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Abstract
We present a Monte Carlo algorithm that detects the presence of a Hamiltonian cycle in an
n-vertex undirected bipartite graph of average degree δ ≥ 3 almost surely and with no false
positives, in (2−21−δ)n/2 poly(n) time using only polynomial space. With the exception of cubic
graphs, this is faster than the best previously known algorithms. Our method is a combination
of a variant of Björklund’s 2n/2 poly(n) time Monte Carlo algorithm for Hamiltonicity detection
in bipartite graphs, SICOMP 2014, and a simple fast solution listing algorithm for very sparse
CNF-SAT formulas.
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1 Introduction

Given an n-vertex undirected graph G = (V,E), a Hamiltonian cycle is a vertex permutation
(v1, v2, . . . , vn) such that vivi+1 ∈ E for all i, including also vnv1 ∈ E. The algorithmic
problem of deciding if a graph has a Hamiltonian cycle was one of the first problems
recognised as NP-hard [12]. For general graphs, an O(1.657n) time algorithm is known [1].
A natural question to ask is if one can do better in sparse graphs, since the average number
of entry and exit alternatives for the cycle at a vertex is smaller. Cygan et al. [5] proved
a (2 +

√
2)pw(PG) poly(n) time algorithm that detects a Hamiltonian cycle given a path-

decomposition PG of the graph G of width pw(PG). In sparse graphs of average degree δ,
path-decompositions of width at most δn/11.538 can be found in polynomial time as proved
by Kneis et al. [13]. Hence the combination of these two results gives faster algorithms
for Hamiltonicity in sparse undirected graphs when δ < 4.73. However, the techniques in
both [5] and [13] do not seem to directly give much faster algorithms when we guarantee
that the graph in addition of being sparse is also bipartite. In contrast, there is a much
faster 2n/2 poly(n) ⊂ O(1.415n) time algorithm for general bipartite graphs [1]. In this paper
we propose a method to speed up the latter algorithm to get faster algorithms in sparse
bipartite graphs. Our main result says

I Theorem 1. There is a Monte Carlo algorithm that given an undirected bipartite graph on
n vertices and average degree δ ≥ 3 detects if it has a Hamiltonian cycle in poly(n) space and

(2− 21−δ)n/2 poly(n)

time, without false positives and false negatives with probability at most 2−n.

See Table 1 for some typical running time bases.
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3:2 Exploiting Sparseness for Bipartite Hamiltonicity

Table 1 The base c in the running time bound cn of our algorithm for the first small δ’s.

δ 3 3.25 3.5 3.75 4 4.25 4.5 4.75 5 5.25
c 1.3229 1.3378 1.3503 1.3606 1.3693 1.3765 1.3826 1.3877 1.3919 1.3955

As far as we know, this is the first example of a Hamiltonicity algorithm that operates in
less than 2n/2 time for sparse bipartite graphs, save for the special case of cubic (3-regular)
graphs for which much faster algorithms have been found. However, the techniques used in
these cubic graph algorithms do not scale gracefully with the average degree and already for
4-regular graphs our algorithm is much faster than previous ones. Confer the related work
section below for more discussion of earlier algorithms. We also note that our algorithm can
be modified to compute the parity of the number of Hamiltonian cycles:

I Theorem 2. There is a Las Vegas algorithm that given an undirected bipartite graph on n
vertices and average degree δ ≥ 3 computes the parity of the number of Hamiltonian cycles in
poly(n) space and

(2− 21−δ)n/2 poly(n)

expected time.

The combination of techniques employed by our algorithms is similar to the overall idea
in the algorithm by Björklund and Husfeldt [2] to compute the parity of the number of
Hamiltonian cycles, and subsequently the modular counting algorithm for Hamiltonian cycles
in Björklund et al. [4]. The idea is as follows: We first devise an algebraic fingerprint for
Hamiltonian cycles, i.e., an exponential sum S with variables on the edges of the graph
such that S evaluates to a non-zero value only if the underlying graph has a Hamiltonian
cycle. Furthermore, if it has a Hamiltonian cycle, it evaluates to a non-zero value with large
probability under a random assignment to the variables. Next we show that the exponential
sum S can in fact be randomly chosen from a family of exponential sums, all of which
evaluate to the same value. In a randomly chosen exponential sum in the family only a small
fraction of the exponentially many terms contribute non-zero values in expectation. If we
only knew which those terms were, we could evaluate the exponential sum much faster than
summing over all terms. To this end, we show that listing a small superset of the terms that
evaluate to non-zero values can be done by means of another exponential time algorithm. In
our case here we can encode the interesting terms as solutions to a very sparse CNF-SAT
formula. These solutions can in turn be listed by a branching algorithm in combination with
a perfect matching algorithm. An alternative listing algorithm for the most interesting values
δ ≤ 5.5 can also be done by a dynamic programming algorithm across a path decomposition
of the variable/clause incidence graph of the formula.

1.1 Related Work
Several diverse ideas for Hamiltonicity detection in general and sparse graphs have been
pursued to get improved worst case running time bounds. We give here a brief list of the
results we are aware of.

1.1.1 Dynamic programming across a path decomposition
Cygan et al. [5] prove that one can decide the existence of Hamiltonian cycles in undi-
rected graphs in (2 +

√
2)pw(PG) poly(n) time, where pw(PG) is the path-width of any

path-decomposition PG of G given as input. It relies on dynamic programming across the
path decomposition and hence requires exponential space usage in pw(PG).
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Using the best known bound on the path-width for graphs of average degree δ by Kneis
et al. [13], which says that one can construct a path-decomposition P with pw(PG) ≤ δn

11.538 ,
we get an O(1.0619δn) time bound. This running time is worse than ours for all δ ≥ 3.
However, in graphs of maximum degree three, another algorithm of Cygan et al. [6] can be
accelerated to run in 3pw(G) poly(n) time. It uses the efficient path decomposition in cubic
graphs devised by Fomin and Høie [10], to arrive at an O(1.201n) time algorithm. We note
that the efficient path-decomposition for cubic graphs of Fomin and Høie [10] is in fact used
by the path-decomposition of Kneis et al. [13] in combination with branching. We also note
that the very fast algorithm for cubic graphs above is the result not only of the efficient
path-decomposition bound in cubic graphs, but also the fact that one only needs 3 states per
vertex in a bag for cubic graphs as opposed to the (amortised) 2 +

√
2 number of states per

vertex in the general algorithm of Cygan et al. [5] (Confer Corollary 1.6 in Cygan et al. [6]).
Hence, the cubic case is indeed special for this approach.

1.1.2 Branching
A very natural approach to Hamiltonicity detection in cubic graphs is to guess which two
of the three edges incident to a vertex are used on the cycle and branch. This will in
turn diminish the number of alternatives for how the cycle can pass through the three
neighbor vertices. There is an O(1.251n) algorithm for Hamiltonicity decision in graphs of
maximum degree three based on carefully analysed branching [11]. It improves slightly over
the O(1.260n) time algorithm by Eppstein [9]. The algorithms in fact work for the Travelling
Salesman problem solving for the minimum cost edge-weighted Hamiltonian cycle. Eppstein
also provides an O(1.297n) time algorithm that can list the solutions and hence determine
their number. He also exhibits bipartite maximum degree three graphs that has Ω(1.260n)
Hamiltonian cycles, demonstrating that any algorithm that enumerates the cycles one-by-one
must take this long in the worst case.

1.1.3 Directed algorithms
For directed bipartite graphs, there is an O(1.733n) time algorithm [4]. However, it is still
open whether there exists an O(cn) time algorithm for some c < 2 for decision in directed
graphs. In directed graphs of average degree δ, counting the Hamiltonian cycles can be done
in 2n−Ω(n/δ5) time [4]. The speedup is obtained by a fast modular counting algorithm for
small prime powers and the Chinese remainder theorem after noting that the Hamiltonian
cycles cannot be too many in a sparse graph.

1.1.4 Parity algorithms
In addition to the above decision algorithms, we know of an even faster algorithm for the
seemingly more difficult problem of computing the parity of the number of Hamiltonian
cycles: There is an O(1.619n) time algorithm computing the parity in directed graphs [2].
For bipartite graphs there is also an O(1.5n) time algorithm [2], and for bipartite undirected
graphs, the O(1.415n) time decision algorithm in [1] is also capable of computing the parity.
Thomason [16] showed that the parity of the number of Hamiltonian cycles through any
specific edge in an undirected graph is always even in a graph where every vertex has odd
degree. Note that it does not mean that there always are an even number of Hamiltonian
cycles in the graph, e.g. K4 has three Hamiltonian cycles. In fact, computing the parity in
planar undirected graphs of maximum degree three is ⊕P-hard [18].

ISAAC 2018



3:4 Exploiting Sparseness for Bipartite Hamiltonicity

1.1.5 Sparsity-aware TSP algorithms
For the n-vertex Travelling Salesman Problem, i.e., in an edge-weighted graph find the
Hamiltonian cycle of smallest total weight, there is a 2n−Ω(n/2∆) time algorithm, with ∆ the
maximum degree in the graph [3]. The proof uses the fact that in a dynamic programming
across vertex subsets for Hamiltonian cycles one only needs to consider induced subgraphs
that have degree at least two at every vertex. An upper bound of these can be found by the
use of Shearer’s lemma. There is also a 2n−Ω(n/22δ ) time algorithm with δ the average degree
in the graph [7].

2 The Three Parts of our Design

On a high level, our algorithmic design consists of three parts:

1. Defining an algebraic fingerprint for Hamiltonicity with few non-zero terms in expectation.
2. Encoding possibly non-zero terms as solutions to a CNF-SAT formula.
3. Listing the solutions to the formula by a separate algorithm.

We will first describe each of these three parts before we present the algorithm in pseudocode
in Section 3 along with its analysis.

2.1 A family of algebraic fingerprints
Let G = (U, V,E) be a balanced |U | = |V | = n

2 bipartite undirected graph. We will introduce
variables for the directed versions of the edges in G. We will next define a polynomial over a
field of characteristic two as an exponential sum of determinants, and prove that it can be
used to detect the presence of a Hamiltonian cycle in G. The construction and its analysis
are very similar to the one for bipartite graphs in [1] with only one major difference. In [1]
matrices in which rows and columns represented vertices from one part of the bipartition were
used. Here we take an alternative approach with rows representing one part and columns
representing the other part, as we feel it is more natural for describing how many terms can
vanish in the summation in sparse graphs.

The idea is to define the polynomial so that it will be non-zero only if there is a Hamiltonian
cycle in the graph. We will in fact describe an exponential number of exponential sums, all of
which evaluate to the same polynomial. These are identified by variables ai,j for every ij ∈ E,
and will not contribute to the sum. I.e., regardless of what they are set to, in the exponential
sum they will cancel each other and the sum will always evaluate to the same value. They
are introduced solely to make sure that under a random assignment, the expected number of
non-zero terms in the exponential sum is quite small. We will show that in the next section.

Continuing the fingerprint design, we note that every Hamiltonian cycle H ⊆ E can be
oriented in two ways in the sense that starting from any vertex you can choose which of its
two neighbors on the cycle to visit next. We will fix a special vertex s ∈ V in the graph which
we will use to break symmetry with respect to orientations. I.e., every oriented Hamiltonian
cycle will be associated with a monomial in the polynomial, and the introduced asymmetry
around s will ensure that different monomials are assigned to the two orientations of any
Hamiltonian cycle to avoid that they cancel each other.

For every edge ij ∈ E with i 6= s and j 6= s, we introduce two identical variables zi,j = zj,i,
i.e., they are only different names for the same variable, but for every is ∈ E we introduce
the two different variables zi,s and zs,i. For ij 6∈ E, we set zi,j = zj,i = 0. We define a



A. Björklund 3:5

polynomial matrix in a third set of variables x = {xv|v ∈ V }, with rows representing vertices
from V , and columns representing vertices from U , as

Mi,j(a, x, z) =
∑

k∈V \{i}

zi,jzj,k(aj,k + xk). (1)

We will use

φ(G) =
∑

x∈{0,1}n/2

det(M(a, x, z)), (2)

as a fingerprint of the existence of a Hamiltonian cycle in G. I.e., we sum over all 2n/2
assignments to x with each xi ∈ {0, 1} to obtain a polynomial in the z-variables only
(monomials with a-variables will cancel each other). We will prove that φ(G) can only be
non-zero if G has a Hamiltonian cycle.

I Lemma 3. Let H be the family of oriented Hamiltonian cycles in G, then

φ(G) =
∑
h∈H

∏
uv∈h

zu,v. (3)

Proof. Consider the Leibnitz expansion of the n× n matrix determinant in characteristic
two,

det(B) =
∑
σ∈Sn

n∏
i=1

Bi,σ(i).

If we furthermore expand each product of entries of the matrix M(a, x, z) into a sum of
products, we have that each term in the Leibnitz expansion of det(M(a, x, z)) is the product
of exactly n/2 factors, each of which is either zi,jzj,kaj,k or zi,jzj,kxk for some i, j, k with
i 6= k. This means a term is the product of n z-variables and n/2 a- or x-variables. We first
note that if such a term does not contain xv for some v ∈ V , it will be counted an even
number of times in (2). Let Z be the set of these omitted vertices v, and note that the term
will be included both for xv = 0 and xv = 1 for all v ∈ Z for any fixed assignment to the
other variables. It will be counted 2|Z| times, an even number for non-empty Z, and hence
it will cancel in a characteristic two summation. This also means that in a surviving term,
i.e., a term that is counted an odd number of times, each xv for v ∈ V is included precisely
once as there are at most n/2 of them in total. Moreover, this means that no surviving term
includes an a-variable.

Note that a term that includes xv for all v ∈ V describes a cycle cover as every double-arc
factor is from a unique row (every vertex in V has outdegree 1), from a unique column (every
vertex in U is the endpoint of exactly one arc and the start of another), and has a unique
x-variable (every vertex in V has indegree 1). Moreover, there are no cycles on exactly 2
vertices due to the constraint i 6= k in the summation in (1). Every cycle cover corresponds
to some term in the Leibnitz expansion. If a cycle cover has more than one cycle, we can fix
the lexicographically first cycle C that does not go through the special vertex s, and reverse
its orientation to obtain a different cycle cover with the same monomial term. However this
cycle cover is the result of another term in the Leibnitz expansion because the reversed cycle
has length larger than 2. If we apply the cycle reversal operation again, the original cycle
cover is obtained. Hence we have paired up all cycle covers with at least two cycles, proving
that these will also cancel each other in a characteristic two summation. We are left with
the Hamiltonian cycles, counted in both orientations as claimed. J

ISAAC 2018



3:6 Exploiting Sparseness for Bipartite Hamiltonicity

2.1.1 Limiting the number of contributing terms
The value of φ(G) in (3) is insensitive to the a-variables. No matter what we set them to
the result is the same. We will now take advantage of this fact. By choosing a random
assignment to the a-variables, we will end up with a formula in which many determinant
terms for assignments to the x-variables in (2) will be trivially zero, and there is no need for
us to evaluate them to compute φ(G).

We say that an assignment x : V → {0, 1} is possibly contributing if no column of
M(a, x, z) is all zeros. That is, det(M(a, x, z)) is not trivially zero for the reason of having a
column with no non-empty entries.

We will bound the probability that not too many assignments to x are possibly contributing
under a random assignment to the variables a. Consider a fixed assignment x and let εu
for u ∈ U be the event that the column representing u in M(a, x, z) is not identically zero
under a randomly uniformly chosen a. We have from (1) that if au,v + xv = 0(mod 2) for all
uv ∈ E for a fixed u, then the event εu happens, hence

Pr(εu) = 1− Pr
( ∏
uv∈E

(1 + au,v + xv)) = 1(mod 2)
)

= 1− 1
2du ,

where du is the degree of vertex u in G. Clearly, the events {εu : u ∈ U} are mutually
independent as they depend on different independent a-variables, so

Pr
(⋂
u∈U

εu

)
=
∏
u∈U

(
1− 2−du

)
. (4)

By using Jensen’s inequality for a concave function ϕ,

ϕ

(∑m
i=1 xi
m

)
≥
∑m
i=1 ϕ(xi)
m

,

after noting that ϕ(x) = log(1− 2−x) is concave, we have from (4) that

Pr
(⋂
u∈U

εu

)
≤ (1− 2−δ)n/2.

Consequently, by the linearity of expectation, the expected number of possibly contributing
terms in (2) under a random assignment to the a-variables is at most

2n/2 Pr
(⋂
u∈U

εu

)
≤ (2− 21−δ)n/2. (5)

2.2 Encoding possibly contributing terms as a CNF SAT formula
We will next turn to how we can classify which x-assignments are possibly contributing
without explicitly constructing all the matrices M(a, x, z).

To encode the possibly contributing assignments, we consider propositional Boolean
formulas in conjunctive normal form (CNF-SAT). An instance I = (W, C) consists of a set of
variables W , and a set of clauses C. Each clause in C is a finite set of literals, and a literal is
an occurrence of a variable in W that may or may not be negated. For every assignment a we
associate a CNF-SAT instance I(a) = (Wa, Ca), where Wa is a set of n/2 Boolean variables,
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with one variable wv for each v ∈ V with the interpretation that wv = True ⇐⇒ xv = 1.
Remember, we have from (1) that the event εu happens if some au,v + xv = 1(mod 2) for
some uv ∈ E. Let Pu = {v : uv ∈ E, au,v = 0} and Nu = {v : uv ∈ E, au,v = 1}. Hence the
clause

Cu =
( ∨
v∈Pu

wv

)∨( ∨
v∈Nu

wv

)
,

where wv means the negation of wv, expresses the truth-value of event εu. We equate
Ca with the set {Cu, u ∈ U} as the clauses’ conjunction expresses that all events happen.
Consequently, every solution to I(a) represents an assignment x : V → {0, 1} that is possibly
contributing. Note that I(a) has n/2 variables and n/2 clauses. We next turn to how to
find them efficiently.

2.3 Listing possibly contributing terms
We will show that given a CNF-SAT instance I on ` variables and as many clauses, its
solutions can be listed fast enough for our application.

I Lemma 4. The solutions to a CNF-SAT formula on ` variables and at most ` clauses can
be listed by a polynomial space algorithm in time

O(1.619` + s poly(`)),

where s is the number of solutions.

Remark: Note that in our case ` = n/2, so the first term amounts to a 1.272n running
time term that is dominated by the second term as there will be (2− 21−δ)n/2 solutions in
expectation according to (5), which is larger than 1.272n for δ ≥ 3.

Proof. The algorithm is a two-step procedure. First, as long as there is a variable that
occurs both as positive and negative literals in the clauses and there are more than two
occurrences of them, we use branching on that variable. Second, when no such variables
exist, we can use an idea implicit in Tovey [17] to construct a bipartite perfect matching
between clauses and variables to see if there is a solution at all. If so, we branch on any
vertex and repeat to learn each variable’s value one at a time for each of the assignments.

A partial assignment sets each variable in w to either True, False, or Undecided. Initially
all variables are Undecided. We will gradually turn partial assignments into full assignments
that satisfy the original instance. In the first step, we produce a set S of tuples of partial
assignments and CNF-SAT instances resulting from the original instance by removing all
clauses satisfied by the partial assignment. These will all have the following property: if a
variable occurs both positively and negatively in the clauses, it has precisely two occurrences.
The set S is generated by taking any yet undecided variable that occurs at least three times
and both positively and negatively and setting it in turn to both truth values and recursively
continuing on the clauses that are still unsatisfied by the partial assignment so far. If we
let t(`) be an upper bound on the number of instances generated this way from an original
instance with ` clauses, we have that

t(`) ≤ t(`− 1) + t(`− 2),

since at least one respectively two clauses are satisfied by the two assignments. In combination
with t(0) = 1, we can solve this recurrence as t(`) ≤ 1.619`. Hence |S| ≤ 1.619`.

ISAAC 2018



3:8 Exploiting Sparseness for Bipartite Hamiltonicity

In the second step, we consider each partial assignment and instance pair in S in turn.
To see if the instance has a solution at all, we can first set all undecided variables that
occur either only positively or negatively to the value that would satisfy some remaining
clauses. After that we are left with a set of variables that occur in precisely two clauses but
of opposite polarity. We construct a bipartite graph with one part representing clauses and
one representing vertices, and edges between a clause and its variables. If such a bipartite
graph has a perfect matching, we know the instance can be satisfied, by assigning to the
variables the truth value that would satisfy the clause associated to the variable by the
matching. Conversely, if there is a satisfying assignment, we can also find a perfect matching
by connecting clauses with the variable that makes them true.

As long as there is a perfect matching, we know there is at least one satisfying assignment.
We branch on any yet undecided variable and check again if there is a perfect matching. If
not, we backtrack to another branch, but otherwise we continue to a full assignment and
output it. This way we can list all satisfying assignments to the current instance in S with
polynomial delay, as checking for a perfect matching is a polynomial time task. In fact, in
our case checking for a perfect matching is particularly easy as every variable vertex on one
side of the bipartition has only two choices. We can imagine another graph with vertices
representing clauses, and variables representing edges, with edges between any two clauses
that share a variable. Hall’s marriage theorem now yields that a perfect matching in the
original clause-variable bipartite graph exists if every connected component in the latter
imagined graph has a cycle. This can be checked in linear time. J

2.4 An alternative listing algorithm for δ < 5.5
If the average degree is small enough, we can use another way of listing the solutions, albeit
using exponential space. We will use the path decomposition construction of Kneis et al. [13]
to obtain a path-decomposition PG of width at most pw(PG) = δn/11.538 in polynomial
time. We first take the incidence graph of the CNF-SAT instance, the bipartite graph with
vertices for clauses and variables, and edges between a clause and all its variables.

We can next use a path decomposition of the incidence graph to compute the number of
satisfying assignments by a dynamic programming algorithm that uses one bit per variable
vertex to keep track of its truth value, and one bit per clause vertex to keep track of whether
the clause has been satisfied by the variables seen so far in the dynamic programming. The
algorithm is analysed in Samer and Szeider [14] for tree-width, but leaving out the join nodes
from the analysis gives a 2pw(G) poly(n) time algorithm.

From the resulting dynamic programming table, we can list the solutions to the CNF-SAT
formula with polynomial delay. Since the time needed to compute the dynamic programming
across the path-decomposition is smaller than the expected number of solutions to the
CNF-SAT instance

2δ/11.538 < (2− 21−δ)1/2,

for all δ ≤ 5.5, our running time bound follows.
We also note that Kneis et al. [13] presents another slightly larger path-width decom-

position P ′G of size pw(P ′G) ≤ δn/10.434 that has a particularly nice structure: All bags
share a large fraction of the vertices, and the remaining vertices induce a graph of constant
bounded path-width. Hence one can get rid of the exponential space requirement with these
path-decompositions for our application by guessing the assignment of the common vertices
of all bags (i.e., try all of them), and then solve for the solutions by a path-decomposition
dynamic programming of constant size in the remaining vertices. This works for all δ ≤ 4.97.
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3 Algorithm

We are ready to describe and analyse the decision algorithm in pseudocode, and thereby
prove Theorem 1. The algorithm operates over the field GF(2κ). For now, it suffices to think
of the parameter κ as logarithmic in n, it will be given a precise value in the next section.
The following procedure is called n times, and as soon as a call returns “yes” we report the
detection of a Hamiltonian cycle, otherwise we report no Hamiltonian cycles found.

HamiltonianCycle(G).
1. Pick random values a : U × V → {0, 1}.
2. Use Lemma 4 to construct a list L of solutions to I(a).
3. If in the process more than 3(2− 21−δ)n/2 solutions are found, abort immediately and

return “no”.
4. Set s = 0.
5. Pick random values z : V × U → GF(2κ).
6. Set zu,v = zv,u for u 6= s.
7. Pick random values z : {s} × V → GF(2κ).
8. Set zu,v = 0 for all uv 6= E.
9. For each x ∈ L,

10. Evaluate t = det(M(a, x, z)) over GF(2κ).
11. s = s+ t over GF(2κ).
12. If s 6= 0 return “yes” otherwise return “no”.

3.1 Analysis
We first analyse the correctness of the algorithm. We will set κ so that the probability of
false negatives in a call to HamiltonianCycle(G) is at most 1

2 . By calling the procedure n
times the claimed false negative probability in Theorem 1 follows.

Consider first step 2 of the algorithm. The expected number of solutions is

E (|L|) = (2− 21−δ)n/2,

according to (5). By Markov’s inequality,

Pr (|L| ≥ 3 · E (|L|)) ≤ 1
3 .

Hence the false negative rate reported at step 3 is at most 1
3 . If the algorithm proceeds

past step 3, steps 4–12 computes (2), which according to Lemma 3 is non-zero only if G
has a Hamiltonian cycle. Hence there is no chance of false positives. We use the following
well-known Lemma to bound the probability of false negatives.

I Lemma 5 (DeMillo–Lipton–Schwartz–Zippel[8, 15]). Let p(x1, x2, ..., xm) be a nonzero m-
variate polynomial of total degree d over a field F . Pick r1, r2, ..., rm ∈ F uniformly and
independently at random, then

Pr (p(r1, r2, ..., rm) = 0) ≤ d

|F |
.

ISAAC 2018



3:10 Exploiting Sparseness for Bipartite Hamiltonicity

In our case the polynomial has degree n as seen by (3) and because of the asymmetry around
s it is a non-zero polynomial whenever there are Hamiltonian cycles in the graph. We use
F = GF(2κ) with κ = dlog 4ne in the above Lemma, to get false negative rate at most 1

4 .
Combining the two sources of false negatives, we get total false negative probability at most

1
3 + 2

3 ·
1
4 = 1

2 ,

as claimed.
We next analyse the running time. In step 2 we use the listing algorithm in Lemma 4 (or

the alternative from 2.4) to list the solutions but aborting as soon as 3(2− 21−δ)n/2 solutions
have been found. According to the lemma, this takes O(1.619n + 3(2 − 21−δ)n/2 poly(n))
time, which is dominated by the second term for δ ≥ 3. Note that basic arithmetic
computations over GF(2κ) can be done in polylog(n) time. The determinant computation
at step 10 requires polynomial time in n by using Gaussian elimination and multiplication
of the diagonal elements to retrieve the value of the determinant (note that the sign of a
permutation doesn’t matter in characteristic two).

3.2 The proof of the parity counting theorem
We finally show how to modify the decision algorithm to obtain Theorem 2. First, to get
a Las Vegas algorithm we simply omit bailing out in step 3 of the algorithm if the list of
solutions to I(a) is too long. This gives a list of solution of expected length (2− 21−δ)n/2
according to (5). Second, we will replace the random values zu,v for u, v 6= s by ones if
uv ∈ E, and zeros otherwise. Third, we will run the algorithm several times, once for each
pair of distinct neighbors v, w of s, setting only zv,s = zs,w = 1 whereas all other variables
incident on s, zs,u and zu,s are set to zero for every u. This will make sure that we only
count the parity of Hamiltonian cycles through v, s, w and in one orientation. Summing over
all pairs of neighbors to s we obtain the parity of the number of all Hamiltonian cycles.
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