inclusion problem is
solvable in polynomial time, the unordered tree inclusion problem is NP-hard. The currently
fastest algorithm for the latter is from 1995 and runs in O(poly(m,n) · 22d) = O∗(22d) time,
where m and n are the sizes of the pattern and text trees, respectively, and d is the maximum
outdegree of the pattern tree. Here, we develop a new algorithm that improves the exponent 2d
to d by considering a particular type of ancestor-descendant relationships and applying dynamic
programming, thus reducing the time complexity to O∗(2d). We then study restricted variants
of the unordered tree inclusion problem where the number of occurrences of different node labels
and/or the input trees’ heights are bounded. We show that although the problem remains NP-
hard in many such cases, it can be solved in polynomial time for c = 2 and in O∗(1.8d) time for
c = 3 if the leaves of P are distinctly labeled and each label occurs at most c times in T . We
also present a randomized O∗(1.883d)-time algorithm for the case that the heights of P and T
are one and two, respectively.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases parameterized algorithms, tree inclusion, unordered trees, dynamic pro-
gramming

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2018.27

1 JSPS KAKENHI #18H04113
2 JSPS KAKENHI #25730005

© Tatsuya Akutsu, Jesper Jansson, Ruiming Li, Atsuhiro Takasu, and Takeyuki Tamura;
licensed under Creative Commons License CC-BY

29th International Symposium on Algorithms and Computation (ISAAC 2018).
Editors: Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou Liao; Article No. 27; pp. 27:1–27:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/162456729?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.4230/LIPIcs.ISAAC.2018.27
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

27:2 Algorithms for Unordered Tree Inclusion

1 Introduction

Tree pattern matching and measuring the similarity of trees are classic problem areas in
theoretical computer science. One intuitive and extensively studied measure of the similarity
between two rooted, node-labeled trees T1 and T2 is the tree edit distance, defined as the
length of a shortest sequence of node insertion, node deletion, and node relabeling operations
that transforms T1 into T2 [7]. When T1 and T2 are ordered trees, the tree edit distance can
be computed in polynomial time. The first algorithm to achieve this bound ran in O(n6)
time [20], where n is the total number of nodes in T1 and T2, and it was gradually improved
upon until Demaine et al. [12] presented an O(n3)-time algorithm thirty years later which
was proved to be worst-case optimal under a conjecture that there is no truly subcubic time
algorithm for the all pairs shortest paths problem [9]. On the other hand, the tree edit
distance problem is NP-hard for unordered trees [25]. It is MAX SNP-hard even for binary
trees in the unordered case [24], which implies that it is unlikely to admit a polynomial-
time approximation scheme. Akutsu et al. [3, 5] have developed efficient exponential-time
algorithms for this problem variant. As for parameterized algorithms, Shasha et al. [19]
developed an O(4`1+`2 min(`1, `2)mn)-time algorithm for the problem, where `1 and `2 are
the numbers of leaves in T1 and T2, respectively. Using another parameter k, an O∗(2.62k)-
time algorithm was developed for the unit-cost edit operation model [4], where k is the edit
distance and O∗(f(· · ·)) means O(f(· · ·)poly(m,n)). See [7] for other related results.

An important special case of the tree edit distance problem known as the tree inclusion
problem is obtained when only node insertion operations are allowed. This problem has
applications to structured text databases and natural language processing [8, 14, 21]. Here,
we assume the following formulation of the problem: given a “text tree” T and a “pattern
tree” P , locate every minimal subtree in T (if any) that can be obtained by applying a
sequence of node insertion operations to P . (Equivalently, one may define the tree inclusion
problem so that only node deletion operations on T are allowed.) For unordered trees,
Kilpeläinen and Mannila [14] proved the problem to be NP-hard in general but solvable in
polynomial time when the degree (outdegree) of the pattern tree is bounded from above
by a constant. More precisely, the running time of their algorithm is O(d · 22d ·mn) time,
where m = |P |, n = |T |, and d is the maximum degree of P . Bille and Gørtz [8] gave a
fast algorithm for the case of ordered trees, and Valiente [21] developed a polynomial-time
algorithm for a constrained version of the unordered case. Also note that the special case of
the tree inclusion problem where node insertion operations are only allowed to insert new
leaves corresponds to a subtree isomorphism problem, which can be solved in polynomial
time for unordered trees [17].

1.1 Practical applications
Due to the rapid advance of AI technology, matching methods for knowledge base become
more important. As a fundamental technique for searching knowledge base, researchers in
database community have been studying the subtree similarity search. For example, Cohen
and Or proposed a subtree similarity search algorithm for various distance functions [11],
while Chang et al. proposed a top-k tree matching algorithm [10]. In the Natural Language
Processing (NLP) field, researchers are incorporating the deep learning techniques into NLP
problems and developing parsing/dependency trees processing algorithms [16]. Bibliographic
matching is one of the most popular applications of real-world matching problems [15]. In
most cases, single article has at most two or three versions, and it is very rare that single
article includes the same name co-authors. Therefore, it may be reasonable to assume that
the leaves of P are distinctly labeled and each label occurs at most c times in T .

T. Akutsu, J. Jansson, R. Li, A. Takasu, and T. Tamura 27:3

Table 1 The computational complexity of some special cases of the unordered tree inclusion
problem, where the last one is a randomized one. For any tree T , h(T) denotes the height of T and
OCC(T) the maximum number of times that any leaf label occurs in T . As indicated in the table,
either all nodes or only the leaves are labeled (the former is harder since it generalizes the latter).

Restriction Labels on Complexity Reference
h(T) = 2, h(P) = 1, OCC(T) = 3, OCC(P) = 1 all nodes NP-hard Corollary 8
h(T) = 2, h(P) = 2, OCC(T) = 3, OCC(P) = 1 leaves NP-hard Theorem 9
OCC(T) = 2, OCC(P) = 1 all nodes P Theorem 11
OCC(T) = 3, OCC(P) = 1 all nodes O∗(1.8d) time Theorem 12
h(T) = 2, h(P) = 1 all nodes O∗(1.883d) time Theorem 14

The extended tree inclusion problem was proposed in [18], which is an optimization
problem designed to make the unordered tree inclusion problem more useful for practical tree
pattern matching applications, e.g., involving glycan data from the KEGG database [13],
weblogs data [23], and bibliographical data from ACM, DBLP, and Google Scholar [15].
This problem asks for an optimal connected subgraph of T (if any) that can be obtained by
performing node insertion operations as well as node relabeling operations to P while allowing
non-uniform costs to be assigned to the different node operations; it was shown in [18] that
the unrooted version can be solved in O∗(22d) time and a further extension of the problem
that also allows at most k node deletion operations can be solved in O∗((ed)kk1/222(dk+d−k))
time where e is the base of the natural logarithm.

1.2 New results
We improve the exponential contribution to the time complexity of the fastest known
algorithm for the unordered tree inclusion problem (Kilpeläinen and Mannila’s algorithm
from 1995 [14]) from 22d to 2d, where d is the maximum degree of the pattern tree, so
that the time complexity becomes O(d2dmn2) = O∗(2d). This improved bound is achieved
by introducing a simple but quite useful idea of minimal inclusion and a different way of
dynamic programming. Next, we study the problem’s computational complexity for several
restricted cases (see Table 1 for a summary) and give a polynomial-time algorithm for when
the leaves in P are distinctly labeled and every label appears at most twice in T . Then, we
derive an O∗(1.8d)-time algorithm for the NP-hard case where the leaves in P are distinctly
labeled and each label appears at most three times in T . Both are obtained by effectively
utilizing a polynomial-time algorithm for 2-SAT. Finally, we derive a randomized O∗(1.883d)
time algorithm for the case where the heights of P and T are one and two, respectively.
It is obtained by a simple but non-trivial combination of the O∗(2d) time algorithm, an
O∗(1.234m) time algorithm for SAT with m clauses [22], and color-coding [6]. Because of
the page limit, some proofs are omitted in this version.

2 Preliminaries

From here on, all trees are rooted, unordered, and node-labeled. Let T be a tree. A node
insertion operation on T is an operation that creates a new node v having any label and
then: (i) attaches v as a child of some node u currently in T and makes v become the parent
of a (possibly empty) subset of the children of u; or (ii) makes the current root of T become

ISAAC 2018

27:4 Algorithms for Unordered Tree Inclusion

a child of v and lets v become the new root. For any two trees T1 and T2, we say that T1 is
included in T2 if there exists a sequence of node insertion operations such that applying the
sequence to T1 yields T2 (i.e., T1 is obtained by node deletions from T2).

For a tree T , r(T), h(T), and V (T) denote its root, height, and the set of nodes in T ,
respectively. A mapping between two trees T1 and T2 is a subset M ⊆ V (T1)× V (T2) such
that for every (u1, v1), (u2, v2) ∈ M , it holds that: (i) u1 = u2 if and only if v1 = v2; and
(ii) u1 is an ancestor of u2 if and only if v1 is an ancestor of v2. T1 is included in T2 if
and only if there is a mapping M between T1 and T2 such that |M | = |V (T1)| and u and v
have the same node label for every (u, v) ∈M [20]. Such a mapping is called an inclusion
mapping.

In the tree inclusion problem, the input consists of two trees P and T (also referred to as
the “pattern tree” and the “text tree”), and the objective is to locate every minimal subtree
of T that includes P . Define m = |V (P)| and n = |V (T)|, and d denote the maximum
degree of P . For any node v, let `(v) and Chd(v) denote its label and the set of its children.
Also let Anc(v) and Des(v) denote the sets of strict ancestors and strict descendants of v,
respectively, i.e., where v itself is excluded from these sets. For a node v in a tree T , T (v) is
the subtree of T induced by Des(v)∪ {v}. We write P (u) ⊂ T (v) if P (u) is included in T (v)
under the condition that u is mapped to v. For two trees T1 and T2, T1 ∼ T2 denotes that
T1 is isomorphic to T2 (with label information). The following concept plays a key role in
our algorithm.

I Definition 1. We say that T (v) minimally includes P (u) (denoted as P (u) ≺ T (v)) if
P (u) ⊂ T (v) holds and there is no v′ ∈ Des(v) such that P (u) ⊂ T (v′).

I Proposition 2. Let Chd(u) = {u1, . . . , ud}. P (u) ⊂ T (v) holds if and only if the following
conditions are satisfied.
(1) `(u) = `(v).
(2) v has a set of descendants D(v) = {v1, . . . , vd} such that vi /∈ Des(vj) for all i 6= j.
(3) There exists a bijection φ from Chd(u) to D(v) such that P (ui) ≺ T (φ(ui)) holds for all

ui ∈ Chd(u).

Proof. Conditions (1) and (2) are obvious. To prove (3), suppose there exists a bijection φ′
from Chd(u) to D(v) such that P (uj) ⊂ T (φ′(uj)) holds for all uj ∈ Chd(u) and P (ui) ≺
T (φ(ui)) does not hold for some ui ∈ Chd(u). Then, there must exist v′ ∈ Des(φ′(ui))
such that P (ui) ≺ T (v′) holds. Let φ′′ be the bijection obtained by replacing a mapping
from ui to φ′(ui) with that from ui to v′. Clearly, φ′′ gives a part of an inclusion mapping.
Repeatedly applying this procedure, we can obtain a bijection satisfying all conditions. J

Note that the conditions of this proposition mainly state that all children of u must be
mapped to descendants of v that do not have ancestor-descendant relationships. Since P is
included in T if and only if there exists v ∈ V (T) such that P ≺ T (v), we focus on how to
decide if P (u) ≺ T (v) assuming that whether P (uj) ≺ T (vi) holds is known for all (uj , vi)
with uj ∈ Des(u) ∪ {u}, vi ∈ Des(v) ∪ {v}, and (uj , vi) 6= (u, v).

I Proposition 3. Suppose that P (u) ≺ T (v) can be decided in O(f(d,m, n)) time assuming
that whether P (uj) ≺ T (vi) holds is known for all descendant pairs (uj , vi). Then the
unordered tree inclusion problem can be solved in O(f(d,m, n)mn) time by using a bottom-up
dynamic programming procedure.

T. Akutsu, J. Jansson, R. Li, A. Takasu, and T. Tamura 27:5

3 An O(d2dmn2)-time algorithm

The crucial parts of the algorithm in [14] are the definition of S(v) and its computation (see
[14] for the details since our algorithms are significantly different from theirs). For each fixed
u in P , S(v) is defined by

S(v) = {U ⊆ Chd(u)| P (U) ⊂ T (v)},

where P (U) is the forest induced by nodes in U and their descendants and P (U) ⊂ T (v)
means that forest P (U) is included in T (v) (i.e., T (v) can be obtained from P (U) by node
insertion operations). Clearly, the size of S(v) is no greater than 2d. Note that in this paper,
we use S or S(v) only to denote a set, not to denote a subtree. In the algorithm of [14], the
following operation is performed from left to right for the children v1, . . . , vl of v:

S := {U ∪R|U ∈ S,R ∈ S(vi)},

beginning from S = ∅, and S(v) is determined based on the resulting S. However, this
update operation on S causes an O(d22d) factor because it examines O(2d)×O(2d) set pairs.
Therefore, in order to avoid this kind of operation, we need a new approach for computing
S(v), as explained below.

Given an unordered tree T , we fix any left-to-right ordering of its nodes (the ordering
does not affect the correctness). Then, for any two nodes vi, vj ∈ V (T) that do not have
any ancestor-descendant relationship, either “vi is left of vj” or “vi is right of vj” is uniquely
determined. We denote “vi is left of vj” by vi / vj .

We focus on deciding if P (u) ≺ T (v) holds for fixed (u, v) because this part is crucial to
reduce the exponential factor (we analyze the whole time complexity in Theorem 7). Assume
w.l.o.g. (without loss of generality) that Chd(u) = {u1, . . . , ud} (i.e., u has d children). For
simplicity, we assume until the end of this section that P (ui) ∼ P (uj) does not hold for any
ui 6= uj ∈ Chd(u). For any vi ∈ V (T (v)), define M(vi) by M(vi) = {uj ∈ Chd(u)|P (uj) ≺
T (vi)}. For example, M(v0) = ∅, M(v2) = {uC}, and M(v3) = {uD, uE} in Figure 1. For
any vi ∈ V (T (v)), LF (v, vi) denotes the set of nodes in V (T (v)) each of which is left of vi
(see Figure 1 for an example). Then, we define S(v, vi) by

S(v, vi) = {U ⊆ Chd(u)|P (U) ⊂ T (LF (v, vi))}
∪ {U ⊆ Chd(u)|(U = U ′ ∪ {uj}) ∧ (P (U ′) ⊂ T (LF (v, vi))) ∧ (uj ∈M(vi))}

where T (LF (v, vi)) is the forest induced by nodes in LF (v, vi) and their descendants. Note
that P (∅) ⊂ T (...) always holds. The definition of S(v, vi) leads to a dynamic programming
procedure for its computation. We explain S(v, vi) and related concepts using an example in
Figure 1. Suppose that we have the relations of P (uA) ≺ T (v1), P (uB) ≺ T (v1), P (uC) ≺
T (v2), P (uD) ≺ T (v3), P (uE) ≺ T (v3), P (uD) ≺ T (v4), P (uF) ≺ T (v4). Then, the following
holds: S(v, v0) = { ∅ }, S(v, v1) = { ∅, {uA}, {uB} }, S(v, v2) = { ∅, {uC} }, S(v, v3) =
{ ∅, {uD}, {uE} }, S(v, v4) = { ∅, {uD}, {uE}, {vF }, {uD, uE}, {uD, uF }, {uE , uF } }.

I Proposition 4. S(v) = ∪vi∈Des(v)S(v, vi).

Proof. Let U ∈ S(v) and dU = |U |. Let φ be an injection from U toDes(v) giving an inclusion
mapping for P (U) ⊂ T (v). Let {v′1, . . . , v′dU } = {φ(uj)|uj ∈ U}, where v′1 / v′2 / · · · / v′dU .
Then, v′i ∈ LF (v, v′i+1) and v′i ∈ LF (v, v′dU) hold for all i = 1, . . . , dU − 1. Furthermore,
P (uj) ≺ T (v′i) holds for v′i = φ(uj). Therefore, U ∈ S(v, v′dU).

It is straightforward to see that S(v, vi) does not contain any element not in S(v). J

ISAAC 2018

27:6 Algorithms for Unordered Tree Inclusion

P(u)

A CB ED

uA uB uC uD uE

F

uF

u

T(v)

A B

D E D F

v

v0
v1

v2

v3 v4

v5

v6

LF(v,v5)

D C

Figure 1 Example for explaining the key idea. A triangle X attached to vi means that P (uX) ⊂
T (vi) holds. Note that triangle D appears at v2, v3, and v4. However, P (uD) ≺ T (v2) does not hold
since it does not satisfy the minimality condition. Therefore, v2 is never selected for matching to uD

in AlgInc1: if we need to match uD to v2, we can instead use a matching between uD and v3.

v

v1 v2

v3

v4 v5
v6

Figure 2 Example of a DAG G(V, E) constructed from T (v), where v /∈ V , E is shown by dashed
arrows, and T (v) is shown by bold lines.

We construct a DAG (directed acyclic graph) G(V,E) from T (v) (see also Figure 2). V
is defined by V = V (T (v)) − {v}, and E is defined by E = {(vi, vj)| vi / vj , }. Then, we
traverse G(V,E) so that node vi is visited only after all of its predecessors are visited. Let
Pred(vi) denote the set of the predecessors of vi (i.e., Pred(vi) is the set of nodes left of vi).
Recall that M(vi) = {uj ∈ Chd(u)| P (uj) ≺ T (vi)}.

Then, we compute S(v, vi) by the following procedure, which is referred to as AlgInc1.
(1) S0(vi)←

⋃
vj∈Pred(vi) S(v, vj).

(2) S(v, vi)← S0(vi) ∪ {S ∪ {uh}| uh ∈M(vi), S ∈ S0(vi)}.
If Pred(vi) = ∅, we let S(v, vi) ← {∅} ∪ {{uh}| uh ∈ M(vi)}. Finally, we let S(v) ←⋃
vi∈Des(v) S(v, vi). Then, P (u) is included in T (v) with u corresponding to v iff u and v

have the same label and Chd(u) ∈ S(v).

I Lemma 5. AlgInc1 correctly computes S(v, vj) for all vj ∈ Des(v) in O(d2dn2) time.

Proof. Since it is straightforward to prove the correctness, we analyze the time complexity.
The sizes of S(v), S(v, vij)s, and S0(vi)s are O(d2d), and computation of each of such sets
can be done in O(d2dn) time. Since the number of S(v, vij)s and S0(vi)s (per v) are O(n),
the total computation time is O(d2dn2). J

If there exist ui, uj ∈ Chd(u) such that P (ui) ∼ P (uj), we treat each element in S(v),
S(v, vij)s, and S0(vi)s as a multiset where any ui and uj such that P (ui) ∼ P (uj) are
identified and the multiplicity of ui is bounded by the number of P (uj)s isomorphic to P (ui).
Then, since |Chd(u)| ≤ d for all u in P , the size of each multiset is at most d and the number
of different multisets is not greater than 2d. Therefore, the same time complexity result

T. Akutsu, J. Jansson, R. Li, A. Takasu, and T. Tamura 27:7

holds. This discussion can also be applied to the following sections. Note that by treating
these ui and uj separately, we need not change the algorithm. However, use of multi-sets
plays an important role in Section 7.

AlgInc1 does a lot of redundant computations. In order to compute S0(vi), we do not
need to consider all vij s that are left of vi. Instead, we construct a tree T ′(v) from a given
T (v) by the following rule: for each pair of consecutive siblings (vi, vj) in T (v), add a new
sibling (leaf) v(i,j) between vi and vj . Newly added nodes are called virtual nodes. We
construct a DAG G′(V ′, E′) on V ′ = V (T ′(v)) by: (vi, vj) ∈ E′ iff one of the following holds

vj is a virtual node, and vi is in the rightmost path of T ′(vj1), where vj = v(j1,j2).
vi is a virtual node, and vj is in the leftmost path of T ′(vi2), where vi = v(i1,i2).

Then, we can use the same technique as AlgInc1, except that G(V,E) is replaced by
G′(V ′, E′). We denote the resulting algorithm by AlgInc2.

I Lemma 6. AlgInc2 correctly computes S(v, vj) for all vj ∈ Des(v) in O(d2dn) time.

Since checking the minimality can be done in O(m) time per (u, v), it is seen from
Proposition 3 that the total time complexity is O(d2dmn2). Since the size of each S(v, vi) is
O(d2d) and we need to maintain information about P (u) ≺ T (v) and P (u) ⊂ T (v) for all
(u, v), the total space is O(d2dn+mn),

I Theorem 7. Unordered tree inclusion can be solved in O(d2dmn2) time using O(d2dn+mn)
space.

If we analyze the time complexity carefully, we can see that it is O(d2dh(T)mn) because
each vi is involved in computation of P (u) ≺ T (v) only for v ∈ Anc(vi). This result is better
than that of [14] if d is not small (precisely, d > c log(h(T)) for some constant c).

4 NP-hardness of unordered tree inclusion for pattern trees with
unique leaf labels

For any node-labeled tree T , let L(T) be the set of all leaf labels in T . For any c ∈
L(T), let OCC(T, c) be the number of times that c occurs in T , and define OCC(T) =
maxc∈L(T) OCC(T, c).

The decision version of the tree inclusion problem is to determine whether T can be
obtained from P by applying node insertion operations. Kilpeläinen and Mannila [14]
proved that the decision version of unordered tree inclusion is NP-complete by reducing
from Satisfiability. In their reduction, the clauses in a given instance of Satisfiability are
represented by node labels in the constructed trees; in particular, for every clause C, each
literal in C introduces one node in T whose node label represents C. By using 3-SAT instead
of Satisfiability in their reduction, we immediately have:

I Corollary 8. The decision version of the unordered tree inclusion problem is NP-complete
even if restricted to instances where h(T) = 2, h(P) = 1, OCC(T) = 3, and OCC(P) = 1.

In Kilpeläinen and Mannila’s reduction, the labels assigned to the internal nodes of T
are significant. Here, we consider the computational complexity of the special case of the
problem where all internal nodes in P and T have the same label, or equivalently, where only
the leaves are labeled. Then, we have the following.

I Theorem 9. The decision version of the unordered tree inclusion problem is NP-complete
even if restricted to instances where h(T) = 2, h(P) = 2, OCC(T) = 3, OCC(P) = 1, and
all internal nodes have the same label.

ISAAC 2018

27:8 Algorithms for Unordered Tree Inclusion

A

C

B

E

B

A

C

A B

D

D

E

TP

A CB ED

u1 u2 u3 u4 u5

Figure 3 For these trees, Occ(u1, M) = Occ(u2, M) = 3, Occ(u3, M) = Occ(u4, M) =
Occ(u5, M) = 2, d2 = 3, d3 = 2, and OCC(P, T) = 3.

5 A polynomial-time algorithm for case of OCC(P, T) = 2

In this and the following sections, for the simplicity, we consider the decision version of
unordered tree inclusion. However, by repeatedly applying each procedure O(n) times, we
can solve the locating problem version and thus the theorems hold as they are.

In this section, we require that each leaf of P has a unique label and that it appears at
no more than k leaves in T . We denote this number k by OCC(P, T) (see Figure 3). Note
that the case of OCC(P) = 1 and OCC(T) = k is included in the case of OCC(P, T) = k.
From the unique leaf label assumption, we have the following observation.

I Proposition 10. Suppose that P (u) has a leaf labeled with b. If P (u) ⊂ T (v), then v is an
ancestor of a leaf (or leaf itself) with label b.

We say that vj is a minimal node for ui if P (ui) ≺ T (vj) holds. It follows from this
proposition that the number of minimal nodes is at most k for each ui if OCC(P, T) = k.

When k = 2, we can have a chain of choices of the subtrees of P in T . This suggests that
2-SAT is useful. Indeed, by using a polynomial-time reduction to 2-SAT, we have:

I Theorem 11. Unordered tree inclusion can be solved in polynomial time if OCC(P, T) = 2.

6 An O∗(1.8d)-time algorithm for case of OCC(P, T) = 3

In this section, we present an O∗(1.8d)-time algorithm for the case of OCC(P, T) = 3, where
d is the maximum degree of P , m = |V (P)|, and n = |V (T)|. Note that this case remains
NP-hard from Theorem 9.

The basic strategy is use of dynamic programming: decide whether P (u) ⊂ T (v) in
a bottom-up way. Suppose that u has a set of children U = {u1, . . . , ud}. Since we use
dynamic programming, we can assume that P (ui) ≺ T (vj) is known for all ui and for all vj ∈
V (T (v))− {v}. We defineM(u, v) byM(u, v) = {(ui, vj)| P (ui) ≺ T (vj) ∧ vj ∈ V (T (v))}.

The crucial task of the dynamic programming procedure is to find an injective mapping ψ
from {u1, . . . , ud} to V (T (v))−{v} such that P (ui) ≺ T (ψ(ui)) holds for all ui (i = 1, . . . , d)
and there is no ancestor/descendant relationship between any ψ(ui) and ψ(uj) (ui 6= uj). If
this task can be performed in O(f(d,m, n)) time, from Proposition 3, the total complexity
will be O∗(f(d,m, n)). We assume w.l.o.g. that ψ is given as a set of mapping pairs. For
each vj ∈ V (T (v)) and each M ⊆M(u, v), we define AncDes(vj , T,M) by

AncDes(vj , T,M) = {(uk, vh)| (uk, vh) ∈M ∧ vh ∈ ({vj} ∪Anc(vj , T) ∪Des(vj , T))},

where Anc(vj , T) (resp., Des(vj , T)) denotes the set of ancestors (resp., descendants) of vj
in T where vj /∈ Anc(vj , T) (resp., vj /∈ Des(vj , T)).

T. Akutsu, J. Jansson, R. Li, A. Takasu, and T. Tamura 27:9

Here, we define Occ(ui,M) by Occ(ui,M) = |{j | (ui, vj) ∈ M}|, where M =M(u, v).
Let d3 (resp., d2) be the number of uis such that Occ(ui,M) = 3 (resp., Occ(ui,M) = 2)
(see also Figure 3). We assume w.l.o.g. that d2 + d3 = d because Occ(ui,M) = 1 means
that ψ(ui) is uniquely determined and thus we can ignore uis with Occ(ui,M) = 1. From
Theorem 11, we can see the following if there are no two pairs (ui1 , vj1), (ui2 , vj2) ∈M such
that Occ(ui1 ,M) = 3, Occ(ui2 ,M) = 3, and (ui2 , vj2) ∈ AncDes(vj1 , T (v),M).

The problem can be solved in O∗(2d3) time:
For each ui such that Occ(ui,M) = 3 (i.e., (ui, vj1), (ui, vj2), (ui, vj3) ∈ M), we choose
ψ(ui) = vj1 (i.e., (ui, vj1) ∈ ψ) or not. Thus, there exist 2d3 possibilities. After all the
choices, there is no ui such that Occ(ui,M) = 3 and Theorem 11 can be applied.
The problem can also be solved in O∗(2d2) time:
For each ui with Occ(ui,M) = 2 (i.e., (ui, vj1), (ui, vj2) ∈M), we must choose ψ(ui) = vj1

or ψ(ui) = vj2 . Thus, there are 2d2 possibilities. After all choices, each (ui, vj) ∈ M
with Occ(ui,M) = 2 is removed, and thus there is no pairs (ui1 , vj1), (ui2 , vj2) ∈M such
that (ui2 , vj2) ∈ AncDes(vj1 , T (v),M) from the ‘if’ condition. Therefore, the problem is
reduced to bipartite matching, which can be solved in polynomial time.

It means the problem can be solved in O∗(min(2d3 , 2d2)) time. We denote the condition
(i.e., ‘if’ part of the above) and this algorithm by (##) and ALG-##, respectively,
Therefore, the crucial point is how to (recursively) remove pairs such that Occ(ui1 ,M) = 3,
Occ(ui2 ,M) = 3, and (ui2 , vj2) ∈ AncDes(vj1 , T (v),M).

For a mapping ψ, we let ψ∪NULL = NULL, where NULL means that there is no valid
mapping. The following is a pseudocode of the algorithm for finding a mapping ψ, where it
is invoked as FindMapping({u1, . . . , ud},M) with M =M(u, v).

Procedure FindMapping(U,M)
if condition (##) is satisfied then

return mapping by ALG-(##); (#1)
Choose arbitrary (ui1 , vj1), (ui2 , vj2) ∈M such that Occ(ui1 ,M) = 3, Occ(ui2 ,M) = 3,

and (ui2 , vj2) ∈ AncDes(vj1 , T (v),M); (#2)
M ′ ←M − {(ui1 , vj1)}; (#3)
ψ ← FindMapping(U,M ′);
if ψ 6= NULL return ψ;
M ′ ←M −AncDes(vj1 , T (v),M); (#4)
return {(ui1 , vj1)} ∪ FindMapping(U − {ui1},M ′).

I Theorem 12. Unordered tree inclusion can be solved in O∗(1.8d) time if OCC(P, T) = 3.

7 A randomized algorithm for case of h(P) = 1 and h(T) = 2

In this section, we consider the case of h(P) = 1 and h(T) = 2, which is denoted by IncH2
and remains NP-hard from Corollary 8. We assume w.l.o.g. that the roots of P and T have
the same unique label and thus they must match in any inclusion mapping.

Let U = {u1, . . . , ud} be the set of children of r(P). Let v1, . . . , vg be the children of
r(T), and let vi,1, . . . , vi,ni be the children of each vi.

First, we assume that `(ui) 6= `(uj) holds for all i 6= j, where `(v) denotes the label of v.
This special case is denoted by IncH2U. Recall that IncH2U remains NP-hard.

ISAAC 2018

27:10 Algorithms for Unordered Tree Inclusion

IncH2U can be solved by a reduction to CNF SAT, which is different from the one in
Section 5 and is considered as a reverse reduction of the one used for proving NP-hardness
of unordered tree inclusion [14]. For each ui, we define XPOS

i and XNEG
i by

XPOS
i = {xj | `(ui) = `(vj)}, XNEG

i = {xj | (∃vj,k ∈ Chd(vj))(`(ui) = `(vj,k))}.

For each ui, we construct a clause Ci by Ci =

 ∨
xj∈XPOSi

xj

 ∨
 ∨
xj∈XNEGi

xj

 . Then, the

resulting SAT instance is {C1, . . . , Cd}. Intuitively, xj = 1 corresponds to a case that ui is
mapped to vj , where `(ui) = `(vj). Of course, multiple vjs may correspond to ui. However,
it is enough to consider an arbitrary one.

Then, it is straightforward to see that P is included in T iff {C1, . . . , Cd} is satisfiable.
Using Yamamoto’s algorithm for SAT with d clauses [22], we have:

I Proposition 13. IncH2U can be solved in O∗(1.234d) time.

Next, we consider IncH2. We combine two algorithms: (A1) random sampling-based
algorithm, and (A2) modified version of the O(d2dmn2) time algorithm in Section 3.

For (A1), we employ a technique used in color-coding [6]. Let d0 be the number of uis
having unique labels. Let d1 ≤ d2 ≤ · · · ≤ dh be the multiplicities of other labels in U . Note
that d0 + d1 + · · ·+ dh = d holds. Let d− d0 = αd.

For each label ai with di > 1 (i.e., i > 0), we change the labels of nodes with label ai
in P to a1

i , a
2
i , . . . , a

di
i in an arbitrary way. For each node v in T having label ai, we assign

aji (j = 1, . . . , di) to v uniformly at random, and then apply the SAT-based algorithm for
IncH2U. Let M be the set of pairs for an inclusion mapping from P to T . If all nodes of
T appearing in M have different labels, a valid inclusion mapping can be obtained. This
success probability is given by

d1!
dd1

1
· d2!
dd2

2
· · · dh!

ddhh
≥ (αd)!

(αd)(αd) .

Note that this inequality is proved by repeatedly applying d1!
dd1

1
· d2!
dd2

2
≥ (d1 + d2)!

(d1 + d2)d1+d2
,

which is seen from (d1 + d2)d1+d2

dd1
1 d

d2
2

≥
(
d1 + d2
d1

)
= (d1 + d2)!

d1!d2! . Since k!
kk
≥ e−k holds for

sufficiently large k, the success probability is at least e−αd. Therefore, if we repeat the random
sampling procedure eαd times, the failure probability is at most (1− e−αd)eαd ≤ e−1 < 1

2 .
If we repeat the procedure k(logn)eαd times where k is any positive constant (i.e., the

total time complexity is O∗(1.234d · eαd)), the failure probability is at most 1
nk

.
For (A2), we modify the O(d2dmn2) time algorithm as follows. Recall that if there

exist labels with multiplicity more than one, S(v, vi) is a multi-set. In order to represent a
multi-set, we memorize the multiplicity of each label. Then, the number of distinct multi-sets
is given by

N(d0, . . . , dh) = 2d0 ·
h∏
l=1

(dl + 1).

Since di + 1 ≤ 3ddi/2e holds for any di ≥ 2, this number is bounded as

N(d0, . . . , dh) ≤ 2d0 · 3d(d−d0)/2e.

Then, the time complexity of (A2) is O∗(2(1−α)d · 3(α/2)d).

T. Akutsu, J. Jansson, R. Li, A. Takasu, and T. Tamura 27:11

Since we can use the minimum of the time complexities of (A1) and (A2), the resulting
time complexity is given by

max
α

min(O∗(1.234d · eαd), O∗(2(1−α)d · 3(α/2)d)).

By numerical calculation, this is O∗(1.883d).

I Theorem 14. IncH2 can be solved in randomized O∗(1.883d) time with probability at
least 1− 1

nk
, where k is any positive constant.

It seems that the above algorithm can be de-randomized by using the k-perfect hash
family as in [6]. However, since the construction of a k-perfect hash family has a high
complexity, the resulting algorithm might have a time complexity much worse than O∗(2d).

8 Concluding remarks

We have improved the exponential factor of Kilpeläinen and Mannila’s [14] well-known
algorithm from 1995 for unordered tree inclusion from 22d to 2d. Observe that the 2d factor
may not be optimal. Indeed, we have presented a randomized O∗(1.883d)-time algorithm
for the case of h(P) = 1 and h(T) = 2. However, we could not obtain an O∗((2− ε)d)-time
algorithm for any constant ε > 0 even for the case of h(P) = h(T) = 2. Development of an
O∗((2− ε)d)-time algorithm for unordered tree inclusion, or showing an Ω(2d) lower bound
using recent techniques for proving lower bounds on various matching problems [1, 2, 9], is
left as an open problem.

References
1 Amir Abboud, Arturs Backurs, Thomas Dueholm Hansen, Virginia Vassilevska Williams,

and Or Zamir. Subtree isomorphism revisited. In Proceedings of the 27th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 1256–1271. SIAM, 2018.

2 Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster
alignment of sequences. In Proceedings of the 41st International Colloquium on Automata,
Languages, and Programming - Part 1, pages 39–51. Springer, 2014.

3 Tatsuya Akutsu, Daiji Fukagawa, Magnús M. Halldórsson, Atsuhiro Takasu, and Keisuke
Tanaka. Approximation and parameterized algorithms for common subtrees and edit dis-
tance between unordered trees. Theoretical Computer Science, 470:10–22, 2013.

4 Tatsuya Akutsu, Daiji Fukagawa, Atsuhiro Takasu, and Takeyuki Tamura. Exact al-
gorithms for computing the tree edit distance between unordered trees. Theoretical Com-
puter Science, 412(4-5):352–364, 2011.

5 Tatsuya Akutsu, Takeyuki Tamura, Daiji Fukagawa, and Atsuhiro Takasu. Efficient
exponential-time algorithms for edit distance between unordered trees. Journal of Dis-
crete Algorithms, 25:79–93, 2014.

6 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the ACM, 42(4):844–
856, 1995.

7 Philip Bille. A survey on tree edit distance and related problems. Theoretical Computer
Science, 337(1):217–239, 2005.

8 Philip Bille and Inge Li Gørtz. The tree inclusion problem: In linear space and faster.
ACM Transactions on Algorithms (TALG), 7(3):38, 2011.

9 Karl Bringmann, Pawel Gawrychowski, Shay Mozes, and Oren Weimann. Tree edit distance
cannot be computed in strongly subcubic time (unless APSP can). In Proceedings of the 29th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1190–1206. SIAM, 2018.

ISAAC 2018

27:12 Algorithms for Unordered Tree Inclusion

10 Lijun Chang, Xuemin Lin, Wenjie Zhang, Jeffrey Xu Yu, Ying Zhang, and Lu Qin. Optimal
enumeration: Efficient top-k tree matching. Proceedings of the VLDB Endowment, 8(5):533–
544, 2015.

11 Sara Cohen and Nerya Or. A general algorithm for subtree similarity-search. In Data
Engineering (ICDE), 2014 IEEE 30th International Conference on, pages 928–939. IEEE,
2014.

12 Erik D. Demaine, Shay Mozes, Benjamin Rossman, and Oren Weimann. An optimal de-
composition algorithm for tree edit distance. ACM Transactions on Algorithms (TALG),
6(1):2, 2009.

13 Minoru Kanehisa, Susumu Goto, Yoko Sato, Masayuki Kawashima, Miho Furumichi, and
Mao Tanabe. Data, information, knowledge and principle: back to metabolism in KEGG.
Nucleic Acids Research, 42(D1):D199–D205, 2013.

14 Pekka Kilpeläinen and Heikki Mannila. Ordered and unordered tree inclusion. SIAM
Journal on Computing, 24(2):340–356, 1995.

15 Hanna Köpcke, Andreas Thor, and Erhard Rahm. Evaluation of entity resolution ap-
proaches on real-world match problems. Proceedings of the VLDB Endowment, 3(1-2):484–
493, 2010.

16 Jiwei Li, Thang Luong, Dan Jurafsky, and Eduard H. Hovy. When Are Tree Structures
Necessary for Deep Learning of Representations? In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal,
September 17-21, 2015, pages 2304–2314, 2015. URL: http://aclweb.org/anthology/D/
D15/D15-1278.pdf.

17 Jiří Matoušek and Robin Thomas. On the complexity of finding iso-and other morphisms
for partial k-trees. Discrete Mathematics, 108(1-3):343–364, 1992.

18 Tomoya Mori, Atsuhiro Takasu, Jesper Jansson, Jaewook Hwang, Takeyuki Tamura, and
Tatsuya Akutsu. Similar subtree search using extended tree inclusion. IEEE Transactions
on Knowledge and Data Engineering, 27(12):3360–3373, 2015.

19 Dennis Shasha, Jason T. L. Wang, Kaizhong Zhang, and Frank Y. Shih. Exact and approx-
imate algorithms for unordered tree matching. IEEE Transactions on Systems, Man, and
Cybernetics, 24(4):668–678, 1994.

20 Kuo-Chung Tai. The tree-to-tree correction problem. Journal of the ACM (JACM),
26(3):422–433, 1979.

21 Gabriel Valiente. Constrained tree inclusion. Journal of Discrete Algorithms, 3(2):431–447,
2005.

22 Masaki Yamamoto. An improved O∗(1.234m)-time deterministic algorithm for SAT. In
Proceedings of the 16th International Symposium on Algorithms and Computation, pages
644–653. Springer, 2005.

23 Mohammed Javeed Zaki. Efficiently mining frequent trees in a forest: Algorithms and
applications. IEEE Transactions on Knowledge and Data Engineering, 17(8):1021–1035,
2005.

24 Kaizhong Zhang and Tao Jiang. Some MAX SNP-hard results concerning unordered labeled
trees. Information Processing Letters, 49(5):249–254, 1994.

25 Kaizhong Zhang, Rick Statman, and Dennis Shasha. On the editing distance between
unordered labeled trees. Information Processing Letters, 42(3):133–139, 1992.

http://aclweb.org/anthology/D/D15/D15-1278.pdf
http://aclweb.org/anthology/D/D15/D15-1278.pdf

	Introduction
	Practical applications
	New results

	Preliminaries
	An O(d 2^d mn^2)-time algorithm
	NP-hardness of unordered tree inclusion for pattern trees with unique leaf labels
	A polynomial-time algorithm for case of OCC(P,T)=2
	An O*(1.8^d)-time algorithm for case of OCC(P,T)=3
	A randomized algorithm for case of h(P)=1 and h(T)=2
	Concluding remarks

