
Symbolic Approximation of Weighted Timed
Games

Damien Busatto-Gaston
Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
damien.busatto-gaston@lis-lab.fr

Benjamin Monmege
Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
benjamin.monmege@univ-amu.fr

https://orcid.org/0000-0002-4717-9955

Pierre-Alain Reynier
Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
pierre-alain.reynier@univ-amu.fr

Abstract
Weighted timed games are zero-sum games played by two players on a timed automaton equipped
with weights, where one player wants to minimise the accumulated weight while reaching a target.
Weighted timed games are notoriously difficult and quickly undecidable, even when restricted to
non-negative weights. For non-negative weights, the largest class that can be analysed has been
introduced by Bouyer, Jaziri and Markey in 2015. Though the value problem is undecidable, the
authors show how to approximate the value by considering regions with a refined granularity. In
this work, we extend this class to incorporate negative weights, allowing one to model energy
for instance, and prove that the value can still be approximated, with the same complexity. In
addition, we show that a symbolic algorithm, relying on the paradigm of value iteration, can be
used as an approximation schema on this class.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory, Theory
of computation → Timed and hybrid models, Theory of computation → Quantitative automata

Keywords and phrases Weighted timed games, Real-time systems, Game theory, Approximation

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2018.28

Funding This work has been funded by the DeLTA project (ANR-16-CE40-0007).

1 Introduction

The design of programs verifying some real-time specifications is a notoriously difficult
problem, because such programs must take care of delicate timing issues, and are difficult
to debug a posteriori. One research direction to ease the design of real-time software is to
automatise the process. The situation may be modelled into a timed game, played by a
controller and an antagonistic environment: they act, in a turn-based fashion, over a timed
automaton [2], namely a finite automaton equipped with real-valued variables, called clocks,
evolving with a uniform rate. A simple, yet realistic, objective for the controller is to reach a
target location. We are thus looking for a strategy of the controller, that is a recipe dictating
how to play so that the target is reached no matter how the environment plays. Reachability
timed games are decidable [4], and EXPTIME-complete [18].

© Damien Busatto-Gaston, Benjamin Monmege, and Pierre-Alain Reynier;
licensed under Creative Commons License CC-BY

38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2018).
Editors: Sumit Ganguly and Paritosh Pandya; Article No. 28; pp. 28:1–28:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/162456681?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:damien.busatto-gaston@lis-lab.fr
mailto:benjamin.monmege@univ-amu.fr
https://orcid.org/0000-0002-4717-9955
mailto:pierre-alain.reynier@univ-amu.fr
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.28
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

28:2 Symbolic Approximation of Weighted Timed Games

Weighted extensions of these games have been considered in order to measure the quality
of the winning strategy for the controller [9, 1]: when the controller has several winning
strategies in a given reachability timed game, the quantitative version of the game helps
choosing a good one with respect to some metrics. This means that the game now takes
place over a weighted (or priced) timed automaton [5, 3], where transitions are equipped
with weights, and locations with rates of weights (the cost is then proportional to the time
spent in this location, with the rate as proportional coefficient). While solving the optimal
reachability problem on weighted timed automata has been shown to be PSPACE-complete [6]
(i.e. the same complexity as the non-weighted version), weighted timed games are known to
be undecidable [12]. This has led to many restrictions in order to regain decidability, the first
and most interesting one being the class of strictly non-Zeno cost with only non-negative
weights (in transitions and locations) [9]: this hypothesis requires that every execution of
the timed automaton that follows a cycle of the region automaton has a weight far from 0
(in interval [1,+∞), for instance).

Negative weights are crucial when one wants to model energy or other resources that
can grow or decrease during the execution of the system to study. In [16], we have recently
extended the strictly non-Zeno cost restriction to weighted timed games in the presence
of negative weights in transitions and/or locations. We have described there the class of
divergent weighted timed games where each execution that follows a cycle of the region
automaton has a weight far from 0, i.e. in (−∞,−1] ∪ [1,+∞). We were able to obtain a
doubly-exponential-time algorithm to compute the values and almost-optimal strategies, while
deciding the divergence of a weighted timed game is PSPACE-complete. These complexity
results match the ones that could be obtained in the non-negative case from [9, 1].

The techniques used to obtain the results of [16] cannot be extended if the conditions are
slightly relaxed. For instance, if we add the possibility for an execution of the timed automaton
following a cycle of the region automaton to have weight exactly 0, the decision problem is
known to be undecidable [10], even with non-negative weights only. For this extension, in
the presence of non-negative weights only, it has been proposed an approximation schema
to compute arbitrarily close estimates of the optimal value [10]. To this end, the authors
consider regions with a refined granularity so as to control the precision of the approximation.
In this work, our contribution is two-fold: first, we extend the class considered in [10] to the
presence of negative weights; second, we show that the approximation can be obtained using
a symbolic computation, based on the paradigm of value iteration.

More precisely, we define the class of almost-divergent weighted timed games where, for
each strongly connected component (SCC) of the region automaton, executions following
a cycle of this SCC have weights either all in (−∞,−1] ∪ {0}, or all in {0} ∪ [1,+∞). In
contrast, the divergent condition is equivalent to the same property on the strongly connected
components, but without the presence of singleton {0}. Given an almost-divergent weighted
timed game, an initial configuration c and a threshold ε, we compute a value that we
guarantee to be ε-close to the optimal value when the play starts from c. Moreover, we prove
that deciding if a weighted timed game is almost-divergent is a PSPACE-complete problem.

In order to approximate almost-divergent weighted timed games, we first adapt the
approximation schema of [10] to our setting. At the very core of their schema is the notion
of kernels that collect all cycles of weight exactly 0 in the game. Then, a semi-unfolding of
the game (in which kernels are not unfolded) of bounded depth is shown to be equivalent to
the original game. Adapting this schema to negative weights requires to address new issues:

The definition and the approximation of these kernels is much more intricate in our
setting (see Sections 4 and 6). Indeed, with only non-negative weights, a cycle of weight
0 only encounters locations and transitions with weight 0. It is no longer the case with

D. Busatto-Gaston, B. Monmege, and P.-A. Reynier 28:3

arbitrary weights, both for discrete weights on transitions (that could alternate between
weight +1 and −1, e.g.) and continuous rates on locations: for this continuous part, this
requires to keep track of the real-time dynamics of the game.

Some configurations may have value −∞. While it is undecidable in general whether a
configuration has value −∞, we prove that it is decidable for almost-divergent weighted
timed games (see Lemma 9).

The identification of an adequate bound to define an equivalent semi-unfolding of bounded
depth is more difficult in our setting, as having guarantees on weight accumulation is
harder (we can lose accumulated weight). We deal with this by evaluating how large the
value of a configuration can be, provided it is not infinite. This is presented in Section 5.

We also develop, in Section 7, a more symbolic approximation schema, in the sense that
it avoids the a priori refinement of regions. Instead, all computations are performed in a
symbolic way using the techniques developed in [1]. This allows to mutualise as much as
possible the different computations: comparing these schemas with the evaluation of MDPs
or quantitative games like mean-payoff or discounted-payoff, it is the same improvement as
when using value iteration techniques instead of techniques based on the unfolding of the
model into a finite tree which can contain many times the same location.

2 Weighted timed games

Clocks, guards and regions. We let X be a finite set of variables called clocks. A valuation
of clocks is a mapping ν : X → R>0. For a valuation ν, d ∈ R>0 and Y ⊆ X, we define
the valuation ν + d as (ν + d)(x) = ν(x) + d, for all x ∈ X, and the valuation ν[Y := 0]
as (ν[Y := 0])(x) = 0 if x ∈ Y , and (ν[Y := 0])(x) = ν(x) otherwise. The valuation 0
assigns 0 to every clock. A guard on clocks of X is a conjunction of atomic constraints of
the form x ./ c, where ./ ∈ {6, <,=, >,>} and c ∈ Q (we allow for rational coefficients as
we will refine the granularity in the following). Guard g is the closed version of a satisfiable
guard g where every open constraint x < c or x > c is replaced by its closed version x 6 c

or x > c. A valuation ν : X → R>0 satisfies an atomic constraint x ./ c if ν(x) ./ c. The
satisfaction relation is extended to all guards g naturally, and denoted by ν |= g. We let
Guards(X) denote the set of guards over X. We rely on the crucial notion of regions, as
introduced in the seminal work on timed automata [2]: intuitively, a region is a set of
valuations that are all time-abstract bisimilar. We will need some refinement of regions,
with respect to a granularity 1/N , with N ∈ N. Formally, with respect to the set X of
clocks and a constant M , a 1/N -region r is a subset of valuations characterised by the vector
(ιx)x∈X = (min(MN, bν(x)Nc))x∈X ∈ [0,MN]X and the order of fractional parts of ν(x)N ,
given as a partition X = X0]X1] · · ·]Xm of clocks: a valuation ν is in this 1/N -region r if

(i) bν(x)Nc = ιx, for all clocks x ∈ X;

(ii) ν(x) = 0 for all x ∈ X0;

(iii) all clocks x ∈ Xi satisfy that ν(x)N have the same fractional part, for all 1 6 i 6 m.
We denote by RegN (X,M) the set of 1/N -regions, and we write Reg(X,M) as a shorthand
for Reg1(X,M). We recover the traditional notion of region for N = 1. E.g., the figure below
depicts regions Reg({x, y}, 2) as well as their refinement Reg3({x, y}, 2).

FSTTCS 2018

28:4 Symbolic Approximation of Weighted Timed Games

x

y

1 20

1

2

For any integer guard g, either all valuations of a given 1/N -region satisfy g, or none of
them do. A 1/N -region r′ is said to be a time successor of the 1/N -region r if there exist
ν ∈ r, ν′ ∈ r′, and d > 0 such that ν′ = ν + d. Moreover, for Y ⊆ X, we let r[Y := 0] be the
1/N -region where clocks of Y are reset.

Weighted timed games. A weighted timed game (WTG) is then a tuple G = 〈L =
LMin] LMax,∆,wt, LT ,wtT 〉 where LMin and LMax are finite disjoint subsets of locations
belonging to Min and Max, respectively, ∆ ⊆ L × Guards(X) × 2X × L is a finite set of
transitions, wt : ∆] L→ Z is the weight function, associating an integer weight with each
transition and location, LT ⊆ LMin is a subset of target locations for player Min, and
wtT : LT ×RX>0 → R∞ is a function mapping each target location and valuation of the clocks
to a final weight of R∞ = R] {−∞,+∞} (possibly 0, +∞, or −∞). The addition of target
weights is not standard, but we will use it in the process of solving those games: anyway,
it is possible to simply map each target location to the weight 0, allowing us to recover
the standard definition. Without loss of generality, we suppose the absence of deadlocks
except on target locations, i.e. for each location ` ∈ L\LT and valuation ν, there exists
(`, g, Y, `′) ∈ ∆ such that ν |= g, and no transitions start in LT .

The semantics of a WTG G is defined in terms of a game played on an infinite transition
system whose vertices are configurations of the WTG. A configuration is a pair (`, ν) with a
location and a valuation of the clocks. Configurations are split into players according to the
location. A configuration is final if its location is a target location of LT . The alphabet of
the transition system is given by R>0 ×∆ and will encode the delay that a player wants to
spend in the current location, before firing a certain transition. For every delay d ∈ R>0,
transition δ = (`, g, Y, `′) ∈ ∆ and valuation ν, there is an edge (`, ν) d,δ−−→ (`′, ν′) if ν + d |= g

and ν′ = (ν + d)[Y := 0]. The weight of such an edge e is given by d× wt(`) + wt(δ). An
example is depicted on Figure 1.

A finite play is a finite sequence of consecutive edges ρ = (`0, ν0) d0,δ0−−−→ (`1, ν1) d1,δ1−−−→
· · · (`k, νk). We denote by |ρ| the length k of ρ. The concatenation of two finite plays ρ1
and ρ2, such that ρ1 ends in the same configuration as ρ2 starts, is denoted by ρ1ρ2. We
let FPlaysG be the set of all finite plays in G, whereas FPlaysMin

G (resp. FPlaysMax
G) denote

the finite plays that end in a configuration of Min (resp. Max). A play is then a maximal
sequence of consecutive edges (it is either infinite or it reaches LT).

A strategy for Min (resp. Max) is a mapping σ : FPlaysMin
G → R>0×∆ (resp. σ : FPlaysMax

G →
R>0 ×∆) such that for all finite plays ρ ∈ FPlaysMin

G (resp. ρ ∈ FPlaysMax
G) ending in non-

target configuration (`, ν), there exists an edge (`, ν) σ(ρ)−−−→ (`′, ν′). A play or finite play
ρ = (`0, ν0) d0,δ0−−−→ (`1, ν1) d1,δ1−−−→ · · · conforms to a strategy σ of Min (resp. Max) if for all k such
that (`k, νk) belongs to Min (resp. Max), we have that (dk, δk) = σ((`0, ν0) d0,δ0−−−→ · · · (`k, νk)).
A strategy σ is memoryless if for all finite plays ρ, ρ′ ending in the same configuration, we
have that σ(ρ) = σ(ρ′). For all strategies σMin and σMax of players Min and Max, respectively,
and for all configurations (`0, ν0), we let playG((`0, ν0), σMax, σMin) be the outcome of σMax
and σMin, defined as the only play conforming to σMax and σMin and starting in (`0, ν0).

D. Busatto-Gaston, B. Monmege, and P.-A. Reynier 28:5

−2
`1

2
`2

`3

wtT = 0

−1
`4

−2
`5

x 6 2
x := 0

0

1 6 x 6 3
1

x 6 3; x := 0; 0

2 6 x 6 3
3 x 6 3

0

x 6 3; 0 x 6 3; 0

x 6 1
x := 0; 3

1 < x 6 3
x := 0; 1

2/3
x

Val

0 1 2 3
0

1

2

3
`2 → `4 → `3

`2 → `3

Figure 1 On the left, a weighted timed game. Locations belonging to Min (resp. Max) are
depicted by circles (resp. squares). The target location is `3, whose output weight function is null.
It is easy to observe that location `1 (resp. `5) has value +∞ (resp. −∞). As a consequence, the
value in `4 is determined by the edge to `3, and depicted in blue on the right. In location `2, the
value associated with the transition to `3 is depicted in red, and the value in `2 is obtained as the
minimum of these two curves. Observe the intersection in x = 2/3 requiring to refine the regions.

The objective of Min is to reach a target configuration, while minimising the accumu-
lated weight up to the target. Hence, we associate to every finite play ρ = (`0, ν0) d0,δ0−−−→
(`1, ν1) d1,δ1−−−→ · · · (`k, νk) its cumulated weight, taking into account both discrete and continu-
ous costs: wtΣ(ρ) =

∑k−1
i=0 wt(`i) × di + wt(δi). Then, the weight of a play ρ, denoted by

wtG(ρ), is defined by +∞ if ρ is infinite (does not reach LT), and wtΣ(ρ) + wtT (`T , ν) if it
ends in (`T , ν) with `T ∈ LT . Then, for all locations ` and valuation ν, we let ValG(`, ν) be
the value of G in (`, ν), defined as ValG((`, ν)) = infσMin supσMax

wtG(play((`, ν), σMax, σMin)),
where the order of the infimum and supremum does not matter, since WTGs are known
to be determined1. We say that a strategy σ?Min of Min is ε-optimal if, for all (`, ν), and all
strategies σMax of Max, wtG(play((`, ν), σMax, σ

?
Min)) 6 ValG(`, ν) + ε. It is said optimal if this

holds for ε = 0. A symmetric definition holds for optimal strategies of Max. If the game is
clear from the context, we may drop the index G from all previous notations.

As usual in related work [1, 9, 10], we assume that the input WTGs have guards where
all constants are integers, and all clocks are bounded, i.e. there is a constant M ∈ N such
that every transition of the WTG is equipped with a guard g such that ν |= g implies
ν(x) 6M for all clocks x ∈ X. We denote by wLmax (resp. w∆

max, wemax) the maximal weight
in absolute values of locations (resp. of transitions, edges) of G, i.e. wLmax = max`∈L |wt(`)|
(resp. w∆

max = maxδ∈∆ |wt(δ)|, wemax = MwLmax + w∆
max). We also assume that the output

weight functions are piecewise linear with a finite number of pieces and are continuous on
each region. Notice that the zero output weight function satisfies this property. Moreover,
the computations we will perform in the following maintain this property as an invariant,
and use it to prove their correctness.

Region and corner abstractions. The region automaton, or region game, RN (G) (abbrevi-
ated as R(G) when N = 1) of a game G = 〈L = LMin]LMax,∆,wt, LT ,wtT 〉 is the WTG with
locations S = L× RegN (X,M) and all transitions ((`, r), g′′, Y, (`′, r′)) with (`, g, Y, `′) ∈ ∆
such that the model of guard g′′ (i.e. all valuations ν such that ν |= g′′) is a 1/N -region r′′,

1 The determinacy result is stated in [13] for WTG (called priced timed games) with one clock, but the
proof does not use the assumption on the number of clocks.

FSTTCS 2018

28:6 Symbolic Approximation of Weighted Timed Games

time successor of r such that r′′ satisfies the guard g, and r′ = r′′[Y := 0]. Distribution of
locations to players, final locations and weights are taken according to G. We call path a finite
or infinite sequence of transitions in this automaton, and we denote by π the paths. A play ρ
in G is projected on a path π in RN (G), by replacing every edge (`, ν) d,δ=(`,g,Y,`′)−−−−−−−−−→ (`′, ν′)
by the transition ((`, r), g, Y, (`′, r′)), where r (resp. r′) is the 1/N -region containing ν (resp.
ν′): we say that ρ follows the path π. It is important to notice that, even if π is a cycle
(i.e. starts and ends in the same location of the region game), there may exist plays following
it in G that are not cycles, due to the fact that regions are sets of valuations. By projecting
away the region information of RN (G), we simply obtain:

I Lemma 1. For all ` ∈ L, 1/N -regions r, and ν ∈ r, ValG(`, ν) = ValRN (G)((`, r), ν).

On top of regions, we will need the corner-point abstraction techniques introduced in [8].
A valuation v is said to be a corner of a 1/N -region r, if it belongs to the topological
closure r and has coordinates multiple of 1/N (v ∈ (1/N)NX). We call corner state a
triple (`, r, v) that contains information about a location (`, r) of the region-game RN (G),
and a corner v of the 1/N -region r. Every region has at most |X| + 1 corners. We now
define the corner-point abstraction CN (G) of a WTG G as the WTG obtained as a refinement
of RN (G) where guards on transitions are enforced to stay on one of the corners of the
current 1/N -region: the locations of CN (G) are all corner states of RN (G), associated to
each player accordingly, and transitions are all ((`, r, v), g′′, Y, (`′, r′, v′)) such that there
exists t = ((`, r), g, Y, (`′, r′)) a transition of RN (G) such that the model of guard g′′ is a
corner v′′ satisfying the guard g (recall that g is the closed version of g), v′ = v′′[Y := 0],
and there exist two valuations ν ∈ r, ν′ ∈ r′ such that ((`, r), ν) d′,t−−→ ((`′, r′), ν′) for some
d′ ∈ R>0 (the latter condition ensures that the transition between corners is not spurious).
Because of this closure operation, we must also define properly the final weight function:
we simply define it over the only valuation v reachable in location (`, r, v) (with ` ∈ LT) by
wtT ((`, r, v), v) = limν→v,ν∈r wtT (`, ν) (the limit is well defined since wtT is piecewise linear
with a finite number of pieces on region r).

The WTG CN (G) can be seen as a weighted game (with final weights), i.e. a WTG
without clocks (which means that there are only weights on transitions), by removing guards,
resets and rates of locations, and replacing the weights of transitions by the actual weight of
jumping from one corner to another: a transition (((`, r), v), g′′, Y, ((`′, r′), v′)) becomes an
edge from ((`, r), v) to ((`′, r′), v′) with weight d× wt(`) + wt(t) (for all possible values of d,
which requires to allow for multi-edges2). Note that delay d is necessarily a rational of the
form α/N with α ∈ N, since it must relate corners of 1/N -regions. In particular, this proves
that the cumulated weight wtΣ(ρ) of a finite play ρ in CN (G) is indeed a rational number
with denominator N . We will call corner play a play ρ in the corner-point abstraction CN (G):
it can also be interpreted as a timed execution in G where all guards are closed (as explained
in the definition above). It straightforwardly projects on a finite path π in the region game
RN (G): in this case, we say again that ρ follows π. Figure 2 depicts a play, its projected
path in the region game and one of its associated corner plays.
Corner plays allow one to obtain faithful information on the plays that follow the same path:

I Lemma 2. If π is a finite path in RN (G), the set {wtΣ(ρ) | ρ finite play following π}
is an interval bounded by the minimum and the maximum values of the set {wtΣ(ρ) |
ρ finite corner play of CN (G) following π}.

2 The only case where several edges could link two corners using the same transition is when all clocks
are reset in Y , in which case there is a choice for delay d.

D. Busatto-Gaston, B. Monmege, and P.-A. Reynier 28:7

(`0, r0)
(`1, r1) (`2, r2)

(`3, r3)

ρ

ρ′

g0, Y0 g1, Y1 g2, Y2

Figure 2 A play ρ (in blue), its projected path π in the region game (in red), and one of its
associated corner plays ρ′ (in green).

Value iteration. We will rely on the value iteration algorithm described in [1] for a WTG G.
If V represents a value function—i.e. a mapping from configurations of L × RX>0 to a

value in R∞—we denote by V`,ν the image V (`, ν), for better readability, and by V` the
function mapping each valuation ν to V`,ν . One step of the game is summarised in the
following operator F mapping each value function V to a value function V ′ = F(V) defined
by V ′`,ν = wtT (`, ν) if ` ∈ LT , and otherwise

V ′`,ν =

sup
(`,ν)

d,δ−−→(`′,ν′)

[
d× wt(`) + wt(δ) + V`′,ν′

]
if ` ∈ LMax

inf
(`,ν)

d,δ−−→(`′,ν′)

[
d× wt(`) + wt(δ) + V`′,ν′

]
if ` ∈ LMin

(1)

where (`, ν) d,δ−−→ (`′, ν′) ranges over valid edges in G. Then, starting from V 0 mapping every
configuration to +∞, except for the targets mapped to wtT , we let V i = F(V i−1) for all
i > 0. The value function V i represents the value ValiG , which is intuitively what Min can
guarantee when forced to reach the target in at most i steps.

More formally, we define wtiG(ρ) the weight of a maximal play ρ at horizon i, as wtG(ρ)
if ρ reaches a target state in at most i steps, and +∞ otherwise. Using this altern-
ative definition of the weight of a play, we can obtain a new game value ValiG(`, ν) =
infσMin supσMax

wtiG(play((`, ν), σMax, σMin)). Then, if G is a tree of depth d, V i=ValG if i ≥ d.
The mappings V 0

` are piecewise linear for all `, and F preserves piecewise linearity over
regions, so all iterates V i` are piecewise linear with a finite number of pieces. In [1], it is proved
that V i` has a number of pieces (and can be computed within a complexity) exponential in i
and in the size of G when wtT = 0. This result can be extended to handle negative weights
in G and output weights wtT 6= 0.

3 Results

We consider the value problem that asks, given a WTG G, a location ` and a threshold
α ∈ Z ∪ {−∞,+∞}, to decide whether ValG(`,0) 6 α. In the context of timed games,
optimal strategies may not exist. We generally focus on finding ε-optimal strategies, that
guarantee the optimal value, up to a small error ε. Moreover, when the value problem is
undecidable, we also consider the approximation problem that consists, given a precision
ε ∈ Q>0, in computing an ε-approximation of ValG(`,0).

In the one-player case, computing the optimal value and an ε-optimal strategy for
weighted timed automata is known to be PSPACE-complete [6]. In the two-player case, the
value problem of WTGs (also called priced timed games in the literature) is undecidable
with 3 clocks [12, 10], or even 2 clocks in the presence of negative weights [15] (for the
existence problem asking if a strategy of player Min can guarantee a given threshold). To
obtain decidability, one possibility is to limit the number of clocks to 1: then, there is

FSTTCS 2018

28:8 Symbolic Approximation of Weighted Timed Games

an exponential-time algorithm to compute the value as well as ε-optimal strategies in the
presence of non-negative weights only [7, 19, 17], whereas the problem is only known to be
PTIME-hard. A similar result can be lifted to arbitrary weights, under restrictions on the
resets of the clock in cycles [13].

The other possibility to obtain a decidability result [9, 16] is to enforce a semantical
property of divergence (originally called strictly non-Zeno cost): it asks that every play
following a cycle in the region automaton has weight far from 0. It allows the authors to
prove that playing for only a bounded number of steps is equivalent to the original game,
which boils down to the problem of computing the value of a tree-shaped weighted timed
game G using the value iteration algorithm.

Other objectives, not directly related to optimal reachability, have been considered in [11]
for weighted timed games, like mean-payoff and parity objectives. In this work, the authors
manage to solve these problems for the so-called class of δ-robust WTGs that they introduce.
This class includes the class we consider, but is decidable in 2-EXPSPACE.

In [16], we generalised the strictly non-Zeno cost property of [9, 16] to weighted timed
games with both positive and negative weights: we called them divergent weighted timed
games. This article relaxes the divergence property, to introduce almost-divergent weighted
timed games. We first define formally these classes of games. A cycle π of R(G) is said to be
a positive cycle (resp. a 0-cycle, or a negative cycle) if every finite play ρ following π satisfies
wtΣ(ρ) > 1 (resp. wtΣ(ρ) = 0, or wtΣ(ρ) 6 −1). A strongly connected component (SCC) S
of R(G) is said to be positive (resp. negative) if every cycle π ∈ S is positive (resp. negative).
An SCC S of R(G) is said to be non-negative (resp. non-positive) if every play ρ following a
cycle in S satisfies either wtΣ(ρ) > 1 or wtΣ(ρ) = 0 (resp. either wtΣ(ρ) 6 −1 or wtΣ(ρ) = 0).

I Definition 3. A WTG G is divergent if every SCC of R(G) is either positive or negative. As
a generalisation, a WTG G is almost-divergent when every SCC of R(G) is either non-negative
or non-positive.

In [16], we showed that we can decide in 2-EXPTIME the value problem for divergent
WTGs. Unfortunately, it is shown in [10] that this problem is undecidable for almost-divergent
WTGs (already with non-negative weights only, where almost-divergent WTGs are called
simple). They propose a solution to the approximation problem, again with non-negative
weights only. Our first result is the following extension of their result:

I Theorem 4. Given an almost-divergent WTG G, a location ` and ε ∈ Q>0, we can compute
an ε-approximation of ValG(`,0) in time doubly-exponential in the size of G and polynomial
in 1/ε. Moreover, deciding if a WTG is almost-divergent is PSPACE-complete.

To obtain this result, we follow an approximation schema that we now outline. First, we
will always reason on the region game R(G) of the almost-divergent WTG G. The goal is to
compute an ε-approximation of ValR(G)(s0,0) for some state s0 = (`0, r0), with r0 the region
where every clock value is 0. As already recalled, techniques of [1] allow one to compute
the (exact) values of a WTG played on a finite tree, using operator F . The idea is thus to
decompose as much as possible the game R(G) in a WTG over a tree. First, we decompose
the region game into SCCs (left of Figure 3).

During the approximation process, we must think about the final weight functions as the
previously computed approximations of the values of SCCs below the current one. We will
keep as an invariant that final weight functions are piecewise linear functions with a finite
number of pieces, and are continuous on each region.

For an SCC of R(G) and an initial state s0 of R(G) provided by the SCC decomposition,
we show that the game on the SCC is equivalent to a game on a tree built from a semi-
unfolding (see middle of Figure 3) of R(G) from s0 of finite depth, with certain nodes of the

D. Busatto-Gaston, B. Monmege, and P.-A. Reynier 28:9

s0

s

Ks′

s

s

sf

Ks′′

sf

stop leaf

wtT (sf)

0 1

−3 −1 2 1

2

3

1

4

−3

1

−3

Figure 3 Static approximation schema: SCC decomposition of R(G), semi-unfolding of an SCC,
corner-point abstraction for the kernels.

tree being kernels. These kernels are some parts of R(G) that contain all cycles of weight 0.
The semi-unfolding is stopped either when reaching a final location, or when some location
(or kernel) has been visited for a certain fixed number of times: such locations deep enough
are called stop leaves.

Our second result is a more symbolic approximation schema based on the value iteration
only. It is more symbolic in the sense that it does not require the SCC decomposition, the
computation of kernels nor the semi-unfolding of the game in a tree.

I Theorem 5. Let G be an almost-divergent WTG such that ValG > −∞ for all configurations.
Then the sequence (ValkG)k>0 converges towards ValG and for every ε ∈ Q>0, we can compute
an integer P such that ValPG is an ε-approximation of ValG for all configurations.

I Remark. In a weighted-timed game, it is easy to detect the set of states with value +∞:
these are all the states from which Min cannot ensure reachability of a target location ` ∈ LT
with wtT (`) < +∞. It can therefore be computed by an attractor computation, and is indeed
a property constant on each region. In particular, removing those states from R(G) does not
affect the value of any other state and can be done in complexity linear in |R(G)|. We will
therefore assume that the considered WTG have no configurations with value +∞.

4 Kernels of an almost-divergent WTG

The approximation procedure described before uses the so-called kernels in order to group
together all cycles of weight 0. We study those kernels and give a characterisation allowing
computability. Contrary to the non-negative case, the situation is more complex in our
arbitrary case, since weights of both locations and transitions may differ from 0 in the kernel.
Moreover, it is not trivial (and may not be true in a non almost-divergent WTG) to know
whether it is sufficient to consider only simple cycles, i.e. cycles without repetitions.

To answer these questions, let us first analyse the cycles of R(G) that we will encounter.
Since we are in an almost-divergent game, by Lemma 2, all cycles π = t1 · · · tn of R(G)
(with t1, . . . , tn transitions of R(G)) are either 0-cycles, positive cycles or negative cycles.
Additionally, in an SCC S of R(G), we cannot find both positive and negative cycles by
definition. Moreover, we can classify a cycle by looking only at the corner plays following it.

I Lemma 6. A cycle π is a 0-cycle iff there exists a corner play ρ following π with wtΣ(ρ)=0.

FSTTCS 2018

28:10 Symbolic Approximation of Weighted Timed Games

Proof. If π is a 0-cycle, every such corner play ρ will have weight 0, by Lemma 2. Reciprocally,
if such a corner play exists, all corner plays following π have weight 0: otherwise the set
{wtΣ(ρ) | ρ play following π} would have non-empty intersection with the set (−1, 1) \ {0}
which would contradict the almost-divergence. J

An important result is that 0-cycles are stable by rotation. This is not trivial because
plays following a cycle can start and end in different valuations, therefore changing the
starting state of the cycle could a priori change the plays that follow it and their weights.

I Lemma 7. Let π and π′ be paths of R(G). Then, ππ′ is a 0-cycle iff π′π is a 0-cycle.

Proof. Since π1 = ππ′ is a cycle, first(π) = last(π′) and first(π′) = last(π), so π2 = π′π is
correctly defined.

First, since there are finitely many corners, by constructing a long enough play following
an iterate of π′π, we can obtain a corner play that starts and ends in the same corner.
Formally, we define two sequences of region corners (vi ∈ first(π))i and (v′i ∈ first(π′))i. We
start by choosing any v0 ∈ first(π). Let v′0 be a corner of first(π′) such that v′0 is accessible
from v0 by following π. For every i > 0, let vi be a corner of first(π) such that vi is accessible
from v′i−1 by following π′, and let v′i be a corner of first(π′) such that v′i is accessible from vi by
following π. We stop the construction at the first l such that there exists k < l with vk = vl.
Additionally, we let v′l = v′k and vl+1 = vk+1. This process is bounded since first(π) has at
most |X|+ 1 corners.

For every 0 6 i 6 l, let wi be the weight of a play ρi from vi to v′i along π, and let w′i
be the weight of a play ρ′i from v′i to vi+1 along π′. The concatenation of the two plays has
weight wi + w′i = 0, since it follows the 0-cycle π1. Therefore, all corner plays from vi to v′i
following π have the same weight wi, and the same applies for w′i. For every 0 6 i < l, the
concatenation of ρ′i and ρi+1 is a play from v′i to vi+1, of weight w′i + wi+1 = −wi + wi+1,
following π2. Since π2 is a cycle, and the game is almost-divergent, all possible values of
wi+1 − wi have the same sign.

Finally, we can construct a corner play from v′k to v′l by concatenating the plays ρ′k, ρk+1,

ρ′k+1, ρk+2, . . . , ρ
′
l−1, ρl. That play has weight

∑l−1
i=k(wi+1 −wi) = wl −wk = 0. This implies

that the terms wi+1 − wi, of constant sign, are all equal to 0. As a consequence, the
concatenation of ρ′k and ρk+1 is a corner play following π2 of weight 0. By Lemma 6, we
deduce that π2 is a 0-cycle. J

We will now construct the kernel K as the subgraph of R(G) containing all 0-cycles.
Formally, let TK be the set of transitions of R(G) belonging to a simple 0-cycle, and SK be
the set of states covered by TK. We define the kernel K of R(G) as the subgraph of R(G)
defined by SK and TK. Transitions in T\TK with starting state in SK are called the output
transitions of K. We define it using only simple 0-cycles in order to ensure its computability.
However, we now show that this is of no harm, since the kernel contains exactly all the
0-cycles, which will be crucial in the approximation schema we present in Section 6.

I Proposition 8. A cycle of R(G) is entirely in K if and only if it is a 0-cycle.

Proof. We prove that every 0-cycle is in K by induction on the length of the cycles. The
initialisation contains only cycles of length 1, that are in K by construction. If we consider a
cycle π of length n > 1, it is either simple or it can be rotated and decomposed into π′π′′,
π′ and π′′ being smaller cycles. Let ρ be a corner play following π′π′′. We denote by ρ′ the

D. Busatto-Gaston, B. Monmege, and P.-A. Reynier 28:11

prefix of ρ following π′ and ρ′′ the suffix following π′′. It holds that wtΣ(ρ′) = −wtΣ(ρ′′),
and in an almost-divergent SCC this implies wtΣ(ρ′) = wtΣ(ρ′′) = 0. Therefore, by Lemma 6
both π′ and π′′ are 0-cycles, and they must be in K by induction hypothesis. Note that this
reasoning proves that every cycle contained in a longer 0-cycle is also a 0-cycle.

t1

t2

t3

t4

t5

πt5

πt4

πt3

πt2

πt1

We now prove that every cycle in K is a 0-cycle. By construction, every transition t ∈ TK
is part of a simple 0-cycle. Thus, to every transition t ∈ TK, we can associate a path πt
such that tπt is a simple 0-cycle (rotate the simple cycle if necessary). We can prove (using
both Lemmas 6 and 7) the following property by relying on another pumping argument on
corners: If t1 · · · tn is a path in K, then t1t2 · · · tnπtn · · ·πt2πt1 is a 0-cycle of R(G). Now, if
π is a cycle of R(G) in K, there exists a cycle π′ such that ππ′ is a 0-cycle, therefore π is a
0-cycle. J

5 Semi-unfolding of almost-divergent WTGs

Given an almost-divergent WTG G, we describe the construction of its semi-unfolding T (G)
(as depicted in Figure 3). This crucially relies on the absence of states with value −∞, so we
explain how to deal with them first:

I Lemma 9. In an SCC of R(G), the set of configurations with value −∞ is a union of
regions computable in time linear in the size of R(G).

Sketch of proof. If the SCC is non-negative, the cumulated weight cannot decrease along a
cycle, thus, the only way to obtain value −∞ is to jump in a final state with final weight
−∞. We can therefore compute this set of states with an attractor for Min.

If the SCC is non-positive, we let SR
f (resp. S−∞f) be the set of target states where wtT

is bounded (resp. has value −∞). We also define TR
f (resp. T−∞f), the set of transitions of

R(G) whose end state belongs to SR
f (resp. S−∞f). Notice that the kernel cannot contain

target states since they do not have outgoing transitions. We can prove that a configuration
has value −∞ iff it belongs to a state where player Min can ensure the LTL formula on
transitions: (G¬TR

f ∧ ¬FGTK) ∨ FT−∞f . The procedure to detect −∞ states thus consists
of four attractor computations, which can be done in time linear in |R(G)|. J

We can now assume that no states of G have value −∞, and that the output weight
function maps all configurations to R. Since wtT is piecewise linear with finitely many
pieces, wtT is bounded. Let sup |wtT | denote the bound of |wtT |, ranging over all target
configurations.

We now explain how to build the semi-unfolding T (G). We only build the semi-unfolding
T (G) of an SCC of G starting from some state (`0, r0) ∈ S of the region game, since it is
then easy to glue all the semi-unfoldings together to get the one of the full game. Since
every configuration has finite value, we can prove that values of the game are bounded by
|R(G)|wemax + sup |wtT |. As a consequence, we can find a bound γ linear in |R(G)|, wemax

FSTTCS 2018

28:12 Symbolic Approximation of Weighted Timed Games

and sup |wtT | such that a play that visits some state outside the kernel more than γ times
has weight strictly above |R(G)|wemax + sup |wtT |, hence is useless for the value computation.
This leads to considering the semi-unfolding T (G) of G (nodes in the kernel are not unfolded,
see Figure 3) such that each node not in the kernel is encountered at most γ times along a
branch: the end of each branch is called a stop leaf of the semi-unfolding. In particular, the
depth of T (G) is bounded by |R(G)|γ, and thus is polynomial in |R(G)|, wemax and sup |wtT |.
Leaves of the semi-unfolding are thus of two types: target leaves that are copies of target
locations of G for which we set the target weight as in G, and stop leaves for which we set
their target weight as being constant to +∞ if the SCC G is non-negative, and −∞ if the
SCC is non-positive.

I Proposition 10. Let G be an almost-divergent WTG, and let (`0, r0) ∈ S be some state of
the region game. The semi-unfolding T (G) with initial state (˜̀0, r0) (a copy of state (`0, r0))
is equivalent to G, i.e. for all ν0 ∈ r0, ValG(`0, ν0) = ValT (G)((˜̀0, r0), ν0).

6 Approximation of almost-divergent WTGs

Approximation of kernels. We start by approximating a kernel G by extending the region-
based approximation schema of [10]. In their setting, all runs in kernels had weight 0, allowing
a simple reduction to a finite weighted game. In our setting, we have to approximate the
timed dynamics of runs, and therefore resort to the corner-point abstraction (as shown to
the right of Figure 3).

Since output weight functions are piecewise linear with a finite number of pieces and
continuous on regions, they are Λ-Lipschitz-continuous3, for a given constant Λ > 0. We let
B = wLmax |L||Reg(X,M)|+ Λ.

Let N be an integer. Consider the game CN (G) described in the preliminary section, with
locations of the form (`, r, v) with v a corner of the 1/N -region r. Two plays ρ of G and ρ′ of
CN (G) are said to be 1/N -close if they follow the same path π in RN (G). In particular, at
each step the configurations (`, ν) in ρ and (`′, r′, v′) in ρ′ (with v′ a corner of the 1/N -region
r′) satisfy ` = `′ and ν ∈ r′, and the transitions taken in both plays have the same discrete
weights. Close plays have close weights, in the following sense:

I Lemma 11. For all 1/N -close plays ρ of G and ρ′ of CN (G), |wtG(ρ)−wtCN (G)(ρ′)| 6 B/N .

In particular, if we start in configurations (`0, ν0) of G, and ((`0, r0, v0), v0) of CN (G),
with ν0 ∈ r0, since both players have the ability to stay 1/N -close all along the plays, a
bisimulation argument permits to obtain that the values of the two games are also close in
(`0, ν0) and ((`0, r0, v0), v0):

I Lemma 12. For all locations ` ∈ L, 1/N -regions r, ν ∈ r and corners v of r, |ValG(`, ν)−
ValCN (G)((`, r, v), v)| 6 B/N .

Using this result, picking N an integer larger than B/ε, we can thus obtain |ValG(`, ν)−
ValCN (G)((`, r, v), v)| 6 ε. Recall that CN (G) can be considered as an untimed weighted game
(with reachability objective). Thus we can apply the result of [14], where it is shown that the
optimal values of such games can be computed in pseudo-polynomial time (i.e. polynomial

3 The function wtT is said to be Λ-Lipschitz-continuous when |wtT (s, ν)− wtT (s, ν′)| 6 Λ‖ν − ν′‖∞ for
all valuations ν, ν′, where ‖v‖∞ = maxx∈X |v(x)| is the ∞-norm of vector v ∈ RX . The function wtT is
said to be Lipschitz-continuous if it is Λ-Lipschitz-continuous, for some Λ.

D. Busatto-Gaston, B. Monmege, and P.-A. Reynier 28:13

time with weights encoded in unary, instead of binary). We then define an ε-approximation
of ValG , named Val′N , on each 1/N -region by interpolating the values of its 1/N -corners in
CN (G) with a piecewise linear function: therefore, we can control the Lipschitz constant of
the approximated value for further use.

I Lemma 13. Val′N is an ε-approximation of ValG, that is piecewise linear with a finite
number of pieces and 2B-Lipschitz-continuous over regions.

Approximation of almost-divergent WTGs. We now explain how to approximate the value
of an almost-divergent WTG G, thus proving Theorem 4. First, we compute a semi-unfolding
T (G) as described in the previous section. Then we perform a bottom-up computation of
the approximation. As already recalled, techniques of [1] allow us to compute exact values
of a tree-shape WTG. In consequence, we know how to compute the value of a non-kernel
node of T (G), depending of the values of its children. There is no approximation needed
here, so that if all children are ε-approximation, we can compute an ε-approximation of
the node. Therefore, the only approximation lies in the kernels, and we explained before
how to compute arbitrarily close an approximation of a kernel’s value. We crucially rely on
the fact that the value function is 1-Lipschitz-continuous4. This entails that imprecisions
will sum up along the bottom-up computations, as computing an ε-approximation of the
value of a game whose output weights are ε′-approximations yields an (ε+ ε′)-approximation.
Therefore we compute approximations with threshold ε′ = ε/α for kernels in T (G), where α
is the maximal number of kernels along a branch of T (G): α is smaller than the depth of
T (G), which is bounded by Proposition 10.

The subregion granularity considered before for kernel approximation crucially depends
on the Lipschitz constant of output weights. The growth of these constants is bounded for
kernels in T (G) by Lemma 13. For non-kernel nodes of T (G), using a careful analysis of the
algorithm of [1], we obtain the following bound:

I Lemma 14. If all the output weights of a WTG G are Λ-Lipschitz-continuous over regions
(and piecewise linear, with finitely many pieces), then ValiG is ΛΛ′-Lipschitz-continuous over
regions, with Λ′ polynomial in wLmax and |X| and exponential in i.

The overall time complexity of this method is doubly-exponential in the size of the input
game and polynomial in 1/ε.

7 Symbolic approximation algorithm

The previous approximation result suffers from several drawbacks. It relies on the SCC
decomposition of the region automaton. Each of these SCCs have to be analysed in a
sequential way, and their analysis requires an a priori refinement of the granularity of regions.
This approach is thus not easily amenable to implementation. We instead prove in this section
that the symbolic approach based on the value iteration paradigm, i.e. the computation of
iterates of the operator F recalled in page 7, is an approximation schema. This is stated
in Theorem 5, for which we now sketch a proof in this section.

Notice that configurations with value +∞ are stable through value iteration, and do not
affect its other computations. Since Theorem 5 assumes the absence of configurations of
value −∞, we will therefore consider in the following that all configurations have finite value
in G.

4 Indeed, inf and sup are 1-Lipschitz-continuous functions, and with a fixed play ρ, the mapping
wtT → wtΣ(ρ) + wtT (last(ρ)) is 1-Lipschitz-continuous.

FSTTCS 2018

28:14 Symbolic Approximation of Weighted Timed Games

Consider first a game G that is a kernel. By the results of Section 6, there exists an in-
teger N such that solving the untimed weighted game CN (G) computes an ε/2-approximation
of the value of 1/N corners. Using the results of [14] for untimed weighted games, we
know that those values are obtained after a finite number of steps of (the untimed ver-
sion of) the value iteration operator. More precisely, if one considers a number of it-
erations P = |L||RegN (X,M)|(|X| + 1)(2(|L||RegN (X,M)|(|X| + 1) − 1)wemax + 1), then
ValPCN (G)((`, r, v), v) = ValCN (G)((`, r, v), v). From this observation, we deduce the following
property of P :

I Lemma 15. If G is a kernel with no configurations of infinite value, then |ValG(`, ν) −
ValPG (`, ν)| 6 ε for all configurations (`, ν) of G.

Proof. We already know that ValPCN (G)((`, r, v), v) = ValCN (G)((`, r, v), v) for all configurations
((`, r, v), v) of CN (G). Moreover, Section 6 ensures |ValG(`, ν) − ValCN (G)((`, r, v), v)| 6 ε/2
whenever ν is in the 1/N -region r. Therefore, we only need to prove that |ValPG (`, ν) −
ValPCN (G)((`, r, v), v)| 6 ε/2 to conclude. This is done as for Lemma 12, since Lemma 11 (that
we need to prove Lemma 12) does not depend on the length of the plays ρ and ρ′, and
both runs reach the target state in the same step, i.e. both before or after the horizon of P
steps. J

Once we know that value iteration converges on kernels, we can use the semi-unfolding of
Section 5 to prove that it also converges on non-negative SCCs when all values are finite.

I Lemma 16. If G is a non-negative SCC with no configurations of infinite value, we can
compute P+ such that |ValG(`, ν)− ValP+

G (`, ν)| 6 ε for all configurations (`, ν) of G.

The idea is to unfold every kernel of the semi-unfolding game T (G) according to its bound
in Lemma 15. More precisely, let α be the maximum number of kernels along one of the
branches of T (G). In a bottom-up fashion, we can find for each kernel K in T (G) a bound PK
such that, for all configurations (`, ν), |ValK(`, ν)− ValPK

K (`, ν)| 6 ε/α. We thus unfold K in
T (G) with depth up to PK. After each kernel has been replaced this way, T (G) is no longer a
semi-unfolding, it is instead a (complete) unfolding of R(G), of a certain bounded depth P+.
This new bound P+ is bounded by the former depth of T (G) to which is added α times the
biggest bound PK we need for the kernels. Now, T (G) is a tree of depth P+ whose value
at its root is ε-close to the value of G. Finally, the value computed by ValP+

G is bounded
between ValG and ValT (G), which allows us to conclude.

The bound PK for a kernel K depends linearly in Λ, the Lipschitz constant of value
functions on locations of T (G) reachable from K. Once K has been replaced by its unfolding
of depth PK, the Lipschitz constant of the value function at the root of T (G) are thus bounded
exponentially in Λ. This means that we ensure a bound for P+ that is at most polynomial in
1/ε, and that is of the order of a tower of α exponentials.

Proving the same property on non-positive SCCs requires more work, because the semi-
unfolding gives output weight −∞ to stop leaves, which doesn’t integrate well with value
iteration (initialisation at +∞ on non-target states). However, by unfolding those SCCs
slightly more (at most |R(G)| more steps), we can obtain the desired property with a similar
bound P−.

I Lemma 17. If G is a non-positive SCC with no configurations of infinite value, we can
compute P− such that |ValG(`, ν)− ValP−G (`, ν)| 6 ε for all configurations (`, ν) of G.

Now, if we are given an almost-divergent game G and a precision ε, we can add the
bounds for value iteration obtained from each SCC by Lemmas 16 and 17, and obtain a final
bound P such that for all k > P , ValkG is an ε-approximation of ValG .

D. Busatto-Gaston, B. Monmege, and P.-A. Reynier 28:15

Discussion. Overall, this leads to an upper bound complexity that is polynomial in 1/ε and
of the order of a tower of n exponentials, with n polynomial in the size of the input WTG.
However, we argue that this symbolic procedure is more amenable to implementation than
the previous approximation schema. First, it avoids the three already mentioned drawbacks
(SCC decomposition, sequential analysis of the SCCs, and refinement of the granularity
of regions) of the previous approximation schema. Then, it allows one to directly launch
the value iteration algorithm on the game G, and we can stop the computation whenever
we are satisfied enough by the approximation computed: however, there are no guarantees
whatsoever on the quality of the approximation before the number of steps P given above.
Finally, this schema allows one to easily obtain an almost-optimal strategy with respect to
the computed value.

If G is not guaranteed to be free of configurations of value −∞, then we must first perform
the SCC decomposition of R(G), and, as G is almost-divergent, identify and remove regions
whose value is −∞, by Lemma 9. Then, we can apply the value iteration algorithm.

As a final remark, notice that our correctness proof strongly relies on Section 6, and thus
would not hold with the approximation schema of [10] (which does not preserve the continuity
on regions of the computed value functions, in turn needed to define output weights on
1/N -corners).

8 Conclusion

We have given an approximation procedure for a large class of weighted timed games with
unbounded number of clocks and arbitrary integer weights that can be executed in doubly-
exponential time with respect to the size of the game. In addition, we proved the correctness
of a symbolic approximation schema, that does not start by splitting exponentially every
region, but only does so when necessary (as dictated by [1]). We argue that this paves the
way towards an implementation of value approximation for weighted timed games.

Another perspective is to extend this work to the concurrent setting, where both players
play simultaneously and the shortest delay is selected. We did not consider this setting
in this work because concurrent WTGs are not determined, and several of our proofs rely
on this property for symmetrical arguments (mainly to lift results of non-negative SCCs
to non-positive ones). Another extension of this work is the exploration of the effect of
almost-divergence in the case of multiple weight dimensions, and/or with mean-payoff
objectives.

References
1 Rajeev Alur, Mikhail Bernadsky, and P. Madhusudan. Optimal Reachability for Weighted

Timed Games. In Proceedings of the 31st International Colloquium on Automata, Languages
and Programming (ICALP’04), volume 3142 of LNCS, pages 122–133. Springer, 2004.

2 Rajeev Alur and David L. Dill. A Theory of Timed Automata. Theoretical Computer
Science, 126(2):183–235, 1994.

3 Rajeev Alur, Salvatore La Torre, and George J. Pappas. Optimal Paths in Weighted Timed
Automata. Theoretical Computer Science, 318(3):297–322, 2004.

4 Eugene Asarin and Oded Maler. As Soon as Possible: Time Optimal Control for Timed
Automata. In Hybrid Systems: Computation and Control, volume 1569 of LNCS, pages
19–30. Springer, 1999.

5 Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim G. Larsen, Judi Romijn, and Frits W.
Vaandrager. Minimum-cost Reachability for Priced Timed Automata. In Proceedings of
the 4th International Workshop on Hybrid Systems: Computation and Control (HSCC’01),
volume 2034 of LNCS, pages 147–161. Springer, 2001.

FSTTCS 2018

28:16 Symbolic Approximation of Weighted Timed Games

6 Patricia Bouyer, Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin. On the
Optimal Reachability Problem of Weighted Timed Automata. Formal Methods in System
Design, 31(2):135–175, 2007.

7 Patricia Bouyer, Thomas Brihaye, and Nicolas Markey. Improved Undecidability Results
on Weighted Timed Automata. Information Processing Letters, 98(5):188–194, 2006.

8 Patricia Bouyer, Ed Brinksma, and Kim G. Larsen. Optimal Infinite Scheduling for Multi-
Priced Timed Automata. Formal Methods in System Design, 32(1):3–23, 2008.

9 Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and Kim G. Larsen. Optimal Strategies
in Priced Timed Game Automata. In Proceedings of the 24th Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS’04), volume 3328 of
LNCS, pages 148–160. Springer, 2004.

10 Patricia Bouyer, Samy Jaziri, and Nicolas Markey. On the Value Problem in Weighted
Timed Games. In Proceedings of the 26th International Conference on Concurrency Theory
(CONCUR’15), volume 42 of Leibniz International Proceedings in Informatics, pages 311–
324. Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.CONCUR.2015.311.

11 Romain Brenguier, Franck Cassez, and Jean-François Raskin. Energy and mean-payoff
timed games. In 17th International Conference on Hybrid Systems: Computation and
Control (part of CPS Week), HSCC’14, Berlin, Germany, April 15-17, 2014, pages 283–
292. ACM, 2014.

12 Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin. On Optimal Timed
Strategies. In Proceedings of the Third international conference on Formal Modeling and
Analysis of Timed Systems (FORMATS’05), volume 3829 of LNCS, pages 49–64. Springer,
2005.

13 Thomas Brihaye, Gilles Geeraerts, Axel Haddad, Engel Lefaucheux, and Benjamin Mon-
mege. Simple Priced Timed Games Are Not That Simple. In Proceedings of the 35th IARCS
Annual Conference on Foundations of Software Technology and Theoretical Computer Sci-
ence (FSTTCS’15), volume 45 of LIPIcs, pages 278–292. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, 2015. doi:10.4230/LIPIcs.FSTTCS.2015.278.

14 Thomas Brihaye, Gilles Geeraerts, Axel Haddad, and Benjamin Monmege. Pseudopolyno-
mial Iterative Algorithm to Solve Total-Payoff Games and Min-Cost Reachability Games.
Acta Informatica, 2016. doi:10.1007/s00236-016-0276-z.

15 Thomas Brihaye, Gilles Geeraerts, Shankara Narayanan Krishna, Lakshmi Manasa, Ben-
jamin Monmege, and Ashutosh Trivedi. Adding Negative Prices to Priced Timed Games. In
Proceedings of the 25th International Conference on Concurrency Theory (CONCUR’14),
volume 8704, pages 560–575. Springer, 2014. doi:10.1007/978-3-662-44584-6_38.

16 Damien Busatto-Gaston, Benjamin Monmege, and Pierre-Alain Reynier. Optimal Reach-
ability in Divergent Weighted Timed Games. In Javier Esparza and Andrzej S. Mur-
awski, editors, Proceedings of the 20th International Conference on Foundations of Soft-
ware Science and Computation Structures (FoSSaCS’17), volume 10203 of Lecture Notes
in Computer Science, pages 162–178, Uppsala, Sweden, April 2017. Springer. doi:
10.1007/978-3-662-54458-7_10.

17 Thomas Dueholm Hansen, Rasmus Ibsen-Jensen, and Peter Bro Miltersen. A Faster Al-
gorithm for Solving One-Clock Priced Timed Games. In Proceedings of the 24th Interna-
tional Conference on Concurrency Theory (CONCUR’13), volume 8052 of LNCS, pages
531–545. Springer, 2013.

18 Marcin Jurdziński and Ashutosh Trivedi. Reachability-Time Games on Timed Automata.
In Proceedings of the 34th International Colloquium on Automata, Languages and Program-
ming (ICALP’07), volume 4596 of LNCS, pages 838–849. Springer, 2007.

19 Michał Rutkowski. Two-Player Reachability-Price Games on Single-Clock Timed Automata.
In Proceedings of the Ninth Workshop on Quantitative Aspects of Programming Languages
(QAPL’11), volume 57 of EPTCS, pages 31–46, 2011.

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.311
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.278
http://dx.doi.org/10.1007/s00236-016-0276-z
http://dx.doi.org/10.1007/978-3-662-44584-6_38
http://dx.doi.org/10.1007/978-3-662-54458-7_10
http://dx.doi.org/10.1007/978-3-662-54458-7_10

	Introduction
	Weighted timed games
	Results
	Kernels of an almost-divergent WTG
	Semi-unfolding of almost-divergent WTGs
	Approximation of almost-divergent WTGs
	Symbolic approximation algorithm
	Conclusion

