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Abstract
In this paper, we propose and analyze a local search algorithm for the Universal facility location
problem. Our algorithm improves the approximation ratio of this problem from 5.83, given by
Angel et al., to 5. A second major contribution of the paper is that it gets rid of the expensive
multi operation that was a mainstay of all previous local search algorithms for capacitated facility
location and universal facility location problem. The only operations that we require to prove the
5-approximation are add, open, and close. A multi operation is basically a combination of the
open and close operations. The 5-approximation algorithm for the capacitated facility location
problem, given by Bansal et al., also uses the multi operation. However, on careful observation,
it turned out that add, open, and close operations are sufficient to prove a 5-factor for the
problem. This resulted into an improved algorithm for the universal facility location problem,
with an improved factor.
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1 Introduction

In a facility location problem we are given a set of clients C = {1, . . . ,m} and a set of facilities
F = {1, . . . , n}. A client j has a demand dj which needs to be serviced by some facilities,
i.e., the demand is splittable. The cost of servicing a client j ∈ C by a facility i is given by
cij (the service cost). The service costs form a metric. Further let, for i, i′ ∈ F i 6= i′, cii′ be
the cost of the shortest path between i and i′, i.e. cii′ = minj∈C(cji + cji′). For the sake of
simplicity, we consider the case when demand of a client j ∈ C is one. Arbitrary demands
can be easily handled by doing slight modifications, details of which can be found in Pal et
al. [4] and Mahdian et al. [3].

In the classical uncapacitated facility location problem (UFL), we are also given f : F →
<+, and fi is the cost of opening a facility at location i. In the capacitated version of the
facility location problem, besides the cost of opening a facility at location i we are also
given an upper bound ui on the number of clients that can be served at location i. The
Universal facility location (UniFL) problem is a further generalization of the capacitated
facility location problem. Now the cost of opening a facility at i ∈ F depends on the number
of clients that this facility would serve and is given by a cost function fi(.), which is a
monotonically non-decreasing function of the capacity allocated to facility i. Thus if ui is the
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24:2 Universal Facility Location

capacity allocated to facility i, then fi(ui) is its facility opening cost. The aim is to determine
a capacity allocation vector U = 〈u1, u2, · · · , un〉 such that the total cost of opening facilities
and the cost of serving clients by the open facilities, while respecting capacity constraints, is
minimized. Once the allocation vector U is known it is easy to determine the assignment
of clients by solving a mincost flow problem. Therefore the capacity allocation vector U
completely determines the solution. Note that if fi(ui) = ∞ for ui > ci and fi(ui) = fi

otherwise, then we have an instance of the capacitated facility location problem where ci is
the fixed capacity of facility i.

The Universal facility location problem was introduced by Mahdian and Pal [3] who gave
a 7.88-approximation algorithm which was improved by Vygen [5] to a 6.702-approximation.
This has been further improved to a 5.83-approximation by Angel et al. [1]. Our main
result in this paper, is a 5-approximation algorithm for this problem. Our algorithm extends
our earlier 5-approximation algorithm for the capacitated facility location problem [2] and
borrows heavily from that work. Bansal et al. [2] gave a local search algorithm for capacitated
facility location problem that uses the operations add, mopen, mclose, and mmulti. Our
algorithm too uses the operations add, mopen, and mclose (which we call open, and close
in this paper) but doesn’t require the mmulti operation. The mmulti operation which is
a combination of an open and close operation is an expensive operation to perform and
has appeared in some form in all previous works on universal facility location problem and
capacitated facility location problem. By getting rid of this expensive operation we hope that
our algorithm would be simpler to implement and faster in practice. This paper, thus, not
only extends but also simplifies the result in [2]. Bansal et al. [2] argue that the locality gap
of any procedure for the capacitated facility location problem that uses the operations add,
mopen, mclose, and mmulti is atleast 5. This lower bound also applies in our setting since
we consider a subset of these operations for a more general problem. When analyzing the
cost of an operation we sometimes assign clients fractionally to the facilities. This can be
done as it is well known that a fractional assignment cannot be better than the integral
optimum assignment, in an assignment problem.

The remainder of this paper is organized as follows: We begin with some preliminaries
and in section 3 we present the local search steps. In Section 4 we analyse the local search
algorithm by identifying a suitable set of inequalities and finally in Section 5 we put the
various pieces together to prove our main theorem. As mentioned earlier, our paper borrows
heavily from ideas developed in [2, 6] and other previous work. At many places we have
rephrased key arguments to keep the paper self-contained.

2 Preliminaries

A solution to the UniFL problem consists of a capacity allocation vector and an assignment
of the clients to the facilities which obey capacity constraints.

Let us consider an allocation vector U = 〈u1, u2, . . . , un〉 for a given instance. We abuse
notation and use U to denote both the solution and the allocation vector. The cost of a
solution U is denoted by c(U) = cf (U) + cs(U), where cf (U) is the facility cost and cs(U) is
the service cost of the solution U .

Let U be a locally optimal solution and U∗ be an optimum solution. For each s ∈ F ,
us (respectively u∗s) denotes the capacity allocated to s in the locally optimal (respectively
optimum) solution. Let FU (respectively FU∗) be the set of facilities for which us (respectively
u∗s) is greater than zero. It is no loss of generality to assume that us is the number of clients
served by s in U , and u∗s the no. of clients served by s in U∗.
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Let σ(j), τ(j) be the facilities serving client j in solutions U,U∗ respectively. Construct a
bipartite graph, G = (C ∪ F,E) where E contains edges (σ(j), j) and (j, τ(j)). Thus each
client has one incoming and one outgoing edge while a facility s has us outgoing edges and
u∗s incoming edges. The graph G is now decomposed into a set of maximal paths, P, and
cycles, C. A path P ∈ P is a sequence of vertices s = s0, j0, s1, j1, . . . , sk, jk, sk+1 = o, which
starts at a vertex s ∈ FU and ends at a vertex o ∈ FU∗ . Let head(P ) denote the client served
by s and tail(P ) the client served by o on this path. Note that {s1, s2, . . . , sk} ⊆ FU ∩ FU∗ .
Similarly all facilities on a cycle are from FU ∩ FU∗ .

The length of a path P is given by

length(P ) =
∑

j∈C∩P

(U∗j + Uj)

where U∗j (respectively Uj) is the service cost of client j in the solution U∗(respectively U).
Note that∑

P∈P
length(P ) +

∑
Q∈C

length(Q) = cs(U) + cs(U∗).

A shift along a path P is a reassignment of clients so that ji which was earlier assigned to si

is now assigned to si+1. As a consequence of this shift, facility s serves one client less while
facility o serves one client more. shift(P ) denotes the increase in service cost due to a shift
along P i.e.

shift(P ) =
∑

j∈C∩P

(U∗j − Uj).

For a cycle in C the increase in service cost equals the sum of U∗j − Uj for all clients j in the
cycle and since the assignment of clients to facilities is done optimally in our solution and in
the global optimum, this sum is zero. Thus∑

Q∈C

∑
j∈Q

(U∗j − Uj) = 0.

Let No
s be the set of paths that begin at s and end at o. Define out(s) = ∪oN

o
s as the

set of paths starting from s and in(o) = ∪sN
o
s as the set of paths ending at o. Since the

paths chosen are maximal, for any s, at least one of the two sets in(s),out(s) is empty.
Let S be the set of facilities for which in(s) is empty and O the set of facilities for which
out(s) is empty. Hence, S ∩O = φ. Note that for s ∈ S, |out(s)| = us − u∗s and for s ∈ O,
|in(s)| = u∗s − us.

Define a capacity function, û, on the facilities as follows: û(s) equals |out(s)| = us − u∗s
if s ∈ S, it equals |in(s)| = u∗s − us if s ∈ O and is 0 for s ∈ F \ (S ∪O). To bound the cost
of facilities in S, we reduce the capacity of each facility s ∈ S from us to u∗s and reassign
us − u∗s = û(s) clients served by s to facilities in O. We refer to this step as closing facility s.
Similarly, opening a facility o ∈ O implies increasing its capacity by u∗o − uo = û(o). open
and close operations are explained in the next section.

To formulate a suitable set of inequalities we formulate an assignment problem where
each node s ∈ S has supply û(s) and a node o ∈ O has demand û(o). When a client served
by s is transferred to o the increase in service cost is at most cso and hence this is the cost of
sending one unit of flow from node s to o. Let y(s, o) be the flow from s to o in an optimum
solution to this assignment problem.

FSTTCS 2018
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I Lemma 1. The cost of an optimum flow y is at most cs(U) + cs(U∗).

Proof. Consider a solution ŷ defined as ŷ(s, o) = |No
s |. It is easy to check that this is a feasible

solution to the assignment problem. Note that for every path P ∈ No
s , length(P ) ≥ cso.

Hence∑
s

∑
o

csoŷ(s, o) ≤
∑

s

∑
o

∑
P∈No

s

length(P )

=
∑

P∈P
length(P )

≤ cs(U) + cs(U∗) J

It is easy to argue that there is an optimum flow y where the edges carrying non-zero flow
form an acyclic subgraph. We call this subgraph as exchange graph. Let G′ = (S ∪O,E′)
where E′ = {(s, o)|y(s, o) > 0} and suppose G′ is not acyclic. Let C be the edges on a cycle.
Take alternate edges of C to form sets C1, C2. Let γ be the minimum flow on an edge in C.
Consider two operations - one in which we increase the flow on edges in C1 and decrease
the flow on edges in C2 by an amount γ and the other in which we do the inverse. In one
of these operations the total cost

∑
s∈S,o∈O csoy(s, o) would not increase and the flow on

one of the edges would reduce to zero thereby removing it from the graph. This process is
continued till the graph becomes acyclic. Note that the total flow from nodes of S to a node
o ∈ O is equal to û(o) i.e.,

∑
s∈S y(s, o) = û(o) and total flow from a node s ∈ S to nodes in

O is equal to û(s), i.e.,
∑

o∈O y(s, o) = û(s).

3 The local search operations

Starting with a feasible solution U , we perform add, open and close operations to improve
the solution U if possible. Given a solution U , we can assume that for each facility i ∈ U , ui

is exactly equal to the number of clients it is serving for if it is not true then we can reduce
ui and hence the cost of the solution. U is locally optimal if none of these operations improve
the cost of the solution and at this point the algorithm stops. The add operation is the same
as given by Mahdian and Pal [3] while the open and close are almost the same as in [2].

add(s, δ). In this operation the capacity allocated at a facility s is increased by an amount
δ > 0. A mincost flow problem is then solved to find the best assignment of clients to the
facilities. As a consequence of this operation the cost increases by: fs(us + δ) − fs(us) +
cs(U ′)− cs(U) where U ′ is the new solution after increasing the capacity of s. This operation
can be performed in polynomial time [3] .

open(t, δ1, δ2). This operation is best viewed as a combination of two operations. In the
first operation the capacity allocated at t ∈ F is increased by δ2 and the total capacity of a
set T , to be determined as a part of the operation, is decreased by the same amount. The
second operation is add(t, δ1 − δ2). Our procedure for implementing this operation is as
follows.
1. We create an instance of the knapsack problem where the sack has capacity δ2. For

each facility i ∈ F, i 6= t, we have for all 0 < j < ui, an object of weight j and profit
fi(ui) − fi(ui − j) − j · cit. Picking such an object into the knapsack corresponds to
reducing the capacity of facility i by j units and the profit is a lower bound on the
savings we get and is obtained by reassigning j clients served by i to t. The knapsack
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t

Kd(t)
Ku(t)

O

S

O

Figure 1 A subtree of height 2 showing up-facilities and down-facilities. The square facilities are
in the optimum solution while the circular facilities are in the locally optimum solution. The arrow
in the facility identifies it as an up/down facility.

problem is to maximise profit under the constraint that we can pick at most one object
corresponding to each facility. Thus, by solving the knapsack problem, we find a set T
and for each facility i ∈ T , a quantity j by which the capacity at i is decreased.

2. Independently of the above knapsack procedure we find, by solving a mincost flow problem,
the maximum savings in service cost if an additional δ1 − δ2 clients are assigned to t.

The profit in step 1 and the savings in step 2, when reduced by (ft(ut + δ1)− ft(ut)) is an
estimate of the savings obtained by this operation and if this quantity is positive we have
a local improvement. Step 2 can be performed in polynomial time. To perform step 1 in
polynomial time, a dynamic programming solution, similar to Mahdian and Pal [3] is used,
and values of j are taken to be non-negative integers.

close(t, δ1, t∗). This operation too is best viewed as a combination of two operations. The
first operation is add(t∗, δ2 − δ1). In the second operation the capacity allocated at t ∈ F
is decreased by δ1 and the total capacity of a set T, t∗ ∈ T , to be determined during the
operation, is increased by an amount δ2, δ2 > δ1. Assuming δ2 ≥ 0 is known, the operation
can be implemented as follows.

1. We solve a mincost flow problem to compute the maximum savings in service cost when
δ2 − δ1 clients are assigned to t∗.

2. Next we create a knapsack instance with sack capacity δ1. For all 0 < j < δ1, for each
facility i ∈ F, i /∈ {t, t∗}, we have an object of weight j and profit fi(ui)−fi(ui +j)−j ·cit

while for facility i = t∗, we have an object of weight j and profit fi(ui + δ2 − δ1)− fi(ui +
j + δ2 − δ1)− j · cit. As before, the knapsack problem is to maximise profit under the
constraint that we can pick at most one object corresponding to each facility.

The savings in step 1 and the profit in step 2, when increased by (ft(ut) − ft(ut − δ1)) −
(ft∗(ut∗ + δ2 − δ1)− ft∗(ut∗)) is an estimate of the savings obtained by this operation and if
this quantity is positive we have a local improvement. To perform step 2 in polynomial time,
a dynamic programming solution, similar to Mahdian and Pal [3] is used with values of j
being non-negative integers.

FSTTCS 2018
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t

Ku(t)

Figure 2 open operation considered for handling facilities in Ku(t) when t is an up-facility.

4 Bounding the cost of our solution

Recall that U is a locally optimal solution and U∗ is an optimum solution. Also, G′ is an
exchange graph and y defines an optimum flow on the edges in this graph. We consider
potential local improvement steps and using the fact that U is a locally optimal solution,
formulate suitable inequalities which help us bound the cost of our solution. The inequalities
are written such that

1. each facility in S is closed once.

2. each facility in O is opened at most five times.

3. the total cost of reassigning clients is bounded by

2
∑

s∈S,o∈O

csoy(s, o) + 3
∑
o∈O

∑
P∈in(o)

shift(P ).

Every tree in the forest G′ is rooted at a facility in O. Consider a subtree T of height 2
having root t ∈ O( Figure 1). For a facility i, let p(i) be the parent and K(i) the children of
i. A facility i is an up-facility if y(i, p(i)) ≥

∑
j∈K(i) y(i, j) and a down-facility otherwise.

Ku(i) (respectively Kd(i)) denote the children of i which are up-facilities (respectively
down-facilities).

Our choice of operations, considered for the purpose of analysis, is different from the ones
considered in [2] and ensure that for a facility o ∈ O:

1. If o is an up-facility, it is opened at most twice in operations involving facilities which are
descendants of o in the tree and is opened at most twice in other operations.

2. If o is a down-facility, it is opened at most four times in operations involving facilities
which are descendants of o in the tree and is opened at most once in other operations.
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t

A B

t

Figure 3 open operations considered for facilities in Ku(t) \ {h} when t is a down facility.

4.1 Closing children of t which are up-facilities
Consider the children of t which are up-facilities. We first consider the easier case when t is
an up-facility(Figure 2). Now,

û(t) =
∑

s∈K(t)

y(s, t)+y(p(t), t) ≥
∑

s∈Ku(t)

y(s, t)+y(p(t), t) ≥
∑

s∈Ku(t)

2y(s, t) ≥
∑

s∈Ku(t)

û(s)

where the second last inequality is due to the fact that t is an up-facility and the last
inequality holds since for all s ∈ Ku(t) we have

û(s) = y(s, t) +
∑

o∈K(s)

y(s, o) ≤ 2y(s, t).

Thus all facilities s ∈ Ku(t) can be closed (i.e.,their capacity reduced by û(s)) in a single
operation open(t, û(t),

∑
s∈Ku(t) û(s)). We now bound the cost of reassignment of clients as

a result of this operation.

1. û(s) clients of a facility s ∈ Ku(t) are assigned to t. Since for s ∈ Ku(t), û(s) ≤ 2y(s, t),
this reassignment cost is at most 2y(s, t)cst.

2. We can assign an additional û(t)−
∑

s∈Ku(t) û(s) clients to t. One way of doing this is
by shifting to an extent (1−

∑
s∈Ku(t) û(s)/û(t)) along each of the û(t) paths in in(t).

Since U is locally optimal, this operation will not improve the cost of U . This operation
then yields the inequality

ft(u∗t )− ft(ut)−
∑

s∈Ku(t)

(fs(us)− fs(u∗s)) +

∑
s∈Ku(t)

2y(s, t)cst +

1−
∑

s∈Ku(t)

û(s)/û(t)

 ∑
P∈in(t)

shift(P ) ≥ 0 (1)

We next consider the case when t is a down-facility (Figure 3) and begin by noting that∑
s∈Ku(t)

û(s) ≤
∑

s∈Ku(t)

2y(s, t) ≤ 2
∑

s∈K(t)

y(s, t) ≤ 2û(t).

FSTTCS 2018
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s1 si Si+1 sk

t

Kd(t)        

sk

t

h

t

…

Figure 4 close operations for facilities in Kd(t) and facility h showing the reassignment of clients
when one of these facilities are closed.

Let h = arg maxs∈Ku(t) y(s, t) and partition the facilities in Ku(t) \ h into two sets A and B
such that

∑
s∈A û(s) ≤ û(t) and

∑
s∈B û(s) ≤ û(t). The facilities in sets A and B are closed

in two open operations open(t, û(t),
∑

s∈A û(s)) and open(t, û(t),
∑

s∈B û(s)) respectively;
see Figure 3.

The extra capacity available at t in each of these open operations is used to assign
additional clients to t in the same manner as done earlier.

The facility h is handled together with the facilities in Kd(t) using close operations as
discussed next.

4.2 Closing facility h and down-facilities which are children of t

Now we discuss the operations to close facilities s ∈ Kd(t) ∪ {h} and refer to Figure 4.
Consider the facilities in Kd(t). As in [2, 5], for every s ∈ Kd(t) we define rem(s) = y(s, t)−∑

o∈Kd(s) y(s, o) and rename the facilities in Kd(t) so that rem(s1) ≤ rem(s2) ≤ · · · rem(sk).
We can close facility si ∈ Kd(t), i < k by reassigning û(si) of its clients to facilities in

K(si) ∪Ku(si+1) as follows:
1. y(si, o) clients are reassigned to o ∈ Ku(si).
2. 2y(si, o) clients are reassigned to o ∈ Kd(si). Since o is a down-facility, y(si, o) ≤∑

s′∈K(o) y(s′, o) and hence 2y(si, o) ≤ û(o).
3. This leaves rem(si) = y(si, t)−

∑
o∈Kd(si) y(si, o) clients, which are reassigned to facilities

in Ku(si+1). Doing so is feasible since

rem(si) ≤ rem(si+1) = y(si+1, t)−
∑

o∈Kd(si+1)

y(si+1, o) ≤
∑

o∈Ku(si+1)

y(si+1, o).

We denote by z(si, o) the number of clients reassigned to o ∈ K(si) ∪Ku(si+1) in the
above argument.

We can formulate the following inequality, w.r.t.closing of facility si:



M. Bansal, N. Garg, and N. Gupta 24:9

I Lemma 2.

fsi(usi)− fsi(u∗si
)−

∑
o∈K(si)∪Ku(si+1)

(fo(u∗o)− fo(uo))

≤
∑

o∈K(si)∪Ku(si+1)

z(si, o)csio +
∑

P∈in(o)

(
1− z(si, o)

û(o)

)
shift(P )

 (2)

Proof. Denote the set K(si) ∪ Ku(si+1) by T . Consider the facilities of T in decreasing
order of z(si, o)/û(o) and keep including them into a set T ′ until the total capacity of the
facilities in T ′, i.e.

∑
o∈T ′ û(o), exceeds û(si). Let t∗ be the last facility to be included into

T ′ and k = û(si)−
∑

o∈T ′\{t∗} û(o) be the number of clients reassigned from si to t∗. Then
a close(si, û(si), t∗) operation which reassigns û(o) clients from si to o ∈ T ′ \ {t∗}, k clients
from si to t∗ and an additional û(t∗)− k clients to t∗ by performing a shift along each path
in in(t∗) to an extent 1− k/û(t∗) yields the inequality

fsi
(usi

)− fsi
(u∗si

)−
∑
o∈T ′

(fo(u∗o)− fo(uo))

≤
∑

o∈T ′\{t∗}

û(o)csio + kcsit∗ + (1− k/û(t∗))
∑

P∈in(t∗)
shift(P ) (3)

We now build a linear combination by taking inequality 3 to an extent of ξ, reduce z(si, o)
by ξ · û(o) for all facilities o ∈ T ′ \ {t∗} and reduce z(si, t

∗) by ξ · k, where ξ is the largest
value such that z(si, o) ≥ 0, o ∈ T ′. We keep building the linear combination in this manner
till ξ = 0. This process can be viewed as sending ξ · û(si) units of flow from si to facilities in
T ′ with facility o ∈ T ′ \ {t∗} receiving ξ · û(o) flow and facility t∗ receiving ξ · k flow. The
edges (si, o) have capacity z(si, o) which is reduced by the amount of flow sent in each step.
Initially the total capacity of all edges

∑
o∈T z(si, o) equals the amount of flow û(si) that

needs to be sent and this property is maintained at each step. By picking the facilities with
the largest values of z(si, o)/û(o) we are ensuring that the maximum of these quantities
never exceeds the fraction of the flow that remains to be sent. This implies that when the
procedure terminates all z(si, o) are zero and û(si) units of flow have been sent.

If a facility o ∈ T was opened to an extent λo in the above process, then its con-
tribution in the linear combination would be λo(fo(u∗o) − fo(uo)) + z(si, o)csio + (λo −
z(si, o)/û(o))

∑
P∈in(o) shift(P ). We add a 1− λo multiple of the inequality

fo(u∗o)− fo(uo) +
∑

P∈in(o)
shift(P ) ≥ 0 (4)

which corresponds to the operation add(o, û(o)), to the linear combination to match the
contribution of o in Inequality 2. J

Note that due to the above process, si is closed to an extent of one and o ∈ T is opened
to an extent of one.

We now consider operations of the kind close(sk, û(sk), t∗) where t∗ ∈ K(sk) ∪ {t} to
handle sk. As before we build a suitable linear combination of the inequalities arising
from these operations while ensuring that the total number of clients reassigned from sk to
o ∈ K(sk)∪{t} is z(sk, o) = y(sk, o). The inequality corresponding to this linear combination

FSTTCS 2018
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is given by

(fsk
(usk

)− fsk
(u∗sk

))−
∑

o∈K(sk)∪{t}

(fo(u∗o)− fo(uo))

≤
∑

o∈K(sk)∪{t}

z(sk, o)csko +
∑

o∈K(sk)∪{t}

∑
P∈in(o)

(1− z(sk, o)/û(o))shift(P ) (5)

Note that in the above process, sk is closed to an extent of one and o ∈ K(sk) ∪ {t} is
opened to an extent of one.

The following lemma bounds the cost of reassigning clients (excluding the cost of shifting
along paths in P) in the close operations on facilities in Kd(t).

I Lemma 3.

k∑
i=1

∑
o

z(si, o)csio ≤ 2
k∑

i=1

∑
o∈K(si)∪{t}

y(si, o)csio

Proof. We begin by observing that since edge costs form a metric, csio, o ∈ Ku(si+1) is at
most csit + ctsi+1 + csi+1o.

The contribution of the edge (si, t), i 6= 1, k to the reassignment cost is at most (rem(si) +
rem(si−1))csit. Since both rem(si−1) ≤ rem(si) ≤ y(si, t) the total contribution of this edge
is at most 2y(si, t)csit. The contribution of the edge (s1, t) to the reassignment cost is at
most rem(s1)cs1t ≤ y(s1, t)cs1t while the contribution of the edge (sk, t) to the reassignment
cost is at most (rem(sk−1) + y(sk, t))cskt ≤ 2y(sk, t)cskt.

The contribution of the edge (si, o), o ∈ Kd(si) is at most 2y(si, o)csio since 2y(si, o)
clients are assigned to o when si is closed.

The contribution of the edge (si, o), o ∈ Ku(si), i 6= 1 is at most 2y(si, o)csio since at
most y(si, o) clients are assigned to j once when si is closed and once when si−1 is closed.
The contribution of the edge (s1, o), o ∈ Ku(s1) is at most y(s1, o)cs1o. J

Finally, by considering operations close(h, û(h), t∗) where t∗ ∈ K(h) ∪ {t} and taking a
suitable linear combination we obtain an inequality similar to inequality 5 with h replacing
sk. Note that in this operation, the contribution of an edge (h, o), o ∈ K(h) ∪ {t} is at most
y(h, o)cho. Also note that h is closed to an extent of one and o ∈ K(h) ∪ {t} is opened to an
extent of one in this process.

5 Putting Things Together

In all the operations discussed in the previous section, a facility o ∈ O is opened at most
5 times and cost of reassignment of clients in all these operations is small. We prove these
facts in the following lemmas.

I Lemma 4. A facility o ∈ O is opened at most 5 times and is assigned a total of at most
2
∑

s y(s, o) ≤ 2û(o) clients, from the facilities closed in the respective operations, over all
the operations considered.

Proof.
When o is an up-facility: While considering the facilities of S which are descendants of

o, o would be opened twice, once when it is part of close operations close(sk, û(sk), t),
sk ∈ Kd(o), t ∈ K(sk) ∪ {o} and once when it is part of an open operation open(o, û(o),
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∑
s∈Ku(o) û(s)). o is assigned at most 2

∑
s∈Ku(o) y(s, o)+y(sk, o) clients where sk ∈ Kd(o).

Note that this is at most 2
∑

s∈K(o) y(s, o).
While considering the facilities of S which are not descendants of o, if the parent of o,
p(o), is an up-facility, o would be opened once if p(o) = h. In this case a close operation
involving p(o) assigns at most y(p(o), o) clients to o. If p(o) 6= h then o is not opened and
no client is assigned to it.
If p(o) is a down-facility then o would be opened at most twice and would be assigned at
most 2y(p(o), o) clients. This can be argued in a straightforward manner by considering
the 3 cases: p(o) = s1; p(o) = si, i 6= 1, k; p(o) = sk.

When o is a down-facility: While considering the facilities of S which are descendants of o,
o would be opened four times: once when it is part of close operations close(sk, û(sk), t)
where sk ∈ Kd(o), t ∈ K(sk)∪{o}, once when it is part of close operations close(h, û(h), t)
where h ∈ Ku(o), t ∈ K(h) ∪ {o}, and twice as a part of two open operations in which
sets A,B ⊆ Ku(o) are closed. The number of clients assigned to o in these operations is
2
∑

s∈A y(s, o), 2
∑

s∈B y(s, o), y(h, o) and y(sk, o) respectively. Since A∪B∪{h} = Ku(o)
and sk ∈ Kd(o), the total number of clients assigned to o in these four operations is at
most 2

∑
s∈K(o) y(s, o).

o would be opened at most once while considering the facilities of S, which are not
descendants of o irrespective of whether p(o) is an up-facility or a down-facility. If the
parent of o, p(o), is an up-facility then o would be assigned at most y(p(o), o) clients
in a close operation involving p(o). If p(o) is a down-facility then o would be assigned
at most 2y(p(o), o) clients and once again this can be argued by considering 2 cases:
p(o) = si, i 6= k; p(o) = sk. Therefore the total number of clients assigned to o when o is
a down-facility is at most 2

∑
s y(s, o). J

I Lemma 5. The total reassignment cost of all the operations is bounded by

2
∑

s∈S,o∈O

csoy(s, o) + 3
∑
o∈O

∑
P∈NU∗ (o)

shift(P )

Proof. The first term in the required expression follows from the fact that in all the operations
considered, the contribution of an edge (s, o) of the exchange graph is at most 2csoy(s, o).

When all the inequalities are added, the term
∑

P∈in(o) shift(P ) for a facility o ∈ O
appears to the extent of α− β/û(o) where α is the number of times o is opened and β is the
total number of clients assigned to o from the facilities whose capacity allocation decreases in
the operation in which o is opened. From Lemma 4, β is at most 2û(o) and α is at most 5. If
a facility o ∈ O is opened less than five times in these operations then we add the inequality
corresponding to add(o, û(o)) to our linear combination so that each facility is now opened
exactly five times. Therefore, the coefficient of the term

∑
P∈in(o) shift(P ) is at least 3. If

its greater than 3 for some o ∈ O then we will reduce the coefficient of
∑

P∈in(o)) shift(P )
in some of the inequalities involving o to make this contribution exactly 3. J

From Lemma 4 and Lemma 5, we can conclude that

−
∑
s∈S

(fs(us)− fs(u∗s)) + 5
∑
o∈O

(fo(u∗o)− fo(uo))

+ 2
∑

s∈S,o∈O

csoy(s, o) + 3
∑
o∈O

∑
P∈NU∗ (o)

shift(P ) ≥ 0
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Rearranging terms, we get

−
∑
i∈F

fi(ui) + 5
∑
i∈F

fi(u∗i ) + 2
∑

s∈S,o∈O

csoy(s, o) + 3
∑
o∈O

∑
P∈in(o)

shift(P ) ≥ 0

The third term in the above inequality can be bounded by 2(cs(U) + cs(U∗)) (Lemma 1).
The fourth term can be written as

3
∑
o∈O

∑
P∈in(o)

shift(P ) = 3
∑

P∈P

∑
j∈P

(U∗j − Uj) + 3
∑
Q∈C

∑
j∈Q

(U∗j − Uj) = 3
∑
j∈C

(U∗j − Uj)

where second term in the middle equality is due to the fact that
∑

j∈Q: Q∈C(U∗j − Uj) = 0.
Thus,

−cf (U) + 5cf (U∗) + 2(cs(U) + cs(U∗)) + 3(cs(U∗)− cs(U)) ≥ 0

which implies the following bound on the cost of our solution

cf (U) + cs(U) ≤ 5cf (U∗) + 5cs(U∗) (6)

To ensure that the local search procedure has a polynomial running time we need to
modify the local search procedure so that a step is performed only when the cost of the
solution decreases by at least (ε/4n)c(U). This modification gives rise to an extra term of at
most (4ε/4)c(U) in the above inequality. This implies that the cost of the solution U is at
most 5c(U∗) + ε · c(U).

Thus we arrive at our main result:

I Theorem 6. The local search procedure with operations add, open and close yields a locally
optimum solution that is a (5 + ε)-approximation to the optimum solution.
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