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Abstract
We introduce a dynamic version of the NP-hard Cluster Editing problem. The essential point
here is to take into account dynamically evolving input graphs: Having a cluster graph (that is, a
disjoint union of cliques) that represents a solution for a first input graph, can we cost-efficiently
transform it into a “similar” cluster graph that is a solution for a second (“subsequent”) input
graph? This model is motivated by several application scenarios, including incremental clustering,
the search for compromise clusterings, or also local search in graph-based data clustering. We
thoroughly study six problem variants (edge editing, edge deletion, edge insertion; each combined
with two distance measures between cluster graphs). We obtain both fixed-parameter tractability
as well as parameterized hardness results, thus (except for two open questions) providing a fairly
complete picture of the parameterized computational complexity landscape under the perhaps
two most natural parameterizations: the distance of the new “similar” cluster graph to (i) the
second input graph and to (ii) the input cluster graph.
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1 Introduction

The NP-hard Cluster Editing problem [6, 31], also known as Correlation Cluster-
ing [5], has developed into one of the most popular graph-based data clustering problems
in algorithm theory. Given an undirected graph, the task is to transform it into a disjoint
union of cliques (also known as cluster graph) by performing a minimum number of edge
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modifications (deletions or insertions). Being NP-hard, Cluster Editing gained high
popularity in studies concerning parameterized algorithmics, e.g. [1, 4, 8, 9, 12, 18, 20, 22, 25].
To the best of our knowledge, to date these parameterized studies mostly focus on a “static
scenario”. Chen et al. [12] are an exception by also looking at temporal and multilayer
graphs. In their work, the input is a set of graphs (multilayer) or an ordered list of graphs
(temporal), in both cases defined over the same vertex set. The goal is to transform each
input graph into a cluster graph such that, in the multilayer case, the number of vertices in
which any two cluster graphs may differ is bounded, and in the temporal case, the number of
vertices in which any consecutive (with respect to their position in the list) cluster graphs
may differ is bounded. In this work, we introduce a dynamic view on Cluster Editing
by, roughly speaking, assuming that the input graph changes. Thus we seek to efficiently
and effectively adapt an existing solution, namely a corresponding cluster graph. In contrast
to the work of Chen et al. [12], we do not assume that all future changes are known. We
consider the scenario where given an input graph, we only know changes that lie immediately
ahead, that is, we know the “new” graph that the input graph changes to. Motivated by
the assumption that the “new” cluster graph should only change moderately but still be a
valid representation of the data, we parameterize both on the number of edits necessary to
obtain the “new” cluster graph and the difference between the “old” and the “new” cluster
graph. We finally remark that there have been previous parameterized studies of dynamic
(or incremental) graph problems, but they deal with coloring [23], domination [16, 2], or
vertex deletion [3, 26] problems.

Mathematical model. In principle, the input for a dynamic version of a static problem X

are two instances I and I ′ of X, a solution S for I, and an integer d. The task is to find a
solution S′ for I ′ such that the distance between S and S′ is upper-bounded by d. Often,
there is an additional constraint on the size of S′. Moreover, the symmetric difference
between I and I ′ is used as a parameter for the problem many times. We arrive at the
following “original dynamic version” of Cluster Editing (phrased as decision version).

Original Dynamic Cluster Editing
Input: Two graphs G1 and G2 and a cluster graph Gc over the same vertex set,
and integers k and d such that |E(G1)⊕ E(Gc)| ≤ k.
Question: Is there a cluster graph G′ for G2 such that |E(G2)⊕ E(G′)| ≤ k and
dist(G′, Gc) ≤ d?

Herein, ⊕ denotes the symmetric difference between two sets and dist(·, ·) is a generic
distance function for cluster graphs, which we discuss later. Moreover, Gc is supposed to be
the “solution” given for the input graph G1. However, since the question in this problem
formulation is independent from G1 we can remove this graph from the input and arrive at
the following simplified version of the problem. For the remainder of this paper we focus on
this simplified version of Dynamic Cluster Editing.

Dynamic Cluster Editing
Input: A graph G and a cluster graph Gc over the same vertex set, and two
integers: a budget k and a distance upper bound d.
Question: Is there a cluster graph G′ for G such that |E(G) ⊕ E(G′)| ≤ k

and dist(G′, Gc) ≤ d?

There are many different distance measures for cluster graphs [28, 29]. Indeed, we will
study two standard ways of measuring the distance between two cluster graphs. One is called



J. Luo, H. Molter, A. Nichterlein, and R. Niedermeier 46:3

classification error distance, which measures the number of vertices one needs to move to
make two cluster graphs the same – we subsequently refer to it as matching-based distance.
The other is called disagreement distance, which is the symmetric distance between two edge
sets – we subsequently refer to it as edge-based distance. Notably, the edge-based distance
upper-bounds the matching-based distance. We give formal definitions in Section 2.

Motivation and related work. Beyond parameterized algorithmics and static Cluster
Editing, dynamic clustering in general has been subject to many studies, mostly in applied
computer science [32, 15, 14, 34, 33, 10]. We mention in passing that there are also close ties
to reoptimization (e.g., [7, 30]) and parameterized local search (e.g., [17, 19, 21, 23, 27]).

There are several natural application scenarios that motivate the study of Dynamic
Cluster Editing. Next, we list four of them.

Dynamically updating an existing cluster graph. Dynamic Cluster Editing can be in-
terpreted to model a smooth transition between cluster graphs, reflecting that “customers”
working with clustered data in a dynamic setting may only tolerate a moderate change of
the clustering from “one day to another” since “revolutionary” transformations would
require too dramatic changes in their work. In this spirit, when employing small parameter
values, Dynamic Cluster Editing has kind of an evolutionary flavor with respect to
the history of the various cluster graphs in a dynamic setting.

Editing a graph into a target cluster graph. For a given graph G, there may be many
cluster graphs which are at most k edge modifications away. The goal then is to find
one of these which is close to the given target cluster graph Gc since in a corresponding
application one is already “used to” work with Gc. Alternatively, the editing into the
target cluster graph Gc might be too expensive (that is, |E(G)⊕ E(G′)| is too big), and
one has to find one with small enough modification costs but being still close to the
target Gc.

Local search for an improved cluster graph. Here the scenario is that one may have found
an initial clustering expressed by Gc, and one searches for another solution G′ for G

within a certain local region around Gc (captured by our parameter d).
Editing into a compromise clustering. When focusing on the edge-based distance, one may

generalize the definition of Dynamic Cluster Editing by allowing Gc to be any graph
(not necessarily a cluster graph). This may be used as a model for “compromise cluster
editing” in the sense that the goal cluster graph then is a compromise for a cluster graph
suitable for both input graphs since it is close to both of them.

Our results. We investigate the (parameterized) computational complexity of Dynamic
Cluster Editing. We study Dynamic Cluster Editing as well as two restricted versions
where only edge deletions (“Deletion”) or edge insertions (“Completion”) are allowed. We
show that all problem variants (notably also the completion variants, whose static counterpart
is trivially polynomial-time solvable) are NP-complete even if the input graph G is already a
cluster graph. Table 1 surveys our main parameterized complexity results.

The general versions of Dynamic Cluster Editing all turn out to be parameterized
intractable (W[1]-hard) by the single natural parameters “budget k” and “distance d”;
however, when both parameters are combined, one achieves a polynomial kernel. We also
derive a generic approach towards fixed-parameter tractability for several deletion and
completion variants with respect to the budget k as well as with respect to the distance d.
Proofs of results marked with (?) are deferred to a full version of the paper.

FSTTCS 2018
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Table 1 Result overview for Dynamic Cluster Editing. We primarily categorize the problem
variants by the distance measure (Matching, Edge) they use and secondarily by the allowed
modification operation. NP-completeness for all problem variants (last column) even holds if
the input graph G is a cluster graph. PK stands for polynomial kernel.

Parameter
Problem Variant k + d k d

M
at
ch
in
g Editing FPT (PK)

T
hm

.3 W[1]-h Thm. 2 W[1]-h } Thm. 2 NP-c

T
hm

.1

Deletion FPT (PK) open W[1]-h NP-c
Completion FPT (PK) open FPT Thm. 4 NP-c

E
dg

e Editing FPT (PK)

T
hm

.3 W[1]-h Thm. 2 W[1]-h } Thm. 2 NP-c

T
hm

.1

Deletion FPT (PK) FPT }
Thm. 4 W[1]-h NP-c

Completion FPT (PK) FPT FPT Thm. 4 NP-c

2 Preliminaries and Problems Variants

In this section we give a brief overview on concepts and notation of graph theory and
parameterized complexity theory that are used in this paper. We also give formal definitions
of the distance measures for cluster graphs we use and of our problem variants.

Graph-theoretic concepts and notations. Given a graph G = (V, E), we say that a vertex
set C ⊆ V is a clique in G if G[C] is a complete graph. We say that a vertex set C ⊆ V is
isolated in G if there is no edge {u, v} ∈ E with u ∈ C and v ∈ V \ C. A P3 is a path with
three vertices. We say that vertices u, v, w ∈ V form an induced P3 in G if G[{u, v, w}] is
a P3. We say that an edge {u, v} ∈ E is part of a P3 in G if there is a vertex w ∈ V such
that G[{u, v, w}] is a P3. Analogously, we say that a non-edge {u, v} /∈ E is part of a P3 in
G if there is a vertex w ∈ V such that G[{u, v, w}] is a P3. A graph G = (V, E) is a cluster
graph if for all u, v, w ∈ V we have that G[{u, v, w}] is not a P3, or in other words, P3 is a
forbidden induced subgraph for cluster graphs.

Distance measures for cluster graphs. A cluster graph is simply a disjoint union of cliques.
We use two basic distance measures for cluster graphs [28, 29]. The first one is called
“matching-based distance” and counts how many vertices have to be moved from one cluster
to another to make two cluster graphs the same. It is formally defined as follows.

I Definition 1 (Matching-based distance). Let G1 = (V, E1) and G2 = (V, E2) be two cluster
graphs defined over the same vertex set. Let B(G1, G2) = (V1 ] V2, E, w) be a weighted
complete bipartite graph, where each vertex u ∈ V1 corresponds to a cluster in G1, denoted
by Cu ⊆ V , and each vertex v ∈ V2 corresponds to a cluster of G2, denoted by Cv ⊆ V . The
weight of the edge between u ∈ V1 and v ∈ V2 is w({u, v}) = |Cu ∩Cv|. Let W be the weight
of a maximum-weight matching in B(G1, G2). The matching-based distance dM between G1
and G2 is dM (G1, G2) := |V | −W .

The second distance measure is called “edge-based distance” and simply measures the
symmetric distance between the edge sets of two cluster graphs.

I Definition 2 (Edge-based distance). Let G1 = (V, E1) and G2 = (V, E2) be two cluster
graphs defined over the same vertex set. The edge-based distance dE between G1 and G2
is dE(G1, G2) := |E1 ⊕ E2|.
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Figure 1 An illustration of the two distance measures. On the left side, red dotted boundaries
represent cliques in cluster graph G1, and blue dashed boundaries represent cliques in cluster
graph G2. The bipartite graph on the right side is the edge-weighted bipartite graph B(G1, G2).
The maximum-weight matching for B(G1, G2) is formed by the two edges represented by the two
bold lines.

See Figure 1 for an example illustration of two cluster graphs G1 and G2 defined over
the same vertex set V = {u1, u2, u3, u4, u5, u6, v1, v2, w}. In G1 there are three cliques
(clusters) C1 = {u1, u2, u3, u4, u5, u6}, C2 = {v1, v2} and C3 = {w}. In G2 there are two
cliques C1

′ = {u1, u2, u3, v1, v2} and C2
′ = {u4, u5, u6, w}. Then in B(G1, G2) we have three

vertices on the left side for the cliques in G1 and two vertices on the right side for the
cliques in G2. A maximum-weight matching for B(G1, G2) matches C1 with C ′2 and C2
with C ′1, and has weight W = 5. Thus we have dM (G1, G2) = |V | − W = 9 − 5 = 4,
while dE(G1, G2) = 32 + 2 · 3 + 1 · 3 = 18.

Problem names and definitions. In the following we present the six problem variants we
are considering. We use Dynamic Cluster Editing as a basis for our problem variants. In
Dynamic Cluster Deletion we add the restriction that E(G′) ⊆ E(G) and in Dynamic
Cluster Completion we add the restriction that E(G) ⊆ E(G′). For each of these three
variants we distinguish a matching-based version and an edge-based version, where the
generic “dist” in the problem definition of Dynamic Cluster Editing is replaced by dM

and dE , respectively. This gives us a total of six problem variants. We use the following
abbreviations for our problem names. The letters “DC” stand for “Dynamic Cluster”, and
“Matching Dist” is short for “Matching-Based Distance”. Analogously, “Edge Dist” is short
for “Edge-Based Distance”. As an example, we abbreviate Dynamic Cluster Editing
with Matching-Based Distance as DCEditing (Matching Dist). All other problem
variants are abbreviated in an analogous way.

Parameterized complexity. A parameterized problem is a language L ⊆ Σ∗ × N, where
Σ is a finite alphabet. We call the second component the parameter of the problem. A
parameterized problem is fixed-parameter tractable (in the complexity class FPT) if there is an
algorithm that solves each instance (I, r) in f(r)·|I|O(1) time, for some computable function f .
A parameterized problem L admits a polynomial kernel if there is a polynomial-time algorithm
that transforms each instance (I, r) into an instance (I ′, r′) such that (I, r) ∈ L if and only
if (I ′, r′) ∈ L and |(I ′, r′)| ≤ f(r), for some computable function f . If a parameterized
problem is hard for the parameterized complexity class W[1], then it is (presumably) not
in FPT. The complexity class W[1] is closed under parameterized reductions, which may run
in FPT-time and additionally set the new parameter to a value that exclusively depends on
the old parameter.

FSTTCS 2018
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3 Intractability Results

In this section we first show that all problem variants of Dynamic Cluster Editing are
NP-complete even if the input graph G is already a cluster graph. Intuitively, this means that
on top of the NP-hard task of transforming a graph into a cluster graph, it is computationally
hard to improve an already found clustering (with respect to being closer to the target cluster
graph). In particular, while the dynamic versions of Cluster Completion are NP-complete,
it is simple to see that classical Cluster Completion is solvable in polynomial time. In a
second part we show W[1]-hardness results both for budget parameter k and for distance
parameter d for several variants of Dynamic Cluster Editing.

I Theorem 1. All considered problem variants of Dynamic Cluster Editing are NP-
complete, even if the input graph G is a cluster graph.

Next, we present several parameterized hardness results showing that for certain problem
variants we cannot hope for fixed-parameter tractability. Formally, we show the following.

I Theorem 2. DCEditing (Matching Dist) and DCEditing (Edge Dist) are W[1]-
hard with respect to the budget k. The following problems are W[1]-hard with respect to the
distance d: DCEditing (Matching Dist), DCDeletion (Matching Dist), DCEditing
(Edge Dist), and DCDeletion (Edge Dist).

As a representative for the results of Theorem 2, we present a parameterized reduction
showing that DCEditing (Matching Dist) is W[1]-hard when parameterized by the
budget k. The remaining results are deferred to a full version of the paper.

I Lemma 1. DCEditing (Matching Dist) is NP-complete and W[1]-hard with respect to
the budget k, even if the input graph G is a cluster graph.

Proof. We present a parameterized reduction from Clique, where given a graph G0 and
an integer `, we are asked to decide whether G0 contains a complete subgraph of order `.
Clique is W[1]-hard when parameterized by ` [13]. Given an instance (G0, `) of Clique,
we construct an instance (G, Gc, k, d) of DCEditing (Matching Dist) as follows.

The construction is illustrated in Figure 2. Let n = |V (G0)|. We first construct G. For
every vertex v of G0, create a clique Cv of size `7 + `4 + `2. For every edge e of G0, create a
clique Ce of size `4 + 2. Lastly, create a big clique CB of size `8. Note that G is already a
cluster graph. Next we construct Gc. We first create ` cliques Di of size n`3 for each 1 ≤ i ≤ `.
Every Di contains `3 vertices in every Cv in G. In other words, every Cv in G contains `3

vertices in every Di in Gc. Then create a big clique DB which contains all vertices in CB

and `7 vertices in every Cv. For every vertex v of G0, create clique Dv which contains `2

vertices in Cv and one vertex in every Ce for v ∈ e. Lastly, for every edge e create De

which contains `4 vertices in Ce. Set k =
(

`
2
)
(2`4 + 1) + `

(
`−1

2
)
and set d = d0 − `(` − 1),

where d0 = dM (G, Gc) is the matching-based distance between G and Gc, which is computed
as follows.

To compute dM (G, Gc), we need to find an optimal matching in B(G, Gc), the weighted
bipartite graph between G and Gc. First, in an optimal matching DB must be matched
with CB since |CB ∩DB | = `8 > |Cv ∩DB | = `7 for any v ∈ V (G0) and CB ⊆ DB . Similarly,
De must be matched with Ce for every e ∈ E(G0). Then the remaining n cliques Cv in G need
to be matched to ` cliques Di and n cliques Dv in Gc. Since |Cv ∩Di| = `3 > |Cv ∩Dv| = `2

for any v ∈ V (G0) and 1 ≤ i ≤ `, it is always better to match Cv with some Di. Since there
are only ` cliques Di, we can choose any ` cliques from {Cv | v ∈ V (G0)} to be matched



J. Luo, H. Molter, A. Nichterlein, and R. Niedermeier 46:7

Di, 1 ≤ i ≤ `

Cv, v ∈ V

Dv

Du

Ce and De

for e = {u, v} ∈ E

CB

DB

Figure 2 Illustration of the constructed instance for the proof of Lemma 1. Blue solid borders
represent cliques in G and red dotted borders represent cliques in Gc. One horizontal long blue
border represents a clique Cv in G. It has ` + 2 parts and each part is contained in one clique
of Gc. The first part contains `7 vertices which are contained in the big clique DB of Gc. The
following ` parts each contain `3 vertices which are contained in the ` cliques Di of Gc, and the last
part contains `2 vertices which are contained in Dv of Gc.

with Di for 1 ≤ i ≤ ` and the remaining n − ` cliques to be matched with Dv. Thus we
have many different matchings in B(G, Gc) which have the same maximum weight, and each
of them corresponds to choosing ` different cliques from {Cv | v ∈ V (G0)} to be matched
with Di for 1 ≤ i ≤ `. For each optimal matching, there are ` free cliques Dv in Gc which
are not matched.

This reduction works in polynomial time. We show that there is a clique of size `

in G0 if and only if there is a cluster graph G′ = (V, E′) such that |E(G′) ⊕ E(G)| ≤ k

and dM (G′, Gc) ≤ d.
(⇒): Assume that there is a clique C∗ of size ` in G0. We modify the graph G as

follows. First, for every edge e in the clique C∗ partition the corresponding clique Ce in G

into three parts; one part contains all vertices in De and the other two parts each have
one vertex. After this we get `(`− 1) single vertices. Since C∗ is a clique, all these single
vertices can be partitioned into ` groups such that each group has ` − 1 vertices and all
these `− 1 vertices are contained in the same Dv for some v ∈ C∗. Then for each v ∈ C∗, we
combine the corresponding `− 1 vertices into one clique C`−1

v . Denote the resulting graph
as G′. For an illustration see Figure 3. Along the way to get G′, we delete

(
`
2
)
(2`4 + 1)

edges and add `
(

`−1
2
)
edges, thus |E(G) ⊕ E(G′)| =

(
`
2
)
(2`4 + 1) + `

(
`−1

2
)

= k. Next we
show that dM (G′, Gc) ≤ d0 − `(` − 1). Recall that an optimal matching in B(G, Gc) can
choose ` cliques from {Cv | v ∈ V (G0)} to be matched with Di for 1 ≤ i ≤ `. Now in B(G, Gc)
we can choose all cliques in {Cv | v ∈ C∗} to be matched with Di for 1 ≤ i ≤ `, and then
match C`−1

v with Dv for all v ∈ C∗. Then in the new matching we have ` additional edges
between C`−1

v and Dv for v ∈ C∗, each with weight `− 1. Hence dM (G′, Gc) ≤ d0 − `(`− 1).
(⇐): Assume that there is a cluster graph G′ = (V, E′) such that |E′ ⊕ E(G)| ≤ k

and dM (G′, Gc) ≤ d. Note that k < `7, thus k < |Cv| and k < |CB |. Consequently, we can
only modify edges between vertices in Ce. It is easy to see that in any optimal matching
in B(G′, Gc), we still have that clique CB must be matched with DB and clique Ce must be
matched with De for every e ∈ E(G0). And we should choose ` cliques from {Cv | v ∈ V (G0)}

FSTTCS 2018
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Di, 1 ≤ i ≤ `

Cv, v ∈ V

Dv

Du

CB

DB

Figure 3 Illustration of a possible solution for the constructed instance (see Figure 2) in the proof
of Lemma 1. Blue solid borders represent cliques in G′ and red dotted borders represent cliques in
Gc. Green shaded areas indicate how cliques of G′ and Gc are matched. If two horizontal cliques of
G′ (blue) are matched with two of the ` vertical cliques of Gc, then the corresponding vertices are
part of the clique and hence are adjacent. This means the cliques corresponding to the edge can be
matched in the indicated way.

to be matched with Di for 1 ≤ i ≤ `, which creates ` free cliques Dv. Hence, to decrease the
distance between G and Gc, or to increase the matching, we have to create new cliques to
be matched with these ` free cliques Dv. Since for every Dv, except for vertices contained
in Cv, it only contains single vertices from Ce with v ∈ e, to create new cliques we need to
first separate De to get single vertices and then combine them. To decrease the distance
by `(`− 1), we need to separate at least `(`− 1) single vertices from Ce. This will cost at
least `(`− 1)(`4 + 1)−

(
`
2
)

=
(

`
2
)
(2`4 + 1) edge deletions if we always separate one Ce into

three parts and get two single vertices. Then we need to combine these single vertices into at
most ` cliques since there are at most ` free cliques Dv. This will cost at least `

(
`−1

2
)
edge

insertions if all these `(`− 1) single vertices can be partitioned into ` groups and each group
has `− 1 vertices. Since k =

(
`
2
)
(2`4 + 1) + `

(
`−1

2
)
, we have that in the first step we have to

choose
(

`
2
)
cliques Ce and separate them into three parts and all these `(`− 1) single vertices

are evenly distributed in ` free cliques Dv. This means that in G0 we can select
(

`
2
)
edges

between ` vertices and each vertex has `− 1 incident edges. Thus there is a clique of size `

in G0. J

4 Fixed-Parameter Tractability Results

In this section we identify tractable cases for the considered variants of Dynamic Cluster
Editing. We first show that all problem variants admit a polynomial kernel for the
combination of the budget k and the distance d. Then we present further FPT-results with
respect to single parameters.

4.1 Polynomial Kernels for the Combined Parameter (k + d)

In this section we present polynomial kernels with respect to the parameter combination (k+d)
for all considered variants of Dynamic Cluster Editing:
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I Theorem 3. The following problems admit an O(k2 + d2)-vertex kernel: DCEditing
(Matching Dist), DCDeletion (Matching Dist), and DCCompletion (Matching
Dist). The following problems admit an O(k2 + k · d)-vertex kernel: DCEditing (Edge
Dist), DCDeletion (Edge Dist), and DCCompletion (Edge Dist). All kernels can
be computed in O(|V |3) time.

We describe data reduction rules that each take an instance (G = (V, E), Gc = (V, Ec), k, d)
as input and output a reduced instance that is a yes-instance if and only if the original
instance is a yes-instance (of the corresponding problem variant). In the correctness proof of
each reduction rule, we assume that all previous rules are not applicable.

We first use some well-known reduction rules for classical Cluster Editing [20] to get
a graph which consists of isolated cliques plus one vertex set of size k2 + 2k that does not
contain any isolated cliques. These rules remove edges that are part of k + 1 induced P3s
and add edges between non-adjacent vertex pairs that are part of k + 1 induced P3s. We
defer a formal description and correctness proofs of these rules to a full version of the paper.
The reason we use these data reduction rules even though there are linear-vertex kernels for
classical Cluster Editing [9, 11] is that they do not eliminate any possible solutions.

Now we introduce new reduction rules that are specific to our problem setting, allowing
us to use k + d to upper-bound the size of all remaining isolated cliques and their number to
get a polynomial kernel. First, we observe that if there is a vertex set that forms an isolated
clique both in G and Gc, then we can remove it since it has no influence on k or d in any
problem variant. This is formalized in the next rule. We omit a formal correctness proof.

I Reduction Rule 1. If there is a vertex set C ⊆ V that is an isolated clique in G and Gc,
then remove all vertices in C from G and Gc.

The next rules deal with large cliques and allow us to either remove them or conclude
that we face a no-instance.

I Reduction Rule 2a (Matching-based distance). If there is a vertex set C ⊆ V with
|C| > k + 2d + 1 that is an isolated clique in G, then

if for each vertex set C ′ ⊆ V that is an isolated clique in Gc we have that |C ∩ C ′| ≤ d,
then answer NO,
otherwise, if there is a vertex set C ′ ⊆ V that is an isolated clique in Gc and |C ∩C ′| > d,
then we remove vertices in C from G and Gc and decrease d by |C \ C ′|. Furthermore,
if d ≥ 0, then add a set Cd of k + d + 1 fresh vertices to V . Add all edges between vertices
in Cd to E and add all edges between vertices in Cd ∪ (C ′ \ C) to Gc (if not already
present).

I Reduction Rule 2b (Edge-based distance). If there is a vertex set C ⊆ V with |C| > k

that is an isolated clique in G, then decrease d by |Ec|+
(|C|

2
)
− 2|E(Gc[C])| − |E(Gc[V \C])|

and remove vertices in C from G and Gc.

If none of the previous rules are applicable, then we know that there are no large cliques
left in the graph. The next rule allows us to conclude that we face a no-instance if there are
too many small cliques left.

I Reduction Rule 3. If there are more than 2(k + d) isolated cliques in G, then output NO.

In the following we show that the rules we presented decrease the number of vertices of
the instance to a number polynomial in k + d.
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I Lemma 2. Let (G = (V, E), Gc = (V, Ec), k, d) be an instance of any one of the considered
problem variants of Dynamic Cluster Editing that uses the matching-based distance. If
none of the appropriate reduction rules applies, then |V | ∈ O(k2 + d2).

I Lemma 3. Let (G = (V, E), Gc = (V, Ec), k, d) be an instance of any one of the considered
problem variants of Dynamic Cluster Editing that uses the edge-based distance. If none
of the appropriate reduction rules applies, then |V | ∈ O(k2 + k · d).

Finally, we can apply all data reduction rules exhaustively in O(|V |3) time.

I Lemma 4. Let (G = (V, E), Gc = (V, Ec), k, d) be an instance of any one of the considered
problem variants of Dynamic Cluster Editing. Then the respective reduction rules can
be exhaustively applied in O(|V |3) time.

It is easy to see that Theorem 3 directly follows from Lemma 2, Lemma 3, and Lemma 4.
We remark that the number of edges that are not part of an isolated clique can be bounded
by O(k3) [20].

4.2 Fixed-Parameter Tractable Cases for Single Parameters
In this section we show that several variants of Dynamic Cluster Editing are fixed-
parameter tractable with respect to either the budget k or the distance d.

I Theorem 4. DCDeletion (Edge Dist) and DCCompletion (Edge Dist) are in FPT
with respect to the budget k. DCCompletion (Matching Dist) and DCCompletion
(Edge Dist) are in FPT with respect to the distance d.

All our FPT results are using the same approach: We reduce (in FPT time) the input to an
instance of Multi-Choice Knapsack (MCK), formally defined as follows.

Multi-Choice Knapsack (MCK)
Input: A family of ` mutually disjoint sets S1, . . . , S` of items, a weight wi,j and a
profit pi,j for each item j ∈ Si, and two integers W and P .
Question: Is it possible to select one item from each set Si such that the profit
sum is at least P and the weight sum is at most W?

MCK is solvable in pseudo-polynomial time by dynamic programming [24]:

I Lemma 5 ([24, Section 11.5]). MCK can be solved in O(W ·
∑`

i=1 |Si|) time.

As our approach is easier to explain with the edge-based distance, we start with this case
and afterwards show how to extend it to the matching-based distance. As already exploited
in our reductions showing NP-hardness (see Theorem 1), all variants of Dynamic Cluster
Editing carry some number-problem flavor. Our generic approach will underline this flavor:
We will focus on cases where we can partition the vertex set of the input graph into parts
such that we will neither add nor delete an edge between two parts. Moreover, we require
that the parts are “easy” enough to list all Pareto-optimal (with respect to k and d) solutions
in FPT-time (this is usually achieved by some kernelization arguments). However, even with
these strict requirements we cannot solve the parts independently from each other: The
challenge is that we have to select for each part an appropriate Pareto-optimal solution.
Finding a feasible combination of these part-individual solutions leads to a knapsack-type
problem (in this case MCK). Indeed, this is common to all studied variants of Dynamic
Cluster Editing.

The details for our generic approach (for edge-based distance) are as follows:
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1. When necessary, apply data reduction rules from Section 4.1. Partition the input
graph G = (V, E) into different parts G1, G2, . . . , G`+1 such that there exists a solution
(if there is a solution) where no edge between two parts will be inserted or deleted. (In
particular, this implies that in G there is no edge between the parts.)

2. Compute for each part Gi = (Vi, Ei), 1 ≤ i ≤ `, a set Si ⊆ N2 encoding “cost” and “gain”
of all “representative” solutions for Gi. The size of the set Si has to be upper-bounded in
a function of the parameter p. (Here, p will be either k or d.)
More precisely, select a family Ei of f(p) edge sets such that for each edge set E′i ⊆

(
Vi

2
)

in Ei the graph G′i = (Vi, E′i ⊕ Ei) is a cluster graph achievable with the allowed number
of modification operations (edge deletions or edge insertions). For each such edge set E′i,
add to Si a tuple containing the cost (= |E′i|) and “decrease” of the distance from Gi

to the target cluster graph Gc. More formally, add (|E′i|, |E′i ∩ Ec| − |E′i \ Ec|) to Si,
where Ec is the edge set of Gc. Note that we allow E′i = ∅, that is, if Gi is a cluster
graph, then Si contains the tuple (0, 0).
The set Si has to fulfill the following property: If there is a solution, then there is a
solution G′ such that restricting G′ to Vi yields a tuple in Si. More precisely, we require
that (|E(G′[Vi])⊕ Ei|, |(E(G′[Vi])⊕ Ei) ∩ Ec| − |(E(G′[Vi])⊕ Ei) \ Ec|) ∈ Si.

3. Create an MCK instance I with W = k, P = |E ⊕ Ec| − d, and the sets S1, S2, . . . , S`

where the tuples in the sets correspond to the items with the first number in the tuple
being its weight and the second number being its profit.

4. Return true if and only if I is a yes-instance.
Note that the requirement in Step 1 implies that a part is a collection of connected components
in G. Furthermore, note that the part G`+1 will be ignored in the subsequent steps. Thus G`+1
contains all vertices which are not contained in an edge of the edge modification set. Observe
that ` ≤ n. Hence, we have

∑`
i=1 |Si| ∈ O(f(p) · n). (The parameter p will be either k or d.)

Moreover, as k and d are smaller than n2, it follows that W < n2 and thus, by Lemma 5,
the MCK instance I created in Step 3 can be solved in O(f(p) · n3) time in Step 4. This
yields the following.

I Observation 1. If the partition in Step 1 and the sets Si in Step 2 can be computed in
FPT-time with respect to p, then the above four-step-approach runs in FPT-time with respect
to p.

Note that Steps 1 and 2 are different for every problem variant we consider. There are,
however, some similarities between the variants where only edge insertions are allowed. Note
that the requirements of Steps 1 and 2 seem impossible to achieve in FPT-time when allowing
edge insertions and deletions. Indeed, as shown in Theorem 2, the corresponding edge-edit
variants are W[1]-hard with respect to the studied (single) parameters k and d respectively.

Next, we use the above approach to show that DCDeletion (Edge Dist) is fixed-
parameter tractable with respect to k. The fixed-parameter tractability of DCCompletion
(Edge Dist) with respect to k and with respect to d is deferred to a full version of the
paper.

I Lemma 6. DCDeletion (Edge Dist) is FPT with respect to k.

Proof (Sketch). We first apply the known reduction rules for Cluster Editing (see
discussion after Theorem 3). As a result, we end up with a graph where at most k2 + 2k

vertices are contained in an induced P3; all other vertices form a cluster graph with cliques
containing at most k vertices each. We define the parts G1, G2, . . . , G`, G`+1 of Step 1 as
follows: The first part G1 = (V1, E1) contains the graph induced by all vertices contained in

FSTTCS 2018



46:12 Parameterized Dynamic Cluster Editing

a P3. Each of the cliques in the cluster graph G[V \ V1] forms another part Gi, 2 ≤ i ≤ `.
Finally, set G`+1 = (∅, ∅), that is, we include all vertices in the subsequent steps of our
generic approach. Clearly, each part contains less than 2k2 vertices. Moreover, observe that
there are no edges between the parts.

As to Step 2, we add, for every edge set E′i ⊆ Ei such that G′i = (Vi, E′i \ Ei) is a
cluster graph, a tuple (|E′i|, |E′i ∩ Ec| − |E′i \ Ec|) to Si. As this enumerates all possible
solutions for Gi, the requirement in Step 2 is fulfilled. Together with Observation 1 we get
the statement of the lemma. J

We next discuss how to adjust our generic four-step approach for DCCompletion
(Matching Dist). The main difference to the edge-based distance variants is an additional
search tree of size O(dd+2) in the beginning. Each leaf of the search tree then corresponds
to a simplified instance where we have additional knowledge on the matching defining the
distance of a solution to Gc. With this additional knowledge, we can apply our generic
four-step approach in each leaf, yielding the following.

I Lemma 7. DCCompletion (Matching Dist) is FPT with respect to d.

Proof. We apply our generic four-step approach and thus need to provide the details how to
implement Steps 1 and 2.

We can assume that our input graph is a cluster graph. Let C be the set of all cliques
in G and D = {D1, D2, . . . , Dq} the set of all cliques in Gc. Then we classify all cliques in C
into two classes C1 and C2, where every clique in C1 has the property that all its vertices
are contained in one clique in D and every clique in C2 contains vertices from at least two
different cliques in D. Observe that |C2| ≤ d as otherwise the input is a no-instance. Similarly,
every clique in C2 contains vertices from at most d + 1 different cliques in D as otherwise the
input is a no-instance.

This allows us to do the following branching step. For each clique in C2 we try out all
“meaningful” possibilities to match it to a clique in D, where “meaningful” means that the
cliques in C2 and D should share some vertices or we decide to not match the clique of C2
to any clique in D. For each clique this gives us d + 2 possibilities and hence we have at
most dd+2 different cases each of which defines a mapping M : C2 → D ∪ {∅} that maps a
clique in C2 to the clique in D it is matched to.

Given the mapping M from cliques in C2 to cliques D or ∅, we partition G into q + 1
groups G1, G2, . . . , Gq, Gq+1 with Gi = G[Vi], where Vi = {C ∈ C1 | C ⊆ Di} ∪ {C ∈ C2 |
M(C) = Di} and Vq+1 = {C ∈ C2 |M(C) = ∅}.

If there is a solution with a matching that uses the matches given by M , then there is a
solution only combining cliques within every group Gi, 1 ≤ i ≤ q, since all cliques in Gi that
are not matched by M are completely contained in Di and hence would not be merged with
cliques in Gj for some i 6= j. This shows that with ` = q the requirements of Step 1 of our
generic approach are met.

Next we describe Step 2, that is, for every part Gi, we show how to compute a set Si

corresponding to all “representative” solutions. Note that all except at most d cliques from Gi

need to be merged into one clique that is then matched with Di, otherwise the matching
distance would be too large. For each clique in Gi that is not completely contained in Di we
already know that it is matched to Di, hence we need to merge all cliques of this kind to one
clique C?

i . Each clique in Gi that is completely contained in Di and has size at least d + 1
also needs to be merged to C?

i , otherwise the matching distance would be too large. For all
cliques of Gi that are completely contained in Di with size x for some 1 ≤ x ≤ d we merge
all but d cliques to C?

i . This leaves us with one big clique C?
i and d2 cliques of size at most d
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each. Now we can brute-force all possibilities to merge some of the remaining cliques to C?
i .

There are less than dd possibilities to do so and for each possibility we add to Si a tuple
representing the cost and gain of merging the cliques according to the partition. J

5 Conclusion

Our work provides a first thorough (parameterized) analysis of Dynamic Cluster Editing,
addressing a natural dynamic setting for graph-based data clustering. We deliver both
(parameterized) tractability and intractability results. Our positive algorithmic results
(fixed-parameter tractability and kernelization) are mainly of classification nature. To get
practically useful algorithms, one needs to further improve our running times.

The main difference to static Cluster Editing seems to come from the fact that all
six variants of Dynamic Cluster Editing remain NP-hard when the input graph is a
cluster graph (see Theorem 1). Moreover, Dynamic Cluster Editing (both matching-
and edge-based distance) is W[1]-hard with respect to the budget k (see Theorem 2) whereas
Cluster Editing is FPT with respect to k. The obvious approach to solve Dynamic
Cluster Editing is to compute (almost) all cluster graphs achievable with at most k edge
modifications, then from this set of cluster graphs pick one at distance at most d to the
target cluster graph. However, listing these cluster graphs is computationally hard. Indeed,
our W[1]-hardness results indicate that we might not do much better than using this simple
approach.

We mention in passing that our results can also be used to show fixed-parameter tract-
ability for the case when both input graphs are arbitrary graphs and one wants to find a
“compromise” cluster graph being close enough (in terms edge-based distance) to both input
graphs. The parameter herein is the symmetric distance of the edge sets.

We conclude with few open questions. First, we left open the parameterized complexity of
Dynamic Cluster Editing (deletion variant and completion variant) with matching-based
distance when parameterized by the budget k, see Table 1 in Section 1. Moreover, the
existence of polynomial-size problem kernels for our fixed-parameter tractable cases in case
of single parameters (budget k or distance d) is open.
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