
Approximate Minimum-Weight Matching with
Outliers Under Translation
Pankaj K. Agarwal1

Department of Computer Science, Duke University, Durham, NC 27708, USA
pankaj@cs.duke.edu

Haim Kaplan
School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
haimk@tau.ac.il

Geva Kipper
School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
gevakip@gmail.com

Wolfgang Mulzer2

Institut für Informatik, Freie Universität Berlin, 14195 Berlin, Germany
mulzer@inf.fu-berlin.de

https://orcid.org/0000-0002-1948-5840

Günter Rote
Institut für Informatik, Freie Universität Berlin, 14195 Berlin, Germany
rote@inf.fu-berlin.de

https://orcid.org/0000-0002-0351-5945

Micha Sharir3

School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
michas@tau.ac.il

Allen Xiao4

Department of Computer Science, Duke University, Durham, NC 27708, USA
axiao@cs.duke.edu

Abstract
Our goal is to compare two planar point sets by finding subsets of a given size such that a
minimum-weight matching between them has the smallest weight. This can be done by a trans-
lation of one set that minimizes the weight of the matching. We give efficient algorithms (a)
for finding approximately optimal matchings, when the cost of a matching is the Lp-norm of
the tuple of the Euclidean distances between the pairs of matched points, for any p ∈ [1,∞],
and (b) for constructing small-size approximate minimization (or matching) diagrams: parti-
tions of the translation space into regions, together with an approximate optimal matching for
each region.
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26:2 Approximate Minimum-Weight Partial Matching Under Translation

A A+ tB B

Figure 1 Two sets A and B, and a matching of size k = 6 after translation.
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1 Introduction

The following problem arises in pattern matching: given point sets A, B, with |A| = m and
|B| = n, and k ≤ min{m,n}, find subsets A′ ⊆ A and B′ ⊆ B with |A′| = |B′| = k and a
transformation R that matches R(A) and B as closely as possible, see Figure 1. We think
of A as a collection of features, or interest points of some pattern, that we want to match,
bijectively, with similar features in a large image B. Moreover, since the coordinate frames
for A and B are not necessarily aligned, we want to transform A to get the best possible fit.

This problem comes in many variants, depending on the class of permissible transforma-
tions R and on the similarity measure for the match. Here, we want to match A′ and B′ in a
one-to-one manner, where the cost of a matching depends on the distances between matched
points. Moreover, we only consider translations as permissible transformations, and write
A+ t for the set A translated by a vector t ∈ R2. A feasible solution is given by a translation
t ∈ R2 and by a matching M ⊂ A × B of size k (in short, a k-matching): a set of k pairs
(a, b) ∈ A×B so that any point a ∈ A or b ∈ B occurs in at most one pair. The parameter
k is part of the input. We consider the Lp-cost of such a solution, for some p ∈ [1,∞]:

costp(M, t) = cost(M, t) :=


[

1
k

∑
(a,b)∈M ‖a+ t− b‖p

]1/p
for finite p,

max(a,b)∈M ‖a+ t− b‖ for p =∞.
(1)

We will regard p as a fixed constant and will omit it from the notation. Noteworthy special
cases arise when p = 1 (sum of distances, minimum-weight Euclidean matching), p = 2
(root-mean-square matching, in short RMS matching), and p =∞ (bottleneck matching). In
(1), we always measure the distances ‖a+ t− b‖ by the Euclidean norm. It is not hard to
extend the treatment to other norms, but we stick with Euclidean distances for simplicity.

https://doi.org/10.4230/LIPIcs.ISAAC.2018.26
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One important special case occurs when we have a small point set A (the pattern) that
we want to locate within a larger set B (the image), and k = |A| < |B|. This problem was
considered for p = 2 by Rote [11] and in subsequent work [3, 8], under the name RMS partial
matching. Another important instance has |A| ≈ |B| and k slightly smaller than |A|, |B|.
Now, we want to discard a few outliers from each set, to allow for some erroneous data.

For a fixed translation vector t ∈ R2, we define cost*(t) = minM cost(M, t) to be the cost
of the minimum-cost k matching between A+ t and B. We set Mt = arg minM cost(M, t) to
be an optimal matching from A+ t to B, i.e., cost*(t) = cost(Mt, t).

Let Π be the set of all k-matchings from A into B. The function cost* is the lower envelope
(i.e., the pointwise minimum) of the set of functions F = {t 7→ cost(M, t) | M ∈ Π}. The
vertical projection of this lower envelope induces a planar subdivision, called the minimization
diagram of F . It is denoted by M := M(A,B). Each face σ of M is a maximal connected
set of points t for which cost*(t) is realized by the same matching Mσ. The combinatorial
complexity of M is the number of its faces. We refer to M as the (k-)matching diagram of A
and B. We are interested in two questions:

(P1) Compute t∗ = arg mint cost*(t) and M∗ := Mt∗ .
(P2) What is the combinatorial complexity of M(A,B), and how quickly can it be computed?

These questions have been studied, p = 2, by Rote [11] and by Ben-Avraham et al. [3].
Two challenging, still open problems are whether the size of M is polynomial in both m and
n, and whether t∗ and M∗ can be computed in polynomial time. These previous works have
raised the questions only for the case p = 2, but they are open for arbitrary p <∞. There is
extensive work on pattern matching and on computing similarity between two point sets.
We refer the reader to [2, 15] for surveys. Here, we confine ourselves to a brief discussion of
work directly related to the problem at hand.

Much work has been done on computing a minimum-cost perfect matching in geometric
settings. Here, n = |A| = m = |B| = k. A minimum-cost perfect matching, for any Lp-norm,
can be found in Õ(n2) time [1, 9, 10].5 These algorithms are based on the Hungarian
algorithm for a minimum-cost maximum matching in a bipartite graph, and are made more
efficient than the general technique by using certain efficient geometric data structures. Thus,
they also work when the two point sets A and B have different sizes, say, |A| = n and
|B| = m, with k = m ≤ n. In this case, the running time of the algorithm is Õ(mn).

Approximation algorithms for the minimum-weight perfect matching in geometric settings
have been developed in a series of papers; see, e.g., [12] and the references therein. For the case
when the weight of a matching is the sum of the Euclidean lengths of its edges, a near-linear
algorithm is known [12]. If the weight is the Lp-norm of the Euclidean lengths of the edges, for
some p > 1, then the best known algorithm runs in Õ(n3/2) time [13, 14]. In particular, for
RMS matching (p = 2) and for p = 1,∞, the time for finding a (1 + ε)-approximate optimal
matching is Õ(n3/2), and for a general p, the running time is Õ

(
n3/2

ε3/2

)
. These algorithms use

the scaling method by Gabow and Tarjan [6] that at each scale computes a minimum-weight
matching by finding n augmenting paths in O(

√
n) phases, where each phase takes Õ(n)

time (see also [7]). If |A| = n, |B| = m, and k = m ≤ n, then the m augmenting paths can
be found in O(

√
m) phases, each of which takes Õ(n) time. Hence, the total running time

in this case is Õ(
√
mn), for p = 1, 2,∞, or Õ(

√
mn/ε3/2), for general p. When k ≤ m ≤ n,

the minimum-weight k-matching is constructed, using the geometrically enhanced version

5 The notation Õ(·) hides polylogarithmic factors in n, m, and also polylogarithmic factors in 1/ε, when
we only seek a (1 + ε)-approximate solution.
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of the Hungarian algorithm, in k augmenting steps, each of which can be performed in
O(n polylog(n)) time. That is, the exact minimum-weight k-matching can be computed in
Õ(kn) time. The case of computing an approximate k-matching is somewhat trickier. If
k = Θ(m), one can show, adapting the technique in [13], that the running time remains
O(
√
mn polylog(n)). For smaller values of k, one can still get a bound depending on k, but

we do not treat this case in the paper. It is also much less motivated from the point of view
of applications.

Cabello et al. [4] considered optimal shape matching under translations and/or rotations.
They considered the more general setting of weighted point sets, where each point of A
and B comes with a multiplicity or “weight”. Accordingly, the similarity criterion is the
earth-mover’s distance, or transportation distance, which measures the minimum amount of
work necessary to transport all the weight from A to B, where transporting a weight w by
distance δ costs w · δ. For the special case of unit weights, this reduces, via the integrality of
the minimum-cost flows, to one-to-one matching.

We apply several ideas from Cabello et al.’s paper: (1) the use of point-to-point transla-
tions to get constant-factor approximations, (2) the selection of a random subset of these
transformations to get fast Monte Carlo algorithms, and (3) tiling the vicinity of these
transformations in the parameter space by an ε-grid to get (1 + ε)-approximations. We go
beyond the results of Cabello et al. in the following aspects.

We give a greedy “disk-eating” algorithm in the space of translations to get an improved
deterministic approximation (Theorem 4.5). This idea could be useful for other problems.
We introduce approximate matching diagrams: Such a diagram is a subdivision of the
translation plane together with a matching for each cell. This matching is approximately
optimal for every translation in the cell. As a consequence, this diagram provides
approximate optimal matchings for all translations. We show that there is an approximate
matching diagram of small size, and we describe how to compute it efficiently (Section 2.1).
Less importantly, our results cover a broader class of similarity measures: The lengths of
the k matching edges can be aggregated in the objective function using any Lp norm, p ≥ 1,
whereas Cabello et al. only dealt with the L1 norm. By indentifying the crucial property
that lies at the basis of the approximation, namely Lipschitz continuity (Corollary 2.2),
this generalization comes without much additional effort. Our results are also slightly
more general because we allow outliers (i.e., k < min{m,n}), whereas Cabello et al.
match the smaller set completely.
By using better data structures, some of our algorithms are more efficient.

We present approximate solutions for (P1) and (P2). They use approximation algorithms for
matching between stationary sets as a black box. We write W (m,n, k, ε) for the time that
is needed to compute a (1 + ε)-approximate minimum-weight matching of size k between
two given (stationary) sets A and B of m and n points in the plane, where the weight is the
Lp-norm of the vector or Euclidean edge lengths, for k ≤ min{m,n} and for a given ε ≥ 0.
We abbreviate W (m,n, k, 0) as simply W (m,n, k). Table 1 summarizes the known running
times. We obtain two main results:
(i) We present an Õ(mn+ mn

ε2kW (m,n, k, ε/2))-time algorithm for computing a translation
vector t̃ and a k-matching M̃ between A and B such that cost(M̃, t̃) ≤ (1 + ε) cost*(t∗).

(ii) We present an Õ(mn + mn
ε2kW (m,n, k, ε/2))-time algorithm for computing a (1 + ε)-

approximate matching diagram of size O
(
n
ε2 log 1

ε

)
, i.e., a planar subdivision M̃ and a

collection of k-matchings Mσ, one matching for each face σ of M̃, such that for each
face σ of M̃ and for every t ∈ σ, cost(Mσ, t) ≤ (1 + ε) cost*(t).
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Table 1 Known time bounds for various matching problems between stationary sets. We assume
m ≤ n, and in the last two rows k = Θ(m).

norm time reference

p ∈ [1,∞] exact W (m, n, k) = Õ(kn) Hungarian method, geo-
metric version [1, 9, 10]

p ∈ {1, 2,∞} (1 + ε)-approximate W (m, n, k, ε) = Õ(
√

mn) [13]
p ∈ [1,∞] (1 + ε)-approximate W (m, n, k, ε) = Õ(

√
mn/ε3/2) [14]

The paper is organized as follows. We start with simple solutions to (P1) and (P2) with
constant-factor approximations (Section 2). We then refine them to obtain (1+ε)-approximate
solutions, in Section 3. Finally, we present improved algorithms, which attain the bounds
claimed in (i) and (ii), in Section 4. All our statements hold for p =∞. In some cases, the
proofs require a special treatment for this case, but for brevity, we will mostly omit the
treatment for p =∞.

2 Simple Constant-Factor Approximations

The following lemma establishes a Lipschitz condition for the cost of a matching of size k.

I Lemma 2.1. Let M ⊂ A×B be a matching of size k, and let t,∆ ∈ R2 be two translation
vectors. Then, for any p ∈ [1,∞], the cost under the Lp-norm satisfies

cost(M, t+ ∆) ≤ cost(M, t) + ‖∆‖. (2)

Proof. Let M = {(a1, b1), . . . , (ak, bk)}, and define two nonnegative k-dimensional vectors ~v
and ~w by ~vi = ‖ai+t−bi‖ and ~wi = ‖ai+t+∆−bi‖, for 1 ≤ i ≤ k. By the triangle inequality
for the Euclidean norm, we have, for each i, ~wi = ‖ai + t+ ∆− bi‖ ≤ ‖ai + t− bi‖+ ‖∆‖ =
~vi + ‖∆‖. Thus, we obtain the component-wise inequality ~w ≤ ~v + ‖∆‖ ·~1, where ~1 denotes
the k-dimensional vector in which all components are 1. Now,

cost(M, t+ ∆) = ‖~w‖p
k1/p ≤

∥∥∥~v + ‖∆‖ ·~1
∥∥∥
p

k1/p ≤ ‖~v‖p
k1/p + ‖∆‖ · ‖

~1‖p
k1/p = cost(M, t) + ‖∆‖,

using the definition (1) of cost, the fact that the Lp-norm is a monotone function in the
components whenever they are nonnegative, and the triangle inequality for the Lp-norm. J

Here is an immediate corollary of Lemma 2.1:

I Corollary 2.2 (Lipschitz continuity of the optimal cost). For any two translation vectors
t1, t2 ∈ R2, cost*(t2) ≤ cost*(t1) + ‖t2 − t1‖.

Proof. For the respective optimal k-matchings M1 and M2 between A+ t1 and B and A+ t2
and B,

cost*(t2) = cost(M2, t2) ≤ cost(M1, t2) ≤ cost(M1, t1) + ‖t2− t1‖ = cost*(t1) + ‖t2− t1‖.J

Approximating t∗ by point-to-point translations. As in [4], we consider the set T = {b−a |
a ∈ A, b ∈ B} of at most mn point-to-point translations where some point in A is moved to
some point in B. The following simple observation turns out to be very useful:

ISAAC 2018



26:6 Approximate Minimum-Weight Partial Matching Under Translation

I Lemma 2.3 ([4, Observation 1]). Let t ∈ R2 be an arbitrary translation vector, and let
t0 ∈ T be the nearest neighbor of t in T . Then cost*(t) ≥ ‖t− t0‖.

Proof. By definition, t0 = b− a is the translation in T with ‖t− t0‖ = min(a′,b′)∈A×B ‖t−
b′ + a′‖. Thus, for p <∞, all summands in the definition (1) of cost*(t) are at least ‖t− t0‖,
implying cost*(t) ≥ ‖t− t0‖. The last conclusion is trivially valid for p =∞ as well. J

I Lemma 2.4 ([4, Lemma 1]). There is a translation t0 ∈ T with cost*(t0) ≤ 2 cost*(t∗).

Proof. Let t∗ be an optimal translation and M∗ a corresponding matching of size k. Take
the translation ∆ = b− a− t∗ ∈ R2 for which ‖a+ t∗− b‖ is minimized, over (a, b) ∈M∗. By
Lemma 2.3, ‖∆‖ ≤ cost*(t∗). The claim now follows from Lipschitz continuity (Corollary 2.2)
with t1 = t∗ and t2 = t∗ + ∆, where the latter translation is the desired t0 ∈ T . J

We remark that for RMS matching (p = 2), the factor 2 in the lemma can be improved to√
2. Lemma 2.4 leads to the following simple algorithm for 2-approximating the optimum

matching. Compute T , and iterate over its elements. For each t0 ∈ T compute cost*(t0)
(exactly), and return the matching with the minimum weight, in O(mnW (m,n, k)) time.

If we are willing to tolerate a slightly larger approximation factor, we can compute, for
any δ > 0 and for each t0 ∈ T , a (1 + δ)-approximate matching, resulting in a 2(1 + δ)-
approximation. This approach has overall running time O(mnW (m,n, k, δ)).

I Theorem 2.5. Let A,B ⊂ R2, with |A| = m and |B| = n, m ≤ n, and let k ≤ m be a size
parameter. A translation vector t̃ ∈ R2 can be computed in O(mnW (m,n, k)) time, such that
cost*(t̃) ≤ 2 cost*(t∗), where t∗ is the optimum translation. Alternatively, for any constant
δ > 0, one can compute a translation vector t̃ ∈ R2 and a k-matching M̃ between A and B,
in O(mnW (m,n, k, δ)) time, such that cost(M̃, t̃) ≤ 2(1 + δ) cost*(t∗).

2.1 An Approximate Matching Diagram
We construct a planar subdivision M̃ that approximates the matching diagram M up to
factor 3. This means that, for each face σ of M̃, there is a single matching Mσ (that we
provide) so that, for each t ∈ σ, we have cost*(t) ≤ cost(Mσ, t) ≤ 3 cost*(t).

We need a lemma that relates the best matching for a given translation t to the closest
translation in T .

I Lemma 2.6. Let t be an arbitrary translation, and let t0 ∈ T be its nearest neighbor in T ,
i.e., the translation in T that minimizes the length of ∆ = t0 − t. Then,

cost*(t) ≤ cost(Mt0 , t) ≤ 3 cost*(t). (3)

(Recall that Mt0 denotes the optimal matching for t0.)

Proof. Since Mt0 is a k-matching between A and B, we have, by definition, cost*(t) ≤
cost(Mt0 , t). We prove the second inequality. By Corollary 2.2, cost*(t0) ≤ cost*(t) + ‖∆‖,
and by Lemma 2.3, ‖∆‖ ≤ cost*(t). Applying Lemma 2.1, we obtain

cost(Mt0 , t) ≤ cost(Mt0 , t0) + ‖t− t0‖ = cost*(t0) + ‖∆‖
≤ cost*(t) + 2‖∆‖ ≤ cost*(t) + 2 cost*(t) = 3 cost*(t). J

Our approximate map M̃ is simply the Voronoi diagram VD(T ), where each cell VC(t0),
for t0 ∈ T , is associated with the optimal matchingMt0 at t0. Correctness follows immediately
from Lemma 2.6. Since the complexity of VD(T ) is O(|T |) = O(mn), we have a diagram
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of complexity O(mn). For each point t0 ∈ T , we can either directly compute an optimal
k-matching between A + t0 and B and associate the resulting map with VC(t0), or use
the (1 + δ)-approximation algorithm of [13]. In the former case, VD(T ) is a 3-approximate
matching diagram, and in the latter case it is a 3(1 + δ)-approximate matching diagram. We
thus conclude the following:

I Theorem 2.7. Let A,B ⊂ R2, with |A| = m and |B| = n, m ≤ n, and let k ≤ m be a size
parameter. There is a 3-approximate k-matching diagram of A and B of size O(mn), and it
(and the matchings in each cell) can be computed in O(mnW (m,n, k)) time. Alternatively, a
3(1 + δ)-approximate matching diagram, for constant δ > 0, of size O(mn) can be computed,
using the same planar decomposition, in O(mnW (m,n, k, δ)) time.

For p = 2, there is an alternative, potentially better approximating, construction. For each
t ∈ T , define the function ft(s) := cost(Mt, s), and set F = {ft | t ∈ T}. We let M̃0 be the
minimization diagram of the functions in F . Simple algebraic manipulations, similar to those
for Euclidean Voronoi diagrams, show that M̃0 is the minimization diagram of a set of |T | ≤
mn linear functions, namely, the functions f̃t(s) = 2

∑
(a,b)∈Mt

〈a− b, s〉+
∑

(a,b)∈Mt
‖a− b‖2,

for t ∈ T . The resulting map M̃0 is a 3-approximate diagram of complexity O(mn). To see
this, consider a Voronoi cell VC(t0) in M̃. We divide it into subcells in M̃0, each associated
with some matching. All these matchings, other than Mt0 , have smaller weights than the
matching computed for t0, over their respective subcells. Note that this subdivision is
only used for the analysis, the algorithm outputs the original minimization diagram. We
emphasize that this construction works only for p = 2, while the Voronoi diagram applies for
any p ∈ [1,∞].

For p = 2, using the fact that the Euclidean norm is derived from a scalar product, we
can improve the constant factors in Lemma 2.4 and Lemma 2.6. However, we chose to
present the more general results, since they are simpler and since we derive a more powerful
approximation below anyway.

3 Improved Approximation Algorithms

Computing a (1 + ε)-approximation of the optimum matching. This algorithm uses the
same technique that was used by Cabello et al. [4, Section 4.1, Theorem 6] in a slightly
different setting. We include the description of this algorithm as a preparation for the
approximate minimization diagram, and for the improved solutions in the following section.

Let t∗ be the optimum translation, as above. Our goal is to compute a translation t̃ and
a matching M̃ so that cost(M̃, t̃) ≤ (1 + ε) cost*(t∗).

Suppose we know the translation t0 ∈ T that minimizes the length of ∆ = t0 − t∗.
By Lemma 2.3 and Lipschitz continuity (Corollary 2.2), ‖∆‖ ≤ cost*(t∗) ≤ cost*(t0) ≤
cost*(t∗)+‖∆‖ ≤ 2 cost*(t∗). Using Theorem 2.5 with δ = 1/2, we compute a 3-approximation
for cost*(t∗), This allows us to choose some radius r0 with 2 cost*(t∗) ≤ r0 ≤ 6 cost*(t∗). We
take the disk D0 of radius r0 centered at t0, and we tile it with the vertices of a square grid
of side-length δ := ε

√
2

18 r0 ≤ ε
√

2
3 cost*(t∗). We define G0 as the set of vertices of all grid cells

that lie in D0 or that overlap D0 at least partially. G0 contains O(r0/δ)2 = O(1/ε2) vertices.
We compute, by [13], a (1 + ε/2)-approximate minimum-weight matching at each transla-

tion in G0 and return the one that achieves the smallest weight. Since t∗ has distance at most
δ/
√

2 from some grid vertex g ∈ G0, we have, again by Lipschitz continuity (Corollary 2.2),

cost*(g) ≤ cost*(t∗) + δ√
2
≤ cost*(t∗) + ε

3 cost*(t∗) ≤
(

1 + ε

3

)
cost*(t∗).

ISAAC 2018
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cost∗(t0)

t0

B0

B1

B2

Figure 2 Partition of a Voronoi cell into nested grids, for the (unrealistically large) choice ε = 1/2.

Since we compute a (1 + ε/2)-approximate matching for each grid point, the best computed
matching has cost at most (1 + ε/3)(1 + ε/2) cost*(t∗) ≤ (1 + ε) cost*(t∗), assuming ε ≤ 1.

Since we do not know t0, we apply this procedure to all mn translations of T , for a total
of O(mn/ε2) approximate matching calculations for fixed sets.

I Theorem 3.1. Let A,B ⊆ R2, |A| = m ≤ |B| = n, and let k ≤ m be a size parameter and
0 < ε ≤ 1 a constant. A translation vector t̃ ∈ R2 and a matching M̃ of size k between A and
B can be computed in O

(
mn
ε2 ·W (m,n, k, ε2 )

)
time, such that cost(M̃, t̃) ≤ (1 + ε) cost*(t∗).

Cabello et al. [4, Theorem 4] give an O
(
n3m
ε4 log2 n

)
-time algorithm for the weighted

problem, which includes the matching problem with k = m ≤ n as a special case. It follows
the same technique: it solves O(mn/ε2) problems, each with a fixed translation, but each
such problem takes longer than in our case because it uses the earth mover’s distance.

A (1+ε)-approximation of M. We now construct a (1+ε)-approximate matching diagram
M̃ of A and B by refining VD(T ). Without loss of generality, we assume that ε = 2−α, for
some natural number α, and we set u := log2(1/ε) + 2 = α+ 2. We subdivide each Voronoi
cell of VD(T ) into smaller subcells, as follows. Fix t0 ∈ T . For i = 0, . . . , u, let Bi be the
square of side-length 2i cost*(t0), centered at t0. Set B−1 = ∅. For i = 0, . . . , u, we partition
Bi \ Bi−1 into a uniform grid with side-length ε2i−3 cost*(t0). We clip each grid cell τ to
VC(t0), i.e., if τ ∩ VC(t0) 6= ∅, we take τ ∩ VC(t0) as a face of M̃. Let tτ be the center of
the grid cell τ . We associate Mτ := Mtτ with the face τ ∩VC(t0). Finally, each connected
component of VC(t0) \Bu becomes a (possibly non-convex) face of M̃. There are at most
four such faces, and we associate Mt0 with each of them.

The above procedure partitions VC(t0) into O( 1
ε2 log 1

ε ) cells, and their total complexity
is O(k0 + 1

ε2 log 1
ε ), where k0 is the number of vertices on the boundary of VC(t0). We repeat

our procedure for all Voronoi cells of VD(T ). Since the total complexity of VD(T ) is O(mn),
the total complexity of M̃ is O(mnε2 log 1

ε ).

I Lemma 3.2. M̃ is a (1 + ε)-approximate matching diagram of A and B.

Proof. Let t ∈ R2 be an arbitrary translation vector, and let t0 ∈ T be the nearest neighbor
of t in T , i.e., t ∈ VC(t0). First, consider the case when t 6∈ Bu. Then ‖t− t0‖ ≥ 2 cost*(t0)/ε
and Mt0 is the matching associated with the cell of M̃ containing t. Hence, using Lemmas 2.1
and 2.3, we obtain

cost*(t) ≤ cost(Mt0 , t) ≤ cost*(t0) + ‖t− t0‖ ≤
(

1 + ε

2

)
‖t− t0‖ ≤

(
1 + ε

2

)
cost*(t).
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Suppose t ∈ B0. Then ‖t− t0‖ ≤ cost*(t0)/
√

2. Therefore, by Corollary 2.2,

cost*(t) ≥ cost*(t0)− ‖t− t0‖ ≥ cost*(t0)− 1√
2

cost*(t0) =
(

1− 1√
2

)
cost*(t0).

Let τ be the grid cell inside B0 containing t, and let tτ be the center of τ . Then ‖t− tτ‖ ≤
ε

8
√

2 cost*(t0). By Corollary 2.2, cost*(tτ ) ≤ cost*(t) + ‖t− tτ‖. Furthermore,

cost(Mτ , t) ≤ cost(Mτ , tτ ) + ‖t− tτ‖ = cost*(tτ ) + ‖t− tτ‖

≤ cost*(t) + 2‖t− tτ‖ ≤ cost*(t) + ε

4
√

2
cost*(t0)

≤ cost*(t) + ε

4
√

2
·
√

2√
2− 1

cost*(t) ≤ (1 + ε) cost*(t).

Finally, suppose t ∈ Bi \ Bi−1, for some i ≥ 1. Since t 6∈ Bi−1, we have ‖t − t0‖ ≥
2i−2 cost*(t0). Let τ be the grid cell of Bi \Bi−1 containing t, and let tτ be its center. Then
‖t− tτ‖ ≤ 2i−3

√
2 ε · cost*(t0). Starting with the inequality that was established above, we get

cost(Mτ , t) ≤ cost*(t) + 2‖t− tτ‖ ≤ cost*(t) + 22i−3ε√
2

cost*(t0)

≤ cost*(t) + ε√
2
‖t− t0‖ ≤ cost*(t) + ε√

2
cost*(t) ≤ (1 + ε) cost*(t). J

Similar to the O(1)-approximate matching diagram, we can improve the construction time
by setting ε′ = ε/3 instead of ε and computing a (1 + ε/2)-approximate optimal matching
(instead of the exact matching) for the center of every cell:

I Theorem 3.3. Let A,B ⊆ R2, with |A| = m, |B| = n, m ≤ n and a size parameter k ≤ m.
For 0 < ε ≤ 1, one can compute a (1 + ε)-approximate k-matching diagram of A and B, of
size O(mnε2 log 1

ε ), in O(mnε2 log 1
ε )W (m,n, k, ε2 ) time.

4 Improved Algorithms

We now present techniques that improve, by a factor of m or of k, both algorithms for
computing an approximate optimal matching and an approximate matching diagram. These
algorithms work well for the case k ≈ m, and they deteriorate when k becomes small. The
first algorithm is based on an idea of Cabello et al. [4, Lemma 2]: The best matching contains
a substantial number of edges whose length does not exceed the optimum cost by more than
a constant factor (cf. Lemma 4.1). This gives a randomized constant-factor approximation
algorithm that requires O(mn/k) approximate matching computations between stationary
sets in order to succeed with probability 1

2 (Theorem 4.2). We proceed to an improved
algorithm that computes a constant-factor approximation with the same number of fixed-
translation matching calculations deterministically. By tiling the vicinity of each candidate
translation by an ε-grid, we then obtain a (1 + ε)-approximation (Theorem 4.5).

Markov’s inequality bounds the number of items in a sample that are substantially above
average. We will use the following consequence of it:

I Lemma 4.1. Let M be a matching of size k between a (possibly translated) set A and
a set B, with cost µ. Let 0 < c ≤ 1. Then the number of pairs (a, b) ∈ M for which
‖a− b‖ < (1 + c)µ is at least k − k/(1 + c)p.
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Proof. For p =∞, we interpret (1 + c)p as ∞, and the result is obvious because ‖a− b‖ <
(1 + c)µ for all pairs (a, b). For 1 ≤ p <∞, we argue by contradiction. The total number of
pairs is k. If there were more than k/(1 + c)p pairs (a, b) ∈M with ‖a− b‖ ≥ (1 + c)µ, the
total cost would be

µ = cost(M) =
[

1
k ·
∑

(a,b)∈M
‖a− b‖p

]1/p
>
[ 1
k · k/(1 + c)p · ((1 + c)µ)p

]1/p = µ. J

Consider the optimal translation t∗ and the corresponding optimal matching M∗. By the
lemma, the fraction of the pairs (a, b) ∈M∗ that satisfy ‖a+ t∗ − b‖ ≤ (1 + c) cost*(t∗) is at
least 1− 1/(1 + c)p ≥ 1− 1/(ec/2)p = 1− e−cp/2, since c ≤ 1. Hence, with probability at least
(1− e−cp/2) km , a randomly chosen a ∈ A will participate in such a “close” pair of M∗. We do
not know the b ∈ B with (a, b) ∈M∗, so we try all n possibilities. That is, we choose a single
random point a0 ∈ A, and we try all n translations b−a0 ∈ T , returning the minimum-weight
partial matching over these translations. With probability at least (1− e−cp/2) km , we get, by
Lemma 2.6, a matching whose weight is at most cost*(t∗) + (1 + c) cost*(t∗) = (2 + c) cost*(t∗).
The runtime of this procedure is n ·W (m,n, k), or n ·W (m,n, k, δ) if we compute at each of
the above translations t0 a (1+δ)-approximation to cost*(t0). To boost the success probability,
we repeat this drawing process s times and obtain a (2 + c)(1 + δ)-approximation to the best
matching, with probability at least 1 −

(
1− (1− e−cp/2) km

)s. By setting c = δ = ε/4, we
get the following theorem.

I Theorem 4.2. Let A,B ⊂ R2 with |A| = m and |B| = n, m ≤ n, and let k ≤ m and s ≥ 1
be parameters. Then, a translation vector t̃ ∈ R2 and a matching M̃ of size k between A and
B can be computed in O(sn ·W (m,n, k, ε/4)) time, such that cost(M̃, t̃) ≤ (2 + ε) cost*(t∗)
with probability at least 1−

(
1− (1− e−εp/8) km

)s, for any ε with 0 < ε ≤ 1.

If εp is small, the probability is approximately equal to the simpler expression 1− e−s·εpk/8m.
Cabello et al. [4] proceeded from this result to a (1 + ε)-approximation by tiling the

vicinity of each selected translation with an ε-grid [4, Theorem 7]. We will first replace the
randomized algorithm by a deterministic one, and apply the ε-grid refinement afterwards.

We now describe a deterministic algorithm for approximating t∗ and the corresponding
matching M∗. At a high level, the mn points of T are partitioned into O(mn/k) clusters of
size Ω(k), and one point, not necessarily from T , is chosen to represent each cluster. We will
argue that the point in the resulting set X of representatives that is nearest to t∗ yields a
matching whose value at t∗ is an O(1)-approximation of cost*(t∗).

Here is the main idea of how we cluster the points in T and construct X, in an incremental
manner. In step i, we greedily choose the smallest disk Di that contains k/2 points of T
(or all of T , if |T | ≤ k/2), add the center of Di to X, delete the points of Di ∩ T from
T , and repeat. Carmi et al. [5] have described an efficient algorithm for this clustering
problem. It preprocesses T into a data structure (consisting of three compressed quadtrees)
in O(mn logn) time, so that in step i, the disk Di can be computed in Õ(k2) time and Di∩T
can be deleted from the data structure in Õ(k2) time, leading to an Õ(mnk)-time algorithm.
They also present a faster approximation algorithm for this clustering problem: in step i,
instead of computing the smallest enclosing disk Di, they show that a disk of radius at most
twice that of Di that still contains k/2 points of T can be computed in Õ(k) time, and that
Di ∩ T can be deleted in Õ(k) time, thereby improving the overall running time to Õ(mn).
This approximation algorithm is sufficient for our purpose. We next give a more formal
description of our method:

At the beginning of step i, we have a set Pi ⊆ T and the current set X. Initially, P1 = T

and X = ∅. We preprocess P1, in Õ(|T |) = Õ(mn) time, into the data structure described
by Carmi et al. [5]. We perform the following operations in step i: if Pi = ∅, the algorithm
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terminates. If 0 < |Pi| ≤ k/2, we compute the smallest disk Di containing Pi. If |Pi| > k/2,
then let ρ∗i be the radius of the smallest disk that contains at least k/2 points of Pi. Using
the algorithm in [5], we compute a disk Di of radius ρi ≤ 2ρ∗i containing at least k/2 points
of Pi. We add the center ξi of Di to X, and we set Pi+1 := Pi \Di. We remove Pi ∩Di from
the data structure, as described in [5]. Let D be the set of disks computed by the above
procedure. By construction, ρ∗i ≤ ρ∗i+1, ρi ≤ 2ρ∗i ≤ 2ρ∗i+1 ≤ 2ρi+1, and |X| = |D| ≤ 2mn/k.
The following two lemmas establish the correctness of our method.

I Lemma 4.3. Let t ∈ R2 be a translation vector, and let ξ0 be its nearest neighbor in X.
Then ‖t− ξ0‖ ≤ 3 · 21/p cost*(t).

Proof. Let D be the disk of radius 21/p cost*(t) centered at t, and let S = D ∩ T . By
Lemma 4.1 with 1 + c = 21/p, we have |S| ≥ k/2. Let Di be the first disk chosen by the
above procedure that contains a point t0 of S, so S ⊆ Pi. We must have ρ∗i ≤ 21/p cost*(t),
because the smallest disk that contains at least k/2 points of Pi is not larger than D. Hence,
ρi ≤ 2 · 21/p cost*(t), and

‖t− ξi‖ ≤ ‖t− t0‖+ ‖t0 − ξi‖ ≤ 21/p cost*(t) + ρi

≤ 21/p cost*(t) + 2 · 21/p cost*(t) = 3 · 21/p cost*(t). J

I Lemma 4.4. min
ξ∈X

cost*(ξ) ≤ (1 + 3 · 21/p) cost*(t∗).

Proof. Let ξ0 be the nearest neighbor to t∗ in X. Applying Lemma 4.3 with t = t∗, we obtain
‖t∗−ξ0‖ ≤ 3 ·21/p cost*(t∗). By Corollary 2.2, we then have cost*(ξ0) ≤ cost*(t∗)+‖t∗−ξ0‖ ≤
(1 + 3 · 21/p) cost*(t∗). J

We fix a constant δ ∈ (0, 1]. We compute a (1 + δ)-approximate k-matching Mξ between
A + ξ and B, for every ξ ∈ X, and choose the best among them. This will give an O(1)-
approximation of the minimum-cost k-matching under translation. We can extend this
algorithm to yield a (1 + ε)-approximation algorithm following the same procedure as in
Section 3: We draw a disk of radius (1 + 3 · 21/p + 4ε) cost*(t∗) around each point of X. We
draw a uniform grid of cell size O(ε) and look at all vertices t of grid cells that overlap one of
these disks at least partially. We compute a (1 + ε/2)-approximation for the best matching
of size k between A+ t and B for each of the grid point t under consideration, and we choose
the best matching among them. Putting everything together, we obtain the following:

I Theorem 4.5. Let A,B ⊂ R2, with |A| = m and |B| = n, and let 0 < ε ≤ 1 and
k ≤ min{m,n} be parameters. Then, a translation vector t̃ ∈ R2 and a matching M̃ of
size k between A and B can be computed in Õ(mn + mn

ε2kW (m,n, k, ε2 )) time, such that
cost(M̃, t̃) ≤ (1 + ε) cost*(t∗).

We show that VD(X) is indeed an O(1)-approximate matching diagram of A and B. This
is analogous to Section 2.1 (Lemma 2.6).

I Lemma 4.6. Let t ∈ R2 be a translation vector, and let ξ0 be its nearest neighbor in X.
Then, cost*(t) ≤ cost(Mξ0 , t) ≤ (1 + 6 · 21/p) cost*(t).

Proof. Since Mξ0 is a matching of size k between A and B, we have, by definition, cost*(t) ≤
cost(Mξ0 , t). We now prove the second inequality. By Corollary 2.2, cost*(ξ0) ≤ cost*(t) +
‖t− ξ0‖, Lemma 2.1, and Lemma 4.3,

cost(Mξ0 , t) ≤ cost(Mξ0 , ξ0) + ‖t− ξ0‖

= cost*(ξ0) + ‖t− ξ0‖ ≤ cost*(t) + 2‖t− ξ0‖ ≤ (1 + 6 · 21/p) cost*(t). J

ISAAC 2018



26:12 Approximate Minimum-Weight Partial Matching Under Translation

The combinatorial complexity of VD(X) is O(mn/k). We can now construct a (1 + ε)-
approximate matching diagram by refining each Voronoi cell of VD(X), as in Section 3, but
the constants have to be chosen differently. The diagram has O(mnkε2 log 1

ε ) cells, and we need
W (m,n, k, ε2 ) time per cell. We obtain the following:

I Theorem 4.7. Let A,B ⊂ R2, |A| = m ≤ |B| = n, and let k ≤ m, ε ∈ (0, 1] be parameters.
There exists a (1 + ε)-approximate k-matching diagram of A and B of size O(mnkε2 log 1

ε ), and
it can be computed in Õ(mn) +O

(
mn
kε2 log 1

εW (m,n, k, ε2 )
)
time.

For the case when cm ≤ k ≤ (1 − c)n for some constant c > 0, we can show that the
bound in Theorem 4.7 on the size of the diagram is tight in the worst case in terms of m,
n, and k (but not of ε): If A is a unit grid of size

√
m ×

√
m and B is a unit grid of size√

n×
√
n, then there are Ω(n) translation vectors at which A and B are perfectly aligned

and have at least k points in common. Thus, any O(1)-approximate matching diagram of A
and B needs to have Ω(n) distinct faces.
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