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Abstract
Suppose Alice and Bob are communicating in order to compute some function f , but instead of
a classical communication channel they have a pair of walkie-talkie devices. They can use some
classical communication protocol for f where in each round one player sends a bit and the other
one receives it. The question is whether talking via walkie-talkie gives them more power? Using
walkie-talkies instead of a classical communication channel allows players two extra possibilities:
to speak simultaneously (but in this case they do not hear each other) and to listen at the
same time (but in this case they do not transfer any bits). The motivation for this kind of a
communication model comes from the study of the KRW conjecture. We show that for some
definitions this non-classical communication model is, in fact, more powerful than the classical
one as it allows to compute some functions in a smaller number of rounds. We also prove lower
bounds for these models using both combinatorial and information theoretic methods.

2012 ACM Subject Classification Theory of computation → Communication complexity

Keywords and phrases communication complexity, half-duplex channel, information theory

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2018.10

Related Version A full version of the paper is available at [6], https://eccc.weizmann.ac.il/
report/2018/089.

Acknowledgements We want to thank the anonymous reviewers whose careful reading and com-
ments helped us to improve the paper.

1 Introduction

In the classical communication complexity model introduced by Yao [11] two players, Alice
and Bob, are trying to compute f(x, y), for some function f , where Alice knows only x and
Bob knows only y. Alice and Bob can communicate by sending bits to each other, one bit per
round. The essential property of this classical model is that in every round of communication
one player sends some bit and the other one receives it.
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10:2 Half-Duplex Communication Complexity

We define three new communication models that generalize the classical one and resemble
communication over so-called half-duplex channels. A well-known example of half-duplex
communication is talking via walkie-talkie: one has to hold a “push-to-talk” button to
speak to another person, and one has to release it to listen. If two persons try to speak
simultaneously then they do not hear each other. We consider communication models where
players are allowed to speak simultaneously. Every round each player chooses one of three
actions: send 0, send 1, or receive. There are three different types of rounds. If one player
sends some bit and the other one receives then communication works like in the classical case,
we call such rounds normal. If both players send bits during the round then these bits get
lost (the same happens if two persons try to speak via walkie-talkie simultaneously), we call
these rounds spent. If both players receive, we call these rounds silent. We distinguish three
possible models, based on what happens in silent rounds. If in silent rounds both players
receive 0, i.e., players cannot distinguish a silent round from a normal round where the other
player sends 0, we call this model half-duplex communication with zero. A somewhat similar
model was studied in [3] for multi-party communication with the noisy broadcast channel.
Two other models, we will define later.

In this paper, we study the communication complexity of Boolean functions that are hard
in the classical case. It is important to note that we care about multiplicative constants.
Every classical communication can be viewed as half-duplex communication with zero and
every half-duplex communication with zero can be simulated with classical communication
doubling the number of rounds (see Theorem 6 and 7). So the complexity of half-duplex
communication is sandwiched between the complexity of the classical case and a half of it.
The task of this study is to improve these bounds.

1.1 Motivation
The original motivation to study these kinds of communication models arose from the
question of the complexity of Karchmer-Wigderson games [8] for multiplexers. The Karchmer-
Wigderson game for a function f : {0, 1}n → {0, 1} (KW game) is a (classical) communication
problem where Alice is given x ∈ f−1(0), Bob is given y ∈ f−1(1), and they want to find an
i ∈ [n] such that xi 6= yi. Let D(KW (f)) be a minimal number of rounds that is enough to
the KW game for f on any pair of possible inputs.

I Conjecture 1 (KRW conjecture [7]). Let f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1} be
Boolean non-constant functions. Then D(KW (g ◦ f)) ≈ D(KW (g)) +D(KW (f)), where
g ◦ f denotes a composition g ◦ f : ({0, 1}n)m → {0, 1} is defined by (g ◦ f)(x1, . . . , xm) =
g(f(x1), . . . , f(xm)) where x1, . . . , xn ∈ {0, 1}m.

This conjecture implies a super-logarithmic formula depth lower bound (and hence a super-
polynomial size lower bound): we can start with a maximally hard function on logn
variables that requires logn depth and construct a formula on n variables that requires super-
logarithmic depth. In attempt to prove it a lot of work has been done studying KW games
where one or both functions are replaced with universal relations [5, 2, 4]. Another approach
to resolving the conjecture lies in examining multiplexer functions. A multiplexer (or indexing
function) is a function Mn : {0, 1}2n × {0, 1}n → {0, 1}, such that Mn(t, i) = t[i], i.e., Mn

interprets the first part of its input as the truth table of some function f : {0, 1}n → {0, 1}
and the second part as an input x to the function, and outputs f(x). Multiplexers are similar
to universal relations in the sense that there is a natural reduction from a KW game for
some function f : {0, 1}n → {0, 1} to a KW game for multiplexer Mn: if Alice and Bob are
given x and y in the game for f we give them (tt(f), x) and (tt(f), y), respectively, in the
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game for Mn, where tt(f) is a truth table of function f . On the other hand, multiplexers
are functions, not relations, so proving analogous results for multiplexers would be one step
toward proving the KRW conjecture. Unfortunately, all the techniques that were used for
universal relations cannot be applied directly to multiplexers because it is impossible to
give Alice and Bob the same input string; all these techniques exploited the symmetry of
universal relations that allows giving players the same input string, but this is impossible for
functions because inputs of Alice and Bob come from disjoint sets.

Suppose now that Alice and Bob are solving the KW game for multiplexer Mn: Alice
is given (tt(f), x), x ∈ f−1(0), and Bob is given (tt(g), y), y ∈ g−1(1). If the players are
also given a promise that f = g (note that f and g are parts players inputs, so Alice and
Bob plays KW game for Mn on a subset of inputs) then they can use a protocol for KW
game for f . However, what if they do not have such a promise (i.e., all inputs are possible,
in particular, such that f 6= g)? Alice can still try to act as if she plays KW game for f ,
Bob at the same time can try to act as if he plays KW game for g, but if in fact f 6= g

then in some round of this “mixed” protocol they might both want to send or both want
to receive at the same time. Such protocol “mixing” is impossible in the classical model.
To make it possible we extend the communication model by allowing players to speak or
listen simultaneously. How does it affect the communication complexity? When answering
this question we care about multiplicative constants – if in this model all (hard) functions
become two times easier than in the classical case then this model is useless for proving the
KRW conjecture. As a first step toward answering this question, we study the half-duplex
communication complexity of Boolean functions {0, 1}n × {0, 1}n → {0, 1}.

1.2 Organization of this paper
In Section 2, we give definitions for the new communication models. Then, in Section 3, we
prove trivial upper and lower bounds that follow immediately from the definitions. Next,
in Section 4, we discuss methods for proving communication complexity lower bounds. In
Sections 5, 6 and 7, we present our main results, upper and lower bounds for proposed
communication models. Finally, in Section 8, we state several open questions.

2 Definitions

I Definition 1. Let X, Y , and Z be some finite sets. We say that two players, Alice and
Bob, are solving the half-duplex communication problem for a relation R ⊆ X × Y × Z if
sets X, Y , Z, and the relation R are known by both players, Alice is given some x ∈ X,
Bob is given some y ∈ Y , and players want to find some z ∈ Z such that (x, y, z) ∈ R, by
communicating to each other via a half-duplex channel. The communication is organized into
rounds. At each round, both players decide (depending only on their inputs and previous
communication) to do one of three available actions: send 0, send 1 or receive. If one player
sends some bit b ∈ {0, 1} and the other one receives then the latter gets bit b, we call such
rounds normal. If both players send bits at the same time then these bits get lost, we call
such rounds spent (it is crucial that the player that is sending cannot distinguish whether
this round is normal or spent). If both players receive at the same time, we call such rounds
silent. There are three variants of half-duplex communication problem depending on how
silent rounds work.

In a silent round both players receive a special symbol silence, so it is possible for both
players to distinguish a silent round from a normal one, the corresponding problem is
called half-duplex communication problem with silence.

ISAAC 2018



10:4 Half-Duplex Communication Complexity

In a silent round both players receive 0, i.e., players cannot distinguish a silent round
from a normal round where the other player sends 0, the corresponding problem is called
half-duplex communication problem with zero;
In a silent round each player receives some arbitrary bit, not necessarily the same as the
other player; the corresponding problem is called half-duplex communication problem with
adversary.

We say that half-duplex communication problem for R is solved if at the end of communication
both players know some z, such that (x, y, z) ∈ R.

Next, we define a notion of communication protocol. In the classical case, a protocol is
a binary rooted tree that describes communication of players on all possible inputs: every
internal node corresponds to a state of communication and defines which of players is sending
this round. Unlike the classical case in half-duplex communication player does not always
know what the other’s player action was – the information about it can be “lost,” i.e., in
spent rounds player do not know what the other player’s action was. It means that a player
might not know what node of the protocol corresponds to the current state of communication.
Note also that solving half-duplex communication problem with zero there is no need to send
zeros – player can receive instead and the other player will not notice the difference. Keeping
all this in mind, we give the following definition of half-duplex protocol.

I Definition 2. Half-duplex communication protocol with silence that solves a relation
R ⊂ X × Y × Z is a pair (TA, TB) of rooted trees that describe how Alice and Bob
communicate on all possible inputs (x, y) ∈ X × Y . Every node of TA corresponds
to a state of Alice, every node of TB to a state of Bob. Every leaf l is labeled with
zl ∈ Z. Let A = {send(0), send(1), receive} be the set of possible actions, and E =
{send(0), send(1), receive(0), receive(1), silence} be the set of all possible events. Ev-
ery node v of TA and (of TB) is labeled with two functions gv : X → A (gv : Y → A) and
hv : E → C(v), where C(v) is a set of child nodes of v. Root nodes of TA and TB correspond,
respectively, to the initial states of Alice and Bob. If Alice (Bob) is in a state that corresponds
to node v ∈ TA (v ∈ TB), then she does action gv(x) (he does action gv(y)). Events of both
players are defined in a natural way by their actions in this round. The next node of the
protocol is defined by the function h. When players reach a leaf they stop (they always
reach a leaf simultaneously). The protocol is correct if for every input pair (x, y) ∈ X × Y
communication ends in a pair of leaves labeled with the same z ∈ Z such that (x, y, z) ∈ R.

Half-duplex communication protocol with zero is defined in the same way with a different set
of possible events E = {send(1), receive(0), receive(1)}, i.e it does not include send(0).

Half-duplex communication protocol with adversary that solves a relation R ⊂ X × Y ×Z
is a pair (TA, TB) of rooted trees that describe how Alice and Bob communicate on all
possible inputs (x, y) ∈ X × Y and for any strategy of adversary w ∈ {0, 1}∗. The structure
of the protocol is the same as in half-duplex communication protocol with zero, but with
E = {send(0), send(1), receive(0), receive(1)}. If both players decide to receive in
round i, then Alice and Bob receive bits w2i−1 and w2i respectively. The protocol is correct if
for every input pair (x, y) ∈ X×Y and any strategy of adversary w ∈ {0, 1}∗ communication
ends in two leaves labeled with the same z ∈ Z such that (x, y, z) ∈ R.

For each of these models, a partial transcript after k rounds is a pair (πa, πb) of length-k
sequences over E that lists the events observed by Alice and Bob, respectively, after running
some protocol on a pair of inputs for k rounds.

The cardinality of set E upper bounds arity of trees TA and TB: arity is 5 for half-duplex
communication with silence, 3 for half-duplex communication with zero, and 4 for half-duplex
communication with the adversary.
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I Definition 3. Half-duplex communication protocol solves a communication problem for
function f : X × Y → Z if it solves a relation R(f) = {(x, y, f(x, y)) | x ∈ X, y ∈ Y }.

The classical communication complexity of a communication problem for function f ,
D(f), is defined in terms of the minimal depth of a protocol solving it. Analogously, we
define communication complexity for half-duplex communication problems.

I Definition 4. The minimal depth of a communication protocol solving half-duplex com-
munication problem for function f with silence, with zero, with adversary, defines half-duplex
communication complexity of function f with silence, denoted Dhd

s (f), with zero, denoted
Dhd

0 (f), with adversary, denoted Dhd
a (f), respectively. Analogously, we define half-duplex

communication complexity of relation R with silence, Dhd
s (R), with zero, Dhd

0 (R), and with
adversary, Dhd

a (R).

In this paper we study half-duplex communication complexity for a special case of Boolean
functions {0, 1}n × {0, 1}n → {0, 1} (i.e., X = Y = {0, 1}n, Z = {0, 1}).

I Definition 5.
Equality function EQn : {0, 1}n × {0, 1}n → {0, 1}, such that EQn(x, y) = 1 ⇐⇒ x = y.
Inner product function IPn : {0, 1}n×{0, 1}n → {0, 1}, such that IPn(x, y) =

⊕
i∈[n] xiyi.

Disjointness function DISJn : {0, 1}n × {0, 1}n → {0, 1}, such that DISJn(x, y) = 1 ⇐⇒
∀i : xi 6= 1 ∨ yi 6= 1.

All these function require n bits of communication in the classical model.

3 Trivial bounds

As far as half-duplex communication generalizes classical communication the following upper
bound is immediate.

I Theorem 6. For every function f : {0, 1}n × {0, 1}n → {0, 1}, Dhd
s (f) ≤ Dhd

0 (f) ≤
Dhd
a (f) ≤ D(f).

Proof. Every classical communication protocol can be embedded in half-duplex communica-
tion protocol that does not use spent and silent rounds. J

Next theorem shows that one can always transform half-duplex protocol with zero or
with the adversary into a classical communication protocol of double depth.

I Theorem 7. For every function f : {0, 1}n × {0, 1}n → {0, 1}, D(f)
2 ≤ Dhd

0 (f) ≤ Dhd
a (f).

Proof. Every t-round half-duplex communication protocol with zero or with the adversary
can be transformed into 2t-round classical communication protocol. Every round of the
original protocol corresponds to two consecutive rounds of the new one: on the first round
Alice sends a bit she was sending in the original protocol or sends 0 if she was receiving, at
second round Bob does the same thing. J

As we will see later, half-duplex protocols with silence can use silent rounds as an
additional third symbol and hence not every t-round half-duplex protocol with silence can be
embedded in 2t classical protocol. The following theorem shows that instead, we can embed
every such protocol in a classical protocol with 3t rounds.

I Theorem 8. For every function f : {0, 1}n × {0, 1}n → {0, 1}, Dhd
s (f) ≥ D(f)

3 .

ISAAC 2018



10:6 Half-Duplex Communication Complexity

Proof. Every t-round half-duplex communication protocol with silence can be transformed
into 3t-round classical communication protocol. Every round of the original protocol cor-
responds to three consecutive rounds of the new one: on the first round, Alice sends 1 to
indicate if she was sending a bit in the original protocol, or sends 0 otherwise, at second round
Bob does the same thing symmetrically. After that, they are both aware of the intentions of
each other. If they were both planning to send, they could skip the third round. If they were
both planning to receive, then they can assume that they heard silence. If one player was
planning to send and the other one was planning to receive they can perform such action on
the third round. J

I Remark. Theorems 6, 7, and 8 holds also for f : {0, 1}n × {0, 1}n → {0, 1}k.

4 Methods for lower bounds

4.1 Rectangles
Many lower bounds on classical communication complexity were proved by considering
combinatorial rectangles associated with the nodes of communication protocol [10]: it is easy
to see that every node v of the (classical) protocol corresponds to a combinatorial rectangle
Rv = Xv × Yv, where Xv ⊆ X, Yv ⊆ Y , such that if Alice and Bob are given an input from
Rv then their communication will necessarily pass through node v. This implies that the
rectangles associated with the child nodes of v define a subdivision of Rv.

There is a general technique [10] for proving lower bounds using associated combinational
rectangles in: if for some sub-additive measure µ defined on combinatorial rectangles we
show both a lower bound on the measure of X × Y , the rectangle in the root node, i.e.,
µ(X × Y ) ≥ µr for some µr > 0, and an upper bound on the measure of rectangles in leaves,
i.e., for every leaf l the measure of the corresponding rectangle Rl is at most µ` for some
µ` > 0, then we can claim lower bound of log(µr/µ`) on the depth of the protocol.

One of the most studied sub-additive measure on rectangles is µM (R) that is equal to the
minimal number of monochromatic rectangles that covers R. Rectangle R is z-monochromatic
respect to function f for some z ∈ Z if for all (x, y) ∈ R, f(x, y) = z. As far as both players
have to come up with the same answer at the end of communication every rectangle in leaves
is monochromatic, thus for this measure µ` = 1.

We can use almost the same technique for half-duplex protocols. There are some technical
differences that we have to keep in mind. First of all, we can apply this idea to both trees TA
and TB . We should also note that trees TA and TB are non-binary; hence arity became the
base of the logarithm. Secondly, we should be careful while defining associated combinatorial
rectangles for half-duplex protocols with adversary – in case of silent rounds the next node
of the protocol depends also on a strategy w of adversary, so we have to formally consider w
as a part of input. This leads to the following lower bound for equality.

I Theorem 9.
Dhd
s (EQn) ≥ log5 2n = n/ log 5,

Dhd
0 (EQn) ≥ log3 2n = n/ log 3,

Dhd
a (EQn) ≥ log4 2n = n/2.

Proof. Let µ = µM . All leaf rectangles are monochromatic, µ` = 1. Every 1-monochromatic
rectangle is of size one: if some rectangle contains two elements, say (x, x) and (x′, x′), then
it also contains (x, x′) and (x′, x), so it is not 1-monochromatic. Thus, the root rectangle
has measure at least µr = 2n + 1 (see [10] for more information). J
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Surprisingly, as we will see later, first two result are sharp up to additive logarithmic term.
We developed an extension of this technique that we call round elimination.

4.2 Round elimination
Let us fix a protocol for some half-duplex communication problem and consider the first
round. Let Rc = X × Y be the corresponding rectangle of all possible inputs. We can
subdivide Rc in nine rectangles, one for each possible combination of actions.

Alice\Bob send(0) send(1) receive
send(0) R00 R01 R0r

send(1) R10 R11 R1r

receive Rr0 Rr1 Rrr

Consider two rectangles: Rgood = R00 ∪R01 ∪R0r and Rbad = R0r ∪R1r. If we restrict f to
be a partial function defined only on Rgood, i.e., players will always get some (x, y) ∈ Rgood,
then there is no need in the first round – the information the players get about the other
part of the input is fixed: Alice does not get any information, Bob can receive 0 if he decides
to receive. On the other hand if we restrict f to Rbad then the first round is still needed:
Bob can receive both 0 and 1 and this information in necessary to proceed to the next round.
Lets call a rectangle R good for (partial) function f if restricting f to R makes the first round
unnecessary (i.e., protocol without the first round is correct for all (x, y) ∈ R). The idea
of this method is to consider some covering of Rc with a set of good rectangles and prove
that there is always a good rectangle of large enough measure. If we can show that there is
always a rectangle of measure at least α · µ(Rc) then we can iterate this idea and claim that
protocol depth is at least log1/α(µr/µ`), where µr is a lower bound on the measure of the
root rectangle and µ` is an upper bound on the measure of leaf rectangles.

I Lemma 10. Let µ be some sub-additive measure on rectangles such that µ(X × Y ) ≥ µr
and for any leaf rectangle Rl, µ(Rl) ≤ µ`. Fix a protocol P. If for any rectangle R appearing
in the protocol there is a good subrectangle for function f � R of measure at least α · µ(R)
then the depth of the protocol is at least log1/α

µr

µ`
.

Proof. We start with R = X × Y . Every round we show that f � R can be restricted to
some good Rgood ⊂ R such that µ(Rgood) ≥ α · µ(R), let R to be Rgood, and proceed to the
next round until we reach a leaf. Thus there are at least log1/α(µr/µ`) rounds. J

4.3 Upper bound on internal information
Another useful tool for proving lower bounds on the communication complexity of problems
in the classical model is the upper bound on the information Alice and Bob have learned
about the other’s inputs, as a function of the number of rounds.

I Definition 11. Let f be a partial function and P a half-duplex communication protocol
computing f , and D an arbitrary distribution over the domain of f . Let X , and Y be the
marginal distributions over inputs to Alice and Bob, also, let ΠA and ΠB be the marginal
distributions over Alice and Bob’s transcripts induced by D. An internal information
cost of protocol P is ICD(P) = I(X : ΠB | Y) + I(Y : ΠA | X ). For any k let Πk

A and
Πk
B be the marginal distributions over Alice and Bob’s partial transcripts after running
P for k rounds induced by D. An internal information cost of first k rounds of P is
ICkD(P) = I(X : Πk

B | Y) + I(Y : Πk
A | X ).

ISAAC 2018



10:8 Half-Duplex Communication Complexity

For more information on information theory, we refer to [1, 4]. We use this approach to
prove lower bounds on the inner product using the following Lemma.

I Lemma 12. Let D be uniform distribution over all input pairs of IPn (pairs of n-bit
strings). If any half-duplex communication protocol with silence/zero/adversary P computing
IPn and for every k, ICkD(P) ≤ αk, for some α ≥ 1, then half-duplex complexity of IPn with
silence/zero/adversary is at least n/α.

To prove this Lemma we use the following property of IPn.

I Lemma 13. Every leaf rectangle of a protocol for IPn has size at most 2n.

Proof of Lemma 12. For uniform distribution over all input pairs H(X | Y) +H(Y | X ) =
2n. By Lemma 13 each leaf of any correct protocol contains at most 2n input pairs in its
rectangle, thus H(X | Y,ΠB) +H(Y | X ,ΠA) ≤ n. If IPn has a protocol of depth k then

αk ≥ I(X : Πk
B | Y) + I(Y : Πk

A | X )
= H(X | Y)−H(X | Y,Πk

B) +H(Y | X )−H(Y | X ,Πk
A) ≥ n. J

5 Half-duplex communication with silence

The main advantage of this model over the other models we consider is that whenever
players have silent round, they learn about it. In some sense they have a third symbol in the
alphabet – receiving player can get either 0/1 or a special symbol corresponding to “silence”.
Next theorem shows how players can take the advantage of silence to transfer data.

I Theorem 14. For every f : {0, 1}n × {0, 1}n → {0, 1}, Dhd
s (f) ≤ dn/ log 3e+ 1.

Proof. Alice encodes x in ternary alphabet {0, 1, 2} and sends it to Bob: in order to send 0
or 1 Alice sends the corresponding bit, sending 2 is emulated by receiving (keeping silence).
This requires dlog3 2ne = dn/ log 3e bits. At the last round Bob computes f(x, y) and sends
the result back to Alice. J

Using the idea of non-binary encoding, we prove a better upper bound for equality.

I Theorem 15. Dhd
s (EQn) ≤ dn/ log 5e+ dlogn/ log 3e+ 2.

Proof. Alice and Bob encode their inputs in alphabet of size five {0, 1, 2, 3, 4}. Then they
process their inputs symbol by symbol sequentially in dn/ log 5e rounds. At round i they
process ith symbol in the following manner.

Symbol Alice Bob
0 send(0) receive
1 send(1) receive
2 receive send(0)
3 receive send(1)
4 receive receive

If ith round is normal then one player can check whether ith symbols are different. If ith
round is silent then again one player knows if ith symbols are different. If after dn/ log 5e
rounds one of the players has already learned that the answer is 0, then he or she sends 0. If
this round is not silent, then both players know that the answer is 0. Otherwise, Alice and
Bob have to make sure that there were no spent rounds. To check it, Alice sends the number
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of normal rounds she was receiving encoded in ternary, that requires dlogn/ log 3e rounds.
Bob checks whether this number is equal to the number of rounds he was sending in. If so,
inputs are equal. In the last round, Bob sends the answer back to Alice. J

Using almost the same ideas we can show an upper bound for disjointness.

I Theorem 16. Dhd
s (DISJn) ≤ dn/2e+ 2.

Proof. Alice and Bob process their inputs two bits per round, dn/ log 2e rounds. At round i
they process symbols 2i− 1 and 2i in the following manner.

Symbols Alice Bob
00 send(0) receive
01 receive send(0)
10 receive send(1)
11 receive receive

At the end of communication Bob tells Alice whether there was a silent round in which Bob’s
input was 11 (i.e., inputs are not disjoint). Alice tells Bob whether she ever received 0 having
01 or 11, or received 1 having 10 or 11 (again, inputs are not disjoint). J

To prove lower bounds one can use round elimination and get the following lower bound
for the inner product (see full version [6] for the proof).

I Theorem 17. Dhd
s (IPn) ≥ n/2.

This lower bound can be improved using upper bound on internal information.

I Theorem 18. Dhd
s (IPn) ≥ n/1.67.

Proof. To apply Lemma 12 it is enough to show that I(X : Πk
B | Y) + I(Y : Πk

A | X ) ≤ αk,
where α ≤ 1.67. We will induct on k: the number of rounds. For k = 0, there is only one
possible partial transcript for either player, the empty transcript, and thus the result is
immediate. Now suppose that this is true in round k. Let Ek+1

A and Ek+1
B be the marginal

distributions over which event each player will observe. Note that

I(X : Πk+1
B | Y) = I(X : Πk

B , Ek+1
B | Y) = I(X : Πk

B | Y) + I(X : Ek+1
B | Y,Πk

B).

Thus, it suffices to show that I(X : Ek+1
B | Y,Πk

B) + I(Y : Ek+1
A | X ,Πk

A) ≤ α. Note that

I(X : Ek+1
B | Y,Πk

B) = H(Ek+1
B | Y,Πk

B)−H(Ek+1
B | Y,Πk

B ,X ) = H(Ek+1
B | Y,Πk

B).

The second term here is zero because values of X and Y unambiguously determine the entire
protocol. So it is enough to bound H(Ek+1

B | Y,Πk
B) = Ey,π[H(Ek+1

B | Y = y,Πk
B = π)].

Let Ak+1
A and Ak+1

B be the marginal distributions over players actions in round k+1. Note
that Ak+1

B is a function of y and π. If for some pair (y, π) Bob sends, i.e. Ak+1
B = send(0)

or Ak+1
B = send(1), then H(Ek+1

B | Y = y,Πk
B = π) = 0. For the sake of brevity we denote

Ey,π an event “Y = y,Πk
B = π” and r an action receive ∈ A.

H(Ek+1
B | Y,Πk

B) = Pr[Ak+1
B = r] ·H(Ek+1

B | Y,Πk
B ,Ak+1

B = r).

Notice that player’s action choices are independent, hence

H(Ek+1
B | Y,Πk

B ,Ak+1
B = r) = H(Ak+1

A | Y,Πk
B) ≤ H(Ak+1

A ).
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10:10 Half-Duplex Communication Complexity

This gives us the following bound.

H(Ek+1
B | Y,Πk

B) ≤ Pr[Ak+1
B = r] ·H(Ak+1

A ).

The same argument works for I(Y : Πk
A | X ) and hence we get,

I(X : Πk
B | Y) + I(Y : Πk

A | X ) ≤ Pr[Ak+1
B = r] ·H(Ak+1

A = a)
+ Pr[Ak+1

A = r] ·H(Ak+1
B = a).

Now let’s denote a0 and a1 to be the fractions of inputs for which Alice sends 0 or 1,
respectively, and symmetrically b0 and b1 to be the fractions of inputs for which Bob sends 0
or 1, respectively. The right hand side of the above inequality can be rewritten as follows.

(1− b0 − b1) ·
(
a0 · log 1

a0
+ a1 · log 1

a1
+ (1− a0 − a1) · log 1

(1− a0 − a1)

)

+ (1− a0 − a1) ·
(
b0 · log 1

b0
+ b1 · log 1

b1
+ (1− b0 − b1) · log 1

(1− b0 − b1)

)
.

Numerical analysis of this expression shows that it’s maximum is less then 1.67 (for a0 =
a1 = b0 = b1 ≈ 0.17), hence I(X : Πk

B | Y) + I(Y : Πk
A | X ) ≤ 1.67. J

6 Half-duplex communication with zero

As we have already mentioned before there are only two reasonable actions in this model:
send 1 or receive. The following theorem shows that half-duplex communication with zero is
more powerful than classical communication; namely, it is possible to compute equality in
less than n rounds of communication.

I Theorem 19. Dhd
0 (EQn) ≤ dn/ log 3e+ 2dlogne+ 1.

Proof. Alice and Bob encode their inputs in ternary. In the first phase of the protocol, they
process their inputs sequentially symbol by symbol in dn/ log 3e rounds. At round i they
process ith symbol in the following manner.

Symbol Alice Bob
0 receive receive
1 send(1) receive
2 receive send(1)

In the next 2dlogne they send each other the number of ones they sent in the first phase.
Depending on values of corresponding inputs, i.e., xi and yi, we distinguish 6 types of
witnesses of inequality: (0, 1), (1, 0), (0, 2), (2, 0), (1, 2), (2, 1). If we make sure that each
type can be detected by at least one of the players we are done. In the first phase, Alice can
detect types (0, 2), (2, 0), (2, 1), while Bob can detect types (1, 0), (0, 1), and (2, 1) (again).
This leaves us with detecting witnesses of type (1, 2). Assuming that there are no witnesses
of other types, this will be detected in the second phase. J

The best lower bound for this model is again for IPn. The next theorem is proved using
round elimination (see full version [6] for the proof).

I Theorem 20. Dhd
0 (IPn) ≥ n/ log 2

3−
√

5 > n/1.39.
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The better lower is proved with information theoretic approach.

I Theorem 21. Dhd
0 (IPn) ≥ n/1.234.

Proof. The proof repeats the proof of Theorem 18. The only difference is that in this model
players never send 0. So at the end we end up maximizing (1− b1) · h(a1) + (1− a1) · h(b1),
where h(p) = p · log 1

p + (1 − p) · log 1
1−p is a binary entropy function. Maximum of this

expression is slightly less then 1.234 (a1 = b1 ≈ 0.29). J

7 Half-duplex communication with adversary

The main feature of this model is that receiving player cannot be 100% sure that the received
bit if in fact is “real”, i.e., this bit originates from the other player, not from an adversary.
The protocol must be correct for any strategy of the adversary. Our intuition prompts that
in this setting silent and spent rounds would be useless. Using combinatorial methods, one
can show the following two lower bounds (see full version [6] for the proof).

I Theorem 22. Dhd
a (EQn) ≥ n/ log 2.5.

I Theorem 23. Dhd
a (IPn) ≥ n/ log 7

3 .

And again better lower bound for IPn can be obtained using information-theoretic approach.

I Theorem 24. Dhd
a (IPn) ≥ n.

To prove this theorem we use the ideas from the proof of Theorem 18: in order to apply
Lemma 12 we show that I(X : Πk

B | Y) + I(Y : Πk
A | X ) ≤ k, and hence we get the desired

bound (see full version [6] for the detailed proof).
Using the same approach we can show 2 logn lower bound on the complexity of Karchmer-

Wigderson relation for parity function.

IDefinition 25. LetX = f−1(0), Y = f−1(1) for some Boolean function f : {0, 1}n → {0, 1}.
The KW relation for function f , Rf ⊆ X × Y × [n], is defined by Rf = {(x, y, i) | xi 6= xi}.

It it well known that parity function ⊕n : {0, 1}n → {0, 1}, ⊕n(x) =
⊕n

i=1 xi, requires
n2 formula size [9]. In the classical case it is equivalent to saying that KW relations for
parity requires 2 logn rounds of communication. In the proof of Theorem 24 we shown that
I(X : Ek+1

B | Y,Πk
B) + I(Y : Ek+1

A | X ,Πk
A) ≤ 1. It allows us to prove the following analogue

of this result.

I Corollary 26. Dhd
a (R⊕n

) ≥ 2 logn.

Proof. Take the uniform distribution over valid input pairs with a single bit of difference.
Then H(Y | X ) +H(X | Y) = 2 logn before any communication takes place. On the other
hand it is easy to see that H(Y | X ,ΠA) +H(X | Y,ΠB) = 0 at any leaf. J

8 Open problems

The following table lists lower and upper bounds that we prove in this paper.

EQ IP DISJ

Dhd
s

≥ n/ log 5 ≥ n/1.67
≤ n/ log 5 + o(n) ≤ n/2 + O(1)

Dhd
0

≥ n/ log 3 ≥ n/1.234
≤ n/ log 3 + o(n)

Dhd
a ≥ n/ log 2.5 ≥ n

ISAAC 2018



10:12 Half-Duplex Communication Complexity

It would be interesting to improve presented bounds to determine the true half-duplex
complexity of these functions. We propose the following list of open problems.
1. Prove better upper and lower bounds for the half-duplex models with silence and zero.
2. Is there any α < 1 such that for any f : {0, 1}n × {0, 1}n → {0, 1}, Dhd

0 (f) ≤ αn+ o(n)?
3. Is there any f : {0, 1}n × {0, 1}n → {0, 1}, such that at the same time D(f) ≥ n− o(n)

and Dhd
a (f) ≤ αn+ o(n) for some α < 1.
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