
Deciding the Closure of Inconsistent Rooted
Triples Is NP-Complete
Matthew P. Johnson
Department of Computer Science, Lehman College
Ph.D. Program in Computer Science, The Graduate Center
City University of New York, USA

Abstract
Interpreting three-leaf binary trees or rooted triples as constraints yields an entailment relation,
whereby binary trees satisfying some rooted triples must also thus satisfy others, and thence
a closure operator, which is known to be polynomial-time computable. This is extended to
inconsistent triple sets by defining that a triple is entailed by such a set if it is entailed by any
consistent subset of it.

Determining whether the closure of an inconsistent rooted triple set can be computed in
polynomial time was posed as an open problem in the Isaac Newton Institute’s “Phylogenetics”
program in 2007. It appears (as NC4) in a collection of such open problems maintained by Mike
Steel, and it is the last of that collection’s five problems concerning computational complexity
to have remained open. We resolve the complexity of computing this closure, proving that its
decision version is NP-Complete.

In the process, we also prove that detecting the existence of any acyclic B-hyperpath (from
specified source to destination) is NP-Complete, in a significantly narrower special case than the
version whose minimization problem was recently proven NP-hard by Ritz et al. This implies it
is NP-hard to approximate (our special case of) their minimization problem to within any factor.

2012 ACM Subject Classification Mathematics of computing→ Trees, Mathematics of comput-
ing → Hypergraphs, Theory of computation → Problems, reductions and completeness, Applied
computing → Molecular evolution

Keywords and phrases phylogenetic trees, rooted triple entailment, NP-Completeness, directed
hypergraphs, acyclic induced subgraphs, computational complexity

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2018.12

Acknowledgements This work was supported in part by NSF award INSPIRE-1547205, and by
the Sloan Foundation via a CUNY Junior Faculty Research Award.

1 Introduction

We investigate the computational complexity of a problem in which, based on a given
collection of relationships holding between the leaves of a hypothetical (rooted) binary tree
T , the task is to infer whatever additional relationships (of the same form) must also hold
between T ’s leaves as a consequence. Various problems in phylogenetic tree reconstruction
involve inference of this kind. The specific relationship form in question here, obtaining
between some three leaves p, q, o and denoted pq|o, is that of the path between p and q being
node-disjoint from the path between o and the root, or equivalently, of the lowest common
ancestor (lca) of p and q not being an ancestor of o. This relationship is modeled as a rooted
triple, i.e., the (rooted, full) binary tree on leaves p, q, o in which p and q are siblings, and their
parent and o are both children of the root. Then pq|o holding in T is equivalent to having the
subtree of T induced by p, q, o be homeomorphic to pq|o’s corresponding three-leaf binary tree.

© Matthew P. Johnson;
licensed under Creative Commons License CC-BY

29th International Symposium on Algorithms and Computation (ISAAC 2018).
Editors: Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou Liao; Article No. 12; pp. 12:1–12:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/162456714?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.4230/LIPIcs.ISAAC.2018.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


12:2 Deciding the Closure of Inconsistent Rooted Triples Is NP-Complete

The problem of computing the set of all rooted triples entailed by a given triple set R′
(its closure R′) is known to be polynomial-time computable by, e.g., Aho et al.’s BUILD
algorithm [6, 1] if R′ is consistent, i.e., if there exists a binary tree satisfying all triples in R′.

If a rooted triple set R is inconsistent, then a given triple is said to be entailed by R if it
is entailed by any consistent subset R′ ⊂ R. That is, the closure R equals the union of the
closures of all R’s consistent subsets. Thus the naive brute-force algorithm for computing R
suggested by the definition is exponential-time in |R|.

Determining the complexity of the problem of computing R was posed in the Isaac Newton
Institute’s “Phylogenetics” program in 2007 [9], and it appears (as NC4) in a collection of
such open problems maintained by Mike Steel [13]. That collection’s other four problems
concerning computational complexity were all solved by 2009 or 2010, but NC4 has remained
open. We resolve the complexity of computing R, proving that it is NP-hard. In particular,
we prove that its decision version, i.e., deciding whether a given rooted triple is entailed by
R, is NP-Complete.

In the process, we also obtain stronger hardness results for a problem concerning acyclic
B-hyperpaths, a directed hypergraph problem that has recently been applied to another
computational biology application, but interestingly one unrelated to phylogenetic trees and
rooted triples: signaling pathways, the sequences of chemical reactions through which cells
respond to signals from their environment (see Ritz et al. [11]).

Specifically, we prove that detecting the existence of any acyclic B-hyperpath (between
specified source and destination) is NP-Complete, in a significantly narrower special case
(viz., the case in which every hyperarc has one tail and two heads) than the version whose
minimization problem was recently proven NP-hard by Ritz et al. This immediately implies
it is NP-hard to approximate (our special case of) their minimization problem to within
any factor. Moreover, even if we restrict ourselves to feasible problem instances (i.e., those
for which there exists at least one such acyclic B-hyperpath), we show that this “promise
problem” [8] special case is NP-hard to approximate to within factor |V |1−ε for all ε > 0.

Related Work

Inference of new triples from a given set of rooted triples holding in a binary tree was studied
by Bryant and Steel [6, 5], who proved many results on problems involving rooted triples, as
well as quartets, and defined the closure of an inconsistent triple set. The polynomial-time
BUILD algorithm of Aho et al. [1] (as well as subsequent extensions and speedups) can be
used to construct a tree satisfying all triples in R (and to obtain the closure R), or else to
conclude than none exists.

Gallo et al. [7] defined a number of basic concepts involving paths and cycles in directed
hypergraphs, including B-connectivity. Ausiello et al. [2] studied path and cycle problems
algorithmically in directed hypergraphs and showed, via a simple reduction from Set Cover,
that deciding whether there exists a B-hyperpath from specified source to destination with
≤ ` hyperarcs is NP-Complete. Ritz et al. [11] recently studied a problem involving “signaling
hypergraphs”, which are directed hypergraphs that can contain “hypernodes”. They modify
Ausiello et al.’s hardness reduction from Set Cover to show that deciding the existence of
a length≤` B-hyperpath is NP-Complete already in the special case of directed hypergraphs
each of whose hyperarcs has at most 3 head nodes and at most 3 tail nodes (due to Set
Cover becoming hard once sets of size 3 are permitted). Ritz et al.’s hardness proof actually
does not use the fact that their problem formulation requires the computed B-hyperpath to
be acyclic. Because the entire directed hypergraph they construct is (like Ausiello et al.’s)
always acyclic, their proof provides hardness regardless of whether the formulation includes



M.P. Johnson 12:3

an acyclicity constraint. This constraint is essential to our hardness proof, however, so our
result does not rule out the possibility that a B-hyperpath minimization problem formulation
without an acyclicity requirement would be easier to approximate.

2 Preliminaries

2.1 Rooted Triples
I Definition 1. For any nodes u, v of a rooted binary tree (or simply a tree):

v ≤ u denotes that v is a descendent of u (and u is an ancestor of v), i.e., u appears on
the path from v to the root; v < u denotes that v is a proper descendent of u (and u is a
proper ancestor of v), i.e., v ≤ u and v 6= u.
uv denotes their lowest common ancestor (lca), i.e., the node w of maximum distance
from the root that satisfies w ≥ u and w ≥ v.

I Definition 2.
A rooted triple (or simply a triple) t = ({p, q}, o) ∈

(
L
2
)
× L (with p, q, o all distinct, for

an underlying finite leaf set L) is denoted by the shorthand notation pq|o and represents
the constraint: the path from p to q is node-disjoint from the path from o to the root.
The left-hand side (LHS) of a triple pq|o is pq, and its right-hand side (RHS) is o.
L(T ) denotes the set of leaves of a tree T , and L(R′) denotes the set of leaves appearing
in any of the triples within a set R′, i.e., L(R′) =

⋃
pq|o∈R′{p, q, o}.

A tree T with p, q, o ∈ L(T ) displays the triple pq|o (or, pq|o holds in T ) if the corre-
sponding constraint holds in T . The set of all triples displayed by T is denoted by r(T ).
The set of all trees that display all triples in R′ is denoted by 〈R′〉. A set of triples R′ is
consistent if 〈R′〉 is nonempty.

I Definition 3.
For a consistent triple set R′, a given triple t (which may or may not be a member of R′)
is entailed by R′, denoted R′ ` t, if every tree displaying all the triples in R′ also displays
t, i.e., if t is displayed by every tree in 〈R′〉. The closure R′ is the set of all triples entailed
by R′, i.e., R′ = {t : R′ ` t}, which can also be defined as R′ =

⋂
T∈〈R′〉 r(T ) [6].

For an inconsistent triple set R, a given triple t (which may or may not be a member of
R) is entailed by R, again denoted R ` t, if there exists a consistent subset R′ ⊂ R that
entails t. The closure R is again the set of all triples entailed by R, or equivalently the
union, taken over every consistent subset R′ ⊂ R, of R′, i.e., ⋃cons.R′⊂RR

′.

We first state a few immediate consequences of these definitions.

I Observation 4.
It can happen that pp′ = qq′ even if {p, p′} ∩ {q, q′} = ∅.
In any given tree T having p, q, o ∈ L(T ), exactly one of pq|o, po|q, and qo|p holds.
pq|o iff qp|o iff (path: p to q) ∩ (path: o to the root) = ∅ iff pq < po = qo.
Equivalently, the 3-point condition for ultrametrics [12] holds: for all p, q, o ∈ L(T ), we
have pq < po = qo or oq < op = qp or op < oq = pq.
Regardless of whether triple set R is consistent, its closure R satisfies R ⊆ R ⊆

(
L
2
)
× L,

and so |R| = O(|L|3).

We state the problem formally.

ISAAC 2018



12:4 Deciding the Closure of Inconsistent Rooted Triples Is NP-Complete

Table 1 Variable name conventions, many of which (also) represent leaves in the triple set R
constructed in the reduction. Note that the notation pq (for leaves p, q) is used to denote both
lca(p, q) and the hypergraph node whose outgoing hyperarcs represent triples of the form pq|o, i.e.,
those constraining lca(p, q) from above.

p, q, p′, q′, o, o′ generic leaf variables, especially in triples’ LHSs or RHSs (resp.) (leaves)
bi, b

′
i, cj , dj , etc. particular leaf names (leaves)
pq, etc. lowest common ancestor lca(p, q) of leaves p, q (leaf 2-sets)
α, β, γ leaves of target triple αβ|γ (leaves)
t rooted triple, especially of form pkqk|ok = uk|ok

R or R′ set of triples, especially inconsistent or consistent (resp.)
L or L(R) set of leaves or set of leaves appearing in members of R (resp.) (leaf sets)

u, uk, v, v
′, vk, v

′
k hypergraph nodes, especially tail node or head nodes (resp.) (leaf 2-sets)

pq, etc. hypergraph node corresponding to leaves p, q (leaf 2-sets)
αβ, cm+1γ source and destination nodes (resp.) (leaf 2-sets)

ak 1-2-hyperarc, especially of form uk→{vk, v
′
k} = pkqk→{pkok, qkok}, with

k ∈ [`] = {1, ..., `} indicating ak’s position in a path P of length |P | = `

xi ith SAT variable, with i ∈ [n]
Cj jth SAT clause, with j ∈ [m]

xi, x̄i or x̃i literals (positive, negative or either, resp.) of xi

xj
i , x̄

j
i or x̃j

i the appearance (positive, negative or either, resp.) of xi in Cj (leaves)
xj

ŵ, x̄
j
ŵ or x̃j

ŵ the wth variable appearance in Cj (leaves)
xj
·̂ , x̄

j
·̂ or x̃

j
·̂ some (unspecified) variable appearance in Cj (leaves)

yj
i , ȳ

j
i helper leaves in xi gadget for xj

i and x̄j
i (resp.) (leaves)

z̃j
i jth element in sequence bj , b

′
j , x̃

1
i , ỹ

1
i ..., x̃

m
i , ỹ

m
i , bj+1, b

′
j+1 (leaves)

F SAT formula

Inconsistent Rooted Triple Set Closure
Instance: An inconsistent rooted triple set R.
Solution: R’s closure R = {t : R ` t}.

By the observation above, computing the closure is equivalent to solving the following
decision problem for each of the O(|L|3) triples t ∈

(
L
2
)
× L.

Inconsistent Rooted Triple Set Entailment
Instance: An inconsistent rooted triple set R and a rooted triple t.
Question: Does R ` t, i.e., does there exists a consistent triple set R′ ⊂ R satisfying R′ ` t?

Although there is no finite set of inference rules that are complete [6], there are only
three possible inference rules inferring from two triples [6].

I Definition 5. The three dyadic inference rules (∀ p, q, o, p′, o′ ∈ L) are:

{pq|o, qp′|o} ` pp′|o
{pq|o, qo|o′} ` {pq|o′, po|o′} (1)
{pp′|o, oo′|p} ` {pp′|o′, oo′|p′}



M.P. Johnson 12:5

A type of graph (distinct from hypergraphs discussed below) that will be used in the
hardness proof is the Ahograph [1], which is defined for a given triple set R and leaf set L.1

I Definition 6. For a given triple set R and leaf set L, the Ahograph [R,L] is the following
undirected edge-labeled graph:

its vertex set equals L;
for every triple pq|o ∈ R, if p, q, o ∈ L, then there exists an {p, q} with label o.

For a hypergraph (V,A), the corresponding Ahograph is the Ahograph [triples(A), V ].
To avoid confusion with the nodes of the hypergraph, we refer to the Ahograph’s nodes

and edges as A-nodes and A-edges.

2.2 Directed Hypergraphs
Definitions of paths and cycles in hypergraphs are subtler and more complicated than
the corresponding definitions for graphs (see [10]). We adopt versions of Gallo et al. [7]’s
definitions, simplified for the special case in which every hyperarc has exactly one tail and
two heads.

I Definition 7. A 1-2-directed hypergraph (or simply hypergraph) H = (V,A) consists of a
set of nodes V and a set of 1-2-hyperarcs A. A 1-2-hyperarc (or 1-2-directed hyperedge2, or
simply hyperarc or arc) is an ordered pair a = (u, {v, v′}) ∈ V ×

(
V
2
)
, with u, v, v′ all distinct,

which we denote by u→{v, v′}. Let t(a) = u be a’s tail and h(a) = {v, v′} be a’s heads. A
node with out-degree 0 is a sink.

I Definition 8.
A simple path from u0 to u` is a sequence of distinct 1-2-hyperarcs P = (a1, ..., a`), where
u0 = t(a1), u` ∈ h(a`) and t(ak+1) ∈ h(ak) for all k ∈ [`− 1]. The length |P | = ` is the
number of arcs.
A cycle is a simple path having h(a`) 3 t(a1). An arc ak ∈ P having one of its heads be
the tail of some earlier arc ak′ of P , i.e., where ∃ak′ ∈ P : k′ < k and h(ak) 3 t(ak′),
is a back-arc. A simple path is cycle-free or acyclic if it has no back-arcs, and is cyclic
otherwise. More generally, a set A′ ⊆ A is cyclic if it is a superset of some cycle, and
acyclic otherwise.

I Definition 9. In general directed hypergraphs (i.e., with no restrictions on arcs’ numbers
of heads and tails), a node v is B-connected3 to u0 if v = u0 or (generating such B-connected
nodes bottom-up, through repeated application of this definition) if there is a hyperarc a with
v ∈ h(a) and every node t(a) is B-connected to u0. A path P from u0 to u` is a B-hyperpath
if u` is B-connected to u0 (using only the arcs a ∈ P ).

Due to the following observation, for the remainder of this paper any use of the term
“path” will be understood to mean “B-hyperpath”.

I Observation 10. If all arcs are 1-2-hyperarcs, then every simple path is also a B-hyperpath.

Via the hypergraph representation used in our hardness proof for Inconsistent Rooted
Triple Set Entailment below, we also obtain hardness results for the following problem
formulations as a by-product.

1 We choose to define the Ahograph as a multigraph whose edges each have exactly one label, rather than
the more common definition as a graph whose edges each have a set of labels.

2 Called a 2-directed F-hyperarc in [14], extending definitions introduced by Gallo et al. [7].
3 Note also that Gallo et al. [7] defines B-hyperarc simply to mean an arc a having |h(a)| = 1.

ISAAC 2018



12:6 Deciding the Closure of Inconsistent Rooted Triples Is NP-Complete

Acyclic B-Hyperpath Existence in a 1-2-Hypergraph
Instance: A 1-2-directed hypergraph H = (V,A) and nodes u, v ∈ V .
Question: Does there exist an acyclic B-hyperpath in H from from u to v?

We want to define an optimization version of the problem where the objective is to
minimize path P ’s length |P |, but since a given problem solution may contain no solutions
at all (it may be infeasible, specifically if v is not B-connected to u), we obtain the following
somewhat awkward definition. Note that defining the cost of an infeasible solution to be
infinity is consistent with the convention that min∅ =∞.

Min Acyclic B-Hyperpath in a 1-2-Hypergraph
Instance: A 1-2-directed hypergraph H = (V,A) and nodes u, v ∈ V .
Solution: A B-hyperpath P in H.
Measure: P ’s length |P |, (i.e., its number of hyperarcs), if P is a feasible solution (i.e., an
acyclic B-hyperpath from u to v), and otherwise infinity.

Alternatively, we can formulate a “promise problem” [8] special case of the minimization
problem, restricted to instances admitting feasible solutions.

Min Acyclic B-Hyperpath in a B-Connected 1-2-Hypergraph
Instance: A 1-2-directed hypergraph H = (V,A) and nodes u, v ∈ V , where the v is
B-connected to u.
Solution: An acyclic B-hyperpath P in H from u to v.
Measure: P ’s length |P |.

3 The Construction

3.1 High-level Strategy
We will prove that Inconsistent Rooted Triple Set Entailment is NP-Complete
by reduction from 3SAT, using a construction similar to that of [3] (see also [4]) for the
problem of deciding whether a specified pair of nodes in a directed graph are connected by
an induced path.4 So, given a SAT formula F , we must construct a problem instance (R, t)
such that R ` t iff F is satisfiable. Intuitively, we want to define R in such a way that it will
be representable as a graph (or rather, as a directed hypergraph), whose behavior will mimic
that of the induced subgraph problem.

In slightly more detail, the instance (R, t) that we define based on F will have a structure
that makes it representable as a certain directed hypergraph. This hypergraph (see Fig. 1)
will play an intermediate role between (R, t) and F , yielding a two-step reduction between
the three problems. In particular, we will show:
1. A path P (from αβ to cm+1γ) determines a truth assignment v(·), and vice versa.
2. P will be acyclic iff v(·) satisfies F .
3. An acyclic path P (or an acyclic superset of it) determines a consistent subset R′ ⊂ R

entailing t = αβ|γ, and vice versa.
4. Hence R′ will be consistent and entail αβ|γ iff P is acyclic iff v(·) satisfies F .

4 That problem becomes trivial if either the graph is undirected or the induced constraint is removed.



M.P. Johnson 12:7

αβ βb1 x1 x2 · · · xn−1 xn

Cm Cm−1 · · · C2 C1

b′
n+1
c1

cm+1

γ

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 1 Construction overview, with the path P from αβ to cm+1γ shown in red. Each ellipse
represents the gadget for one variable xi (see Fig. 2a), and each hexagon represents the gadget for
one clause Cj (see Fig. 2b). (Sink nodes are omitted for clarity.) The path shown corresponds to a
truth assignment in which x2 is true and x1, x3, x4 are false. For example, the path shown takes x1’s
positive (upper) side, passing through its positive nodes, which renders x1’s positive appearances
unusable, thus setting x1 to false. Cm’s upper witness path points to x1’s negative (lower) side,
indicating that x1’s appearance in Cm is negative. Thus x1 being false satisfies Cm.

The challenge we face is designing a construction that will force cycles to autonomously
result from non-satisfiable formulas (mimicking the logic of an induced subgraph) is that the
definition of entailment of a triple t from an inconsistent set R allows us to pick and choose
among the members of R, selecting any consistent subset as the witness to t’s entailment,
seemingly indicating that any troublesome members of R corresponding to back-arcs causing
a cycle could simply be omitted – independently of our choices when selecting the triples
that we are relying on.

The way we disallow this freedom is that we model a rooted triple not as a directed
edge in a graph but as a directed hyperedge, pointing from one tail node to two head nodes.
Although the definition of entailment from an inconsistent triple set R means we can omit
any hyperarc we like in defining a possible H ′, we cannot omit half a hyperarc: “turning on”
a 1-2-hyperarc u→{v, v′} because we want tail u to point to head v also necessarily causes u
to point to v′.

For most of the arcs we define in our construction, these second head nodes will be just
spinning wheels: sink nodes having no effect, and omitted for clarity from some figures. The
important ones are those in which tail u and one head v both lie in a clause gadget and the
other head v′ lies in a variable gadget.

3.2 Identifying Rooted Triples and 1-2-Hyperarcs
A core idea of our construction and proof is a correspondence between rooted triples and H’s
hyperarcs (all 1-2-hyperarcs), which renders them mutually definable in terms of one anther.
Each of H’s nodes will be identified with an unordered pair of leaves {p, q} ∈

(
L
2
)
(written for

convenience pq), and each of its hyperarcs will have structure of the form pq→{po, qo}, with
p, q, o all distinct. That is, each of an arc u→{v, v′}’s two heads v, v′ will contain one of the
tail u’s two leaves plus a different leaf common to both v and v′. This structure ensures that
each hyperarc encodes a rooted triple, rather than a constraint of the more general form
pp′ < qq′ Thus we can write A = {pq→{po, qo} : pq|o ∈ R} or R = {pq|o : pq→{po, qo} ∈ A}.
Indeed, we can simply identify them with one another as follows.

I Definition 11. For a triple pq|o, the corresponding hyperarc is arc(pq|o) = pq→{po, qo};
conversely, for a 1-2-hyperarc pq→{po, qo}, the corresponding triple is triple(pq→{po, qo}) =
pq|o. For a triple set R′, we write arcs(R′) to denote the same set R′, with but its members
treated as arcs, and similarly in reverse, for an arc set A′, we write triples(A′).

ISAAC 2018



12:8 Deciding the Closure of Inconsistent Rooted Triples Is NP-Complete

Given this, we can also give a more abstract correspondence.

I Definition 12. For a 1-2-hyperarc u→{v, v′}, the corresponding triple is triple(u→{v, v′})
= v ⊕ v′|v ∩ v′, where ⊕ denotes symmetric difference. We also combine the two models’
syntax, writing u|o to denote pq|o when u = pq, i.e., when hyperarc u→{v, v′} = arc(pq|o).

This leads to the following equivalent restatements of the second dyadic inference rule
(recall Def. 5) in forms that will sometimes be more convenient.

I Observation 13. The first inference of dyadic inference rule (1) can be stated as:

{pq→{po, qo}, qo→{qo′, oo′}} ` pq→{po′, qo′} (∀ p, q, o, o′ ∈ L)
{uk−1|o, uk|o′} ` uk−1|o′ (∀ uk−1, uk ∈ V, o ∈ uk s.t. |uk−1 ∩ uk| = 1)

(2)

We emphasize again the following two related facts about the meaning of an arc
pq→{po, qo} ∈ A:
1. If T is a tree with p, q, o ∈ L(T ) and pq|o ∈ r(T ), then lowest common ancestors po and

qo are equal, i.e., they refer to the same node in T .
2. Yet po and qo are two distinct A-nodes (in V ) of the hypergraph H.

That is, “turning on” triple pq|o (by adding it to the triple set R′) has the effect of
causing the hypergraph nodes po and qo to thence refer to the same tree node (in any tree
displaying R′).

3.3 Defining L and R

Let the SAT formula F on variables x1, ..., xn consist of m clauses Cj , each of the form
Cj = (x̃ji1 ∨ x̃

j
i2
∨ x̃3

i3
) or Cj = (x̃ji1 ∨ x̃

j
i2

), where each literal x̃ji has the form either xi or x̄i
for some i.

We define the leaf set L underlying R as L = L1 ∪ L2 ∪ L3 ∪ L4, where:
L1 =

⋃
i∈[n],j∈[m]{x

j
i , x̄

j
i , y

j
i , ȳ

j
i } (4nm leaves)5

L2 =
⋃
i∈[n+1]{bi, b′i} (2n+ 2 leaves)

L3 =
⋃
j∈[m]{cj , dj} (2m leaves)

L4 = {α, β, γ} (3 leaves)

For each variable xi in F , we create a gadget consisting of two parallel length-2m+2 paths
intersecting at their first and last nodes but otherwise node-disjoint (see Fig. 2a), where the
path taken will determine the variable’s truth value. The rooted triples in R corresponding
to variable xi’s gadget are:

On its positive side:
{bib

′
i|x1

i , b′ix
1
i |y1

i , x1
i y

1
i |x2

i , y1
i x

2
i |y2

i , ..., x
m−1
i

ym−1
i
|xm

i , ym−1
i

xm
i |ym

i , xm
i y

m
i |bi+1, ym

i bi+1|b′i+1}
On its negative side:
{bib

′
i|x̄1

i , b′ix̄
1
i |ȳ1

i , x̄1
i ȳ

1
i |x̄2

i , ȳ1
i x̄

2
i |ȳ2

i , ..., x̄
m−1
i

ȳm−1
i
|x̄m

i , ȳm−1
i

x̄m
i |ȳm

i , x̄m
i ȳ

m
i |bi+1, x̄m

i bi+1|b′i+1}

For each clause Cj = (x̃ji1 ∨ x̃
j
i2
∨ x̃ji3) in F , we create a gadget consisting of three (or

two, in the case of a two-literal clause) parallel length-3 paths, intersecting in their first and
fourth nodes, followed by one additional (shared) edge (see Fig. 2b), where the path taken
(the witness path) will correspond to which of Cj ’s literal satisfies the clause (or one among
them, in the case of multiple true literals). The second node of Cj ’s witness path (of the

5 Alternatively, we could create such nodes only corresponding to actual appearances of variables in
clauses, i.e., L1 =

⋃
i,j:xi∈Cj

{xj
i , y

j
i } ∪

⋃
i,j:x̄i∈Cj

{x̄j
i , ȳ

j
i } (≤ 3m leaves).



M.P. Johnson 12:9

x1
i y1

i x2
i y2

i

b′ix
1
i y1

i x2
i · · ·

b′iy
1
i x1

i x2
i y1

i y2
i

bix
1
i

bib
′
i

bix
1
i

b′iȳ
1
i x̄1

i x2
i ȳ1

i ȳ2
i

b′ix̄
1
i ȳ1

i x̄2
i · · ·

x̄1
i ȳ1

i x̄2
i ȳ2

i

bi+1

b′i+1

ym

i

bi+1

ȳm

i

bi+1

xi
m−1

yi
m−1

xm

i

ym

i

x̄i
m−1

ȳi
m−1

x̄m

i

ȳm

i

ym−1
i

xm

i

ȳm−1
i

x̄m

i

xm−1
i

xm

i

ym−1
i

ym

i

xm

i

bi+1 ym

i

b′i+1

x̄m−1
i

x̄m

i

ym−1
i

ym

i

x̄m

i

bi+1

ȳm

i

b′i+1

(a) Variable gadget for xi. Any path passing through this gadget (drawn left to right) has two options,
taking its negative (lower) side, making xi true, or its positive (higher) side, making xi false. That is, the
truth value corresponding to the path is the one making the literals in the nodes on the unused side true.
Intuitively, a path traversing one of the gadget’s two sides renders all the literals appearing within that
side’s nodes unusable. Note that the rightmost node (bi+1b

′
i+1) is also (for each i < n) the leftmost node

of xi+1’s gadget.

cjyj

3̂ cjxj

3̂

dj x̄j

2̂ djxj

3̂

cj ȳj

2̂ cj x̄j

2̂ cjdj

djxj

1̂

cjyj

1̂ cjxj

1̂

cj+1

dj+1

cj

cj+1

cj

dj+1

yj

3̂
cj+1

yj

1̂
cj+1

ȳj

2̂
cj+1

xj

1̂yj

1̂ xj

2̂yj

2̂ xj

3̂yj

3̂

(b) Clause gadget for Cj = (xj
i1
∨ x̄j

i2
∨ xj

i3
), which is followed (drawn outside the shaded region) by node

cj+1dj+1 (or cm+1γ, in the case of j = m). Any path passing through this gadget (drawn right to left)
has three options: going up, straight across, or down, each corresponding to one choice among Cj ’s three
possible witness paths. The arrow from the witness path’s witness node, say, cj x̃

j
i , to a node x̃j

i ỹ
j
i lying

within one of the two sides of xi’s gadget (and outside the shaded region) represents the appearance of xi

in Cj ; the 1-2-hyperarc that arrow is constituent of forces an acyclic path taking this witness path to have
taken the opposite side of xi’s gadget.

Figure 2 Gadgets used in the reduction. Each pair of arrows drawn forking from the same tail
node represents one 1-2-hyperarc. Sink nodes have dashed borders and are shaded lighter (gray)
than non-sink nodes (blue). The clause gadget nodes that point to variable gadget nodes and the
variable gadget nodes that can be pointed to by them are both drawn with thick borders.

ISAAC 2018



12:10 Deciding the Closure of Inconsistent Rooted Triples Is NP-Complete

form cj x̃
j
i , and corresponding to the appearance of literal x̃i) is its witness node. The rooted

triples in R corresponding to clause Cj ’s gadget are:
{cjdj |xji , cjx

j
i |yji , cjy

j
i |cj+1}, for each positive appearance of a variable xi in Cj

{cjdj |x̄ji , cj x̄
j
i |ȳji , cj ȳ

j
i |cj+1}, for each negative appearance of a variable xi in Cj

cjcj+1|dj+1, if j < m

Finally, R has the following triples connecting the pieces together, connecting the source
node αβ to a chained-together series of variable gadgets, the last of which is connected (via
an intermediate node) to the first of a chained-together series of clause gadgets, the last of
which is connected to the destination node cm+1γ:
{αβ|b1, βb1|b′1}
{bn+1b

′
n+1|c1, b′n+1c1|d1}

cmcm+1|γ

It is important to remember that all these connections are 1-2-hyperarcs. Sometimes
both heads will be nodes within variable and clause gadgets, but in most cases one of the
two heads will be a sink node whose only role is to permit the hyperarc to conform to the
required structure.

4 The Proof

Clearly Inconsistent Rooted Triple Set Entailment is in NP: if we guess the subset
R′ ⊂ R, then we can verify both that R′ is consistent and that R′ ` t by executing Aho et
al. [1]’s polynomial-time BUILD algorithm on R′ [6]. Min Acyclic B-Hyperpath in a
1-2-Hypergraph is as well: guess the path, and check that it is acyclic.

Now we prove hardness, arguing that R contains a consistent subset entailing αβ|γ iff H
contains an acyclic path P from αβ to cm+1γ iff F admits a satisfying assignment v(·), in
two steps. Due to lack of space, the proofs are deferred to the full version.

4.1 Acyclic Path ⇔ Satisfying Truth Assignment
First we argue that acyclic paths correspond to satisfying truth assignments.

I Lemma 14. There is an an acyclic path P from αβ to cm+1γ iff F admits a satisfying
truth assignment v(·).

Thus we have proven:

I Theorem 15. Acyclic B-Hyperpath Existence in a 1-2-Hypergraph is NP-Complete.

Since an infeasible solution is defined to have infinite cost, an algorithm with any
approximation factor would allow us to distinguish between positive and negative problem
instances, which immediately implies:

I Corollary 16. Approximating Min Acyclic B-Hyperpath in a 1-2-Hypergraph to
within any factor is NP-hard.

Even if we restrict ourselves to problem instances admitting feasible solutions, this
“promise problem” [8] special case is hard to approximate within any reasonable factor.

I Corollary 17. Min Acyclic B-Hyperpath in a B-Connected 1-2-Hypergraph is
NP-hard to approximate to within factor |V |1−ε for all ε > 0.



M.P. Johnson 12:11

Second, to extend the reduction to Inconsistent Rooted Triple Set Entailment,
we argue that H is a faithful representation of R in the sense that acyclic paths from αβ to
cm+1γ (or acyclic supersets of such paths) correspond to consistent subsets entailing αβ|γ,
and vice versa.

4.2 Consistent Entailing Subset ⇐ Acyclic Path
We prove this direction via two lemmas, proving that the set of triples corresponding to an
acyclic path are consistent and entail αβ|γ, respectively.

I Lemma 18. If there is an acyclic path P ⊆ A from αβ to cm+1γ, then R′ = triples(P ) is
consistent.

I Lemma 19. If there is an acyclic path P ⊆ A from αβ to cm+1γ, then R′ = triples(P )
entails αβ|γ.

Thus we have:

I Corollary 20 (⇐). If there is an acyclic path P ⊆ A from αβ to cm+1γ, then R′ = triples(P )
is consistent and entails αβ|γ.

4.3 Consistent Entailing Subset ⇒ Acyclic Path
Now we argue for the reverse direction, proving through a series of lemmas that if there is
no acyclic αβ−cm+1γ path, then there will be no consistent triple subset entailed αβ|γ.

I Lemma 21. Let A′ ⊆ A. Suppose there exists a cyclic path P ⊆ A′ from αβ to cm+1γ.
Then R′ = triples(A′) is inconsistent.

Most of the remainder of this subsection will be dedicated to showing constructively that
if A′ contains no path from αβ to cm+1γ at all, cyclic or otherwise, then R′ does not entail
αβ|γ. We do so by showing that in the case of such a (consistent) R′, there exist trees
displaying R′ ∪ {αβ|γ}. Therefore assume w.l.o.g. that R′ is consistent and maximal in the
sense that adding any other triple of R to it would either make R′ inconsistent or would
introduce an αβ−cm+1γ path in A′ = arcs(R′).

Observe that the missing arcs A× = A−A′ can be thought of as the (source side to sink
side) cross arcs of a cut separating source αβ and sink cm+1γ. In the following argument we
will refer to hypergraph Hγ = (V ∪ {γα}, A′ ∪ arc(γα|β)) and its corresponding Ahograph
Gγ .

Recalling the construction of H, there are three types of places where the absent cross-arcs
A× could be located: within a clause gadget, within a variable gadget, or elsewhere, i.e.,
forced arcs (viz., connecting arcs a1, ..., a4 or arcs with tail of the form cjcj+1 following a
clause Cj ’s gadget). There is one special subcase, which we give a name to.

I Definition 22. We call A× degenerate if A× lies within a variable xi’s gadget, |A×| = 2,
and exactly one of its members has the form arc(bib′i|x̃1

i ). (Its other member must by
definition lie within the xi gadget’s opposite side.)

We deal with all cases besides an degenerate A× in the following lemma.

I Lemma 23. Let R′ be consistent. Suppose there is no path P ⊆ A′ from αβ to cm+1γ,
and that A× is non-degenerate. Then R′ does not entail αβ|γ.

ISAAC 2018



12:12 Deciding the Closure of Inconsistent Rooted Triples Is NP-Complete

The problematic situation is when exactly one of the two arcs is outgoing from bib
′
i. In

this case, their absence deletes only one of the Ahograph’s two A-edges between the pair
{bi, b′i}, which does not disconnect the graph, meaning BUILD will fail.

We have been arguing that if a consistent R′ entails αβ|γ then arcs(R′) must contain an
acyclic path from αβ to cm+1γ. Now we refine this to a slightly weaker (yet strong enough)
implication: if a consistent R′ entails αβ|γ, then a slightly different consistent R+ will too,
and an acyclic path must exist within arcs(R+).

This implies:

I Corollary 24 (⇒). If there is a consistent R′ entailing αβ|γ then there exists an acyclic
path P .

Combining the Corollary 20 and 24 with Theorem 15, we conclude:

I Theorem 25. Inconsistent Rooted Triple Set Entailment is NP-Complete.

And because computing the closure reduces to deciding whether R ` t for O(|L|3) triples
t, we also have:

I Corollary 26. Inconsistent Rooted Triple Set Closure is NP-hard.

References
1 Alfred V. Aho, Yehoshua Sagiv, Thomas G. Szymanski, and Jeffrey D. Ullman. Inferring

a tree from lowest common ancestors with an application to the optimization of relational
expressions. SIAM Journal on Computing, 10(3):405–421, 1981.

2 Giorgio Ausiello, Roberto Giaccio, Giuseppe F Italiano, and Umberto Nanni. Optimal
traversal of directed hypergraphs. Technical Report TR-92-073, International Computer
Science Institute, Berkeley, CA, September 1992.

3 Jørgen Bang-Jensen, Frédéric Havet, and Nicolas Trotignon. Finding an induced subdivi-
sion of a digraph. Theoretical Computer Science, 443:10–24, 2012.

4 Dan Bienstock. On the complexity of testing for odd holes and induced odd paths. Discrete
Mathematics, 90(1):85–92, 1991.

5 David Bryant. Building Trees, Hunting for Trees, and Comparing Trees: Theory and
Methods in Phylogenetic Analysis. PhD thesis, University of Canterbury, 1997.

6 David Bryant and Mike Steel. Extension operations on sets of leaf-labeled trees. Advances
in Applied Mathematics, 16(4):425–453, 1995.

7 Giorgio Gallo, Giustino Longo, Stefano Pallottino, and Sang Nguyen. Directed hypergraphs
and applications. Discrete Applied Mathematics, 42(2-3):177–201, 1993.

8 Oded Goldreich. On promise problems: A survey. In Theoretical Computer Science: Essays
in Memory of Shimon Even, pages 254–290. Springer, 2006.

9 Daniel Huson, Vincent Moulton, and Mike Steel. Final Report for the ‘Phylogenetics’
Programme. Technical report, Isaac Newton Institute for Mathematical Sciences, February
2008.

10 Lars Relund Nielsen, Daniele Pretolani, and K Andersen. A remark on the definition of a
B-hyperpath. Technical report, Department of Operations Research, University of Aarhus,
2001.

11 Anna Ritz, Brendan Avent, and T Murali. Pathway analysis with signaling hypergraphs.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 14(5):1042–1055,
September 2017.

12 Charles Semple and Mike Steel. Phylogenetics, volume 24 of Oxford Lecture Series in
Mathematics and Its Applications. Oxford University Press, 2003.



M.P. Johnson 12:13

13 Mike Steel. Phylogenetics: Challenges and Conjectures, updated in July
2018. URL: http://www.math.canterbury.ac.nz/~m.steel/Non_UC/files/research/
conjectures_updated.pdf.

14 Mayur Thakur and Rahul Tripathi. Linear connectivity problems in directed hypergraphs.
Theoretical Computer Science, 410(27-29):2592–2618, 2009.

ISAAC 2018

http://www.math.canterbury.ac.nz/~m.steel/Non_UC/files/research/conjectures_updated.pdf
http://www.math.canterbury.ac.nz/~m.steel/Non_UC/files/research/conjectures_updated.pdf

	Introduction
	Preliminaries
	Rooted Triples
	Directed Hypergraphs

	The Construction
	High-level Strategy
	Identifying Rooted Triples and 1-2-Hyperarcs
	Defining L and R

	The Proof
	Acyclic Path  <=> Satisfying Truth Assignment
	Consistent Entailing Subset <== Acyclic Path
	Consistent Entailing Subset ==> Acyclic Path


