
An O(n2 log2 n) Time Algorithm for Minmax
Regret Minsum Sink on Path Networks
Binay Bhattacharya
School of Computing Science, Simon Fraser University, Burnaby, Canada

Yuya Higashikawa
School of Business Administration, University of Hyogo, Kobe, Japan

Tsunehiko Kameda
School of Computing Science, Simon Fraser University, Burnaby, Canada

Naoki Katoh
School of Science and Technology, Kwansei Gakuin University, Sanda, Japan

Abstract
We model evacuation in emergency situations by dynamic flow in a network. We want to minimize
the aggregate evacuation time to an evacuation center (called a sink) on a path network with
uniform edge capacities. The evacuees are initially located at the vertices, but their precise
numbers are unknown, and are given by upper and lower bounds. Under this assumption, we
compute a sink location that minimizes the maximum “regret.” We present the first sub-cubic
time algorithm in n to solve this problem, where n is the number of vertices. Although we
cast our problem as evacuation, our result is accurate if the “evacuees” are fluid-like continuous
material, but is a good approximation for discrete evacuees.

2012 ACM Subject Classification Networks→ Network algorithms, Mathematics of computing
→ Graph algorithms, Applied computing → Transportation

Keywords and phrases Facility location, minsum sink, evacuation problem, minmax regret, dy-
namic flow path network

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2018.14

Related Version A full version of the paper is available at [3], https://arxiv.org/abs/1806.
00814.

Acknowledgements This work is supported in part by NSERC of Canada Discovery Grant, in
part by JST Crest (JPMJCR1402), and in part by JSPS Kakenhi Grant-in-Aid for Young
Scientists (B) (17K12641).

1 Introduction

The goal of evacuation planning is to evacuate all the evacuees to some sinks, optimizing a
certain objective function [8, 16]. Some aspects of such planning can be modeled by dynamic
flow in a network [6] whose vertices represent the places where the evacuees are initially
located and the edges represent possible evacuation routes. Associated with each edge is the
transit time across the edge and its capacity in terms of the number of people who can enter
it per unit time. Evacuation starts from all vertices at the same time.

A completion time k-sink, a.k.a. minmax k-sink, is a set of k sinks that minimizes the
time until every evacuee has moved to a sink. If the edge capacities are uniform, it is easy to
compute a completion time 1-sink in path networks in linear time [5, 10]. Mamada et al. [16]

© Binay Bhattacharya, Yuya Higashikawa, Tsunehiko Kameda, and Naoki Katoh;
licensed under Creative Commons License CC-BY

29th International Symposium on Algorithms and Computation (ISAAC 2018).
Editors: Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou Liao; Article No. 14; pp. 14:1–14:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/162456716?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.4230/LIPIcs.ISAAC.2018.14
https://arxiv.org/abs/1806.00814
https://arxiv.org/abs/1806.00814
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 Minsum Sink on Dynamic Flow Path Networks

solved this problem for the tree networks with non-uniform edge capacities in O(n log2 n)
time, when the sink is constrained to be at a vertex. Higashikawa et al. proposed an
O(n logn) algorithm without this constraint when the edges have the same capacity [12].

The concept of regret was introduced by Kouvelis and Yu [15], to model the situations
where optimization is required when the exact values (such as the number of evacuees at
the vertices) are unknown, but are given by upper and lower bounds. A particular instance
of the set of such numbers, one for each vertex, is called a scenario. The objective is to
find a solution which is as good as any other solution in the worst case, where the actual
scenario is the most unfavorable. Cheng et al. [5] proposed an O(n log2 n) time algorithm
for finding a minmax regret 1-sink in path networks with uniform edge capacities. This
initial result was soon improved to O(n logn) [10, 17], and further to O(n) [4]. Bhattacharya
and Kameda [4] propose an O(n log4 n) time algorithm to find a minmax regret 2-sink
on path networks. For the k-sink version of the problem, Arumugam et al. [1] give two
algorithms, which run in O(kn3 logn) and O(kn2(logn)k) time, respectively. As for the tree
networks with uniform edge capacities, Higashikawa et al. [12] propose an O(n2 log2 n) time
algorithm for finding a minmax regret 1-sink. Golin and Sandeep [7] recently proposed an
O(max{k2, log2 n}k2n2 log5 n) time algorithm for finding a minmax reget k-sink.

The objective function we adopt in this paper is the aggregate evacuation time, i.e.,
the sum of the evacuation time of every evacuee, a.k.a. minsum [11]. It is equivalent to
minimizing the average evacuation time, and is motivated by the desire to minimize the
transportation cost of evacuation and the total amount of psychological duress suffered by
the evacuees, etc. It is more difficult than the completion time variety because the objective
cost function is not unimodal along the given path. The minimization of the evacuation
completion time (resp. aggregate evacuation time) reduces to the center (resp. median)
problem, when the edge capacities are infinite, but finite capacities can cause congestion [5]
which complicates the problems. To the best of our knowledge very little is known about
this problem, except [2, 11, 13]. It is recently shown by Benkoczi et al. [2] that an aggregate
time k-sink in path networks can be found in O(kn log3 n) (resp. O(kn2 log2 n)) time, if edge
capacities are uniform (resp. nonuniform).

The main contribution of this paper is to find an aggregate time 1-sink that minimizes
regret in O(n2 log2 n) time, improving the required time from O(n3) in [11]. A set of O(n2)
dominating scenarios was identified in [11]. We first compute the aggregate time sinks for
these scenarios, then the upper envelope of the “regret functions” of all these scenarios.
Finally, we compute the lowest point of the upper envelope, which corresponds to the optimal
sink µ∗. We make use of a few novel ideas. One is used in Sec. 4 to compute an aggregate
time sink under each of the O(n2) pseudo-bipartite scenarios [11] in amortized O(log2 n) time
per sink. Another is used in Sec. 5 to compute the upper envelope of O(n2) regret functions
(with O(n3) linear segments in total) in O(n2 log2 n) time, taking advantage of a special
relationship among the regret functions.

In the next section, we define the terms that are used throughout this paper, and review
some known facts which are relevant to later discussions. Sec. 3 discusses preprocessing
which makes later operations more efficient. In Sec. 4 we show how to compute an aggregate
time sink under scenarios that “dominate” others. We then compute in Sec. 5 an optimum
sink that minimizes the max regret. The proofs of some lemmas could not be included due to
space limitation. The interested reader is referred to the arXived version [3], which provides
the proofs of all the lemmas and formal statements of three algorithms.

B. Bhattacharya, Y. Higashikawa, T. Kameda, and N. Katoh 14:3

2 Preliminaries

2.1 Notations/definitions

Let P (V,E) denote a given path network with vertex set V = {v1, v2, . . . , vn}. We assume that
the vertices are arranged from left to right horizontally in the index order. For 1 ≤ i ≤ n− 1,
there is an edge ei = (vi, vi+1) ∈ E, whose length is denoted by d(ei). We write p ∈ P for
any point p (on an edge or vertex) of P , and for two points a, b ∈ P , we write a ≺ b or b � a
if a lies to the left of b. The distance between them is denoted by d(a, b). If a and/or b lies
on an edge, the distance is prorated. The capacity (the upper limit on the flow rate) of
each edge is c (a constant), and the transit time is τ per unit distance. For 1 ≤ i ≤ j ≤ n,
P [vi, vj] denotes the subpath of P from vi to vj .

For vertex vi, w(vi) ∈ R+ (the set of the positive reals) denotes its weight, which represents
the number of “evacuees” initially located at vi. Under scenario s, vertex vi has a weight
ws(vi) such that w(vi) ≤ ws(vi) ≤ w(vi), where w(vi) and w(vi) are assumed to be known.
We define the Cartesian product S ,

∏n
i=1[w(vi), w(vi)], and consider each member of S as

a scenario. Most of the above definitions were introduced in [5].
Our objective function under scenario s, Φs(x), is the sum of the evacuation times

(sometimes called cost) of all the individual evacuees to point x. More formally, for vi ≺ x �
vi+1 (resp. vi � x ≺ vi+1), let Φs

L(x) (resp. Φs
R(x)) denote the cost at x for the evacuees

from the vertices on P [v1, vi] (resp. P [vi+1, vn]). We thus have Φs(x) , Φs
L(x) + Φs

R(x). Let
µs , argminxΦs(x) be an aggregate time sink under s. Then Rs(x) , Φs(x) − Φs(µs) is
called regret at x under s [15]. We say that scenario s′ dominates scenario s at point x if
Rs′(x) ≥ Rs(x) holds. The max regret at x is given by Rmax(x) , maxs∈S R

s(x) [15]. Our
goal is to find a 1-sink, x = µ∗, that minimizes Rmax(x).

By si we denote the scenario under which w(vj) = w(vj) for all j ≤ i and w(vj) = w(vj)
for all j > i, where 0 ≤ i ≤ n. Similarly, by si we denote the scenario under which
w(vj) = w(vj) for all j ≤ i and w(vj) = w(vj) for all j > i. We call si and si bipartite
scenarios. Finally, we define weight arrays W [vi] ,

∑i
k=1 w(vk) and W [vi] ,

∑i
k=1 w(vk),

which can be precomputed in O(n) time for all i, 1 ≤ i ≤ n.

2.2 Clusters

In order to analyze congestion, in this subsection we review the notion of a cluster [11], and
introduce some new related concepts, which play important roles in subsequent discussions.
Given a point x ∈ P , which is not the sink, the evacuee flow at x toward the sink is a function
of time, in general, alternating between no flow and flow at the rate limited by capacity c. A
maximal group of vertices that provide uninterrupted flow without any gap forms a cluster.
Such a cluster observed on edge ek−1 = (vk−1, vk), arriving from right via vk, is called an
Rs-cluster with respect to (any point on) ek−1, including vk−1, but excluding vk. The vertex
of such a cluster that is closest to ek−1 is called its head vertex. An Ls-cluster with respect
to ek, including vk+1, is similarly defined for evacuees arriving from left toward the sink.

If a cluster C contains a vertex v, the cluster is said to carry the evacuees from v. We
now define particular clusters and cluster sequences.

Cs
R,k(vi) , Rs-cluster with respect to ek−1 that contains vertex vi (i ≥ k).
Cs

R,k: sequence of all Rs-clusters with respect to ek−1 (k = 2, . . . , n).
Cs

L,k(vi) , Ls-cluster with respect to ek that contains vertex vi (i ≤ k).
Cs

L,k: sequence of all Ls-clusters with respect to ek (k = 1, . . . , n− 1).

ISAAC 2018

14:4 Minsum Sink on Dynamic Flow Path Networks

The total weight under scenario s of the vertices contained in cluster C is denoted by λs(C).
From now on we mainly discuss Rs-clusters, since Ls-clusters have analogous, symmetric
properties. According to the above definition, Cs

R,k(vk) is the first cluster of sequence Cs
R,k. If

vh and vi (vh ≺ vi) are the head vertices of two adjacent clusters in Cs
R,k, then the following

holds.

d(vh, vi)τ > λs(Cs
R,k(vh))/c. (1)

Intuitively, this means that when the first evacuee from vi arrives at vh, all evacuees carried
by Cs

R,k(vh) have left vh already. For vk−1 � x ≺ vk, let us analyze the cost of Cs
R,k(vi) at x,

where vi � vk. For the λs(Cs
R,k(vi)) evacuees to move to x, let us divide the time required

into two parts. The first part, called the intra cost [2], is the weighted waiting time before
departure from the head vertex, vj , of Cs

R,k(vi), and can be expressed as

{λs(Cs
R,k(vi))}2/2c. (2)

Intuitively, (2) can be interpreted as follows. As far as the travel time to vj and the
waiting time at vj are concerned, we may assume that all the λs(Cs

R,k(vi)) evacuees were
at vj to start with. Since evacuees leave vj at the rate of c, the mean wait time for
the evacuees carried by Cs

R,k(vi) is λs(Cs
R,k(vi))/2c, and thus the total for all of them is

λs(Cs
R,k(vi))/2c × λs(Cs

R,k(vi)) = {λs(Cs
R,k(vi))}2/2c. Note that the intra cost does not

depend on x, as long as vk−1 � x ≺ vk. This formula is accurate only when it is an integer,
but for simplicity, we adopt (2) as our intra cost [5].1

The second part, called the extra cost [2], is the total transit time from the head vertex
vj of Cs

R,k(vi) to x for all the evacuees carried by Cs
R,k(vi), and can be expressed as

d(x, vj)λs(Cs
R,k(vi))τ. (3)

For the evacuees carried by Cs
L,k(vi), moving to the right, we similarly define its intra cost

and extra cost, where vi � vk ≺ x � vk+1. For vk−1 � x ≺ vk, we now introduce a cost
function for cluster sequence Cs

R,k.

Φs
R,k(x) ,

∑
C∈Cs

R,k

d(x, vi)λs(C)τ +
∑

C∈Cs
R,k

λs(C)2/2c. (4)

We name the first (resp. second) term in (4) Es
R,k (resp. Is

R,k). Similarly, for x (vk ≺ x �
vk+1), we define

Φs
L,k(x) ,

∑
C∈Cs

L,k

d(vi, x)λs(C)τ +
∑

C∈Cs
L,k

λs(C)2/2c , Es
L,k + Is

L,k. (5)

When vk is clear from the context, or when there is no need to refer to it, we may write
Φs

R(x) (resp. Φs
L(x)) to mean Φs

R,k(x) (resp. Φs
L,k(x)). The aggregate of the evacuation

times to x of all evacuees is given by

Φs(x) =
{

Φs
L,k(x) + Φs

R,k+1(x) for vk ≺ x ≺ vk+1
Φs

L,k−1(x) + Φs
R,k+1(x) for x = vk.

(6)

A point x that minimizes Φs(x) is called an aggregate time sink, a.k.a. minsum sink, under s.
An aggregate time sink shares the following property of a median [14].

I Lemma 1 ([13]). Under any scenario, there is an aggregate time sink at a vertex.

1 It is accurate for fluid-like “evacuees” that is always divisible by capacity c.

B. Bhattacharya, Y. Higashikawa, T. Kameda, and N. Katoh 14:5

2.3 What is known
I Lemma 2 ([11]). For any given scenario s ∈ S,
(a) We can compute {Φs

L(vi),Φs
R(vi) | i = 1, . . . , n} in O(n) time.

(b) We can compute µs and Φs(µs) in O(n) time.

A scenario s under which all vertices on the left (resp. right) of a vertex have the max
(resp. min) weights is called an L-pseudo-bipartite scenario [11]. The vertex vb, where
1 ≤ b ≤ n, that may take an intermediate weight w(vb) ≤ w(vb) ≤ w(vb), is called the
boundary vertex, a.k.a. intermediate vertex [11]. Let b(s) denote the index of the boundary
vertex under pseudo-bipartite scenario s. We consider the bipartite scenarios, under which
w(vb) = w(vb) and w(vb) = w(vb), also as special pseudo-bipartite scenarios, and in the
former (resp. latter) case, either b(s) = b− 1 or b(s) = b (resp. b(s) = b or b(s) = b + 1).
The vertices that have the maximum (resp. minmum) weights comprise the max-weighted
(resp. min-weighted) part. We define an R-pseudo-bipartite scenario symmetrically with the
max-weighted part and the min-weighted part reversed. As w(vb) increases from w(vb) to
w(vb), clusters may merge.

Weight ws(vb) is called a critical weight, if two clusters with respect to any point merge
as w(vb) increases to become a scenario s. Let S∗L (resp. S∗R) denote the set of the L- (resp.
R-)pseudo-bipartite scenarios that correspond to the critical weights. Thus each scenario in
S∗L (resp. S∗R) can be specified by vb and w(vb). Let S∗ , S∗L ∪ S∗R.

I Lemma 3 ([11]).
(a) Any scenario in S is dominated at every point x by a scenario in S∗.2
(b) |S∗| = O(n2), and all scenarios in S∗ can be determined in O(n2) time.

2.4 Road map
From now on, we proceed as follows.
(1) Investigate important properties of clusters to prepare for later sections. (Sec. 3)
(2) Compute {µs | s ∈ S∗} in O(n2 log2 n) time. (Sec. 4)
(3) Compute Rmax(x) = max{Rs(x) | s ∈ S∗} in O(n2 log2 n) time. (Sec. 5.1) Rmax(x) is a

piecewise linear function, and can be specified by the set of its bending points.
(4) Find point x = µ∗ that minimizes Rmax(x) in O(n2) time. (Sec. 5.2)

3 Clusters under pseudo-bipartite scenarios

3.1 Preprocessing
Without loss of generality, we concentrate on Rs-clusters for s ∈ S∗L, since the other
combinations, such as Rs-clusters for s ∈ S∗R, etc., can be treated analogously. For k =
2, . . . , n, let Cs

R,k consist of qs(k) clusters

Cs
R,k = 〈C1, C2, . . . , Cqs(k)〉, (7)

and let ui be the head vertex of Ci, where vk = u1 ≺ . . . ≺ uqs(k). By (1), d(ui, ui+1)τ >
λ(Ci)/c holds for i = 1, 2, . . . , qs(k)− 1.

2 Not necessarily by the same scenario. The scenario depends on a particular x.

ISAAC 2018

14:6 Minsum Sink on Dynamic Flow Path Networks

I Lemma 4.
(a) For any scenario s ∈ S, the number of distinct clusters in {Cs

R,k | k = 2, . . . , n} is O(n).
(b) For any scenario s ∈ S, we can construct {Cs

R,k | k = 2, . . . , n} in O(n) time.

Proof. (a) Consider Cs
R,k in the order k = n, n − 1 . . . , 2. Cluster sequence Cs

R,vn
consists

of just one cluster composed of vn. Let Cs
R,k+1 = 〈C ′1, C ′2 . . . , C ′qs(k+1)〉 for some k. Cluster

C1 ∈ Cs
R,k contains vertex vk and possibly the vertices of C ′1, . . . , C ′h for some h, where

0 ≤ h ≤ qs(k + 1) and h = 0 means C1 contains just vk and no other vertex. Note that C1
is new when we go from k + 1 to k, but the other clusters of Cs

R,k, i.e., C2, . . . , Cqs(k) are
C ′h+1, . . . , C

′
qs(k+1). This means that each k introduces just one new cluster, and thus the

number of distinct clusters is O(n).
(b) Let us construct Cs

R,k in the order k = n, n− 1 . . . , 2. Assume that we have computed
Cs

R,k+1, and want to compute C1. If (1) does not hold between the new singleton cluster
vk and the first cluster, C ′1, of Cs

R,k+1, namely if d(vk, vk+1)τ ≤ λs({vk})/c, then vk and C ′1
merge to form a single cluster. (1) may become violated for this new cluster and C ′2, in
which case they also merge. As a result of such chain reaction, if vk merges with the first
h clusters in Cs

R,k+1 this way, we spend O(h) time in computing C1. Those h clusters will
never contribute to the computation time from now on. If we pay attention to the head
vertex, ui, of Ci, it gets absorbed into a larger cluster at most once, and each time such an
event takes place, constant computation time incurs. J

Computing the extra cost Es
R,k in (4) is fairly easy, because the extra cost of cluster C is

linear in λs(C). The intra costs can also be computed efficiently.

I Lemma 5 ([11]). Given a scenario s ∈ S,
(a) We can compute {Es

R,k, I
s
R,k | k = 1, . . . , n− 1} in O(n) time.

(b) We can compute {Es
L,k, I

s
L,k | k = 2, . . . , n} in O(n) time.

Let s0 , sn and sM , sn. The following corollary follows easily from Lemmas 4 and 5.

I Corollary 6.
(a) There are O(n) distinct clusters among the cluster sequences in {Cs0

L,k∪C
s0
R,k∪C

sM

L,k∪C
sM

R,k |
k = 1, . . . , n}, and we can compute them in O(n) time.

(b) We can compute {Es0
R,k, I

s0
R,k, E

sM

R,k, I
sM

R,k | k = 1, . . . , n − 1} and {Es0
L,k, I

s0
L,k, E

sM

L,k, I
sM

L,k |
k = 1, . . . , n− 1} in O(n) time

(c) For each cluster sequence in Cs0
L,k ∪ C

s0
R,k ∪ C

sM

L,k ∪ C
sM

R,k, we can compute the prefix sum of
the intra costs in O(n) time. Thus we can compute the prefix sums of the intra costs for
all k in O(n2) time, if we do not repeat the common data.

From now on, we assume that we have precomputed all the data mentioned in Corollary 6.

3.2 Constructing set of pseudo-bipartite scenarios S∗

Let s = s0 in (7). Starting with b = k, we increase w(vb) until Cs0
R,k(vk) merges with the

next cluster in Cs0
R,k, and record the value of b and the amount of increase δ above w(vb)

that caused this merger. We repeat this with the newly formed cluster, instead of Cs0
R,k(vk).

If w(vb) is reached we fix w(vb) = w(vb), increment b and repeat, as long as vb ∈ CsM

R,k(vk)
holds. We will end up with a list

∆R,k , {(b1, δk,1), (b2, δk,2), . . .}, (8)

B. Bhattacharya, Y. Higashikawa, T. Kameda, and N. Katoh 14:7

(a)

(b)
vl

vl

CsM
R,k(vk)

vk

vk
Cs0

R,k(vk)

Figure 1 (a) Some clusters in Cs0
R,k; (b) CsM

R,k(vk).

where k ≤ b1 ≤ b2 ≤ · · · , and for any two adjacent items, (bi, δk,i) and (bi+1, δk,i+1), if bi =
bi+1 then δk,i < δk,i+1. Intuitively, (bi, δk,i) ∈ ∆R,k means that when w(vbi) = w(vbi) + δk,i

the first cluster of Cs
R,k(vk) expands by merging with the next cluster, where s is the scenario

reflecting the weight changes made so far. Fig. 1(a) illustrates some clusters in the beginning
of Cs0

R,k, and Fig. 1(b) shows CsM

R,k(vk). We start with vb = vk in Cs0
R,k(vk) in Fig. 1(a), which

is a part of Cs0
R,k that we already have. We increase w(vb) by δk,1 from ws0(vb) = w(vb) until

Cs0
R,k(vk) expands by merging with the next cluster on its right. This δk,1 is obtained by

solving3

d(u1, u2)τ = {λs0(Cs0
R,k(vk)) + δk,1}/c. (9)

Assuming w(vb) + δk,1 ≤ w(vb), for ws(vb) = w(vb) + δk,1, Cs0
R,k(vk) may merge with the next

h− 1 clusters in Cs0
R,k, where h ≥ 2, resulting in a combined cluster C under s (6= s0), and

the first item (k, δk,1) being created in ∆R,k. If w(vb) + δk,1 ≤ w(vb), on the other hand,
we repeat this operation to find the increment δk,2, if any, above w(vb) that causes C to
absorb the h + 1st cluster in Cs0

R,k, etc. If w(vb) + δk,1 > w(vb), on the other hand, we set
w(vb) = w(vb) and increment b by one without recording δk,1. When this process terminates,
we end up with CsM

R,k(vk) in Fig. 1(b), because all the vertices involved now have their max
weights, and we will have constructed ∆R,k.4 Clearly, each item (bj , δk,j) ∈ ∆R,k corresponds
to a scenario sj ∈ S∗L in the following way.

wsj (vi) =

wsM (vi) for 1 ≤ i < bj

w(vbj) + δk,j for i = k

ws0(vi) for bj < i ≤ n
(10)

Let S∗L,k denote the set of scenarios corresponding to the increments in ∆R,k according to
(6). It is clear that S∗L = ∪n

k=1S∗L,k. Note that under any s ∈ S∗L,k, Cs
R,k(vb(s)) is the first

cluster in Cs
R,k.

I Lemma 7.
(a) We can compute ∆R,k in O(|CsM

R,k(vk)|) time, where |CsM

R,k(vk)| denotes the number of
vertices in cluster CsM

R,k(vk).
(b) We can construct {∆R,k | k = 2, . . . , n}, hence S∗L, in O(n2) time.
(c) For each scenario s ∈ S∗L,k, we can identify the last vertex in Cs

R,k(vk) in constant extra
time while computing ∆R,k.

3 Let ui be as defined after (7) for s = s0.
4 The above method to compute ∆R,k is presented as a formal algorithm in [3].

ISAAC 2018

14:8 Minsum Sink on Dynamic Flow Path Networks

4 Computing sinks {µs | s ∈ S∗}

4.1 Computing {Φs(x) | s ∈ S∗}
Let us now turn our attention to the computation of the extra and intra costs under the
scenarios in S∗L,k. Those under the scenarios in S∗R,k can be computed similarly. While
computing ∆R,k as in Sec. 3.2, we can update the extra and intra costs at vk under the
corresponding scenario s ∈ S∗L,k as follows.

When the first increment δk,1 causes the merger of the first two clusters in Cs0
R,k, for

example, we subtract the extra cost contributions of those two clusters from Es0
R,k, and add

the new contribution from the merged cluster in order to compute Es
R,k for the new scenario

s that results from the incremented weight ws(vk) = w(vk) + δk,1. We can similarly compute
Is

R,k from Is0
R,k in constant time. Carrying out these operations whenever a newly expanded

cluster is created thus takes O(n) time for a given k and O(n2) time in total for all k’s.
Define ∆R , ∪n

k=2∆R,k.

I Lemma 8. Assume that ∆R, as well as all the data mentioned in Corollary 6, are available.
Then under any given scenario s ∈ S∗L, we can compute the following in O(logn) time.
(a) Φs(vi) = Φs

L(vi) + Φs
R(vi) for any given index i.

(b) Φs(x) = Φs
L(x) + Φs

R(x) for any given point x.

Among the items in ∆R, there is a natural lexicographical order, ordered first by b and
then by w(vb), from the smallest to the largest. We write sl s′ if s is ordered before s′ in
this order. In what follows we assume the items in ∆R are sorted by l.

4.2 Tracking sink µs

Observe that we have Φs
L(x) = ΦsM

L (x) for x � vb, which is independent of w(vb). Similarly,
we have Φs

R(x) = Φs0
R (x) for x � vb, which is also independent of w(vb). We initialize the

current scenario by s = s0, the boundary vertex vb by b = 1, and its weight by w(vb) = ws0(v1).
For each successive increment in ∆R, from the smallest (according to l), we want to know
the leftmost 1-sink under the corresponding scenario. It is possible that, as we increase the
weight w(vb), the sink may jump across vb from its right side to its left side, and vice versa,
back and forth many times. We shall see how this can happen below.

By Lemma 8, for a given index b, we can compute {Φsb−1(vi) | i = 1, 2, . . . , n} in O(n logn)
time.5 We first scan Φsb−1(vb),Φsb−1(vb−1), . . . ,Φsb−1(v1), and whenever we encounter a
value smaller than those we examined so far, we record the index of the corresponding vertex.
Let Ib

L be the recorded index set, starting with b. We then scan Φsb−1(vb),Φsb−1(vb+1), . . . ,
Φsb−1(vn) similarly, and let Ib

R be the recorded index set, starting with b. We now plot point
(vi,Φsb−1(vi)) for i ∈ Ib

L ∪ Ib
R in the x-y coordinate system, with distance d(v1, vi) as the x

value and Φsb−1(vi) as the y value. See Fig. 2, where d(v1, vi) is indicated by vi. It is clear
from the definition that for i, j ∈ Ib

L such that i < j, we have Φsb−1(vi) < Φsb−1(vj), and
for i, j ∈ Ib

R such that i < j, we have Φsb−1(vi) > Φsb−1(vj). Therefore, the points plotted
on the left (resp. right) side of vb get higher and higher as we approach vb from left (resp.
right), as seen by the black dots in Fig. 2.

Note that for a vertex vi (≺ vb), as w(vb) is increased, Φs
R(vi) increases, while Φs

L(vi)
remains fixed at ΦsM

L (vi), where s is the scenario reflecting the change in w(vb). For vi � vb,
on the other hand, as w(vb) is increased, Φs

L(vi) increases, while Φs
R(vi) remains fixed at

5 Recall the definition of sj from Sec. 2.1.

B. Bhattacharya, Y. Higashikawa, T. Kameda, and N. Katoh 14:9

vb

Φs(vb)

Φs(vj)

Φs(vi)

Φs(v)

0 vi vjvi1 vip vj1 vjq

Figure 2 Graphical representation of Φsb−1 (vi) = Φsb−1
L (vi) + Φsb−1

R (vi).

Φs0
R (vi). A vertical arrow in Fig. 2 indicates the relative amount of increase in the cost at

the corresponding vertex when w(vb) is increased by a certain amount. Note that the farther
away a vertex is from vb, the more is the increase in the cost.

The following proposition summarizes the above observations.

I Proposition 9.
(a) Φs(vi) < Φs(vj) holds for any pair i, j ∈ Ib

L such that i < j.
(b) Φs(vi) > Φs(vj) holds for any pair i, j ∈ Ib

R such that i < j.
(c) Either the vertex with the smallest index in Ib

L or the vertex with the largest index in Ib
R

has the lowest cost, i.e., it is a 1-sink.

Note that the cost at vb, Φs
R(vb), is the highest among the points plotted, and is not

affected by the change in w(vb). We consider the three properties in Proposition 9 as invariant
properties, and remove the vertices that do not satisfy (a) or (b), as we increase w(vb). As we
increase w(vb), in the order of the sorted increments in ∆R, we update Ib

L and Ib
R, looking

for the change of the sink.

I Proposition 10. As w(vb) is increased, there is a sink at the same vertex for all the
increments tested since the last time the sink moved, until the smallest index in Ib

L or the
largest index in Ib

R changes, causing the sink to move again. The sink cannot move away
from vb.

We are thus interested in how Ib
L and Ib

R change, in particular, when its smallest index
in Ib

L or the largest index in Ib
R changes.

I Lemma 11. Let i and j be vertex indices such that either they are adjacent in Ib
L and

i < j holds, or adjacent in Ib
R and i > j holds. The smallest6 (b, δ) ∈ ∆R, if any, such that

increasing w(vb) by δ above w(vb) causes the cost at vi to reach or exceed that at vj can be
determined in O(log2 n) time.

Proof. Use binary search on ∆R (sorted by l), and compare the costs at vi and vj for each
probe in O(logn) time, using Lemma 8. J

If such a δ in Lemma 11 does not exist, we set δ =∞. From Lemma 11, it follows that the
total time for all adjacent pairs is O(n log2 n). We insert a triple (δ; i, j) into a min-heap Hb,
organized according to the first component δ, from which we can extract the item with the
smallest first component. For a given b, once Hb has been constructed this way, we pop the
item (δ; i, j) with the smallest δ from Hb in constant time. If i, j ∈ Ib

L (resp. i, j ∈ Ib
R) then

6 According to l.

ISAAC 2018

14:10 Minsum Sink on Dynamic Flow Path Networks

we remove i (resp. j) from Ib
L (resp. Ib

R), and compute (δ′; i−, j) (resp. (δ′; i, j+)) where i−
(resp. j+) is the index in Ib

L (resp. Ib
R) that is immediately before (resp. after) i (resp. j).

By Lemma 11 we can find δ′ in O(log2 n) time, and insert (δ′; i−, j) (resp. (δ′; i, j+)) into
Hb, taking O(logn) time. If i was the smallest index in Ib

L, the sink may have moved. In
this case no new item is inserted into Hb. Similarly, if j was the largest index in Ib

R, the sink
may have moved, and no new item is inserted into Hb.

We repeat this until either Hb becomes empty or the minimum δ-value in Hb is ∞. It is
repeated O(n) times, so the total time required is O(n log2 n). If the sink moves when the
smallest index in Ib

L or the largest index in Ib
R changes, we have determined the sink under all

the scenarios with the lighter w(vb) since the last time the sink moved. Once w(vb) = w(vb)+δ
reaches w(vb), b is incremented, and the new boundary vertex now lies to the right of the old
boundary vertex vb in Fig. 2. For each b = 1, 2, . . . , n, let Sb = {s ∈ S∗ | b(s) = b}.7

I Lemma 12.
(a) Sinks {µs | s ∈ Sb ∩S∗L} can be computed in O(n log2 n) time for a given boundary vertex

vb.
(b) Sinks {µs | s ∈ Sb∩S∗R} can be computed in O(n log2 n) time for a given boundary vertex

vb.

For the clusters in Cs
R,i that lie to the right of Cs

R,i(vb) and are not merged as a result of
an increase in w(vb), the sum of their intra costs was already precomputed. Repeating the
above operations for b = 1, 2, . . . , n, we get our first major result.

I Lemma 13. The sinks {µs | s ∈ S∗} can be computed in O(n2 log2 n) time.

5 Minmax regret sink

Now that we know how to compute the sinks {µs | s ∈ S∗}, we proceed to compute the upper
envelope for the O(n2) regret functions {Rs(x) = Φs(x) − Φs(µs) | s ∈ S∗}. The minmax
regret sink µ∗ is at the lowest point of this upper envelope.

5.1 Upper envelope for {Rs(x) | s ∈ S∗}
If we try to find the upper envelope maxs∈S∗ Φs(x) in a naïve way, it would take at least
O(n3) time, since |S∗| = O(n2), and for each s, Φs(x) consists of O(n) linear segments. We
employ the following two-phase approach.
Phase 1: For each b, compute the upper envelope maxs∈Sb

Rs(x).
Phase 2: Compute the upper envelope for the results from Phase 1.
In Phase 1, we successively update the upper envelope, incorporating regret functions one
at a time, which can be done in amortized O(log2 n) time per regret function. Thus the
total time for a given b is O(n log2 n) and the total time for all b is O(n2 log2 n). In Phase
2, we then compute the upper envelope for the resulting O(n) regret functions with a total
of O(n2) linear segments in O(n2 logn) time. To implement Phase 1, we first present the
following lemma.

I Lemma 14. Let s, s′ ∈ Sb be two scenarios such that and sl s′. As x moves to the right,
the difference D(x) = Φs′(x)− Φs(x) decreases monotonically for v1 � x � vb and increases
monotonically for vb � x � vn.

7 The above method is presented as a formal algorithm in [3].

B. Bhattacharya, Y. Higashikawa, T. Kameda, and N. Katoh 14:11

v1 vnµ(s′)

Rs′(x)
Rs(x)

µ(s) vb

Figure 3 Rs(x) and Rs′(x) cross each other at two points in this example.

We divide each regret function in {Rs(x) | s ∈ Sb} into two parts: the left of vb and
the right of vb. We then find the upper envelope for the left set and right set separately.
Note that each Rs(x) has O(n) bending points, since they bend only at vertices. Taking the
maximum of two such functions may add one extra bending point on an edge, so the total
bending points in the upper bound is still O(n). By definition we have

Rs′(x)−Rs(x) = Φs′(x)− Φs′(µs′)− {Φs(x)− Φs(µs)}
= Φs′(x)− Φs(x)− {Φs′(µs′)− Φs(µs)}. (11)

Since the second term in (11) is independent of position x, Lemma 14 implies

I Lemma 15. Let s, s′ ∈ Sb be two scenarios such that and sl s′. Then Rs′(x) may cross
Rs(x) at most once in the interval [v1, vb] from above, and at most once in the interval
[vb, vn] from below.

See Fig. 3 for an illustration for Lemma 15. For x � vb, we compute maxs∈S∗
b
Rs(x),

updating a partially computed upper envelope U(x) by successively incorporating the “next”
regret function Rs(x) to it. We can use binary search to find the crossing point of U(x) and
Rs(x), and invoke Lemma 8.

I Lemma 16.
(a) The upper envelope maxs∈Sb

Rs(x) has O(|Sb|+ n) line segments.
(b) We can compute the upper envelope maxs∈Sb

Rs(x) in O(|Sb| log2 n) time.

Proof. (a) Without loss of generality, consider the upper envelope in the interval [vb, vn].
Since Rs(x) = Φs(x)− Φs(µs), Rs(x) is linear over the edge connecting any adjacent pair of
vertices, and maxs∈Sb

Φs(x) has O(|Sb|+ n) line segments on all edges by Lemma 15.
(b) See the analysis of Algorithm 3 in [3]. J

5.2 Main theorem
Since ∪n

b=1Sb = S∗ and |S∗| = O(n2), Lemma 16 implies that it takes O(n2 log2 n) time
to compute {maxs∈Sb

Rs(x) | b = 1, . . . , n}. These n upper envelope together have O(n2)
linear segments. Hershberger [9] showed that the upper envelope of m line segments can be
computed in O(m logm) time. We can use his method to compute the global upper envelope
for {maxs∈Sb

Rs(x) | b = 1, . . . , n} in O(n2 logn) additional time.

I Lemma 17. The upper envelope maxs∈S∗ R
s(x) can be computed in O(n2 log2 n) time.

So far we have paid no attention to the negative spikes in Rs(x) at vertices. Divide the
problem in two subproblems: minmax regret sink is (i) on an edge, and (ii) at a vertex.
Compare the two solutions and pick the one with the smaller cost. In addition to Lemma 17,
we should evaluate the regret at each vertex. The true minmax regret sink is at the point
with the minimum of these maximum regrets. Corollary 6 and Lemmas 3, 13 and 17 imply
our main result.

ISAAC 2018

14:12 Minsum Sink on Dynamic Flow Path Networks

I Theorem 18. The minmax regret sink on path networks can be computed in O(n2 log2 n)
time.

6 Conclusion

We presented an O(n2 log2 n) time algorithm for finding a minmax regret aggregate time
(a.k.a. minsum) sink on path networks with uniform edge capacities, which improves upon
the previously most efficient O(n3) time algorithm in [11]. We hope some methods we devised
in this paper will find applications in solving some other related problems. Future research
topics include efficiently solving the minmax regret problem for aggregate time sink for more
general networks such as trees. No such polynomial time algorithm is known at present.

References
1 Guru Prakash Arumugam, John Augustine, Mordecai Golin, and Prashanth Srikanthan.

A Polynomial Time Algorithm for Minimax-Regret Evacuation on a Dynamic Path.
arXiv:1404,5448 v1 [cs.DS] 22 April, 2014.

2 R. Benkoczi, B. Bhattacharya, Y. Higashikawa, T. Kameda, and N. Katoh. Minsum k-sink
on dynamic flow path network. In Combinatorial Algorithms (Iliopoulos, Costas, Leong,
Hon Wai, Sung, Wing-Kin, Eds.), Springer-Verlag LNCS 110979, pages 78–89, 2018.

3 Binay Bhattacharya, Yuya Higashikawa, Tiko Kameda, and Naoki Katoh. Minmax regret
1-sink for aggregate evacuation time on path networks. arXiv:1806.00814 Oct 2018.

4 Binay Bhattacharya and Tsunehiko Kameda. Improved algorithms for computing min-
max regret sinks on path and tree networks. Theoretical Computer Science, 607:411–425,
November 2015.

5 Siu-Wing Cheng, Yuya Higashikawa, Naoki Katoh, Guanqun Ni, Bing Su, and Yinfeng Xu.
Minimax regret 1-sink location problem in dynamic path networks. In Proc. Annual Conf.
on Theory and Applications of Models of Computation (T-H.H. Chan, L.C. Lau, and L.
Trevisan, Eds.), Springer-Verlag, LNCS 7876, pages 121–132, 2013.

6 L.R. Ford and D.R. A. Fulkerson. Constructing maximal dynamic flows from static flows.
Operations Research, 6(3):419–433, 1958.

7 Mordecai Golin and Sai Sandeep. Minmax-regret k-sink location on a dynamic tree network
with uniform capacities. arXiv:1806.03814v1 [cs.DS] 11 June, 2018.

8 H.W. Hamacher and S.A. Tjandra. Mathematical modelling of evacuation problems: a
state of the art. in: Pedestrian and Evacuation Dynamics, Springer Verlag,, pages 227–
266, 2002.

9 J. Hershberger. Finding the upper envelope of n line segments in O(n logn) time. Infor-
mation Processing Letters, 33(4):169–174, 1989.

10 Yuya Higashikawa, John Augustine, Siu-Wing Cheng, Mordecai J. Golin, Naoki Katoh,
Guanqun Ni, Bing Su, and Yinfeng Xu. Minimax regret 1-sink location problem in dynamic
path networks. Theoretical Computer Science, 588(11):24–36, 2015.

11 Yuya Higashikawa, Siu-Wing Cheng, Tsunehiko Kameda, Naoki Katoh, and Shun Saburi.
Minimax regret 1-median problem in dynamic path networks. Theory of Computing Sys-
tems, 62(6):1392–1408, August 2018.

12 Yuya Higashikawa, Mordecai J. Golin, and Naoki Katoh. Minimax regret sink location
problem in dynamic tree networks with uniform capacity. Journal of Graph Algorithms
and Applications, 18(4):539–555, 2014.

13 Yuya Higashikawa, Mordecai J. Golin, and Naoki Katoh. Multiple sink location problems
in dynamic path networks. Theoretical Computer Science, 607(1):2–15, 2015.

B. Bhattacharya, Y. Higashikawa, T. Kameda, and N. Katoh 14:13

14 Oded Kariv and S.Louis Hakimi. An algorithmic approach to network location problems,
Part II: The p-median. SIAM J. Appl. Math., 37:539–560, 1979.

15 P. Kouvelis and G. Yu. Robust Discrete Optimization and its Applications. Kluwer Aca-
demic Publishers, London, 1997.

16 Satoko Mamada, Takeaki Uno, Kazuhisa Makino, and Satoru Fujishige. An O(n log2 n)
algorithm for a sink location problem in dynamic tree networks. Discrete Applied Mathe-
matics, 154:2387–2401, 2006.

17 Haitao Wang. Minmax Regret 1-Facility Location on Uncertain Path Networks. European
J. of Operational Research, 239(3):636–643, 2014.

ISAAC 2018

	Introduction
	Preliminaries
	Notations/definitions
	Clusters
	What is known
	Road map

	Clusters under pseudo-bipartite scenarios
	Preprocessing
	Constructing set of pseudo-bipartite scenarios S*

	Computing sinks {mu^s | s in S*}
	Computing {Phi^s(x) | s in S*}
	Tracking sink mu^s

	Minmax regret sink
	Upper envelope for {R^s(x) | s in S*}
	Main theorem

	Conclusion

