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Abstract
We prove that the reachability relation of two-counter machines with one zero-test and one reset
is Presburger-definable and effectively computable. Our proof is based on the introduction of two
classes of Presburger-definable relations effectively stable by transitive closure. This approach
generalizes and simplifies the existing different proofs and it solves an open problem introduced
by Finkel and Sutre in 2000.
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1 Introduction

Context. Vector addition systems with states (VASS) are equivalent to Petri nets and
to counter machines without the ability to test counters for zero. Although VASS have
been studied since the 1970’s, they remain fascinating since there are still some important
open problems like the complexity of reachability (known between ExpSpace and cubic-
Ackermannian) or even an efficient (in practice) algorithm to solve reachability. In 1979,
Hopcroft and Pansiot [13] gave an algorithm that computes the Presburger-definable reach-
ability set of a 2-dim VASS, hence VASS in dimension 2 are more easy to verify and they
enjoy interesting properties like reachability and equivalence of reachability sets, for instance,
are both decidable. Unfortunately, these results do not extend in dimension 3 or for 2-dim
VASS with zero-tests on the two counters: the reachability set (hence also the reachability
relation) is not Presburger-definable for 3-dim VASS [13]; reachability, and all non-trivial
problems, are undecidable for 2-dim VASS extended with zero-tests on the two counters.
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31:2 Reachability for Test/Reset Two-Counter Machines

Table 1 Reachability sets (post∗ and pre∗) and reachability relation ( ∗−→) for extensions of 2-
dimensional VASS. We let ' denote the existence of mutual reductions between two classes of
machines that preserve the effective Preburger-definability of the reachability sets and relation. The
contributions of this paper are indicated in boldface.

Class Post∗ Pre∗ ∗−→

T1Tr2 ' T1,2 ' T1,2R1,2Tr1,2 Not Recursive Not Recursive Not Recursive
T1R2 ' T1R1,2Tr1 Eff. Presburger Eff. Presburger Eff. Presburger
R1,2Tr1 ' R1,2Tr1,2 Eff. Presburger Eff. Presburger Eff. Presburger

T1 ' T1R1Tr1 Eff. Presburger Eff. Presburger Eff. Presburger
2-dim VASS Eff. Presburger Eff. Presburger Eff. Presburger

In 2004, Leroux and Sutre proved that the reachability relation of a 2-dim VASS is
also effectively Presburger-definable [17] and this is not a consequence of the Presburger-
definability of the reachability set. As a matter of fact, there exist counter machines (even
3-dim VASS) with a Presburger-definable reachability set but with a non Presburger-definable
reachability relation [13, 17]. But, for all recursive 2-dim extended VASS, the reachability
sets are Presburger-definable [11, 10]. More precisely, let us denote by TIRJTrK , with
I, J,K ⊆ {1, 2}, the class of 2-dim VASS extended with zero-tests on the I-counters, resets
on the J-counters and transfers from the K-counters. For instance, T{1}R{1,2}Tr∅, also
written T1R1,2 for short, is the class of 2-dim VASS extended with zero-tests on the first
counter, resets on both counters, and no transfer. The relations between classes from [11] are
recalled in Figure 1 and the class T1R2 has been shown to be the “maximal” class having
Presburger-definable post∗ and pre∗ reachability sets [11]. However, it was unknown whether
the Presburger-definable reachability set post∗ can be effectively computed or not. In fact,
even the boundedness problem (is the reachability set post∗ finite?) was open for this class.

Contributions. Our main contribution is a proof that the reachability relation of counter
machines in T1R2 is effectively Presburger-definable. Our proof relies on the effective
Presburger-definability of the reachability relation for 2-dim VASS [17]. The impact of our
result is threefold.

We solve the main open problem in [11] which was the question of the existence of
an algorithm that computes the Presburger-definable reachability set for two-counter
machines in T1R2.
In fact, we prove a stronger result, namely that the reachability relation of counter machines
in T1R2 is Presburger-definable and computable. This completes the decidability picture
of 2-dim extended VASS.
We provide a simple proof of the effective Presburger-definability of the reachability
relation in T1R2. As an immediate consequence, one may deduce all existing results [11,
10] for 2-dim extended VASS and our proof unifies all different existing proofs on 2-dim
extended VASS, including the proof in [6] that the boundedness problem is decidable for
the class R1,2 of 2-dim VASS extended with resets on both counters.

Related work. VASS have been extended with resets, transfers and zero-tests. Extended
VASS with resets and transfers are well structured transition systems [9] hence termination
and coverability are decidable; but reachability and boundedness are undecidable (except
boundedness which is decidable for extended VASS with transfers) [5, 6]. The reachability and
place-boundedness problems are decidable for extended VASS with one zero-test [19, 3, 8, 4].
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B
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c1 ← c1 + 1

c1 == 0

c1 == 0

c2 ← 0

(c1, c2)← (c1 − 2, c2 + 1)

(c1, c2)← (c1 − 2, c2 + 4)

(c1, c2)← (c1 + 1, c2 − 1)

Figure 1 A 2-dimensional VASS extended with zero-tests on the first counter and resets on the
second counter (shortly called TRVASS).

Recently, Akshay et al. studied extended Petri nets with a hierarchy on places and with
resets, transfers and zero-tests [1]. As a counter is a particular case of a stack, it is natural
to study counter machines with one stack. Termination and boundedness are decidable for
VASS with one stack [16] but surprisingly, the decidability status of the reachability problem
is open for VASS with one stack, both in arbitrary dimension and in dimension 1. We only
know that reachability and coverability for VASS with one stack are Tower-hard [14, 15].

Outline. We present in Section 2 an example of 2-dim extended VASS in T1R2. This
example motivates the study of two classes of binary relations on natural numbers, namely
diagonal relations in Section 3 and horizontal relations in Section 4. These two classes of
relations are combined in Section 5 into a new class of one counter automata with effectively
Presburger-definable reachability relations. These automata are used in Section 6 to compute
the reachability relations of 2-dim extended VASS in T1R2.

For the remainder of the paper, 2-dim extended VASS in T1R2 are shortly called TRVASS.

2 Motivating Example

Figure 1 depicts an example of a TRVASS. There are four states A, B, C and D, and two
counters c1 and c2. Following the standard semantics of vector addition systems, these
counters range over natural numbers. The operations labeling the three loops and the edge
from A to C are classical addition instructions of vector addition systems. In dimension 2,
these addition instructions are always of the form (c1, c2)← (c1 + a1, c2 + a2) where a1 and
a2 are integer constants. For instance, the instruction (c1, c2)← (c1 − 2, c2 + 1) labeling the
loop on B means that c1 is decremented by 2 and at the same time c2 is incremented by 1.
As the counters must remain nonnegative, this instruction may be executed (i.e., the loop on
B may be taken) only if c1 ≥ 2. In addition to classical addition instructions, TRVASS may
test the first counter for zero, written c1 == 0, and reset the second counter to zero, written
c2 ← 0.
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31:4 Reachability for Test/Reset Two-Counter Machines

The operational semantics of a TRVASS is given, as for vector addition systems, by an
infinite directed graph whose nodes are called configurations and whose edges are called steps.
Formal definitions will be given in Section 6. For the TRVASS of Figure 1, configurations
are triples q(x1, x2) where q ∈ {A,B,C,D} is a state and x1, x2 ∈ N are values of the
counters c1 and c2, respectively. It is understood that N denotes the set of natural numbers
{0, 1, 2, . . .}. There is a step from a configuration p(x1, x2) to a configuration q(y1, y2),
written p(x1, x2)→ q(y1, y2), if there is an edge from p to q labeled by an operation (1) that
can be executed from the counter values (x1, x2) and (2) whose execution changes the counter
values from (x1, x2) to (y1, y2). Here, we have the steps B(5, 1)→ B(3, 2), C(0, 2)→ D(0, 2)
and D(7, 3)→ A(7, 0). But there is no step from C(1, 2) and there is no step to A(7, 1).

The reachability relation of a TRVASS, written ∗−→, is the reflexive-transitive closure of
the step relation →. The reachability relation is one of the main objects of interest for
verification purposes. Coming back to our example of Figure 1, we have A(1, 0) ∗−→ A(2, 0)
since we have the following contiguous sequence of steps:

A(1, 0)→ C(2, 0)→ C(0, 4)→ D(0, 4)→ D(1, 3)→ D(2, 2)→ A(2, 0)

By removing the steps → D(1, 3)→ D(2, 2), we also get that A(1, 0) ∗−→ A(0, 0). In fact, it
can be shown that A(1, 0) ∗−→ A(y, 0) for every y ∈ N, thanks to the following pattern, where
k denotes an odd natural number and i ∈ {1, 2}:

A(k, 0)→ C(k + 1, 0) ∗−→ D(2k + 2, 0) ∗−→ D(k + i, k + 2− i) ∗−→ A(k + i, 0)

One may wonder whether it also holds that A(x, 0) ∗−→ A(y, 0) for every x, y ∈ N. A
consequence of our main result (see Theorem 14) is that we can do even better: we can
compute the set of pairs (x, y) ∈ N×N such that A(x, 0) ∗−→ A(y, 0), as a formula in Presburger
arithmetic1.
I Remark. It is well-known that zero-tests are more expressive than resets. Indeed, a reset
c1 ← 0 can be simulated by a loop c1 ← c1 − 1 followed by a zero-test c1 == 0. A crucial
difference between resets and zero-tests is monotony. In a 2-dimensional VASS extended with
resets on both counters (shortly called RRVASS), larger counter values are always better,
in the sense that every behavior from a configuration q(x1, x2) can be reproduced from a
configuration q(x′1, x′2) with x′1 ≥ x1 and x′2 ≥ x2. This is not true anymore in presence
of zero-tests. This difference makes the analysis of TRVASS more complex than that of
RRVASS, as illustrated in the following example.

I Example 1. Consider the RRVASS obtained from the TRVASS of Figure 1 by replacing
the two zero-tests (from B to D and from C to D) with resets c1 ← 0. Suppose that we want
to show that c1 is unbounded in state A from A(1, 0), i.e., A(1, 0) ∗−→ A(y, 0) for infinitely
many y ∈ N. A natural strategy is, starting from A(x, 0) with x ≥ 1, to reach D(0, y) with y
as large as possible (without visiting A on the way), and then to reach A(y, 0) by taking the
“transfer” loop on D as much as possible. By iterating this strategy, we get

A(1, 0) ∗−→ D(0, 4) ∗−→ A(4, 0) ∗−→ D(0, 8) ∗−→ A(8, 0) ∗−→ D(0, 16) ∗−→ A(16, 0) · · ·

This witnesses that c1 is unbounded in state A from A(1, 0). In comparison, this strategy
does not work for the original TRVASS of Figure 1. Indeed, we get

A(1, 0) ∗−→ D(0, 4) ∗−→ A(4, 0) ∗−→ D(0, 2) ∗−→ A(2, 0) ∗−→ D(0, 1) ∗−→ A(1, 0)

by following this strategy. This is because the only way to reach D from a configuration
A(x, 0) with x even is via B.

1 Recall that Presburger arithmetic [18] is the first-order theory of the natural numbers with addition.
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The rest of the paper is devoted to the proof that the reachability relation of a TRVASS
is effectively Presburger-definable, i.e., there is an algorithm that, given a TRVASS and two
states p and q, computes a formula ϕ(x1, x2, y1, y2) in Presburger arithmetic whose models
are precisely the quadruples (x1, x2, y1, y2) of natural numbers such that p(x1, x2) ∗−→ q(y1, y2).
It is already known that the reachability relation is effectively Presburger-definable in the
absence of zero-tests and resets [17]. Obviously, the counter c1 is zero after a zero-test
c1 == 0 and, similarly, the counter c2 is zero after a reset c2 ← 0. So we focus on the
reachability subrelations between configurations where at least one of the counters is zero,
for instance, {(x, 0, 0, y) | p(x, 0) ∗−→ q(0, y)}. Such a subrelation can be seen as a (binary)
relation on N. This motivates our study in Sections 3 and 4 of two classes of relations on N
that naturally stem from the operational semantics of TRVASS.

3 Diagonal Relations

We call a relation R ⊆ N× N diagonal when (x, y) ∈ R implies (x+ c, y + c) ∈ R for every
c ∈ N. For instance, the identity relation on N, namely {(x, x) | x ∈ N}, is a diagonal relation.
The usual order ≤ on natural numbers is also a diagonal relation. It is readily seen that the
class of diagonal relations is closed under union, intersection, composition, and transitive
closure. In this section, we show that the transitive closure of a diagonal Presburger-definable
relation is effectively Presburger-definable. Our study of diagonal relations is motivated by
the following observation.
I Remark. The reachability subrelations {(x, y) | p(0, x) ∗−→ q(0, y)}, where p and q are
states, are diagonal in a TRVASS with no reset. Analogously, the reachability subrelations
{(x, y) | p(x, 0) ∗−→ q(y, 0)} are diagonal in a TRVASS with no zero-test.

I Example 2. Let us consider the diagonal relation R ⊆ N × N defined by (x, y) ∈ R if,
and only if, the Presburger formula x ≤ y ∧ y ≤ 2x holds. It is routinely checked that
the transitive closure R+ of R satisfies (x, y) ∈ R+ if, and only if, the Presburger formula
(x = 0⇔ y = 0) ∧ x ≤ y holds.

We fix, for the remainder of this section, a diagonal relation R ⊆ N× N. Consider the
subsets IR and DR of N defined by

IR
def= {x | ∃y : (x, y) ∈ R ∧ x < y} DR

def= {y | ∃x : (x, y) ∈ R ∧ x > y}

Since R is diagonal, the sets IR and DR are upward-closed, meaning that x ∈ IR implies
x′ ∈ IR for every x′ ≥ x (and similarly for DR). If x ∈ IR then (x, x + δ) ∈ R for some
positive integer δ > 0. Since R is diagonal, (x′, x′ + δ) ∈ R for every x′ ≥ x. So the pair
(x, x+ δ) can be viewed as an “increasing loop” that applies to every x′ ≥ x. Similarly, if
y ∈ DR then there is a “decreasing loop” (y + δ, y) ∈ R that applies to every y′ ≥ y. We are
mostly interested in increasing and decreasing loops that apply to every element of IR and
DR, respectively. This leads us to the following definitions:

α
def=

{
min{δ > 0 | ∀x ∈ IR : (x, x+ δ) ∈ R} if IR 6= ∅
0 otherwise

(1)

β
def=

{
min{δ > 0 | ∀y ∈ DR : (y + δ, y) ∈ R} if DR 6= ∅
0 otherwise

(2)

Let us explain why the natural numbers α and β are well-defined. If IR 6= ∅ then there
exists δ > 0 such that (m,m + δ) ∈ R where m = min IR. It follows from diagonality
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31:6 Reachability for Test/Reset Two-Counter Machines

of R that (x, x + δ) ∈ R for every x ≥ m, hence, for every x ∈ IR. Therefore the set
{δ > 0 | ∀x ∈ IR : (x, x + δ) ∈ R} is non-empty, and so it has a minimum. A similar
argument shows that {δ > 0 | ∀y ∈ DR : (y + δ, y) ∈ R} is non-empty when DR 6= ∅.

We are now almost ready to provide a characterization of the transitive closure of R+.
To do so, we introduce the relations IncR and DecR on N defined by

IncR(x, y) def= (x = y) ∨ (x ∈ IR ∧ ∃h ∈ N : y = x+ hα)

DecR(x, y) def= (x = y) ∨ (y ∈ DR ∧ ∃k ∈ N : x = y + kβ)

We let # denote relational composition (S # R def= {(x, z) | ∃y : xS y R z}). The powers of a
relation R are inductively defined by R1 def= R and Rn+1 def= R #Rn.

I Lemma 3. It holds that R+ = IncR # (R ∪ · · · ∪Rα+β+1) # DecR.

Proof. We introduce the relation C = IncR # (R ∪ · · · ∪ Rα+β+1) # DecR, so as to reduce
clutter. To prove that C ⊆ R+, we show that IncR and DecR are both contained in R∗. Let
(x, y) ∈ IncR. If x = y then (x, y) ∈ R∗. Otherwise, x ∈ IR and there exists h ∈ N such that
y = x+ hα. Moreover, h and α are positive as x 6= y. It follows from x ∈ IR and α > 0 that
(x, x+α) ∈ R. Since R is diagonal, we derive that (x, x+α), . . . , (x+(h−1)α, x+hα) are all
in R. Hence, (x, y) ∈ R+. We have shown that IncR ⊆ R∗. Now let (x, y) ∈ DecR. If x = y

then (x, y) ∈ R∗. Otherwise, y ∈ DR and there exists k ∈ N such that x = y+ kβ. Moreover,
k and β are positive as x 6= y. It follows from y ∈ DR and β > 0 that (y + β, y) ∈ R.
Since R is diagonal, we derive that (y + kβ, y + (k − 1)β), . . . , (y + β, y) are all in R. Hence,
(x, y) ∈ R+. We have shown that DecR ⊆ R∗. We derive from IncR ⊆ R∗ and DecR ⊆ R∗

that C ⊆ R+.
Let us now prove the converse inclusion R+ ⊆ C. We first observe that IncR = Inc∗R

and DecR = Dec∗R. These equalities easily follow from the definitions of IncR and DecR. As
a consequence, we get that

C = Inc∗R # (R ∪ · · · ∪Rα+β+1) # Dec∗R (3)

Let us prove by induction on n that Rn ⊆ C for all n ≥ 1. The base cases n = 1, . . . , α+β+1
are trivial. Assume that Rm ⊆ C for all 1 ≤ m < n, where n ≥ α+ β + 2, and let us show
that this inclusion also holds for m = n. Let (x, y) ∈ Rn. There exists x0, . . . , xn such that
x = x0Rx1R · · ·Rxn = y. We start by showing the two following properties, as they will
be crucial for the rest of the proof.

x 6∈ IR =⇒ x0 ≥ x1 ≥ · · · ≥ xn and y 6∈ DR =⇒ x0 ≤ x1 ≤ · · · ≤ xn

We prove these properties by contraposition. If xi < xi+1 for some 0 ≤ i < n, then we may,
w.l.o.g., choose the first such i. This entails that x0 ≥ · · · ≥ xi. Moreover, xi ∈ IR since
xi < xi+1 and xiRxi+1. It follows that x = x0 ∈ IR as IR is upward-closed. Similarly, if
xi−1 > xi for some 0 < i ≤ n, then we may, w.l.o.g., choose the last such i. This entails
that xi ≤ · · · ≤ xn. Moreover, xi ∈ DR since xi−1 > xi and xi−1Rxi. It follows that
y = xn ∈ DR as DR is upward-closed.

To prove that (x, y) ∈ C, we consider four cases, depending on the membership of x in
IR and on the membership of y in DR.

If x 6∈ IR and y 6∈ DR then x0 = x1 = · · · = xn. This means in particular that x0Rxn,
hence, x = x0 C xn = y.
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If x 6∈ IR and y ∈ DR then x0 ≥ x1 ≥ · · · ≥ xn. Note that β > 0 since DR is non-empty.
Since n ≥ β, there exists 0 ≤ i < j ≤ n such that xi ≡ xj (mod β), hence, xi = xj + kβ for
some k ∈ N. Recall that x = x0R

i xi and xj Rn−j xn = y. As R is diagonal, we derive that
xiR

n−j y′ where y′ = y + kβ. We obtain that xRn+i−j y′. It follows from the induction
hypothesis that xC y′. Moreover, we have (y′, y) ∈ DecR since y ∈ DR and y′ = y + kβ.
Hence, x (C # DecR) y and we derive from Equation 3 that xC y.

If x ∈ IR and y 6∈ DR then x0 ≤ x1 ≤ · · · ≤ xn. Note that α > 0 since IR is non-empty.
Since n ≥ α, there exists 0 ≤ i < j ≤ n such that xi ≡ xj (mod α), hence, xj = xi + hα

for some h ∈ N. Recall that x = x0R
i xi and xj Rn−j xn = y. As R is diagonal, we derive

that x′Ri xj where x′ = x+ hα. We obtain that x′Rn+i−j y. It follows from the induction
hypothesis that x′ C y. Moreover, we have (x, x′) ∈ IncR since x ∈ IR and x′ = x + hα.
Hence, x (IncR # C) y and we derive from Equation 3 that xC y.

If x ∈ IR and y ∈ DR then both α and β are positive. Since n ≥ α, there exists
0 ≤ i < j ≤ n such that xi ≡ xj (mod α). If xi ≤ xj then xj = xi + hα for some h ∈ N and
we may proceed as in the case x ∈ IR ∧ y 6∈ DR to show that xC y. Otherwise, xi = xj + kα

for some k ∈ N. Recall that x = x0R
i xi and xj R

n−j xn = y. As R is diagonal, we
derive that x′Ri z′Rn−j y′ where x′ = x+ kα(β − 1), z′ = xi + kα(β − 1) = xj + kαβ and
y′ = y + kαβ. We obtain that x′Rn+i−j y′. It follows from the induction hypothesis that
x′ C y′. Moreover, we have (x, x′) ∈ IncR since x ∈ IR and x′ = x+ kα(β − 1), and we also
have (y′, y) ∈ DecR since y ∈ DR and y′ = y + kαβ. Hence, x (IncR # C # DecR) y and we
derive from Equation 3 that xC y. J

We derive the following theorem.

I Theorem 4. The transitive closure of a diagonal Presburger-definable relation is effectively
Presburger-definable.

Proof. Assume that ϕR(x, y) is a Presburger formula denoting a diagonal relation R. The
sets IR and DR are defined by the Presburger formulas ∃y : ϕR(x, y) ∧ x < y and ∃x :
ϕR(x, y) ∧ x > y, respectively. The natural numbers α and β defined in Equations 1 and 2
are obviously computable from ϕR. So the characterization given in Lemma 3 immediately
provides a computable Presburger formula denoting R+. J

4 Horizontal Relations

A relation R ⊆ N× N is said to be horizontal if (x, y) ∈ R implies (x+ c, y) ∈ R for every
c ∈ N. The class of horizontal relations is clearly stable by union, intersection, composition,
and transitive closure. In this section we prove that the transitive closure of a horizontal
Presburger-definable relation is effectively Presburger-definable. Our study of horizontal
relations is motivated by the following observation.

I Remark. The reachability subrelations {(x, y) | p(0, x) ∗−→ c2←0−−−→ ∗−→ q(y, 0)}, where p and q
are states, are horizontal in a TRVASS.

I Example 5. Let us consider the following horizontal relation R:

R
def= {(x, y) | 2y ≤ x ∨ (y ∈ 4N ∧ y ≤ 2x+ 2)}

We prove that R+ is equal to C def= {(x, y) | x = 0 ⇒ y = 0} as follows. Since R ⊆ C and
C is transitive, we get R+ ⊆ C. Conversely, let (x, y) ∈ C. If x = 0 then y = 0 and from
(0, 0) ∈ R we derive (x, y) ∈ R+. So, we can assume that x ≥ 1. In that case (x, 4) ∈ R and
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31:8 Reachability for Test/Reset Two-Counter Machines

(4z, 4(z+ 1)) ∈ R for every z > 0. It follows that (x, n) ∈ R+ for every n ∈ 4 + 4N. Moreover,
there exists such an n satisfying 2y ≤ n. For such an n, we have (x, n) ∈ R+ and (n, y) ∈ R.
We deduce that (x, y) ∈ R+. It follows that R+ = C.

The effective Presburger-definability of the transitive closure comes from the following
characterization.

I Lemma 6. For every horizontal relation R we have:

R+ = {(x, y) | ∃z : (z, y) ∈ R ∧ ∀u : x ≤ u < z ⇒ ∃v : (u, v) ∈ R ∧ u < v} (4)

Proof. Assume first that (x, y) ∈ R+. There exists a sequence x0, . . . xk such that x =
x0Rx1 . . . R xk = y with k ≥ 1. Let z = xk−1 and let us prove that for every u ∈
{x, . . . , z − 1} there exists v > u such that (u, v) ∈ R. If z ≤ x we are done. So we can
assume that z > x. Since x0 ≤ u, there exists a maximal j ∈ {1, . . . , k} such that xj−1 ≤ u.
Let v = xj and observe that (u, v) ∈ R. Since xk−1 = z > u, it follows that j < k and by
maximality of j we deduce that xj > u. Therefore v > u.

Conversely, let us consider (x, y) ∈ N× N such that there exists z satisfying (z, y) ∈ R
and such that for every u ∈ {x, . . . , z − 1} there exists v > u such that (u, v) ∈ R. Notice
that there exists a sequence x0 < · · · < xk with k ≥ 0 such that x = x0Rx1 . . . R xk ≥ z. It
follows that (x, xk) ∈ R∗. Moreover, since (z, y) ∈ R, z ≤ xk, and R is horizontal we deduce
that (xk, y) ∈ R. It follows that (x, y) ∈ R+. J

The previous lemma shows that the transitive closure of a horizontal relation R denoted
by a Presburger formula ϕR is denoted by the Presburger formula obtained from (4) by
replacing (z, y) ∈ R and (u, v) ∈ R by ϕR(z, y) and ϕR(u, v) respectively. We have proved
the following theorem.

I Theorem 7. The transitive closure of a horizontal Presburger-definable relation is effectively
Presburger-definable.

5 Presburger Automata

We exhibit in this section a general class of one counter automata with effectively Presburger-
definable reachability relations. These automata will be used in the next section to compute
the reachability relations of TRVASS.

A Presburger automaton is a pair P = (Q,∆) where Q is a finite set of states, and ∆
is a finite set of transitions (p,R, q) where p, q ∈ Q and R ⊆ N × N is a relation denoted
by a Presburger formula (which is left implicit). A configuration is a pair (q, x) ∈ Q × N,
also written as q(x) in the sequel. The one-step relation →P is the binary relation over
configurations defined by p(x)→P q(y) if there exists (p,R, q) ∈ ∆ such that (x, y) ∈ R. The
reachability relation ∗−→P is defined as the reflexive-transitive closure of →P .

I Remark. The reflexive-transitive closure R∗ of a Presburger-definable relation R ⊆ N× N
need not be Presburger-definable, in general. For instance, if R = {(x, y) ∈ N× N | y = 2x}
then R∗ is the relation {(x, y) ∈ N × N | ∃k ∈ N : y = 2kx}, which is not definable in
Presburger arithmetic. Worse, a simple reduction from the halting problem for Minsky
machines shows that membership of a pair (x, y) in R∗ is undecidable (where R is a
Presburger-definable relation given as input along with x and y).
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A consequence of the above remark is that the reachability problem for Presburger
automata is undecidable, even if we restrict ourselves to Presburger automata with a single
state and a single transition. This comes from the fact that transitions can use arbitrary
Presburger-definable relations. We will exhibit a subclass of Presburger automata with
effectively Presburger-definable reachability relations (hence, with a decidable reachability
problem) by limiting the expressive power of the transitions occurring on cycles. We say that
a transition (p,R, q) is diagonal if R is diagonal, horizontal if R is horizontal, and ordinary
if it is neither diagonal nor horizontal. Note that a relation on N may be both diagonal
and horizontal, for instance {(x, y) ∈ N × N | y ≤ 2x}. A cycle is non-empty sequence of
transitions (p1, R1, q1), . . . , (pn, Rn, qn) such that qn = p1 and qi = pi+1 for all 1 ≤ i < n.

I Lemma 8. Let P be a Presburger automaton. If every cycle of P contains only diagonal
transitions then ∗−→P is effectively Presburger-definable.

Proof. We first observe that ∗−→P is effectively Presburger-definable when P = (Q,∆) is
a Presburger automaton whose transitions are all diagonal. Indeed, we may view P as a
finite-state automaton over the finite alphabet {R | (p,R, q) ∈ ∆}. For every states p and q,
we may compute a regular expression denoting the language accepted by P with initial state p
and final state q. The obvious evaluation of this regular expression (concatenation · becomes
relational composition #, sum + becomes union ∪, and star ? becomes reflexive-transitive
closure ∗) yields the relation {(x, y) | p(x) ∗−→P q(y)}. This evaluation is computable because
Presburger-definable diagonal relations are effectively closed under union, composition and
reflexive-transitive closure (as an immediate consequence of Theorem 4). We have shown
that ∗−→P is effectively Presburger-definable when all transitions of P are diagonal.

We now prove the lemma. Let P = (Q,∆) be a Presburger automaton such that every
cycle of P contains only diagonal transitions. Let N be the Presburger automaton obtained
from P by keeping only diagonal transitions. Consider two configurations p(x) and q(y). It
is readily seen that p(x) ∗−→P q(y) if, and only if, there exists 1 ≤ k ≤ |Q|, s1, . . . , sk ∈ Q and
x1, y1, . . . , xk, yk ∈ N such that p(x) = s1(x1), sk(yk) = q(y) and

s1(x1) ∗−→P s1(y1)→P s2(x2) ∗−→P s2(y2) · · · sk−1(yk−1)→P sk(xk) ∗−→P sk(yk)

Observe that for every state s ∈ Q and for every x, y ∈ N, s(x) ∗−→P s(y) if, and only if,
s(x) ∗−→N s(y). Moreover, ∗−→N is effectively Presburger-definable since all transitions of N
are diagonal. We derive from the above characterization of ∗−→P that ∗−→P is also effectively
Presburger-definable. J

We say that a Presburger automaton P is shallow if every cycle that contains an ordinary
transition also contains a horizontal transition. Shallowness of Presburger automata is
decidable. This follows from two easy observations. Firstly, diagonality and horizontality of
Presburger-definable relations on N are decidable, since these properties can be expressed in
Presburger arithmetic. Secondly, a Presburger automaton is shallow if, and only if, every
simple cycle containing an ordinary transition also contains a horizontal transition. We now
show the main result of this section.

I Theorem 9. The reachability relation of a shallow Presburger automaton is effectively
Presburger-definable.

Proof. By induction on the number of horizontal transitions. The base case follows from
Lemma 8. Indeed, if P is a shallow Presburger automaton with no horizontal transition then
every cycle of P contains only diagonal transitions. Assume that the theorem holds for every
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shallow Presburger automaton with n horizontal transitions, where n ∈ N. Let P = (Q,∆)
be a Presburger automaton with n+ 1 horizontal transitions. Pick a horizontal transition
(p,R, q) ∈ ∆ and let N be the Presburger automaton obtained from P by removing the
transition (p,R, q). Let S denote the reachability relation from q to p in N , namely the
relation S = {(y, x) | q(y) ∗−→N p(x)}. It is readily seen that, for every configurations s(x)
and t(y) of P , s(x) ∗−→P t(y) if, and only if, s(x) ∗−→N t(y) or there exists x′, y′ ∈ N such that

s(x) ∗−→N p(x′) ∧ (x′, y′) ∈ ((R # S)∗ #R) ∧ q(y′) ∗−→N t(y)

By induction hypothesis, the relation ∗−→N is effectively Presburger-definable, and so is R # S.
Moreover, R # S is horizontal since R is horizontal. It follows from Theorem 7 that (R # S)∗
is effectively Presburger-definable. We derive from the above characterization of ∗−→P that
∗−→P is also effectively Presburger-definable. J

I Remark. The notions of diagonal relations, horizontal relations and Presburger automata
are extended to larger dimensions in the obvious way. A relation R ⊆ Nd × Nd is diagonal
(resp. horizontal) if (x,y) ∈ R implies (x + c,y + c) ∈ R (resp. (x + c,y) ∈ R) for every
c ∈ Nd. But Theorem 9 does not extend to larger dimensions, even if we restrict ourselves
to Presburger automata with a single state and a single transition. In fact, the reflexive-
transitive closure of a Presburger-definable relation that is diagonal (resp. horizontal) need
not be Presburger-definable. Consider the relation R ⊆ N2 ×N2 defined by (x1, x2)R (y1, y2)
if, and only if, the Presburger formula y1 ≤ 2x1 ∧ y2 < x2 holds. The relation R is both
diagonal and horizontal. It is routinely checked that the reflexive-transitive closure R∗ is the
set of pairs ((x1, x2), (y1, y2)) ∈ N2 × N2 such that y1 ≤ 2x2−y2x1 and y2 ≤ x2, which is not
definable in Presburger arithmetic.

6 Reachability Relations of TRVASS

A TRVASS is a 2-dimensional vector addition system with states (2-dim VASS) such that
the first counter can be tested for zero and the second one can be reset to zero. Formally,
a TRVASS is a triple V = (Q,Σ,∆) where Q is a finite set of states, Σ ⊆ Z2 ∪ {T,R} is
a finite set of actions, and ∆ ⊆ Q × Σ × Q is a finite set of transitions. A configuration
of V is a triple (q, x1, x2) ∈ Q× N× N written as q(x1, x2) in the sequel. The operational
semantics of V is given by the binary relations a−→V over configurations, with a ∈ Σ, defined
by p(x1, x2) a−→V q(y1, y2) if (p, a, q) ∈ ∆ and

(y1, y2) = (x1 + a1, x2 + a2) if a = (a1, a2) ∈ Z2

(y1, y2) = (0, x2) ∧ x1 = 0 if a = T

(y1, y2) = (x1, 0) if a = R

Given a word w = a1 . . . ak of actions aj ∈ Σ, we denote by w−→V the binary relation over
configurations defined as the relational composition a1−→V # · · · # ak−→V . The relation ε−→V
denotes the identity relation on configurations. Given a subset W ⊆ Σ∗, we let W−→V denote
the union

⋃
w∈W

w−→V . The relation Σ∗

−−→V , also written ∗−→V , is called the reachability relation
of V . Observe that ∗−→V is the reflexive-transitive closure of the step relation→V

def=
⋃
a∈Σ

a−→V .

The remainder of this section is devoted to the proof that TRVASS have effectively
Presburger-definable reachability relations. Let us fix a TRVASS V = (Q,Σ,∆). We let A
denote the set Σ ∩ Z2 of addition vectors.
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Figure 2 The Presburger automaton P associated to the TRVASS of Figure 1.

The reachability relation of V can be expressed in terms of the reachability relation of
a Presburger automaton by observing that configurations reachable just after a zero-test
T or a reset R are restricted to q(0, n) or q(n, 0), respectively, where q ∈ Q and n ∈ N.
Those configurations are parametrized by introducing the set S = {qT , qR | q ∈ Q} obtained
as two disjoint copies of Q. Elements in {qT | q ∈ Q} are called test states, and those in
{qR | q ∈ Q} are called reset states. Given s ∈ S and n ∈ N, we introduce the configuration
Js, nK in Q× N2 defined as follows:

Js, nK def=
{
q(0, n) if s = qT

q(n, 0) if s = qR

We also introduce, for each pair (s, t) ∈ S × S, the binary relation Rs,t defined by

Rs,t
def= {(m,n) ∈ N× N | Js,mK A∗X−−−→V Jt, nK}

where X = T if t is a test state and X = R if t is a reset state. It is known that the
reachability relation of a 2-dim VASS is effectively Presburger-definable [17, 2]. This entails
that the relation A∗

−−→V is effectively Presburger-definable, and it follows that the relations
Rs,t are also effectively Presburger-definable. We introduce the Presburger automaton P
with set of states S and set of transitions {(s,Rs,t, t) | (s, t) ∈ S × S}. Note that P is
computable from V.

I Example 10. Let us come back to the TRVASS of Figure 1. The relations Rs,t are all
empty except for RDT ,AR , RDR,AR and Rs,DT with s ∈ {AT , AR, BT , BR, CT , CR}. The
corresponding automaton P is depicted in Figure 2. Each transition (s,Rs,t, t) is depicted
by an edge from s to t labeled by a Presburger formula ϕs,t(m,n) denoting the relation Rs,t.
The empty relations (which are both diagonal and horizontal) are not depicted. Notice that
the transition from AR to DT is ordinary and the one from DT to AR is horizontal. It follows
that P is shallow. We observe that the horizontal relation R defined as the composition
RDT ,AR #RAR,DT is the one introduced in Example 5.

We first show that the Presburger automaton P is shallow. By Theorem 9, this will entail
that its reachability relation ∗−→P is effectively Presburger-definable.
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I Lemma 11. The Presburger automaton P is shallow.

Proof. It is readily seen that P satisfies the following properties:
Transitions from reset states to reset states are diagonal,
Transitions from test states to reset states are horizontal,
Transitions from test states to test states are diagonal.

It follows that an ordinary transition of P is a transition from a reset state to a test state. If
a cycle contains such a transition then it must contain a transition from a test state to a
reset state as well. Since such a transition is horizontal, we obtain that P is shallow. J

The two following lemmas show how to decompose the reachability relation of V in terms
of the reachability relation of P.

I Lemma 12. For every s, t ∈ S and m,n ∈ N, if s(m) ∗−→P t(n) then Js,mK ∗−→V Jt, nK.

Proof. It is easily seen that s(m)→P t(n) implies Js,mK ∗−→V Jt, nK, for every s, t ∈ S and
m,n ∈ N. We derive, by an immediate induction on k ≥ 1, that s(m) (→P)k t(n) implies
Js,mK ∗−→V Jt, nK, for every s, t ∈ S and m,n ∈ N. The lemma follows. J

I Lemma 13. Consider two configurations p(x1, x2) and q(y1, y2) of V. It holds that
p(x1, x2) Σ∗\A∗

−−−−→V q(y1, y2) if, and only if, there exist s, t ∈ S and m,n ∈ N such that:

p(x1, x2) A∗{T,R}−−−−−−→V Js,mK ∧ s(m) ∗−→P t(n) ∧ Jt, nK A∗

−−→V q(y1, y2)

Proof. Lemma 12 shows the “if” direction of the equivalence. For the other direction, let
w ∈ Σ∗\A∗ such that p(x1, x2) w−→V q(y1, y2). By splitting w after each occurrence of an
action in {T,R}, we deduce that w = w0X1 . . . wk−1Xkwk where k ≥ 1, and w0, . . . , wk ∈ A∗.
Let us introduce the configurations c1, . . . , ck satisfying the following relations:

p(x1, x2) w0X1−−−→V c1 · · ·
wk−1Xk−−−−−→V ck

wk−−→V q(y1, y2)

Notice that cj = JqXj

j , njK for some qj ∈ Q and some nj ∈ N. By definition of P, we get
q
Xj−1
j−1 (nj−1)→P q

Xj

j (nj) for every j ∈ {1, . . . , k}. We have proved the lemma. J

We deduce our main result.

I Theorem 14. The reachability relation of a TRVASS is effectively Presburger-definable.

Proof. Lemma 13 shows that p(x1, x2) ∗−→V q(y1, y2) if, and only if, p(x1, x2) A∗

−−→V q(y1, y2)
or there exists s, t ∈ S and m,n ∈ N such that:

p(x1, x2) A∗{T,R}−−−−−−→V Js,mK ∧ s(m) ∗−→P t(n) ∧ Jt, nK A∗

−−→V q(y1, y2)

From [17, 2], the relation A∗

−−→V is effectively Presburger-definable. From Lemma 11 and
Theorem 9, the relation ∗−→P is effectively Presburger-definable as well. J

Coming back to the classes of 2-dim extended VASS discussed in the introduction (see
Table 1), Theorem 14 means that the reachability relation is effectively Presburger-definable
for the “maximal” class T1R2. This result also applies to 2-dim VASS extended with resets
and transfers on both counters (i.e., the class R1,2Tr1,2), since they can be simulated by
machines in T1R2.
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7 Conclusion and Open Problems

We have shown that the reachability relation of 2-dim VASS extended with tests on the first
counter and resets on the second counter, is effectively Presburger-definable. This completes
the decidability picture of 2-dim extended VASS initiated in [11]. Our proof techniques may
also be used for other classes of counter machines where shallow Presburger automata would
naturally appear. Many other problems on extensions of VASS are still interesting to solve.

The reachability problem is NP-complete [12] for 1-dim VASS, PSpace-complete [2] for
2-dim VASS, and NL-complete [7] for unary 2-dim VASS. But we do not know what are
the complexities for the reachability problem, for the construction of the reachability set
and for the reachability relation for all 2-dim extended VASS.
The boundedness problem is undecidable for 3-dim VASS extended with resets on all
counters [5] and it is decidable for arbitrary dimension VASS extended with resets on
two counters [6]. Is boundedness decidable for arbitrary dimension TRVASS?
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