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Abstract
Quantified modal logic is notorious for being undecidable, with very few known decidable frag-
ments such as the monodic ones. For instance, even the two-variable fragment over unary predic-
ates is undecidable. In this paper, we study a particular fragment, namely the bundled fragment,
where a first-order quantifier is always followed by a modality when occurring in the formula,
inspired by the proposal of [15] in the context of non-standard epistemic logics of know-what,
know-how, know-why, and so on.

As always with quantified modal logics, it makes a significant difference whether the domain
stays the same across possible worlds. In particular, we show that the predicate logic with the
bundle ∀� alone is undecidable over constant domain interpretations, even with only monadic
predicates, whereas having the ∃� bundle instead gives us a decidable logic. On the other
hand, over increasing domain interpretations, we get decidability with both ∀� and ∃� bundles
with unrestricted predicates, where we obtain tableau based procedures that run in PSPACE.
We further show that the ∃� bundle cannot distinguish between constant domain and variable
domain interpretations.
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1 Introduction

Propositional modal logics have been extensively used to reason about labelled transition
systems in computer science. These have led to the advent of temporal logics which have
been very successful in the formal specification and verification of a wide range of systems.
While these have been best used in the context of finite state reactive systems (over infinite
behaviours), in the last couple of decades, such logics have been developed for infinite state
systems as well ([1]). Finding decidable logics with reasonable complexity over infinite state
systems continues to be a challenge.
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43:2 Bundled Fragments of First-Order Modal Logic

Table 1 x, y refers to the two-variable fragment, P 1 refers to unary predicates. GF is the guarded
fragment. �i is multi-modal logic. �i(x) refers to having only 1 free variable inside the scope of
modalities (monodic fragment). p refers to propositions and / indicates having one of them.

Language Decidability Ref
P 1 undecidable [10]
x, y, p, P 1 undecidable [9, 6]
x, y, �i, single P 1 undecidable [11]
single x decidable [12, 4]
x, y/P 1/GF, �i(x) decidable [17]

A natural candidate to describe systems with unbounded data is First Order Logic (FO),
and it has been extensively used not only in reasoning about mathematical structures, but
also about databases and knowledge representation systems. When we wish to describe
data updates in such systems, we have labelled transition systems where each state carries
information on data, thus making them infinite state systems. It is then easy to specify
transitional properties of such systems in First Order Modal Logic (FOML).

However FOML is infamously hard to handle technically: usually you lose good properties
of first-order logic and modal propositional logic when putting them together. (FOML is also
the theatre in which numerous philosophical controversies have been played out.) On the
one hand, the decidable fragments of first-order logic have been well mapped out during the
last few decades ([3]). On the other hand, we have a thorough understanding of the robust
decidability of propositional modal logics [13]. However, when it comes to finding decidable
fragments of FOML, the situation seems quite hopeless: even the two-variable fragment with
one single monadic predicate is (robustly) undecidable over almost all useful model classes
[11].

On the positive side, certain guarded fragments of FOML that are decidable [17]. One
promising approach has come from the study of the so-called monodic fragment, which
requires that there be at most one free variable in the scope of any modal subformula.
Combining the monodic restriction with a decidable fragment of FO we often obtain decidable
fragments of FOML[17, 2], as Table 1 shows.

The reason behind this sad tale is not far to seek: the addition of � gives implicitly
an extra quantifier, over a fresh variable. Thus if we consider the two-variable fragment of
FOML, with only unary predicates in the syntax, we can use � to code up binary relations
and we ride out of the two-variable fragment as well as the monadic fragment of FO. The
monodic fragment restricts the use of free variables inside the scope of � significantly to get
decidability.

It is then natural to ask: apart from variable restrictions, is there some other way to
obtain syntactic fragments of FOML that are yet decidable?

One answer came, perhaps surprisingly, from epistemic logic. In recent years, interest has
grown in studying epistemic logics of knowing-how, knowing-why, knowing-what, and so on
(see [16] for a survey). As observed there most of the new epistemic operators essentially
share a unified de re semantic schema of ∃x� where � is an epistemic modality (B∃�-FOML).
For instance, ∃x�ϕ may mean that there exists a mechanism which you know such that
executing it will make sure that you end in a ϕ state [14]. Such reasoning leads to the
proposal in [15] of a new fragment of FOML by packing ∃ and � into a bundle modality, but
without any restriction on predicates or the occurrences of variables. Formally, B∃�-FOML
fragment is given by the syntax:

ϕ ::= Px | ¬ϕ | (ϕ ∧ ϕ) | ∃x�ϕ
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Note that in this language, quantifiers have to always come with modalities. Such a
language may seem weak but it already suffices to say many interesting things.

The following examples describe a database model that comes with a binary relation
R(x, y) to mean that x “is dominated by” y, and the states describe the possible updates of
the database before/after updates.

∃x� ¬∃y� (R(x, y)): There is a king element such that after any update, no element is
sure to dominate it later.
∀x♦ ∃y� (R(x, y)): Every element can be updated in such a way that another can
necessarily dominate it (∀x♦ is the dual of ∃x�).
∃x�

(
∃y� (R(x, y) ∧ ∃z� (R(x, z) ∧R(y, z))

)
: There is an element x that is dominated

by some element y after any possible update and further, there exists z which will always
dominate both x and y in any possible update from there on.

It may be noted that the domain does not need to be fixed uniformly at all states to
interpret these formulas. For instance, when we consider the first formula above, we refer to
some “active” element x present at the current state. It is necessary that x continues to be
active at successor states where we compare it against other elements, but there could be new
elements in the successor states. When we define the formal semantics in the next section,
it will be clear that these (and other similar) formulas may be interpreted over constant
domain or increasing domain models uniformly.

It is shown [15] that the B∃�-FOML fragment with arbitrary predicates is in fact PSPACE-
complete over FOML. Essentially, the idea is based on the ‘secret of success’ of modal
logic: guard the quantifiers, now with a modality. On the other hand, the same fragment is
undecidable over equivalence models, and this can be shown by coding first-order sentences
in this language using the symmetry property of the accessibility relation.

There are curious features to observe in this tale of (partial) success. The fragment
in [15] includes the ∃� bundle but not its companion ∀� bundle, and considers only
increasing domain models. The latter observation is particularly interesting when we notice
that equivalence models, where the fragment becomes undecidable, force constant domain
semantics.

The last distinction is familiar to first-order modal logicians, but might come across as
a big fuss to others. Since FOML extends FO, the models contain a first order structure at
each state. Then it makes a significant difference whether we work with a single data domain
fixed for the entire model, or whether this can vary across transitions (updates). In the latter
case, each possible world has its own domain, and quantification extends only over objects
that exist in the current world.

Given such subtlety, it is instructive to consider more general bundled fragments of FOML,
including both ∃� and ∀� as the natural first step, and study them over constant domain as
well as varying domain models. This is precisely the project undertaken in this paper, and
the results are summarized in Table 2. In this paper, the only varying domains we consider
are increasing ones, whereby the data domain may change across a transition but can only
increase monotonically.

As we can see, the ∃� bundle behaves better computationally than the ∀� bundle. For
∀�, even the monadic fragment is undecidable over constant domain models: we can encode
in this language, qua satisfiability, any first-order logic sentence with binary predicates by
exploiting the power of ∀�.

On the other hand, we can actually give a tableau method for the ∃� and ∀� fragment
together, similar to the tableau in [15], for increasing domain models. The crucial observation
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43:4 Bundled Fragments of First-Order Modal Logic

Table 2 Satisfiability problem classification for Bundled FOML fragment, P refers to predicates of
arbitrary arity and P 1 refers to monadic predicates. Models are either constant domain or increasing
domain.

Language Model Decidability Remark
∀�, P 1 Constant undecidable
∃�, P Constant decidable PSPACE-complete
∃�, ∀�, P Increasing decidable PSPACE-complete

is that such models allow us to manufacture new witnesses for ∃x� and ∃x♦ formulas on the
fly, giving considerable freedom in model construction, which is not available in constant
domain models.

Indeed, the well-behavedness of the ∃� bundle is further attested to by the fact that it is
decidable over constant domain models as well. So constant domain is not the culprit for
undecidability of this fragment over equivalence models. In fact, we show that the ∃� bundle
cannot distinguish increasing domain models and constant domain models.

The paper is structured as follows. After formal definitions of bundled fragments, we
present undecidability results for unary predicate ∀� fragment over FOML with constant
domain semantics and then move on to tableaux procedures for the decidable fragments.
We then show that the validities of ∃� over increasing domain are exactly the same as its
validities over constant domain models, and end the paper with another look at mapping the
terrain of these fragments.

2 Bundled fragment of First order modal logic

Let Var be a countable set of variables, and P be a countable set of predicate symbols, with
Pn ⊆ P denoting the set of all predicate symbols of arity n. We use x to denote a finite
sequence of variables in Var. We only consider the “pure” first order unimodal logic: that is,
the vocabulary is restricted to Var (no equality and no constants and no function symbols).

I Definition 1. Given Var and P, the bundled fragment of FOML denoted by B-FOML is
defined as follows:

ϕ ::= Px | ¬ϕ | (ϕ ∧ ϕ) | ∃x�ϕ | ∀x�ϕ

where x ∈ Var, P ∈ P. We denote the fragment B∃�-FOML to be the formulas which contains
only ∃�(and its dual ∀♦) formulas and B∀�-FOML which contains only ∀� ( and its dual
∃♦) formulas.

>,⊥,∨,→ are defined in the standard way. ∀x♦ϕ = ¬∃x�¬ϕ is the dual of ∃x�ϕ, and
∃x♦ϕ = ¬∀x�¬ϕ is the dual of ∀x�ϕ. With both bundles we can say, that every element is
guaranteed an update such that some element is updatable to dominate it: ∀x� ∃y� (R(x, y)).

The free and bound occurrences of variables are defined as in first-order logic, by viewing
∃x� and ∃x♦ as quantifiers. We denote Fv(ϕ) as the set of free variables of ϕ. We write ϕ(x)
if all the free variables in ϕ are included in x. Given a B-FOML formula ϕ and x, y ∈ Var,
we write ϕ[y/x] for the formula obtained by replacing every free occurrence of x by y. A
formula is said to be a sentence if it contains no free variables. As we will see later, ∃x�ϕ is
equivalent to �ϕ if x is not free in ϕ. Therefore B-FOML is indeed an extension of modal
logic.

The semantics presented below is the standard increasing domain semantics of FOML.
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I Definition 2. An (increasing domain) modelM for B-FOML is a tuple (W,D, δ,R, ρ) where,
W is a non-empty set of worlds, D is a non-empty domain, R ⊆ (W ×W ), δ : W → 2D
assigns to each w ∈ W a non-empty local domain s.t. wRv implies δ(w) ⊆ δ(v) for any
w, v ∈ W , and 1 ρ : (W ×P) →

⋃
n∈ω 2Dn such that ρ assigns to each n-ary predicate on

each world an n-ary relation on D.

Given a modelM, we use WM, DM, δM, ρM to denote its corresponding components.
We often write Dw for δM(w). A constant domain model is one where Dw = DM for any
w ∈WM. Note that constant domain models are special cases of increasing domain models.
A finite model is one with both WM finite and DM finite.

I Definition 3. Consider a modelM = (W,D, δ,R, ρ), w ∈W . To interpret free variables,
we also need a variable assignment σ : Var→ D. GivenM = (W,D, δ,R, ρ), w ∈W , and an
assignment σ, defineM, w, σ � ϕ inductively as follows:

M, w, σ � P (x1 · · ·xn) ⇔ (σ(x1), · · · , σ(xn)) ∈ ρ(P,w)
M, w, σ � ¬ϕ ⇔ M, w, σ 2 ϕ
M, w, σ � (ϕ ∧ ψ) ⇔ M, w, σ � ϕ andM, w, σ � ψ
M, w, σ � ∃x�ϕ ⇔ there is some d ∈ δ(w) such that

M, v, σ[x 7→ d] � ϕ for all v s.t. wRv
M, w, σ � ∃x♦ϕ ⇔ there is some d ∈ δ(w) and some v ∈W

such that wRv andM, v, σ[x 7→ d] � ϕ

where σ[x 7→ d] denotes an assignment that is the same as σ except for mapping x to d.

Note that the standard �α(♦α) of FOML can be expressed in this logic as ∃x�α(∃x♦α)
where x does not occur in α.

In general, when considering the truth of ϕ in a model, it suffices to consider σ : Fv(ϕ)→ D,
assignment restricted to the free variables occurring free in ϕ. When Fv(ϕ) = {x1, . . . , xn}
and {d1, . . . , dn} ⊆ D, We write M, w � ϕ[d] to denote M, w, σ � ϕ(x) for any σ such
that for all i ≤ n we have σ(xi) = di. Finally, when ϕ is a sentence, we can simply write
M, w |= ϕ.

Call σ relevant at w ∈ W if σ(x) ∈ δM(w) for all x ∈ Var. The increasing domain
condition ensures that whenever σ is relevant at w and we have wRv, then σ is relevant at v
as well. (In a constant domain model, every assignment σ is relevant at all the worlds.) We
say ϕ is valid, if ϕ is true on anyM, w w.r.t. any σ relevant at w. ϕ is satisfiable if ¬ϕ is
not valid. 2

3 Undecidability results

In this section we prove that the satisfiability problem for the B∀�-FOML fragment over
the class of constant domain models is undecidable even when the atomic predicates are
restricted to be unary.

Kripke[10] showed that full FOML with constant domain semantics is undecidable even
when the atomic predicates are only unary. Gabbay and Shehtman [6] showed that 2-
variable Monadic FOML with propositions is undecidable. Kontchakov et al [9] showed that

1 Note that we do not impose the restriction ρ(w,P ) ⊆ [δ(w)]n where arity of P is n, since it is not needed
for our technical development. For more details about this relaxation, refer Hughes and Creswell [8].

2 Note that the classical first-order principle dictum de omne: ∀xψ → ψ[y/x] is not expressible in our
language, but validity over relevant assignments gives us classical expressible analogues.
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43:6 Bundled Fragments of First-Order Modal Logic

propositions can be eliminated. We take another step in this journey. We show that over
constant domain models, the satisfiability problem for B∀�-FOML fragment is undecidable
over unary predicates.

Consider FO(R), the first order logic with only variables as terms and no equality, and
the single binary predicate R. We know that FO(R) satisfiability problem is undecidable [7].
To translate FO(R) sentences to B∀�-FOML formulas, we use two unary predicate symbols
P,Q in the latter. The main idea is that the atomic formula R(x, y) is coded up as the
B∀�-FOML formula ∃z♦

(
P (x) ∧Q(y)

)
, where z is a new variable, distinct from x and y.3

For any quantifier-free FO(R) formula β, we define the translation of β to B∀�-FOML
formula ϕβ inductively as follows.

Tr(R(x, y)) := ∃z♦
(
P (x) ∧Q(y)

)
, where z is distinct from x and y.

Tr(¬β) := ¬Tr(β) and Tr(β1 ∧ β2) := Tr(β1) ∧ Tr(β2).

Note that a quantifier-free FO formula is translated to a B∀�-FOMLformula with modal
(quantifier) depth 1. Now consider an FO(R) sentence α (having no free variables) presented
in prenex form: Q1x1 Q2x2 · · ·Qnxn(β) where β is quantifier-free. We define

ψα := Q1x1∆1 Q2x2∆2 · · ·Qnxn∆n (Tr(β))

where Qixi∆i := ∃xi♦ if Qi = ∃ and Qixi∆i := ∀xi� if Qi = ∀.
We claim that satisfiability is preserved over this translation with a few additional

formulas. Ideally, we want α to be satisfiable iff ψα is satisfiable. However, the translated
formula might be satisfiable simply because some Qi := ∀ and there are no successors for the
worlds at depth i and thus the corresponding subformula translation ∀xi�ψ′ trivially holds.
To avoid this, we use formula λn which ensures that for all i ≤ n and every world at depth i,
there is at least one successor: λn :=

n∧
j=0

(∀z�)j(∃z♦>)

Finally to ensure that ∃z♦(P (x) ∧Q(y)) is evaluated uniformly at the “tail” worlds, we
have: γn := ∀z1� ∀z2�

(
(∃z♦)n (∃z♦ (P (z1)∧Q(z2))→ (∀z�)n(∃z♦(P (z1)∧Q(z2))

)
where

z1, z2 and z do not appear in α.
SupposeM, u |= γn then notice that for any world w at a path length 2 from u, if there is

one world at distance n starting from w where ♦(P (z1)∧Q(z2)) holds, then ♦(P (z1)∧Q(z2))
holds at all worlds at a distance n starting from w. Notice that we use two dummy variables
z1 and z2 in γn. Hence to match the modal depths of the translated formulas, we need to
append two �′s to ψα and we need to use λn+2 instead of λn. Thus, the complete translation
is given by:

I Definition 4. Given a FO(R) sentence α := Q1x1Q2x2 · · ·Qnxnβ in prenex normal form,
the translated B∀�-FOML formula ϕα is given by: ϕα := (∀z�)2(ψα) ∧ λn+2 ∧ γn where z
does not occur in α.

Note that for any FO(R) sentence α of quantifier depth n, we get a translated formula
ϕα of modal (quantifier) depth n+ 3.

Before stating the theorem, we define some useful notation.

I Definition 5. For any FO(R) sentence α := Q1x1Q2x2 · · ·Qnxnβ in the prenex normal
form with β being quantifier-free, we define the following:

3 This is similar to the approach used by Kripke [10], specialized to the B∀�-FOML fragment.



A. Padmanabha, R Ramanujam, and Y. Wang 43:7

v0 v1 w0 w1 wn

ua P (a), Q(b), Q(c)

ub P (b), Q(c)

uc P (c), Q(c)

Figure 1 The translated model for (D, I) where D = {a, b, c} and I = {(a, b), (a, c), (b, c), (c, c)}.
For any sentence α ∈ FO(R) of quantifier depth n, (D, I) |= α iff M, v0 |= ϕα.

For all 1 ≤ i ≤ n let x1 · · ·xi be denoted by xi and the vector [d1, d2 · · · di] be denoted
by di where every dj ∈ D.
Let [xi 7→ di] denote the interpretation where σ(xj) = dj .
For 0 ≤ i < n, let α[i] = Qi+1xi+1 · · ·Qnxnβ and ψα[i] = Qi+1xi+1∆i+1 · · ·Qnxn∆n(ϕβ)
be the corresponding translated formula. Also, let α[n] = β and ψα[n] = Tr(β).

I Theorem 6. For any FO(R) sentence α := Q1x1Q2x2 · · ·Qnxnβ in prenex normal form,
α is satisfiable iff ϕα is constant domain satisfiable.

Proof. Let α := Q1x1 · · ·Qnxnβ, where β is quantifier-free. To prove (⇒), assume that
α is satisfiable. Let D be some domain such that (D, I) |= α where I ⊆ (D × D) is the
interpretation for R. We use the same D as the domain and construct a FOML model. Define
M = (W,R,D, δ, ρ) where:

W = {v0, v1} ∪ {wi | 0 ≤ i ≤ n} ∪ {ud | d ∈ D}.
R = {(v0, v1), (v1, w0)} ∪ {(wi, wi+1) | 0 ≤ i < n} ∪ {(wn, ud) | ud ∈W}.
δ(u) = D for all u ∈W .
For all i ∈ {0, 1} and 0 ≤ j ≤ n and vi, wj ∈W define ρ(vi, P ) = ρ(vi, Q) = ρ(wj , P ) =
ρ(wj , Q) = ∅ and for all ud ∈W, ρ(ud, P ) = {d} and ρ(ud, Q) = {c | (d, c) ∈ I}.

Note that M is a constant domain model. M is illustrated in Figure 1 for one such
translation. Note thatM has exactly one path of length n+ 2 starting from v0 which ends
at wn. Hence,M, v1 |= λn+2 ∧ γn.

Finally, we claim that M, v0 |= (∀z�)2ψα which completes the proof of the forward
direction. Again, since v0 → v1 → w0 is the only path of length 2 starting from v0, it is
enough to verify thatM, w0 |= ψα. We set up an induction to prove this.

Claim. For all 0 ≤ i ≤ n, wi ∈ W , for all vectors di ∈ Di of length i, we have D, I, [xi 7→
di] |= α[i] iffM, wi, [xi 7→ di] |= ψα[i].

The proof is by reverse induction on i. The base case, when i = n, we have α[n] = β.
Now we induct on the structure of β, to prove the claim. In the base case we have R(xi, xj).
By definition of ρ, if (a, b) ∈ I then M, ua, [xi → a, xj → b] |= (P (x) ∧ Q(y)) and hence
M, wn, [xi → a, xj → b] |= ∃z♦(P (x1) ∧Q(x2)). On the other hand ifM, wn, [xi → a, xj →
b] |= ∃z♦(P (x1) ∧ Q(x2)) then since M, ua 6|= P (b) for all b 6= a, it has to be the case
thatM, ua, [xi → a, xj → b] |= (P (x) ∧ Q(y)) and thus (a, b) ∈ I. The ¬ and ∧ cases are
standard.

For the induction step, we need to consider formulas α[i− 1] and ψα[i− 1] and the world
wi−1. Now α[i− 1] is either ∃xiα[i] or ∀xiα[i].

For the case when α[i− 1] is ∃xiα[i] the corresponding ψα[i− 1] is ∃xi♦(ψα[i]). We have
D, I, [xi−1 7→ di−1] |= ∃xiα[i] iff there is some c ∈ D such that
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43:8 Bundled Fragments of First-Order Modal Logic

D, I, [xi−1 7→ di−1, xi → c] |= α[i] iff (by induction hypothesis)
M, wi, [xi−1 7→ di−1, xi → c] |= ψα[i] iff
M, wi−1, [xi−1 7→ di−1] |= ∃xi♦ψα[i], as required.

For the case when α[i− 1] is ∀xiα[i], we have ψα[i− 1] = ∀xi�ψα[i]. Now,
D, I, [xi−1 7→ di−1] |= ∀xiα[i] iff
for all c ∈ D we have D, I, [xi−1 7→ di−1, xi → c] |= α[i]
iff (by induction hypothesis) for all c ∈ D we have
M, wi, [xi−1 7→ di−1, xi → c] |= ψα[i] iff
M, wi−1, [xi−1 7→ di−1] |= ∀xi�ψα[i] (since wi is the only successor of wi−1).

This completes (⇒) since (D, I) |= α[0] and we have α[0] = α. ThusM, w0 |= ψα.

To prove (⇐), suppose that ϕα is satisfiable, and letM = (W,D,R, γ, V ) be a constant
domain model such thatM, r |= ψα. Note that sinceM, r |= λn+2, every path starting from
r has length at least n+ 2 and there is at least one such path.

Let w be any world at height 2. Since M, r |= λn+2 ∧ (∀z�)2ψα, there is at least one
path of length n starting from w and also we have M, w |= ψα. Further since, M, r |=
γn, for any c, d ∈ D we have M, w, [z1 → c, z2 → d] |= (∃z♦)n(∃z♦(P (z1) ∧ Q(z2)) →
(∀z�)n(∃z♦(P (z1) ∧Q(z2)).

Define I = {(c, d) | c, d ∈ D andM, w, [x→ c, y → d] |= (∀z�)n∃z♦(P (x) ∧Q(y))}.
For 0 ≤ i ≤ n let Wi denote the set of all worlds at distance i from w with W0 = {w}.

The FO(R) model for α is given byM′ = (D, I). We now claim that the formula α is satisfied
in this model, which is proved by induction on n− i. Again, the relevant claim is as follows:

Claim. For all 0 ≤ i ≤ n and for all d1 · · · di ∈ D, we have:
(a) if there is some vi ∈Wi such thatM, vi, [xi 7→ di] |= ψα[i] then for all ui ∈Wi we have
M, ui, [xi 7→ di] |= ψα[i]

(b) D, I, [xi 7→ di] |= α[i] iff for all vi ∈Wi,M, vi, [xi 7→ di] |= ψα[i].

The proof is by induction on n − i. In the base case, i = n. Now we induct on the
structure of β (assume that β is in negation normal form).

In the base case we have R(xi, xj). To prove (a), if for some vn ∈ Wn suppose
M, vn, [xi → c, xj → d] |= (∃z♦)(P (xi) ∧ Q(xj)). Recall that M, w, [z1 → c, z2 → d] |=
(∃z♦)n(∃z♦(P (z1) ∧ Q(z2)) → (∀z�)n(∃z♦(P (z1) ∧ Q(z2)). Hence we have M, w, [z1 →
c, z2 → d] |= (∀z�)n(∃z♦(P (z1) ∧ Q(z2)). Thus, for all un ∈ Wn, we have M, un, [xi →
c, xj → d] |= (∃z♦)(P (xi) ∧Q(xj)).

For (b), (D, I) |= R(c, d) iffM, w, [xi → c, xj → d] |= (∃z�)n(∃z♦z(P (xi)∧Q(xj)) iff (by
definition of R) for all vn ∈Wn we haveM, vn, [xi → c, xj → d] |= (∃z♦)(P (xi) ∧Q(xj)).

For the case ¬R(x, y) let M,vn, [xi → c, xj → d] |= ¬(∃z♦(P (xi) ∧ Q(xj)) this implies
M,w, [xi → c, xj → d] 6|= (∃z�)n[∃z�(P (xi) ∧Q(xj)). Now suppose (a) does not hold, then
there is some v′n such that M, v′n, [xi → c, xj → d] |= (∃z♦(P (x) ∧ Q(y)) but this implies
M,w, [xi → c, xj → d] |= (∃z♦)n(∃z♦(P (x) ∧ Q(y)) and hence M,w, [xi → c, xj → d] |=
(∃z�)n(∃z�(P (x) ∧Q(y)) which contradicts the assumption. Further (b) follows but routine
induction.

The cases of ∨ and ∧ are standard.

For the induction step, consider the case when α[i − 1] is of the form ∃xiα[i]; the
corresponding translated formula is ∃xi♦ψα[i].

To prove (a), suppose for some vi−1 ∈Wi−1 we haveM, vi−1, [xi−1 7→ di−1] |= ∃x♦ψα[i]
then there is some c ∈ D and some successor of vi−1, v′i ∈ Wi such that M, v′i, [xi−1 7→
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di−1, xi → c] |= ψα[i]. Now by induction, for all ui ∈Wi, we haveM, ui, [xi−1 7→ di−1, xi →
c] |= ψα[i]. Further sinceM, r |= λn+2, every ui−1 ∈Wi−1 has at least one successor u′i ∈Wi.
Thus,M, ui−1, [xi−1 7→ di−1] |= ∃xi♦ψα[i].

For (b) suppose, D, I, [xi−1 7→ di−1] |= ∃xiα[i] then there is some c ∈ D such that
D, I, [xi−1 7→ di−1, xi → c] |= α[i] iff (by induction hypothesis)
M, vi, [xi−1 7→ di−1, xi → c] |= ψα[i] for every vi ∈Wi at height i. Now any wi−1 ∈Wi−1 is
at height < n and sinceM, r |= λn+2, there is some v′i ∈ Wi which is a successor of wi−1.
Hence, for all wi−1 ∈Wi−1 we haveM, wi−1, [xi−1 7→ di−1] |= ∃xi♦ψα[i].

On the other hand, suppose for all vi−1 ∈ Wi−1 we have M, vi−1, [xi−1 7→ di−1] |=
∃xi♦ψα[i]. Choose arbitrary wi−1 ∈Wi−1. By semantics, there is some c ∈ D and ui ∈Wi

which is a successor of wi−1 such that M, ui, [xi−1 7→ di−1, xi → c] |= ψα[i]. Now by
induction (a) at step i, for all u′ ∈ Wi we have M, u′, [xi−1 7→ di−1, xi → c] |= ψα[i] and
hence D, I, [xi−1 7→ di−1, xi → c] |= α[i]. Hence D, I, [xi−1 7→ di−1] |= ∃xiα[i].

For the case when α[i− 1] is of the form ∀xiα[i], to prove (a), suppose for some vi−1 ∈
Wi−1 we have M, vi−1, [xi 7→ di] |= ∀xi�ψα[i]. Choose arbitrary c ∈ D. Then for all
v′i ∈ Wi which are successors of vi−1, we have M, v′i, [xi−1 7→ di−1, xi → c] |= ψα[i].
Since there is at least once such successor of vi−1, by induction (a) for all ui ∈ Wi, we
have M, ui, [xi−1 7→ di−1, xi → c] |= ψα[i]. Now, note that for all wi−1 ∈ Wi we have
successors of wi−1 ⊆ Wi and c was chosen arbitrarily. Hence for all wi−1 ∈ Wi−1 we have
M, wi−1, [xi−1 7→ di−1] |= ∀xi�α[i].

To prove (b), suppose D, I, [xi−1 7→ di−1] |= ∀xiα[i]. Choose arbitrary c ∈ D. Then
D, I, [xi−1 7→ di−1, xi → c] |= α[i] and by induction hypothesis, for all vi ∈ Wi we have
M, vi, [xi−1 7→ di−1, xi → c] |= ψα[i]. Again for any wi−1 ∈Wi−1, since successors of wi are
in Wi−1 and c was chosen arbitrarily we haveM, wi−1, [xi−1 7→ di−1] |= ∀xi�ψα[i].

Finally, suppose for all wi−1 ∈ Wi−1 we have M, wi−1, [xi−1 7→ di−1] |= ∀xi�ψα[i].
Choose arbitrary c ∈ D. Since every ui ∈ Wi is a successor of some wi−1 ∈ Wi−1, for
all ui ∈ Wi we have M, ui, [xi−1 7→ di−1, xi → c] |= ψα[i]. Now by induction hypothesis,
D, I, [xi−1 7→ di−1, xi → c] |= α[i]. Since c was chosen arbitrarily, D, I, [xi−1 7→ di−1] |=
∀xiα[i]. J

4 Decidability results

Having seen that the B∀�-FOML (and hence full B-FOML) fragment is undecidable over
constant domain models, and noted that the ∃� bundle is decidable over increasing domain
models ([15]), it is natural to wonder whether the problem is undecidable because of ∃♦(∀�)
bundle or constant domain semantics, or both. In this section, we show that it is indeed
the combination that is the culprit, by proving that relaxing either of the conditions leads
to decidability. First, we show that the full B-FOML fragment is decidable over increasing
domain models, and then show that the ∃� bundle is decidable over constant domain models.
For technical reasons, we consider formulas given in negation normal form (NNF):

ϕ ::= Px | ¬Px | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ∃x�ϕ | ∃x♦ϕ | ∀x�ϕ | ∀x♦ϕ

Formulas of the form Px and ¬Px are literals. Clearly, every B-FOML-formula ϕ can be
rewritten into an equivalent formula in NNF. We call a formula clean if no variable occurs
both bound and free in it and every use of a quantifier quantifies a distinct variable. A
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finite set of formulas is clean if their conjunction is clean. Note that every B-FOML-formula
can be rewritten into an equivalent clean formula. (For instance, ∃x�P (x) ∨ ∃x�Q(x) and
P (x) ∧ ∃x�Q(x) are unclean formulas, whereas ∃x�P (x) ∨ ∃y�Q(y) and P (x) ∧ ∃y�Q(y)
are their clean equivalents.)

A tableau is a tree structure T = (W,V,E, λ) where W is a finite set, (V,E) is a rooted
tree and λ : V → L is a labelling map. Each element in L is of the form (w,Γ, F ), where
w ∈ W , Γ is a finite set of formulas and F ⊆ Var is a finite set. The intended meaning of
the label is that the node constitutes a world w that satisfies the formulas in Γ with the
“assignment” F , with each variable in F denoting one that occurs free in Γ and as we will
see, the assignment will be the identity.

Tableau procedures offer an intuitive way of constructing a canonical model for the given
formula. See Fitting and Mendelson [5] for details on tableau procedures for first order modal
logics.

4.1 Increasing domain models

Tableau procedures for first order logics typically add witnesses for existential quantifiers using
“new” elements (either variables or constants) while simultaneously instantiate universally
quantified formulas by the newly added ones. Tableau procedures for modal logics add
successor worlds for ♦ modalities that inherit formulas α when �α is in the parent node.
Clearly, we need a combination of both. Increasing domain semantics enables us to easily
add new witnesses “as we need”, so we consider this first.

One complication with bundled quantifiers and modalities is that we need to ass witnesses
for existential quantifiers and successor worlds “simultaneously”, in the sense that any decision
for one affects the choice of the other. To be specific, suppose that we are in an intermediate
step of tableau construction when we have formulas {∃x♦α,∃y�β,∀z♦ϕ,∀z′�ψ} at a node
w. We need new witnesses for x and y. Further, we need to add a new successor node wvx;
this new node inherits not only α but also β and ψ. But there is plenty more to consider.
We already have “active” variables F , which has been updated to F ′ now. For each y′ ∈ F ′
we need a ϕ-successor (which inherits β and ψ as well).

The (BR) rule in the tableau formalizes this intuition when there are multiple occur-
rences of the bundled formulas. In general if we have formulas {∃x1♦α1..∃xn1♦αn1} ∪
{∃y1�β1..∃yn2�βn2} ∪ {∀z1♦ϕ1..∀zm1ϕm1} ∪ {∀z′1�ψ1..∀z′m2

�ψ′m2
} at a world w, we need

two kinds of successors. The first kind is where a new successor wvxi is created for every
αi (where xi is the witness). These successors should satisfy all � formulas and hence we
add βj , ψl appropriately. The second kind are the ones that take care of ∀♦ formulas and
hence we have one successor wvy′

zk
for every ϕk and every y′ ∈ F ′. Again βj , ψl are added

appropriately to handle � constraints.
The (∨) and (∧) rules are standard and The rule (END) says that in the absence of any

Qx♦ formulas, with Q ∈ {∃,∀}, the branch does not need to be explored further, as only the
literals remain.

The corresponding tableau rules are given as follows:

I Definition 7. Tableau rules for increasing domain models for the B-FOML fragment are
given by:
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w : ϕ1 ∨ ϕ2,Γ, F
w : ϕ1,Γ, F | w : ϕ2,Γ, F

(∨)
w : ϕ1 ∧ ϕ2,Γ, F
w : ϕ1, ϕ2,Γ, F

(∧)

Given n1 ≥ 1 or m1 ≥ 1; n2,m2, s ≥ 0:

w : ∃x1♦α1 · · · , ∃xn1♦αn1 , ∃y1�β1, · · · , ∃yn2�βn2 ,

∀z1♦ϕ1, · · · , ∀zm1♦ϕm1 , ∀z′
1�ψ1, · · · , ∀z′

m2�ψm2 ,
r1 . . . rs, F

〈wvxi : αi, {βj | 1 ≤ j ≤ n2}, {ψl[z/z′
l] | z ∈ F ′, l ∈ [1,m2]}, F ′〉 where i ∈ [1, n1]

∪ 〈wvy′
zk : ϕk[y′/zk], {βj | 1 ≤ j ≤ n2}, {ψl[z/z′

l] | z ∈ F ′, l ∈ [1,m2]}, F ′〉

(BR)

where k ∈ [1,m1], y′ ∈ F ′

Given n2 ≥ 1 or m2 ≥ 1; s ≥ 0:

w : ∃y1�β1, · · · , ∃yn2�βn2 , ∀z′
1�ψ1, · · · , ∀z′

m2�ψm2 , r1 . . . rs, F

w : r1 . . . rs, F
(END)

where F ′ = F ∪ {xi | i ∈ [1, n1]} ∪ {yj | j ∈ [1, n2]} and r1 · · · rs ∈ lit (the literals).

Note that we use variables themselves as witnesses and F ′ extends F with one witness for
each αi (xi) and one for each βj (yj). Further, there is an implicit ordering on how rules are
applied: (BR) insists on the label containing no top level conjuncts or disjuncts, and hence
may be applied only after the ∧ and ∨ rules have been applied as many times as necessary.

For a given formula ϕ, we start building the tableau with the root node ({w}, {r}, ∅, L)
where L(r) = (w, {ϕ},Fv(ϕ)). A rule specifies that if a node labelled by the premise of the
rule exists at a node, it can cause one or more new nodes to be created as children with the
labels as given by the completion of the rule. A tableau is saturated when no more rules
can be applied. For any formula ϕ, we refer to the saturated tableau of ϕ simply as tableau
of ϕ.4

The rule (BR) looks complicated but actually asserts standard modal validities with
multiplicity. To see how it works, consider a modelM, a world u and assignment σ such
that (M, u, σ) |= ∃x♦α ∧ ∃y�β ∧ ∀z�ψ. Then there are some domain elements c, d ∈ δ(u),
and a successor world vc such that (M, vc, σ

′) |= α ∧ β ∧ ψ, where σ′(x) = σ′(z) = c and
σ′(y) = d. Further if (M, u, σ) |= ∀z♦ϕ ∧ ∀z′�ψ then for all d ∈ δ(u), we have a successor
world vd such that for all c ∈ δ(u), (M, vd, σ′) |= ϕ ∧ ψ, where σ′(z) = d and σ′(z′) = c.
When the domain elements is a finite set (C) which are themselves variables, then we could
as well write (M, vd, σ′) |= ϕ[z] ∧

∧
z′∈C ψ[z′]. The rule (BR) achieves just this, but has to

do all this simultaneously for all the quantified formulas at the node “in one shot”, and has
to keep the formulas clean too.

We need to check that the rule (BR) is well-defined. Specifically, if the label in the premise
contains only clean formulas, we need to check that the label in the conclusion does the same.
To see this, observe the following, with Γ being the set of clean formulas in the premise. Let
∆,∆′ stand for any modality.

Note that if ∃x∆ϕ and Qy∆′ψ are both in Γ, with Q any quantifier, then x 6= y and
neither x occurs free in ψ nor y occurs free in ϕ; also ϕ or ψ do not contain any subformula
that quantifies over x or y.

4 Refer Wang[15] for an illustration of a similar tableau construction.
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Hence, in the conclusion of (BR), every substitution of the form ϕ[z/y] results in a clean
formula, since z occurs free y does not occur at all. Similar argument holds for ψ. Hence
the resulting set of formulas in the successors are always clean.

Thus, maintaining “cleanliness” allows us to treat existential quantifiers as giving their
own witnesses. The “increase” in the domain is given by the added elements in F ′ in the
conclusion. Note that with each node creation either the number of boolean connectives or the
maximum quantifier rank of formulas in the label goes down, and hence repeated applications
of the tableau rules must terminate, thus guaranteeing that the tableau generated is always
finite.

A tableau is said to be open if it does not contain any node u such that its label contains
a literal r as well as its negation. Given a tableau T , we say a node (w : Γ, F ) is a branching
node if it is branching due to the application of BR. We call (w : Γ, F ) the last node of w, if
it is a leaf node or a branching node. Clearly, given any label w appearing in any node of a
tableau T , the last node of w uniquely exists. If it is a non-leaf node, every child of w is
labelled wu for some u.

Let tw denote the last node of w in tableau T and let λ(tw) = (w : Γ, F ). If it is a non-leaf
node, then it is a branching node with rule (BR) applying to it with F ′ as its conclusion. We
let Dom(tw) denote the set F ′ in this case and Dom(tw) = F otherwise.

I Theorem 8. For any clean B-FOML-formula θ in NNF let Fr = {x | x is free in θ} ∪ {z},
where z ∈ Var, z does not appear in θ. Then:
There is an open tableau from (r : {θ}, Fr) iff θ is satisfiable in an increasing domain model.

Proof. Note that we include a new variable z ∈ Fr to ensure that the domain is always
non-empty.

Let T be any (saturated) tableau T starting from (r : {θ}, Fr) where θ is clean. We
observe that for any node t with label (w : Γ, F ) in T , we have the following. If x ∈ F
and occurs in a formula in Γ then every occurrence of x is free. Further, every variable x
occurring free in a formula in Γ is in F . These are proved by induction on the height of t
using the fact that the rule (BR), when applied to clean formulas, results in clean formulas.

To prove the theorem, given an open tableau T starting from (r : {θ}, Fr), we define
M = (W,D, δ,R, ρ) where: W = {w | (w : Γ, F ) occurs in some label of T for some Γ, F};
D = Var; wRv iff v = wv′ for some v′; δ(w) = Dom(tw); x ∈ ρ(w,P ) iff Px ∈ Γ, where
λ(tw) = (w,Γ, F ). Clearly, if wRv then Dom(tw) ⊆ Dom(tv), and hence M is indeed an
increasing domain model.

Moreover ρ is well-defined due to openness of T . We now show that M, r is indeed a
model of θ, and this is proved by the following claim.

Claim. For any w ∈W if λ(tw) = (w : Γ, F ) and if α ∈ Γ then (M, w, idF ) |= α. (Below, we
abuse notation and write (M, w, F ) |= α for (M, w, idF ) |= α where idF = {(x, x) | x ∈ F}.)

The proof proceeds by reverse induction on the height of the node at which w occurs as
label. The base case is when the node considered is a leaf node and hence it is also the last
node with that label. The definition of ρ ensures that the literals are evaluated correctly in
the model and hence the base case follows.

For the induction step, the conjunction and disjunction cases, the current node is not the
last node. Thus the induction applies to its successor which will also have the same label w
and the claim follows.
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Now consider the application of rule (BR) at a branching node tw with label (w : Γ, F ).
Let 5

Γ = {∃xi♦αi | i ∈ [1, n1]} ∪ {∃yj�βj | j ∈ [1, n2]} ∪ {∀zk♦ϕk | k ∈ [1,m1]}
∪{∀z′l�ψl | l ∈ [1,m2]} ∪ {r1 . . . rs}.

By induction hypothesis, we have that for every i ≤ n1,M, wvxi , F
′ � αi∧

∧
j≤n2

βj ∧ψ′ and
for every y ∈ F ′ and k ∈ [1,m1],M, wvyzk

, F ′ � ϕk[y/zk] ∧ ψ′, where ψ′ =
∧z∈F ′

l≤m2
ψl[z/z′l].

Note that Dw = Dom(tw) = F ′. We need to show that M, w, F � α for each α ∈ Γ.
Every such α is either a literal or a bundle formula. The assertion for literals follows from
the definition of ρ. For ∃xi♦αi ∈ Γ we have the successor wvxi

whereM, wvxi
, F ′ |= αi and

(by observation at the beginning of the proof) Fv(αi) ⊆ F and hence we haveM, w, F |=
∃xi♦αi. Similarly for every ∀zk♦ϕk ∈ Γ and y ∈ Dw we have the successor wvyzk

where
M, wvyzk

, F |= ϕk[y/zk] and thusM, w, F |= ∀zk♦ϕk.
Now for the case ∃yj�βj : by induction hypothesis, for all successors wv#

z of w where
# is either empty or # ∈ F ′ we haveM, wv#

z , F
′ � βj . Since Fv(βj) ⊆ F ∪ {yj}, we have

M, wv#
z , idF [yj 7→ yj ] � βj for each wv#

z . Finally note that yj ∈ F ′ = Dw and hence we
haveM, w, idF � ∃yj�βj .

The case ∀z′l�ψl is similar. By induction hypothesis, we have M, wv#
z , F

′ � ψl[z/z′l]
for every z ∈ F ′ and again by cleanliness preservation, M, wv#

z , F
′[zl 7→ z] � ψl for all

z ∈ F ′ = Dw.
HenceM, w, idF � ∀z′l�ψl.
Finally note that for the root r, if tr = (r : Γ, F ) then F = Fr since domain changes only

for a (BR) rule which will not be the tr. Hence it follows thatM, r, Fr � θ.

Completeness of tableau construction. For the other direction, we show that all rule
applications preserve the satisfiability of the formula sets in the labels. This would ensure
that there is an open tableau since satisfiability of formula sets ensures lack of contradiction
among literals. It is easy to see that the rules (∧) preserves satisfiability and so does the
(END) rule, since F is non-empty at every step. If one of the conclusions of the (∨) rule is
satisfiable then so is the premise. It remains only to show that (BR) preserves satisfiability.
Consider a label set Γ of clean formulas at a branching node. Let

Γ = {∃xi♦αi | i ∈ [1, n1]} ∪ {∃yj�βj | j ∈ [1, n2]} ∪ {∀zk♦ϕk | k ∈ [1,m1]}
∪{∀z′l�ψl | l ∈ [1,m2]} ∪ {r1 . . . rs}.

be satisfiable at a modelM = {W,D, δ,R, ρ}, w ∈W and a relevant assignment η such
that η(x) ∈ Dw for all x ∈ Fv(Γ) andM, w, η �

∧
χ∈Γ χ.

By the semantics, we have the following:
(A) There exist a1, . . . , an1 ∈ Dw and v1 . . . vn1 ∈W where wRvi such that

M, vi, η[xi 7→ ai] � αi for all i ≤ n1.
(B) For all c ∈ Dw there exist vc1 . . . vcm1

∈W , where wRvcmi
such that

M, vck, η[zk 7→ c] |= ϕk for all for all k ≤ m1.
(C) There exist b1, . . . bn2 ∈ Dw such that for all v ∈W

if wRv thenM, v, η[yj 7→ bj ] |= βj for all j ≤ n2.
(D) For all d ∈ Dw and for all v ∈W if wRv thenM, v, η[z′l 7→ d] |= ψl for all l ≤ m2.

Moreover, due to the fact that Γ is clean, we observe that:
(O) x, y, z and z′ only occur in αi, βj , ϕk and ψl respectively.

5 Note that the argument holds even if either of n1 or m1 is 0.
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We now need to show:
(1) {αi} ∪ {βj | 1 ≤ j ≤ n2} ∪ {ψl[z/z′l] | z ∈ F ′, 1 ≤ l ≤ m2} is satisfiable for all i ≤ n1 .
(2) {ϕk[y′/zk]} ∪ {βj | 1 ≤ j ≤ n2}, {ψl[z/z′l] | z ∈ F ′, 1 ≤ l ≤ m2} is satisfiable for all

k ≤ m1, y′ ∈ F ′.

For (1): given i ≤ n1, due to (A), (C) and (O), we can pick an ai ∈ Dw and a successor
vi of w, and some b ∈ Dw such that

M, vi, η[xi 7→ ai; y 7→ b] � αi ∧
∧
j

βj

By (D), (O) and the fact that η only assigns variables the elements in Dw, we can also show
that

M, vi, η[xi 7→ ai; y 7→ b] �
∧
{ψl[z/z′l] | z ∈ F ′, 1 ≤ l ≤ m2}.

Note that η[xi 7→ ai; y 7→ b] is relevant for vi sinceM is an increasing domain model and
wRvi. This completes the proof for (1).

For (2): Given k ≤ m1 and y′ ∈ F ′. Suppose η(y′) = c ∈ Dw, then due to (B) we have a
successor vck of w such thatM, vck, η |= ϕk[y′/zk]. Now again, due to (C), (D), (O) and the
fact that η is a relevant assignment for w, we have:

M, vck, η[y 7→ b] |= ϕk[y′/zk] ∧
∧
j

βj ∧
∧
{ψl[z/z′l] | z ∈ F ′, 1 ≤ l ≤ m2}.

Again, η[y 7→ b] is also a relevant assignment for vck, and this completes the proof for (2). J

The theorem offers us a decision procedure for checking satisfiability. Note that not only
is the depth of the tableau linear in the size of the formula, but also that labels are never
repeated across siblings. Hence an algorithm can explore the tableau depth wise and reuse
the same space when exploring other branches. The techniques are standard as in tableau
procedures for modal logics. The extra space overhead for keeping track of domain elements
is again only linear in the size of the formula. Further, observe that every B-FOML formula
has an equivalent formula in negation normal form with linear blow-up. This way, we can
get a PSPACE-algorithm for checking satisfiability. The PSPACE lower bound follows from
propositional modal logic, of which our language is an extension.

I Corollary 9. Satisfiability of B-FOML fragment over increasing domain models is PSPACE-
complete.

4.2 Constant domain models
We now take up the second task, to show that over constant domain models, the culprit is
the ∀� bundle, by proving that the satisfiability problem for the B∃�-FOML is decidable
over constant domain models.

In these models, we need to fix the domain right at the start of the tableau construction
and use only these elements as witnesses. We do this by calculating a precise bound on how
many new elements need to be added for each subformula of the form ∃x�ϕ and include as
many as needed at the beginning of the tableau construction.

Let Sub(θ) stand for the finite set of subformulas of θ. Given a clean formula θ ∈
B∃�-FOML in NNF, for every ∃xj�ϕ ∈ Sub(θ) let Var∃(θ) = {x | ∃x�ϕ ∈ Sub(θ)}. Now,
cleanliness has its advantages: every subformula of a clean formula is clean as well. Hence,
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when θ1 and θ2 are both in Sub(θ), Var∃(θ1)∩Var∃(θ2) = ∅. Similarly, when θ1 ∈ Sub(θ) and
θ2 ∈ Sub(θ1), again Var∃(θ1) ∩ Var∃(θ2) = ∅.

Fix a clean formula θ in NNF with modal depth h. For every x ∈ Var∃(θ) define Varx to
be the set of h fresh variables {xk | 1 ≤ k ≤ h}, and let Var+(θ) =

⋃
{Varx | x ∈ Var∃(θ)} be

the set of new variables to be added. Note that Varx ∩ Vary = ∅ when x 6= y. Fix a variable
z not occurring in Var+(θ). Define Dθ = Fv(θ) ∪ Var+(θ) ∪ {z}.

The tableau rules for constant domain models for B∃�-FOML fragment are given by:

w : ϕ1 ∨ ϕ2,Γ, C
w : ϕ1,Γ, C | w : ϕ2,Γ, C

(∨)
w : ϕ1 ∧ ϕ2,Γ, C
w : ϕ1, ϕ2,Γ, C

(∧)

Given n, s ≥ 0; m ≥ 1:

w : ∃x1�ϕ1, . . . , ∃xn�ϕn,∀y1♦ψ1, . . . , ∀ym♦ψm, r1 . . . rs, C

〈(wvyyi : {ϕj [x
kj

j /xj ] | 1 ≤ j ≤ n}, ψi[y/yi], C′)〉where y ∈ Dθ, i ∈ [1,m]
(BRC)

Given n ≥ 1, s ≥ 0:

w : ∃x1�ϕ1, · · · , ∃xn�ϕn, r1, · · · rs, C
w : r1 · · · rs, C

(ENDC)

where C ⊆ Dθ and C ′ = C ∪ {xkj

j | 1 ≤ j ≤ n} where kj is the smallest number such that
x
kj

j ∈ Varxj
\ C and r1 . . . rs ∈ lit.

Note that the rule BRC starts off one branch for each y ∈ Dθ, since the ∀♦ connective
requires this over the fixed constant domain Dθ. C keeps track of the variables used already
along the path from the root till the current node. These are now fixed, so the witness
for ∃x�ϕ is picked from the remaining variables in Varx(θ). The variables in Varxj

are
introduced only by applying BR. Since |Varxj | is the modal depth, we always have a fresh xkj
to choose.

I Theorem 10. For any clean B∃�-FOML-formula θ in NNF, there is an open constant
tableau from (r, {θ},Fv(θ)) iff θ is satisfiable in a constant domain model.

The structure of the proof is very similar to that of Theorem 8. But we need to be careful
to check that sufficient witnesses exist as needed, since the domain is fixed at the beginning
of tableau construction. The proof details are presented in the appendix.

I Corollary 11. The satisfiability problem for B∃�-FOML-formulas over constant domain
models is PSPACE-complete.

5 Between Constant Domain and Increasing Domain

We now show that the B∃�-FOML fragment cannot distinguish increasing domain models
and constant domain models. Note that in FOML this distinction is captured by the Barcan
formula ∀x�ϕ→ �∀xϕ; but this is not expressible in B∃�-FOML.6

6 However, with equality added in the language, we can distinguish the two by:
∃x1�(∀x2♦(∀z♦(x1 = x2)) ∧ ∀y1♦(∃z�(∃y2�(y1 6= y2)) .
We can also accomplish this in the ∀� fragment: ∀x�∀y�¬P (x) ∧ ∀z�∃x♦¬P (x).
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The tableau construction of B∃�-FOML fragment over increasing domain models is a
restriction of the BR rule in the last section presented in [15].

Given n, s ≥ 0; m ≥ 1:

w : ∃x1�ϕ1, . . . , ∃xn�ϕn, ∀y1♦ψ1, . . . , ∀ym♦ψm, r1 . . . rs, F

〈(wvyyi : {ϕj | 1 ≤ j ≤ n}, ψi[y/yi], F ′)〉where y ∈ F ′, i ∈ [1,m] (BRW)

where F ′ = F ∪ {xj | j ∈ [1, n]}.

Note that BRC produces a constant domain tableau whereas BRW produces an increasing
domain tableau. Now, to prove that the B∃�-FOML fragment cannot distinguish increasing
domain models and constant domain models, it is sufficient to show that any formula
ϕ ∈ B∃�-FOML is satisfiable over increasing domain model is also satisfiable in a constant
domain model. We prove this by showing that any ϕ ∈ B∃�-FOML fragment that has an
open tableau also has a constant domain tableau. From this tableau, we can extract the
constant domain model where ϕ is satisfiable.

I Theorem 12. For any B∃�-FOML formula ϕ satisfiable on some increasing domain model,
the constant domain tableau of ϕ is open.

The proof is sketched in the appendix.

6 Discussion

We have considered a decidable fragment of FOML by bundling quantifiers together with
modalities, retaining the same complexity as propositional modal logic, while yet admitting
arbitrary k-ary predicates.

We note that choice of how this bundling is done is crucial. The ∃� bundle is shown to
be robustly decidable, for both constant domain and increasing domain semantics, whereas
the ∀� bundle is undecidable over constant domain models. Indeed, other ways of “bundling”
quantifiers and modalities is possible. For instance, the �∀ bundle seems to be similar to the
∀� that we have considered (over constant domain models) but �∃ seems to be interestingly
different. Indeed, we could proceed further and consider bundles determined by a shape
of quantifier prefix: ∃x1 . . . ∃xn� or ∃x1 . . . ∃xn∀z1 . . . ∀zn� might be worthy of study as a
bundle as well. In this sense, this paper is envisaged as a study of “bundling” quantifiers
and modalities and its impact on decidability rather than proposing the definitive bundled
fragment.

An obvious extension is to consider the language with constants, function symbols and
equality. This would be of importance in the study of systems with unbounded data. A
crucial direction for further development is to consider the transitive closure modality so
that reachability properties are specified. The tableau procedures presented already give us
a basis for exploring model checking algorithms, but working with finite presentations of
data domains needs some care.
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Appendix

Proof of Theorem 10
I Theorem 10. For any clean B∃�-FOML-formula θ in NNF, there is an open constant
tableau from (r, {θ},Fv(θ)) iff θ is satisfiable in a constant domain model.

We show that existence of a constant open tableau is equivalent to satisfiability over
constant domain models. First, the following observation on the rule (BR) is useful.

I Proposition 13. The rule (BRC) preserves cleanliness of formulas: if a tableau node is
labelled by (w : Γ, C), Γ is clean, and a child node labelled (wv : Γ′, C ′) is created by (BR)
then Γ′ is clean as well.
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An important corollary of this proposition is that for all x ∈ Dθ, at any tableau node
all occurrences of x in Γ are free. Therefore, for any formula of the form ψi[z/yi] in the
conclusion of the rule, z is free and yi does not occur at all.

The following fact, familiar from first order logic, will be handy in the proof.

I Proposition 14. For any FOML formula ϕ and any modelM, w and any variable z:

M, w, σ � ϕ[z/x] ⇐⇒ M, w, σ′[x 7→ σ(z)] � ϕ

if σ(y) = σ′(y) for all y 6= x with y occurring free in ϕ.

Now we shall prove Theorem 10.

Proof. To prove the soundness of tableau construction, given an open tableau T from the
root node labelled (r : {θ},Fv(θ)), we defineM = {W,Dθ, R, ρ} where W = {w | (w : Γ, C)
is a label at some node in T}. and wRv iff v = wv′ for some v′. For the valuation, we have
x ∈ ρ(w,P ) iff Px ∈ Γ, where λ(tw) = (w,Γ).

By definition, Dθ is not empty. Further, ρ is well-defined due to the openness of T . As
before, we prove thatM, r is indeed a model of θ, and this is proved by the following claim.

Claim. For any tree node w in T if λ(tw) = (w : Γ, C) and if α ∈ Γ then (M, w, idC) |= α.
(Again, we abuse notation and write (M, w, C) |= α for (M, w, idC) |= α and denote C(w)
to be the C associated with the node labelled w.)

The proof proceeds exactly as before for all the rules except for a slight modification for
the (BRC) rule. We shall consider only this rule in the proof here.

Suppose (w : Γ, C) is a branching node where

Γ = {∃x1�ϕ1 . . . ∃xn�ϕn,∀y1♦ψ1 . . . ∀ym♦ψm, r1, . . . rs}.

By induction hypothesis,

M, wvyyi
, C ′(wvyyi

) � ψi[y/yi] ∧
n∧
1
ϕj [x

kj

j /xj ]

for every y ∈ Dθ and i ∈ [1,m]. We need to show thatM, w, C � χ for each χ ∈ Γ.
The assertion for literals in Γ follows from the definition of ρ. For each ∃xj�ϕj ∈ Γ and

each wvyyi
, with y ∈ Dθ, we have M, wvyyi

, C ′ � ϕj [x
kj

j /xj ] by induction hypothesis. It is
clear that {xkj

j | 1 ≤ j ≤ n} are not free in ϕj since they are chosen to be new. Further,
since xkj

j are not free in ϕj , by Proposition 14, M, wvyyi
, idC [xj 7→ x

kj

j ] � ϕj for all wvyyi
.

ThereforeM, w, C � ∃xj�ϕj .
For ∀yi♦ψi ∈ Γ, and y ∈ Dθ, by induction hypothesis, we haveM, wvyyi

, C ′ |= ψi[y/yi].
By Proposition 13 and its corollary, yi is not free in ψi[y/yi] and hence by Proposition 14,
M, wvyyi

, idC [yi 7→ y] � ψi. Since this holds for each y ∈ Dθ, we getM, w, idC � ∀yi♦ψi for
each i.

Thus, it follows thatM, r, σ(r) � θ.

To prove the completeness of the tableau construction, we show that rule applications
preserve the satisfiability of the formula set. Again, we only discuss the BRC case.

Consider a label set Γ of clean formulas at a branching node. Let

Γ = {∃xj�ϕj | j ∈ [1, n]} ∪ {∀yi♦ψi | j ∈ [1,m]} ∪ {r1 . . . rs}
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be satisfiable in a model M = {W,D,R, ρ}, w ∈ W and an assignment η such that
M, w, η � ϕ for all ϕ ∈ Γ.

By the semantics:
(A) for all c ∈ DM there exist vc1 . . . vcm ∈W , successors of w such thatM, vci , η[yi 7→ c] |= ψi

for each i ∈ [1,m].
(B) there exist c1, . . . cn ∈ D such that for all v ∈W , if wRv thenM, v, η[xj 7→ cj ] |= ϕj .

By cleanliness of formulas in Γ, each xj is free only in ϕj , and each yi is free only in ψi.
Thus we can merge the assignments without changing the truth values of ϕj and ψi, and
obtain:
(A’) for all c ∈ D there exist vc1 . . . vcm ∈W , successors of w, such that

M, vci , η[xj 7→ cj , yi 7→ c] |= ϕ1 ∧ · · · ∧ ϕn ∧ ψi

where i ∈ [1,m].

Fixing a y ∈ Dθ and an i ∈ [1,m], in the following we show that {ϕj [x
kj

j /xj ] | 1 ≤ j ≤
n} ∪ {ψi[y/yi]} is satisfiable. There are two cases to be considered:
1. y is not one of xkj

j . First since η is an assignment for all the variables in Var, we
can suppose η(y) = b ∈ D. By (A′) above, there exists a successor vbi of w such that
M, vbi , η[xj 7→ cj , yi 7→ b] |= ϕ1 ∧ · · · ∧ ϕn ∧ ψi.
Note that xj and yi are not in Dθ thus they are different from y. On the other hand,
by cleanliness of Γ, yi does not occur in ϕj and η(y) = b, hence M, vbi , η[xj 7→ cj ] |=
ϕ1 ∧ · · · ∧ ϕn ∧ ψi[y/yi].
Finally, since each xj only occurs in ϕj and each x

kj

j does not occur in ϕ1 . . . ϕj and

ψi[y/yi], we have: M, vbi , η[xkj

j 7→ cj ] |= ϕ1[xk1
1 /x1] ∧ · · · ∧ ϕn[xkn

n /xn] ∧ ψi[y/yi].
2. y is xkj

j for some j. Then we pick cj , the witness for xj , and by (A′), M, v
cj

i , η[xj 7→
cj , yi 7→ cj ] |= ϕ1 ∧ · · · ∧ ϕn ∧ ψi.
Since y is xkj

j , we haveM, v
cj

i , η[xj 7→ cj , x
kj

j 7→ cj ] |= ϕ1 ∧ · · · ∧ ϕn ∧ ψi[y/yi].

Now proceeding similarly as in the case above we can show that: M, v
cj

i , η[xkj

j 7→ cj ] |=
ϕ1[xk1

1 /x1] ∧ · · · ∧ ϕn[xkn
n /xj ] ∧ ψi[y/yi].

Finally note that all formulas resulting after applying (BRC) rule will be of the form A′ and
is satisfiable as argued above. This completes the proof of the theorem. J

Proof of Theorem 12
I Theorem 12. For any B∃�-FOML formula ϕ satisfiable on some increasing domain model,
the constant domain tableau of ϕ is open.

Proof. (Sketch) We give a proof sketch. Consider a clean B∃�-FOML formula ϕ, and let
ϕ′ = ϕ ∧

∧
{∃x′�> | x′ ∈ Var+(ϕ)} (recall that Var+(ϕ) =

⋃
x∈Var∃(ϕ) Varx). Clearly ϕ is

satisfiable in an increasing domain model iff ϕ′ is as well. Let T be an open tableau for ϕ′.
We show that T can be transformed into a constant open tableau T ′ for ϕ.

Suppose T has no applications of (BR), it is also a constant tableau and we are done,
so suppose that T has at least one application of the rule (BR). By construction, all the
x′ ∈ Var+(ϕ) are added to the domain of the root, thus they are also at all the local domains
in T . Note that we may have more elements in the local domains, such as x that get added
when we apply BR to ∃x�ϕ, and therefore there are more branches than needed for a constant
domain tableau of ϕ (such as those for x).

We can get rid of them by the following process:
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Fix ψ = ∃x�θ ∈ Sub(ϕ):
Fix a node s where BR rule is applied and ψ is in s. Since ϕ is clean, there is no other
node in any path of T from the root passing through s such that ∃x�θ′ ∈ Sub(ϕ)
occurs for some θ′. Let m be the modal depth of ϕ. The path from the root to the
predecessor of s can use at most m− 1 different variables in Varx(ϕ) when generating
successors by applying the BR rule to some ∀y♦θ formula. Pick the first xh ∈ Varx
which is not used in the path up to this node.
Delete all the descendent nodes of s that are named using xh when applying BR to
some ∀y♦ formula, i.e., the nodes named in the form of stvxh

y where t can be empty.
It is not hard to see that the resulting sub-tableau rooted at s has no occurrence of xh
at all since xh could only be introduced among the children of s using BR.
Rename all the occurrences of x by xh (in formulas and node names) in all the
descendent nodes of s. Then the branching structure from the sub-tableau rooted at s
will comply with the BR rule for constant-domain tableau.
Repeat the above for all the application nodes of the BR rule w.r.t. ψ

Repeat the above procedure for all ψ of the form ∃x�θ ∈ Sub(ϕ).

The core idea is to simply use the newly introduced variable x as if it were xh in a
constant-domain tableau. Note that each branch-cutting operation and renaming operation
(by new variables) above will preserve openness, since openness is merely about contradictions
among literals. We then obtain a constant domain tableau by setting the domain as Dϕ. J

Note that the constant domain tableau T of ϕ constructed can be viewed as a sub-
tree embedded inside the increasing domain tableau T ′ of ϕ′. However, showing that it is
generated precisely by the tableau rules in Section 4.2 involves some tedious detail.
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