Hyper Partial Order Logic

Béatrice Bérard
Sorbonne Université, CNRS, Laboratoire d'Informatique de Paris 6, LIP6, F-75005 Paris, France
Beatrice.Berard@lip6.fr

Stefan Haar
INRIA and LSV, ENS Paris-Saclay and CNRS, Université Paris-Saclay, France stefan.haar@inria.fr

Loic Hélouët

Université de Rennes, Inria, CNRS, IRISA, France
loic.helouet@inria.fr

Abstract

We define HyPOL, a local hyper logic for partial order models, expressing properties of sets of runs. These properties depict shapes of causal dependencies in sets of partially ordered executions, with similarity relations defined as isomorphisms of past observations. Unsurprisingly, since comparison of projections are included, satisfiability of this logic is undecidable. We then address model checking of HyPOL and show that, already for safe Petri nets, the problem is undecidable. Fortunately, sensible restrictions of observations and nets allow us to bring back model checking of HyPOL to a decidable problem, namely model checking of MSO on graphs of bounded treewidth.

2012 ACM Subject Classification Theory of computation \rightarrow Logic and verification
Keywords and phrases Partial orders, logic, hyper-logic

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2018.20
Related Version An extended version of the paper is available at [5], https://hal.inria.fr/ hal-01884390.

1 Introduction

Hyperproperties. A way to address information security in systems is to guarantee various information flow properties. Examples of such properties are non-interference [18] (an attacker of a system cannot obtain confidential information from its observation of the system), or opacity of secrets [2] (an attacker cannot decide whether the system is in some particular secret configuration). For a long time since the seminal work of [18] introducing non-interference, security properties have been characterized as equivalences between partially observed behaviors of systems. This idea was later formalized [23] as combinations of language closure properties, the so-called "basic security predicates". We refer to [29] for a survey on language based information flow properties. More recently, logics with path equivalences [1] encompassing indistinguishability among partially observed executions have been proposed as a generic framework to define security conditions. Security properties are now frequently called hyperproperties [11, 10], i.e., properties of sets of runs.

Most proposals address verification questions in an interleaved setting, ignoring concurrency aspects. For instance, non-interference properties were considered for Petri nets [8], but still with techniques relying on interleaved interpretation of behaviors. Recently, [7] showed how to characterize some non-interference properties that cannot be handled in an

© Béatrice Bérard, Stefan Haar, and Loic Hélouët; licensed under Creative Commons License CC-BY
38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2018).
Editors: Sumit Ganguly and Paritosh Pandya; Article No. 20; pp. 20:1-20:21
LIPICS Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany
interleaved model. This result is interesting, as it shows that even if complexity gains are not straightforward, considering causal dependences in systems leads to characterize types of attacks of a system that cannot be characterized in an interleaved setting.

Local logics. We focus here on local logics that account for causal dependencies and concurrency in behaviors of models. Several variants of local logic have been proposed: $T L C^{-}, L D_{0}, P D L, L P O C$, or even MSO. The first one, proposed by [27], is a logic tailored for Message Sequence Charts (MSCs). The logic features propositions, a next and an until operator and is interpreted over causal paths of MSCs. Model checking TLC ${ }^{-}$is decidable for families of partial orders generated by High-level Message Sequence Charts (HMSCs). It is linear in the size of the considered HMSC, but exponential in the size of the formula.

The logic $L D_{0}$ [26] addresses properties of causal paths in partial orders. It resembles LTL in that its atomic propositions are attached to events, but it follows causal paths rather than linearizations, and is equipped with successor/predecessor relations.

An extension of $T L C^{-}$called Propositional Dynamic logic (PDL), which also subsumes $L D_{0}$, is given in [9] to express properties of Communicating Finite State Machines (CFSMs). This logic is divided into path formulas and local formulas. Path formulas make it possible to navigate forward or backward in partially ordered executions via two relations: One that indicates whether an event f is the next executed event after e on the same process, and one that indicates whether a pair (e, f) forms a message. At each event along a followed path, truth of a local formula can be checked. Local formulas are used to check whether some atomic proposition holds at a given event, or whether some path formula holds at an event together with another PDL subformula. In general, verification of PDL for CFSMs is undecidable, but checking whether some B-bounded execution of a CFSM (in which buffer contents can remain of size smaller than B) satisfies a PDL formula is PSPACE-complete. This result extends to HMSC specifications, whose executions are naturally bounded. Another approach to study properties of partial orders generated by system executions is to express them directly as MSO properties. As MSO verification can easily be undecidable for some families of graphs, decidability is proved for families of partial orders generated by Message Sequence Charts in [21]. The result is obtained thanks to the particular shape of orders generated by MSCs that are "layered". Similarly, [22] considers restrictions in executions of CFSMs that have to synchronize frequently.

LPOC [17] is a logic for partially ordered computations. It describes the shape of partial orders, and not only of their causal paths. In addition to standard local operators, the logic has the ability to require existence of a particular partial order pattern in the causal past of an event. It was used as a specification formalism for diagnosis purposes, but without restriction, satisfiability of an LPOC formula is undecidable.

Contributions. We propose a framework unifying path equivalence logics, hyperproperties and partial order approaches. The logic borrows ingredients from LPOC [17]: in particular, it expresses existence of a pattern in a partial order, rather than on a causal path. It also borrows the idea of comparing executions up to observation, as proposed in $C T L \equiv$, one of the branching logics with path equivalence proposed in [1]. Events in a pair of executions are considered as equivalent if the (partial) observations of their causal pasts are isomorphic. One of the artifacts used by [1] to obtain decidability of $C T L \equiv$ is to require equivalence to hold only among events located at the same depth in executions. We do not use such an interpretation of equivalence, and rather exhibit sufficient conditions on behaviors of systems that are almost a layeredness property [21], to obtain decidability.

Figure 1 A partial order O over events $\left\{e_{0}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}\right\}$, a template T with events $\left\{f_{0}, f_{1}, f_{2}, f_{3}\right\}$, and a mapping (dashed arrows) witnessing that O matches T.

We first define a partial order logic called Hyper Partial Order Logic (HyPOL for short). While we show undecidability for the satisfiability of this logic, we address model checking on a true concurrency model, and start with Labeled Safe Petri Nets (LSPNs). The universe of all behaviors of an LSPN can be defined as the set of processes of its complete unfolding [25]. Unsurprisingly, model checking HyPOL on runs of LSPNs is again undecidable. We then consider sensible assumptions on nets and projections saying that behaviors of a Petri net cannot remain unobserved for an arbitrary long time, and that equivalences necessarily link events whose common past is "not too old". We consider the unfolding of an LSPN as a graph connecting events and conditions via a successor relation. Isomorphism of causal pasts of events can be encoded as an additional relation on this unfolding graph. With these restrictions on nets and observations, model checking HyPOL can be brought back to verification of MSO on a graph generated by an hyperedge replacement grammar [19]. As MSO is decidable for such graphs [13], this yields decidability of HyPOL model checking for this subclass of nets and observations.

Outline. We introduce basic notations in Section 2. In Section 3, we define the logic HyPOL and prove undecidability of satisfiability. In Section 4, we show undecidability of HyPOL model checking on sets of processes of safe Petri nets, while decidability is proved in Section 5 for a subclass. Due to lack of space, proofs are omitted or only sketched, but can be found in an extended version available at [5].

2 Preliminaries

- Definition 1. A labeled partial order ($L P O$) over alphabet Σ is a triple $O=(E, \leq, \lambda)$ where E is a set of events, $\leq \subseteq E \times E$ is a partial ordering, i.e., a reflexive, transitive, antisymmetric relation, and $\lambda: E \rightarrow 2^{\Sigma}$ is a function associating with each event a set of labels from Σ.

We denote by $\mathcal{L} P O(\Sigma)$ the set of labeled partial orders over Σ. For $O=(E, \leq, \lambda)$, we denote by $\max (O)=\{e \in E \mid \nexists f \neq e, e \leq f\}$ the set of its maximal events, and by $\min (O)=\{e \in E \mid \nexists f \neq e, f \leq e\}$ the set of its minimal events. The covering relation of O is a relation $<\subseteq E \times E$ such that $e<f$ iff $e \leq f, e \neq f$ and $\forall e^{\prime}:\left(e \leq e^{\prime} \leq f\right) \Rightarrow\left(e^{\prime} \in\{e, f\}\right)$. A causal path of O is a sequence of events $e_{1} \cdot e_{2} \ldots e_{n}$ such that $e_{i}<e_{i+1}$. If $e \in E$, the ideal
of e is the set $\downarrow e=\{f \mid f \leq e\}$ and its ending section is the set $\uparrow e=\{f \mid e \leq f\}$. The arrows and relations may be indexed by the order in case of ambiguity. A set $H \subseteq E$ of events is downward closed iff $H=\bigcup_{e \in H} \downarrow e$, and upward closed iff $H=\bigcup_{e \in H} \uparrow e$.

- Definition 2. The restriction of $O=(E, \leq, \lambda)$ to a subset $H \subseteq E$ is the LPO $O_{\mid H}=$ $\left(H, \leq_{\mid H}, \lambda_{\mid H}\right)$ where $\leq_{\mid H}=\leq \cap(H \times H)$ and $\lambda_{\mid H}$ is the restriction of λ to H. The projection of O on a subset of labels $\Sigma^{\prime} \subseteq \Sigma$ is the restriction of O to events that carry labels in Σ^{\prime}.
- Definition 3. Two partial orders $O=(E, \leq, \lambda)$ and $O^{\prime}=\left(E^{\prime}, \leq^{\prime}, \lambda^{\prime}\right)$ over Σ are isomorphic (written $O \equiv O^{\prime}$) iff there exists a bijective function $h: E \rightarrow E^{\prime}$ such that $e \leq e^{\prime} \Longleftrightarrow h(e) \leq^{\prime}$ $h\left(e^{\prime}\right)$ and $\lambda(e)=\lambda^{\prime}(h(e))$.

Note that two discrete LPOs O and O^{\prime} are isomorphic iff their coverings are isomorphic.

- Definition 4. Let $O=(E, \leq, \lambda)$ and $T=\left(E_{T}, \leq_{T}, \lambda_{T}\right)$ be partial orders over Σ. Then O matches T iff there exists $H \subseteq E$ and a bijective mapping $h: H \rightarrow E_{T}$ such that $\lambda_{T}(h(e)) \subseteq \lambda(e)$, and $e<_{T} e^{\prime}$ implies $h^{-1}(e)<h^{-1}\left(e^{\prime}\right)$. The partial order T is called a template and we say that h is witnessing the matching.

In the sequel, we constrain the mapping witnessing a matching, using the notion of anchored matching. We say that there exists an anchored matching of template T at event e in O and f in T iff O matches T, and there exists a mapping $h_{e, f}$ witnessing this matching such that $h_{e, f}(e)=f$. In the example shown in Figure 1, the order O matches template T : the mapping h (depicted by dashed arrows) is defined by $h\left(e_{2}\right)=f_{0}, h\left(e_{4}\right)=f_{1}, h\left(e_{6}\right)=f_{2}$, $h\left(e_{5}\right)=f_{3}$. It satisfies: $\lambda_{T}\left(f_{0}\right) \subseteq \lambda\left(e_{2}\right), \lambda_{T}\left(f_{1}\right) \subseteq \lambda\left(e_{4}\right), \lambda_{T}\left(f_{2}\right) \subseteq \lambda\left(e_{6}\right), \lambda_{T}\left(f_{3}\right) \subseteq \lambda\left(e_{5}\right)$.

An observation function is a mapping $\mathcal{O}: \mathcal{L} P O(\Sigma) \rightarrow \mathcal{L} P O\left(\Sigma^{\prime}\right)$, representing the visible part of the system. One can notice that an observation maps an LPO on an alphabet Σ to another LPO on another alphabet Σ^{\prime}. To illustrate this notion, consider the following example: A system is composed of 4 sites, A, B, C, D, that communicate asynchronously. An agent X logs communication events that have occurred on sites A and B, their ordering, but cannot distinguish between messages that are sent to sites C and D. Executions in this system can be represented by labeled partial orders. Events are labeled by the identity of the site $s \in\{A, B, C, D\}$ on which they occurred. They also carry indication on messages sent and received: a message sending from a site s to s^{\prime} carries label $s!s^{\prime}$, and a reception on s of a message sent by s^{\prime} carries label s ? s^{\prime}. Executions of this system are hence LPOs over $\Sigma=\{A, B, C, B\} \cup\left\{s!s^{\prime} \mid s, s^{\prime} \in\{A, B, C, D\}\right\} \cup\left\{s ? s^{\prime} \mid s, s^{\prime} \in\{A, B, C, D\}\right\}$. Let γ denote a new label attached to message sendings to C or D. The information that X can obtain from an execution $O=(E, \leq, \lambda)$ of the system can be modeled as an observation $\mathcal{O}_{A, B}$ such that $\mathcal{O}_{A, B}(O)=\left(F, \leq^{\prime}, \lambda^{\prime}\right)$, with $F=\{f \in E \mid A \in \lambda(e) \vee B \in \lambda(e)\}, \leq^{\prime}=\leq \cap F \times F$ and $\lambda^{\prime}(f)=(\lambda(f) \cap\{A, B\}) \cup \gamma$ if $\exists s!s^{\prime} \in \lambda(f)$ with $s^{\prime} \in\{C, D\}$, and $\lambda(f)$ otherwise. $\mathcal{O}_{A, B}(O)$ is hence an LPO over $\Sigma^{\prime}=\{A, B\} \cup\left\{s ? s^{\prime} \mid s \in\{A, B\} \wedge s^{\prime} \in\{A, B, C, D\}\right\} \cup\left\{s!s^{\prime} \mid s, s^{\prime} \in\right.$ $A, B\} \cup\{\gamma\}$. An example of LPO O and its observation $\mathcal{O}_{A, B}(O)$ is shown in Figure 2.

In what follows, we focus on observation functions that are the identity function $i d$ (i.e., the function such that $i d(O)=O$), relabellings, and various restrictions of orders, for instance associating with $O=(E, \leq, \lambda)$ the order $O_{\mid F}$ for some $F \subseteq E$.

With a slight abuse, if $O=(E, \leq, \lambda)$ and $F \subseteq E$, we write $\mathcal{O}(F)$ for the corresponding subset of events of $\mathcal{O}(O)$. With observation functions like those described above, either an event is kept by observation (but it can be relabeled) or deleted. When event $e \in E$ has an image in $\mathcal{O}(E)$, we denote this image by $\mathcal{O}(e)$.

Consider the example of Figure 3. The partial order O contains events labeled by atomic propositions a, b, c. Let observation \mathcal{O}_{1} be the projection of orders on events carrying a proposition in $\{a, b\}$. Such a projection can be used to indicate which actions are observed by

Figure 2 An LPO O and its observation $\mathcal{O}_{A, B}(O)$.

Figure 3 A partial order O, its projection $\mathcal{O}_{1}(O)$ on events that carry label a or b, and its restriction $\mathcal{O}_{2}(O)$ to causal dependencies from any event carrying label a to other events.
a particular user. Now, consider observation \mathcal{O}_{2} that restricts an order to causal dependencies in $\leq \cap\{(e, f) \mid a \in \lambda(e)\}$. This kind of observation can encode the fact that a particular user observing the execution of a system is not able to know if some events are causally related or not. Last, we can combine projections and order restriction: the observation defined by $\mathcal{O}_{3}(O)=\mathcal{O}_{1}\left(\mathcal{O}_{2}(O)\right)$ describes what would be visible to a user of the system that logs events tagged with propositions a and b, and can only know dependencies from events tagged by a. For the order O in Figure 3, $\mathcal{O}_{3}(O)=\mathcal{O}_{1}(O)$.

3 Hyper Partial Order Logic

We are now ready to define HyPOL, a hyperproperty partial order logic. HyPOL is designed to express properties of partially observed sets of executions described by LPOs in $\mathcal{L} P O(\Sigma)$.

3.1 Syntax and semantics

We consider a set A of atomic propositions, a finite set \mathcal{T} of templates labeled over A, and a finite set $\mathcal{O} b s$ of observation functions producing LPOs over A. We assume that $\Sigma \subseteq A$ but, since an event labeling can be modified by observations, it is not always the case that $A=\Sigma$. The syntax of HyPOL is given by:
$\phi::=\operatorname{true}|\operatorname{match}(\mathcal{O}, T, f)| E X_{D, \mathcal{O}} \phi\left|E X_{\equiv, \mathcal{O}} \phi\right| \phi_{1} E U_{D, \mathcal{O}} \phi_{2}\left|E G_{D, \mathcal{O}} \phi\right| \neg \phi \mid \phi_{1} \vee \phi_{2}$
where $D \subseteq A, T \in \mathcal{T}, f$ is an event of T, and $\mathcal{O} \in \mathcal{O} b s$ an observation function.
A formula is equivalence-free iff it does not use the $E X_{\equiv, \mathcal{O}}$ operator. To reduce the number of primitives in our logic, we address labeling of events via templates. For $D \subseteq A$, we define a template T_{D} composed of a single event f_{D} labeled by all propositions in D.

In particular, when $D=\{a\}$ for some proposition $a \in A$, we write T_{a} instead of $T_{\{a\}}$ and f_{a} instead of $f_{\{a\}}$. When template T_{a} is matched at some event e in an order O under observation \mathcal{O}, this means that the image of e by \mathcal{O} carries proposition a.

We define derived operators (with $D \subseteq A$):

$$
\begin{array}{llll}
\lambda_{\notin D} & ::=\bigwedge_{a \in D} \neg \text { match }\left(i d, T_{a}, f_{a}\right) & A G_{D, \mathcal{O} \phi}::=\neg E F_{D, \mathcal{O} \neg \phi} \\
\lambda=D & ::=\text { match }\left(i d, T_{D}, f_{D}\right) \wedge \lambda_{\notin A \backslash D} & A X_{D, \mathcal{O}} & ::=\neg E X_{D, \mathcal{O} \neg \phi} \\
E F_{D, \mathcal{O}} \phi & ::=\text { true } E U_{D, \mathcal{O}} \phi & A X_{\equiv, \mathcal{O}} & :=\neg E X_{\equiv, \mathcal{O} \neg \phi}
\end{array}
$$

The semantics of HyPOL formulas is defined over a set $\mathcal{W} \subseteq \mathcal{L} P O(\Sigma)$ of orders, for $O=(E, \leq, \lambda) \in \mathcal{W}$ and $e \in E$. Letting $\lambda_{\mathcal{O}}$ be the labeling of $\mathcal{O}(O)$ and $<_{\mathcal{O}}$ its covering, we say that $O \in \mathcal{W}$ satisfies ϕ at event e (denoted by $O, e \models \phi)$ if formula ϕ is satisfied when starting its evaluation from event e in order O :

- $O, e \models$ true for every event $e \in E$;
- $O, e \models \neg \phi$ iff $O, e \not \models \phi$ and $O, e \models \phi_{1} \vee \phi_{2}$ iff $O, e \models \phi_{1}$ or $O, e \models \phi_{2}$;
- $O, e \models \operatorname{match}(\mathcal{O}, T, f)$ if and only if f is an event of T, e has image e^{\prime} in $\mathcal{O}(\downarrow e)$, and $\mathcal{O}(\downarrow e)$ matches T with at least a witness mapping $h_{e^{\prime}, f}$ associating f with e^{\prime};
- $O, e \models E X_{D, \mathcal{O}} \phi$ iff $\exists f \in E$, e has image $e^{\prime} \in \mathcal{O}(\uparrow e), f$ has image $f^{\prime} \in \mathcal{O}(\uparrow f), e^{\prime}<_{\mathcal{O}} f^{\prime}$, such that $\lambda_{\mathcal{O}}\left(e^{\prime}\right) \cap D \neq \emptyset$ and $O, f \models \phi$;
- $O, e \models E X_{\equiv, \mathcal{O}} \phi$ iff there exists $O^{\prime} \in \mathcal{W}$ and $e^{\prime} \neq e \in O^{\prime}$ such that $\mathcal{O}\left(\downarrow_{O} e\right) \equiv \mathcal{O}\left(\downarrow_{O^{\prime}} e^{\prime}\right)$ and $O^{\prime}, e^{\prime} \models \phi$;
- $O, e \models \phi_{1} E U_{D, \mathcal{O}} \phi_{2}$ iff there exists an event $f \in E$ such that $O, f \models \phi_{2}$, and a finite set of events $e_{1}^{\prime}, e_{2}^{\prime}, \ldots e_{k}^{\prime} \in \mathcal{O}(O)$ such that
- $e_{1}^{\prime}<_{\mathcal{O}} e_{2}^{\prime}<_{\mathcal{O}} \cdots<_{\mathcal{O}} e_{k}^{\prime}, e_{1}^{\prime}=\mathcal{O}(e)$ and $e_{k}^{\prime}=\mathcal{O}(f)$,
= $\forall i \in 2 . . k-1, e_{i}^{\prime}$ is the image of some event $e_{i} \in E$ by $\mathcal{O}, \lambda_{\mathcal{O}}\left(e_{i}^{\prime}\right) \cap D \neq \emptyset$ and $O, e_{i}=\phi_{1}$;
- $O, e \models E G_{D, \mathcal{O}} \phi$ iff
- either there exists an infinite sequence of events $\left(e_{i}\right)_{i \geq 1}$ in E such that $e=e_{1}$, every e_{i} has an image e_{i}^{\prime} in $\mathcal{O}(O)$, and $\forall i \geq 1, e_{i}^{\prime}<_{\mathcal{O}} e_{i+1}^{\prime}, \lambda\left(e_{i}^{\prime}\right) \cap D \neq \emptyset$ and $O, e_{i} \models \phi$, or
= there exists a finite set of events $e_{1}, \ldots e_{k} \in E$ such that $e=e_{1}$, for every $i \in 1 . . k, e_{i}$ has an image e_{i}^{\prime} by \mathcal{O} with $e_{1}^{\prime}<_{\mathcal{O}} e_{2}^{\prime}<_{\mathcal{O}} \cdots<_{\mathcal{O}} e_{k}^{\prime}, \lambda_{\mathcal{O}}\left(e_{i}^{\prime}\right) \cap D \neq \emptyset, O, e_{i} \models \phi$, and $e_{k}^{\prime} \in \max (\mathcal{O}(O))$.
In particular, $O, e \models \operatorname{match}\left(i d, T_{a}, f_{a}\right)$ iff e carries label a in order O, i.e., $a \in \lambda(e)$. Intuitively, formulas of the form $O, e \models E G_{D, \mathcal{O}} \phi, O, e \models \phi_{1} E U_{D, \mathcal{O}} \phi_{2}$, and $O, e \models E X_{D, \mathcal{O}} \phi$ describe properties of causal paths in orders, and have the standard interpretation seen for instance in LTL for words. Observation \mathcal{O} is used to select successive events along a path, and set D performs an additional filtering among possible next events, by requiring the next considered event in a path to carry a label in D. The definition $O, e \models E X_{\equiv, \mathcal{O}} \phi$ requires existence of another order $O^{\prime} \in \mathcal{W}$ and of an event $e^{\prime} \in E_{O^{\prime}}$ such that $e^{\prime} \neq e$, but nothing forces O^{\prime} and O to be different orders. Hence, e and e^{\prime} can be distinct events from the same order that cannot be distinguished by observing their causal past.

An order O satisfies ϕ, denoted by $O \models \phi$, iff there exists $e \in \min (O)$ such that $O, e \models \phi$. The set of orders \mathcal{W} satisfies ϕ iff every LPO $O \in \mathcal{W}$ satisfies ϕ. Last, ϕ is satisfiable iff there exists a set of LPOs \mathcal{W} such that $\mathcal{W} \models \phi$. Unsurprisingly, HyPOL is very powerful and satisfiability is undecidable on LPOs:

- Theorem 5. Satisfiability of a HyPOL formula is undecidable.

Proof Sketch. The proof is a reduction of Post's Correspondence Problem (PCP): given an instance I of PCP, we build a HyPOL formula ϕ_{I} such that I has a solution iff ϕ_{I} is satisfiable (See Appendix A for details).

Figure 4 Two orders where observing linearizations is not enough to leak information.

3.2 An example: Causal Non-Interference

The example of Figure 4 shows that, in the context of concurrent models, languages are not discriminative enough to characterize some security leaks. Let $\mathcal{W}=\left\{O_{1}, O_{2}\right\}$ represent behaviors of a concurrent system, where h labels a non observable secret action, while events with labels a and b can be observed by an attacker. In a language-based setting, an attacker only observes the linearizations $a . b$ and $b . a$ of these orders. Hence it is not possible to deduce whether h has occurred or not. On the other hand, if causal dependencies are considered, observing that a precedes b reveals the occurrence of h, thus leaking the information that h occurred. Observation of causal dependencies during the execution of a system is not a purely hypothetic capacity of users. Indeed, systems equipped with mechanisms such as vectorial clocks [24] can be used to record faithfully dependencies among observed events. From a more practical point of view, messages exchange during web browsing sometimes allow to trace the last visits of users, and consequently some causal ordering among logged communications. Observation functions hence formalize which causal dependencies are captured by attackers. However, if an observation function erases some dependencies, and an attacker observes two apparently concurrent events, it might still be the case that these events are causally related in the execution that is observed. This information is simply lost during observation.

Non-interference is a more general example showing the discriminating power of HyPOL. In the setting proposed by [18], a system is non-interferent if users cannot infer that classified actions have occurred only from observation of the system, i.e., execution of a classified event does not affect what a user can see or do. Such situations occur in a distributed system which can be accessed by two kinds of users: those with a high accreditation level and low-level users that have limited access to operations and observations of the system. We suppose that high-level users can perform classified actions, the occurrences of which shall not be detected by low-level users. In a standard setting for non-interference properties, this situation is modeled by associating with each event occurring in the system a particular operation name. Let Σ be the set of all these names, with $\Sigma_{h i g h}$ the subset of confidential ones and $\Sigma_{\text {low }}=\Sigma \backslash \Sigma_{\text {high }}$ containing those which can be observed by low-level users. Observation $\mathcal{O}_{\text {low }}$ projects orders on events that carry at least one label in $\Sigma_{\text {low }}$. We can define a causal non-interference property with HyPOL as follows:

$$
\phi_{C N I}::=A G_{\Sigma, i d}\left(\lambda_{\in \Sigma_{h i g h}} \vee \text { Pred }_{h} \Longrightarrow E X_{\equiv, \mathcal{O}_{\text {low }}}\left(\lambda_{\notin \Sigma_{\text {high }}} \wedge \neg \text { Pred }_{h}\right)\right)
$$

where $\lambda_{\in \Sigma_{h i g h}}$ stands for $\neg \lambda_{\notin \Sigma_{h i g h}}$, $\operatorname{Pred}_{h}::=\bigvee_{a \in \Sigma} \operatorname{match}\left(\mathcal{O}_{\mathrm{h}, a}, T_{\mathrm{h} \leq a}, f\right)$, and $T_{\mathrm{h} \leq a}$ is the template containing a pair of events f_{h}, f such that $f_{\mathrm{h}} \leq f, f_{\mathrm{h}}$ carries proposition h, f carries proposition a and $\mathcal{O}_{\mathrm{h}, a}$ is the observation that projects orders on $\Sigma_{h i g h} \cup\{a\}$ and relabels events representing confidential operations with h.

Intuitively, satisfying Pred $_{h}$ means that a confidential operation occurred in the causal past of an event. Hence, an order O satisfies $\phi_{C N I}$ if, for every high-level event e in O, there exists an order O^{\prime} and an event $e^{\prime} \in O^{\prime}$ such that $e \neq e^{\prime}$, no high-level operation has occurred in the causal past of e^{\prime}, and a low level user cannot distinguish e from e^{\prime} (i.e.,
$\left.\mathcal{O}_{\text {low }}(\downarrow e) \equiv \mathcal{O}_{\text {low }}\left(\downarrow e^{\prime}\right)\right)$. A system is (causally) non-interferent iff every order generated by this system satisfies $\phi_{C N I}$, i.e., every order that contains a confidential operation cannot be distinguished from other orders that do not contain confidential operations. Note that $\mathcal{O}_{\text {low }}(O)$ is a partial order, hence $\phi_{C N I}$ uses the discriminating power of causal dependencies. Notice also that local logics such as $T L C^{-}$or $L D_{0}$ cannot characterize (causal) non-interference, as they address properties of a single run, and cannot express the fact that a run must be observationally equivalent to another execution of the system, which is essential in $\phi_{C N I}$.

4 Model-checking HyPOL

We address the question of model checking HyPOL formulas for a model for which at least reachability is decidable. As a starting point, we choose Labeled Safe Petri Nets (LSPNs).

- Definition 6. A Petri net is a tuple $\mathcal{N}=\left(P, T, F, M_{0}\right)$ where P is a set of places, T is a set of transitions with $P \cap T=\emptyset, F \subseteq P \times T \cup T \times P$ is the flow relation, and $M_{0} \in \mathbb{N}^{P}$ is the initial marking.

A net is labeled if it is equipped with a (not necessarily injective) mapping $\lambda: T \rightarrow \Sigma$ labeling the transitions. A marking is a multiset $M \in \mathbb{N}^{P}$. For $x \in P \cup T$, we define its preset by ${ }^{\bullet} x=\{y \mid(y, x) \in F\}$ and its postset by $x^{\bullet}=\{y \mid(x, y) \in F\}$. The interleaved semantics of Petri nets can be defined as a (possibly infinite) transition system $\operatorname{LTS}(\mathcal{N})$ where states are markings, the initial state is M_{0}, and the transition relation is defined by: $M \xrightarrow{t} M^{\prime}$, iff (i) $M(p) \geq 1$ for all $p \in{ }^{\bullet} t$, in which case transition t is said firable from M and (ii) $M^{\prime}=(M \backslash \bullet t) \uplus t \bullet$ is the new marking reached by firing t. We write $M_{0} \xrightarrow{*} M$ iff there exists a sequence of transition firings reaching M from M_{0}. The set of reachable markings is denoted by $\operatorname{Reach}(\mathcal{N})=\left\{M \mid M_{0} \xrightarrow{*} M\right\}$.

We henceforth consider only safe Petri nets, where $\operatorname{Reach}(\mathcal{N})$ is a subset of $\{0,1\}^{P}$; we also assume that all transitions have at least one pre- and one post-place, i.e., $\forall t \in T:|\bullet t| \geq$ $1 \leq \mid t \bullet$. Let us recall standard vocabulary and notations for nets (we borrow definitions from [16]). Two nodes $x, y \in P \cup T$ are in causal relation iff $x F^{*} y$. Transitions t and t^{\prime} are in immediate (structural) conflict iff $t \neq t^{\prime}$ and $\bullet \bullet \cap{ }^{\bullet} t^{\prime} \neq \emptyset$. Nodes $x, x^{\prime} \in T \cup P$ are in conflict, written $x \# x^{\prime}$, iff there exist $t, t^{\prime} \in T$ in immediate conflict such that $t F^{*} x$ and $t^{\prime} F^{*} x^{\prime}$. A subset C of $T \cup P$ is conflict free if for all $x, x^{\prime} \in C, \neg\left(x \# x^{\prime}\right)$.

- Definition 7. An occurrence net is a Petri net $O N=\left(B, E, F, C u t_{0}\right)$ where the elements of B are called conditions and those of E events, and $C u t_{0} \subseteq B$ such that:
- $O N$ is acyclic, and hence $<\stackrel{\text { def }}{=} F^{+}$and $\leq \stackrel{\text { def }}{=} F^{*}$ are strict and weak partial orders;
- $\forall e \in E: \neg(e \# e)$ (no event is in conflict with itself);
- $\forall b \in B,|\bullet b| \leq 1$ (every condition has a unique predecessor);
- $O N$ is finitary: for all $x \in E \cup B$, the set $\operatorname{Past}(x) \stackrel{\text { def }}{=}\{y \mid y \leq x\}$ is finite; and
- $C u t_{0}$ contains exactly the <-minimal nodes of $O N$.

Nodes x and y are in concurrency relation, denoted $x \| y$, if neither $x<y, x>y$ nor $x \# y$ holds. Note that every occurrence net is safe, and that occurrence net $O N$ is conflict free iff for every $b \in B$, one has $\left|b^{\bullet}\right| \leq 1$.

- Definition 8. A prefix of an occurrence net $O N=\left(B, E, F, C u t_{0}\right)$ is an event set $R \subseteq E$ that is downward closed, i.e., such that $e \in R$ and $e^{\prime}<e$ together imply $e^{\prime} \in R$. A prefix $C \subseteq E$ is a configuration iff it is conflict free.
- Definition 9. Given a net $\mathcal{N}=\left(P, T, F, M_{0}\right)$, and an occurrence net $O N=\left(B, E, \hat{F}, C u t_{0}\right)$, a homomorphism is a map $\mu: E \cup B \rightarrow T \cup P$ such that:
- $\mu(B) \subseteq P$ and $\mu(E) \subseteq T$,
- for all $e \in E$, the restriction of μ to ${ }^{\bullet} e$ is a bijection from ${ }^{\bullet} e$ to ${ }^{\bullet} \mu(e)$, and the restriction of μ to e^{\bullet} is a bijection from e^{\bullet} to $\mu(e)^{\bullet}$, and
- $\mu\left(C u t_{0}\right)=\left\{p \in P \mid M_{0}(p)=1\right\}$

The "unfolding" semantics of a labeled safe Petri net yields a labeled occurrence net.

- Definition 10 (Unfolding). A branching process of a labeled Petri net $\mathcal{N}=\left(P, T, F, M_{0}, \lambda\right)$ is a triple $B R=\left(O N, \mu, \lambda^{\prime}\right)$ where $O N=\left(B, E, \hat{F}, C u t_{0}\right)$ is an occurrence net, μ is a homomorphism and $\forall e \in E, \lambda^{\prime}(e)=\lambda(\mu(e))$. A process of a net \mathcal{N} is a branching process of \mathcal{N} such that for every condition $b \in B,|b \bullet| \leq 1$, or equivalently, such that E is a configuration. If $B R_{1}=\left(B_{1}, E_{1}, \hat{F}_{1}, C u t_{0}, \mu_{1}, \lambda_{1}^{\prime}\right)$ and $B R_{2}=\left(B_{2}, E_{2}, \hat{F}_{2}, C u t_{0}, \mu_{2}, \lambda_{2}^{\prime}\right)$ are two branching processes of $\mathcal{N}, B R_{1}$ is a prefix of $B R_{2}$ iff $E_{1} \subseteq E_{2}$, and $\hat{F}_{1}, \mu_{1}, \lambda_{1}^{\prime}$ are the respective restrictions of $\hat{F}_{2}, \mu_{2}, \lambda_{2}^{\prime}$ to B_{1} and E_{1}. The unfolding of \mathcal{N}, denoted by $\mathcal{U}(\mathcal{N})$, is the maximal branching process w.r.t. the prefix relation.

Although the construction is rather standard since [15], we give here, for the sake of completeness, a procedure to build an unfolding $\mathcal{U}(\mathcal{N})$ of an LSPN \mathcal{N}. We first define the notion of co-set and cut. A co-set of a branching process $B R=(O N, \mu, \lambda)$ with $O N=\left(B, E, \hat{F}, C u t_{0}\right)$ is a set of conditions that are pairwise concurrent. A maximal co-set (w.r.t. set inclusion) is called a cut. Finite configurations, cuts and markings are related as follows. If C is a configuration of a branching process $B R=\left(O N, \mu, \lambda^{\prime}\right)$, then we can define the co-set $\operatorname{Cut}(C)=\left(\operatorname{Min}(O N) \cup C^{\bullet}\right) \backslash \bullet C$. The set of places in $C u t(C)$ represents the marking reached after firing transitions in $\mu(C)$ in an order compatible with the ordering prescribed by $O N$.

The construction of an unfolding of a net $\mathcal{N}=\left(P, T, F, M_{0}\right)$ consists in iteratively extending an initial branching process of \mathcal{N}. For convenience, we assume a dummy event \perp, whose postset fills all places of M_{0}. A condition of a branching process built by unfolding \mathcal{N} is of the form $b=(e, p)$ where $p \in P$ is such that $\mu(b)=p$ and e is the (unique) input event of the condition b. Similarly, events are of the form $e=(X, t)$ where X is a set of conditions (and more precisely a co-set) and t the transition such that $\mu(e)=t$. One can notice that with these definitions of events and conditions, the flow relation in an unfolding is implicit : for an event $e=(X, t)$ and a condition $b=\left(e^{\prime}, p\right), b \in \bullet e$ iff $b \in X$, and $e \in{ }^{\bullet} b$ iff $e^{\prime}=e$. A possible extension of a branching process $B R$ is an event (X, t), where $t \in T$ and X is a co-set such that $\mu(X)=\bullet t$ and which does not belong to $B R$.

The initial branching process of the unfolding algorithm is $B R_{0}=\left(O N_{0}, \mu_{0}, \lambda_{0}\right)$, where $O N_{0}=\left(B_{0}, E_{0}, F_{0}\right), B_{0}=\left\{(\perp, p) \mid M_{0}(p)=1\right\}, E_{0}=\emptyset, F_{0}=\left\{(\perp, b) \mid b \in B_{0}\right\}, \mu_{0}((\perp, p))=$ p. The following steps are then iterated to produce $B R_{i+1}=\left(B_{i+1}, E_{i+1}, F_{i+1}, \mu_{i+1}, \lambda_{i+1}\right)$ from $B R_{i}=\left(B_{i}, E_{i}, F_{i}, \mu_{i}, \lambda_{i}\right)$:

1) find the set $P E$ of possible extensions of $B R_{i}$;
2) if $P E$ is not empty, choose a particular event $e=(X, t)$;
3) $E_{i+1}=E_{i} \cup\{e\}$
$B_{i+1}=B_{i} \cup X^{\prime}$ with $X^{\prime}=\left\{(e, p) \mid p \in t^{\bullet}\right\}$
$F_{i+1}=F_{i} \cup(X \times\{e\}) \cup\left(\{e\} \times X^{\prime}\right)$
μ_{i+1} extends μ_{i} by $\mu_{i+1}(e)=t$ and for any $b=(e, p) \in X^{\prime}, \mu_{i+1}(b)=p$
λ_{i+1} extends λ_{i} by $\lambda_{i+1}(e)=\lambda(t)$.
With every process $B R=(O N, \mu, \lambda)$ contained in $\mathcal{U}(\mathcal{N})$, with $O N=\left(B, E, F, C u t_{0}\right)$, is associated an LPO $\mathcal{O} r d(B R)=(E, \leq, \lambda)$. Note that events in such LPOs are labeled by a singleton (transition label), which is a sub-case of the LPOs defined in Section 2. We define
$P R(\mathcal{N})$, the set of processes - up to isomorphism - that can be built from \mathcal{N}. Given a HyPOL formula ϕ, we say that \mathcal{N} satisfies ϕ iff $\mathcal{O} \operatorname{rd}(P R(\mathcal{N})) \models \phi$.

- Theorem 11. The HyPOL model checking problem for safe Petri nets is undecidable.

Proof (Sketch). We reuse the encoding of PCP from the proof of Theorem 5, and build a safe Petri net whose behaviors (processes) are exactly concatenations of the templates used in the HyPOL formula ϕ_{I} associated with an instance I of PCP.

5 Decidability

The reason for the undecidability results above is that projections give a huge expressive power to HyPOL. Indeed, the difference in depth of equivalent events can be arbitrary large, and labeling allows for the design of a pair of growing sequences of letters w_{1}, w_{2} where w_{1} is always a prefix of w_{2}, yielding a non-terminating instance of PCP. We show in this section that one can recover decidability when restricting to Petri nets in which the difference in the depth of equivalent events is bounded.

Since the set of processes of a safe Petri net can be depicted in a compact way by its unfolding (as recalled in Section 4), a natural question is whether validity of a HyPOL formula expressing hyperproperties of the processes of a safe Petri net \mathcal{N} can be rewritten as a property of its unfolding $\mathcal{U}(\mathcal{N})$. We first prove that this unfolding can be seen as a graph and defined as the production of a Hyperedge Replacement Grammar (HRG) [19].

- Proposition 12. Let \mathcal{N} be a safe labeled Petri net. Then, there exists a hyperedge replacement grammar $\mathcal{G}_{\mathcal{N}}$ that generates $\mathcal{U}(\mathcal{N})$.

Proof (Sketch). We briefly give the principle for the construction of $\mathcal{G}_{\mathcal{N}}$. The unfolding algorithm in section 4 builds inductively an unfolding $\mathcal{U}(\mathcal{N})$ of \mathcal{N}. This unfolding can be infinite, but exhibits a regular structure. All markings and possible causal dependencies of $\mathcal{U}(\mathcal{N})$ are captured by a finite prefix of $\mathcal{U}(\mathcal{N})$ called a complete finite prefix [25]. Complete finite prefixes are built inductively as unfoldings, but with an additional constraint on the choice of events to add. Given a branching process $B R_{i}$ and a possible extension e, e is called a cut-off event if the marking obtained after execution of $\downarrow e$ already appears in some execution of a process of $B R_{i}$. Construction of a complete finite prefix follows the same line as construction of unfoldings, but limits the choice of extensions of a branching process $B R_{i}$ to events that are not cut-off events. The construction terminates for bounded nets [25].

Once a complete finite prefix of \mathcal{N} is built, the principle for the construction of $\mathcal{G}_{\mathcal{N}}$ is to find the markings that can be reached when appending cut-off events to maximal configurations of the prefix. We then use these markings as hyperarcs, and the part of the prefix occurring after these markings as the right part of a grammar rule. We refer interested readers to Appendix B for a complete description of the construction of $\mathcal{G}_{\mathcal{N}}$.

Note that $\mathcal{G}_{\mathcal{N}}$ does not define a semantics of \mathcal{N} via application of one rewriting rule per transition firing, as proposed in [3, 4], but rather builds the unfolding. The grammar $\mathcal{G}_{\mathcal{N}}$ starts from an axiom $A x$. Denoting by $\mathcal{G}_{\mathcal{N}}^{\omega}(A x)$ the (unique) graph generated from $A x$, we have $\mathcal{G}_{\mathcal{N}}^{\omega}(A x)=\mathcal{U}(\mathcal{N})$. The grammar $\mathcal{G}_{\mathcal{N}}$ exhibits a certain form of regularity, but this is not yet sufficient to check HyPOL formulas, nor to express HyPOL properties in terms of properties of $\mathcal{G}_{\mathcal{N}}$. Indeed, the graphical representation of $\mathcal{U}(\mathcal{N})$ does not address equivalences. We adapt the idea of [1], and represent isomorphism of causal pasts of events w.r.t. an observation function as a new relation connecting events. In other words, we augment $\mathcal{U}(\mathcal{N})$ with additional edges connecting equivalent events.

- Definition 13 (Execution Graph). Given a set of observation functions $\mathcal{O}_{1}, \ldots, \mathcal{O}_{k}$, the execution graph of \mathcal{N} is the graph $G_{\mathcal{U}(\mathcal{N})}=(E \cup B, \longrightarrow, \lambda)$, where E and B are the sets of events and conditions in $\mathcal{U}(\mathcal{N})$, and $\longrightarrow \subseteq(E \times\{0\} \times B) \cup(B \times\{0\} \times E) \cup(E \times\{1, \ldots k\} \times E)$ is the relation defined by: $(e, 0, b) \in \longrightarrow$ iff $e \in{ }^{\bullet} b$ in $\mathcal{U}(\mathcal{N}),(b, 0, e) \in \longrightarrow$ iff $b \in{ }^{\bullet} e$ in $\mathcal{U}(\mathcal{N})$, and $\left(e, i, e^{\prime}\right) \in \longrightarrow$ for $1 \leq i \leq k$ iff $e \neq e^{\prime}$ and $\mathcal{O}_{i}(\downarrow e) \equiv \mathcal{O}_{i}\left(\downarrow e^{\prime}\right)$.

We write $e \xrightarrow{i} e^{\prime}$ for $\left(e, i, e^{\prime}\right) \in \longrightarrow$. So far, we have simply recast ordering and equivalence of events into a graph setting, but this translation does not change decidability of hyperproperties. Even if the unfolding $\mathcal{U}(\mathcal{N})$ can be generated by an HRG, this is not the case for $G_{\mathcal{U}(\mathcal{N})}$. Indeed, to produce edges, hyperarcs of an HRG need to memorize nodes that will be at the origin or destination of an edge in future productions of the grammar. In particular, for $G_{\mathcal{U}(\mathcal{N})}$, this means that hyperarcs of any HRG producing this graph have to memorize a list of events that will be declared as equivalent to some event (w.r.t. a particular observation \mathcal{O}_{i}) generated in future rewritings.

- Proposition 14. There exist labeled safe Petri nets and observation functions whose execution graphs are not of bounded treewidth, and cannot be represented by an hyperedge replacement grammar.

Proof (Sketch). We exhibit a net, and an observation function whose execution graph contains grid minors of arbitrary sizes. It is well known [28] that a family of graphs $F G$ has bounded treewidth iff there exists a constant m such that no graph $G \in F G$ has a minor isomorphic to the $m \times m$ grid and that HRGs can only generate graphs of bounded treewidth (see for instance [12]). See extended version for a complete proof.

- Definition 15. Let $O N=\left(B, E, F, C u t_{0}\right)$ be an occurrence net. The height of en event e or condition b in $O N$ is the function $\mathcal{H}: B \cup E \rightarrow \mathbb{N}$ be defined recursively by

$$
\begin{aligned}
\forall b \in C u t_{0}: \mathcal{H}(b) & \stackrel{\text { def }}{=} 1 \\
\forall x \in B \cup E: \mathcal{H}(x) & \stackrel{\text { def }}{=} 1+\max \{\mathcal{H}(y) \mid y \in \bullet x\} .
\end{aligned}
$$

By extension, the height $\mathcal{H}(A)$ for a set $A \subseteq(B \cup E)$ is given by $\mathcal{H}(\emptyset)=0$ and $\mathcal{H}(A) \stackrel{\text { def }}{=}$ $\sup _{x \in A} \mathcal{H}(x)$. Now, define the distance dist : $(B \cup E) \times(B \cup E) \rightarrow \mathbb{N}$ by

$$
\begin{aligned}
\mathcal{H}_{\square}\left(e, e^{\prime}\right) & \stackrel{\text { def }}{=} \mathcal{H}\left(\downarrow e \cap \downarrow e^{\prime}\right) \\
\operatorname{dist}\left(e, e^{\prime}\right) & \stackrel{\text { def }}{=} \max \left(\mathcal{H}(e), \mathcal{H}\left(e^{\prime}\right)\right)-\mathcal{H}_{\Pi}\left(e, e^{\prime}\right) .
\end{aligned}
$$

Intuitively, $\operatorname{dist}\left(e, e^{\prime}\right)$ measures the maximal number of edges between e, e^{\prime} and their common past. This distance dist defines a pseudometric. Using this notion of distance, we can define the K-Ball of an event e in the unfolding $\mathcal{U}(\mathcal{N})$ as the set of nodes in $\mathcal{U}(\mathcal{N})$ that are at distance at most K from e. Formally, $\operatorname{Ball}_{K}(e)=\{n \in \mathcal{U}(\mathcal{N}) \mid \operatorname{dist}(n, e) \leq K\}$. In the rest of the paper, we consider classes of unfoldings where two events can only be equivalent w.r.t. any observation \mathcal{O}_{i} if they are in the K-Ball of one another.

An important remark is that even for a safe Petri net \mathcal{N}, given an integer $K \in \mathbb{N}$, the K-Ball of an event e may not be finite. Furthermore, the graph $(E \cup B, \xrightarrow{0})$ depicting the unfolding $\mathcal{U}(\mathcal{N})$ without equivalence edges is always a graph of finite incoming degree, but this is not necessarily the case for $G_{\mathcal{U}(\mathcal{N})}$. In the rest of the paper, we will see that HyPOL formulas can be encoded as MSO properties of $G_{\mathcal{U}(\mathcal{N})}$. The reason for undecidability of HyPOL is hence the nature of execution graphs that cannot be generated in general by context free graph grammars, are not of bounded treewidth,... nor enjoy any of the properties that usually make MSO decidable. We can recover decidability with some restrictions. Let $\downarrow_{K} e=\downarrow e \cap \operatorname{Ball}_{K}(e)$ denote the K-bounded past of e.

Figure 5 Equivalence w.r.t. \mathcal{O}_{i} in the unfolding of a K-layered Petri net.

Definition 16. Let \mathcal{N} be a safe Petri net, and \mathcal{O}_{i} be an observation function. \mathcal{N} is K-layered w.r.t. \mathcal{O}_{i} iff $\forall e, e^{\prime} \in \mathcal{U}(\mathcal{N})$:

- there is a bound $S_{K} \in \mathbb{N}$ such that $\left|\operatorname{Ball}_{K}(e)\right| \leq S_{K}$;
- $\operatorname{dist}\left(e, e^{\prime}\right)>K$ implies $e \not \equiv e^{\prime}$;
- $\operatorname{dist}\left(e, e^{\prime}\right) \leq K$ implies that one can compute $H=\left\{f_{1}, \ldots f_{m}\right\} \subseteq \downarrow_{K} e \cup \downarrow_{K} e^{\prime}$ such that, letting $F_{e, e^{\prime}}=\bigcup_{i \in 1 . . m} \downarrow f_{i}$ and $\hat{F}_{e, e^{\prime}}=F_{e, e^{\prime}} \backslash H$,

$$
e \equiv_{i} e^{\prime} \text { iff } \mathcal{O}_{i}\left(\downarrow e \backslash \hat{F}_{e, e^{\prime}}\right) \equiv_{i} \mathcal{O}_{i}\left(\downarrow e^{\prime} \backslash \hat{F}_{e, e^{\prime}}\right)
$$

In the sequel, we assume that observation functions $\mathcal{O}_{1}, \ldots \mathcal{O}_{k}$ are given, and we say that a safe Petri net \mathcal{N} is K-layered iff it is K-layered for every \mathcal{O}_{i}. Intuitively, a Petri net is K-layered w.r.t. observation \mathcal{O}_{i} iff one can decide equivalence of a pair of events e, e^{\prime} w.r.t. \mathcal{O}_{i} from their K-bounded past.

- Proposition 17. Let \mathcal{N} be a K-layered safe Petri net. Then, one can effectively compute a hyperedge replacement grammar $\mathcal{G}_{K, \mathcal{N}}$ that recognizes the execution graph $G_{\mathcal{U}(\mathcal{N})}$.

Proof (Sketch). First, one can notice that in the unfolding of a K-layered safe Petri net, for every observation \mathcal{O}_{i}, every event e has a bounded number of events connected to it via relation \xrightarrow{i}. This is due to the fact that this set is contained in its finite K - Ball. The hyperedge replacement grammar $\mathcal{G}_{K, \mathcal{N}}$ starts from an axiom representing a complete finite prefix of the unfolding of \mathcal{N} with hyperarcs. Its hyperarcs represent possible extensions of this prefix from its maximal markings. Rules of $\mathcal{G}_{K, \mathcal{N}}$ are of the form $r=\left(h_{t, l a b}, H G_{t, l a b}\right)$ where $h_{t, l a b}$ contains all conditions and events appearing in the K-Balls of the next occurrence of a transition t that can be appended after a maximal marking, and lab is a labeling providing sufficient information to know the ordering among events and a part of their common past. $H G_{t, l a b}$ is an hypergraph containing the newly generated occurrences of events and conditions in the execution graph, the flow relation among them, and connects equivalent events (contained in the events of $h_{t, l a b}$ and $H G_{t, l a b}$) and creating one hyperarc per new maximal marking. A complete construction of this grammar is detailed in the extended version.

We now show that model checking HyPOL on K-layered execution graphs can be brought back to verification of an equivalent MSO property. But the first question to address is decidability of MSO on execution graphs. An MSO formula uses the following syntax:

$$
\phi::=\operatorname{lab}_{a}(x)|\operatorname{edge}(x, y)| \operatorname{edge}_{i}(x, y)|x=y| x \in X|\neg \phi| \phi_{1} \wedge \phi_{2}|\exists x, \phi| \exists X, \phi
$$

where x, y, \ldots are first order variables representing vertices in a graph, and X, Y, \ldots are second order variables representing sets of vertices in a graph. In execution graphs, first order variables will represent events or conditions, and an edge the flow relation or isomorphism.

An interpretation \mathcal{I} of an MSO formula ϕ over a graph G is an assignment of nodes of G to first order variables used in ϕ and of subsets of nodes of G to second order variables. An MSO formula ϕ holds for G under interpretation \mathcal{I} iff replacing variables in ϕ by their interpretation yields a tautology. A graph satisfies formula ϕ iff there exists an interpretation \mathcal{I} such that ϕ holds for G under \mathcal{I}. Classes of graphs with decidable MSO theory have been considered for a long time (see for instance [12] for a complete monograph on this topic). As MSO is decidable for context free graphs such as the graphs generated by HRGs ([13], Corollary 4.10), we immediately have the following property:

- Corollary 18. $M S O$ is decidable on execution graphs of K-layered labeled safe Petri nets.

Note that the decidability highlighted in corollary 18 does not necessarily hold outside the class of K-layered nets. As shown in Proposition 14, execution graphs of safe Petri nets may contain grids minors of arbitrary sizes and hence in general do not have a bounded treewidth [28]. MSO is also undecidable in general for execution graphs: one can use a safe Petri net whose unfolding is a binary tree and an observation that implements the "same level" relation on this tree. It is well known that MSO is undecidable on this graph [30]. We will use MSO to address decidability of HyPOL, by converting formulas to MSO, and in particular equivalences into \xrightarrow{i} relations among events.

- Proposition 19. Let ϕ be a HyPOL formula. Then there exists an MSO formula ψ such that $\mathcal{N} \models \phi$ iff $G_{\mathcal{U}(\mathcal{N})} \models \psi$.

Proof (Sketch). We first encode in MSO a $\operatorname{succ}\left(e, e^{\prime}\right)$ relation that relates pairs of events such that $e^{\bullet} \cap \bullet e \neq \emptyset$. Then, causal precedence \leq in an order can be encoded with MSO. A property of the form $x \models E X_{\equiv, \mathcal{O}_{i}} \phi$ asks existence of an edge $x \xrightarrow{i} y$ where y satisfies the MSO translation of ϕ. Until operations are described as properties of chains of events that can again be encoded with MSO, and pattern embedding are MSO properties checking existence of some subgraph. A complete translation is given in Appendix C.

Proposition 19 holds for any net \mathcal{N} and its execution graph $G_{\mathcal{U}(\mathcal{N})}$. However, in general, $G_{\mathcal{U}(\mathcal{N})}$ is not of bounded treewidth. One can always choose an integer K, and build a context free graph grammar $\mathcal{G}_{K, \mathcal{N}}$ as proposed in Proposition 17, but in general, the graph generated by $\mathcal{G}_{K, \mathcal{N}}$ is only a subgraph of $G_{\mathcal{U}(\mathcal{N})}$, where some \xrightarrow{i} edges are missing. This is not surprising: in non-layered nets, the sizes of equivalence classes in $G_{\mathcal{U}(\mathcal{N})}$ need not be finite. If \mathcal{N} is K-layered, the graph generated by $\mathcal{G}_{K, \mathcal{N}}$ and $G_{\mathcal{U}(\mathcal{N})}$ are equivalent. Further, isomorphism is one of the building blocks of HyPOL, but in general cannot be expressed in MSO. The translation from HyPOL to MSO applies to any HyPOL formula for any type of net and observation. Further, MSO is decidable for HRGs [13, 20]. So, in general, $G_{\mathcal{U}(\mathcal{N})}$ is not the production of an HRG. Altogether, these remarks give the following corollaries:

- Corollary 20. It is undecidable whether the execution graph of a net \mathcal{N} satisfies an MSO formula.
- Corollary 21. Model checking equivalence-free HyPOL properties on labeled safe Petri nets is decidable.
- Corollary 22. HyPOL model checking is decidable for K-layered safe Petri nets.

$$
\begin{aligned}
& \lambda\left(u_{1}\right)=u_{1}, \lambda\left(u_{2}\right)=u_{2} \\
& \lambda(e)=\lambda(f)=a
\end{aligned}
$$

Figure 6 A net \mathcal{N}_{1}. Observation \mathcal{O}_{a} projects LPOs on events labeled $a . \mathcal{N}_{1}$ is not observable: \mathcal{O}_{a} cannot distinguish behaviors in $u_{1} . e .\left(u_{1} . e+u_{2} . f\right)^{k}$ from those in $u_{2} . f .\left(u_{1} . e+u_{2} . f\right)^{k}$.
K-layeredness is a semantic property that should hold on the possibly infinite unfolding of a net. However, some syntactic classes of nets meet the conditions needed to layer equivalences. In the following, we only consider observations that are projections. Slightly abusing our notations, for a transition t we will denote by $\mathcal{O}_{i}(t)$ the LPO obtained by applying observation \mathcal{O}_{i} to the LPO O_{t} that contains a single event e with $\lambda(e)=\lambda(t)$.

- Definition 23. Let \mathcal{N} be a safe Petri net. Two transitions t, t^{\prime} are independent iff there is no link from t to t^{\prime} in the flow relation of \mathcal{N}. We will say that \mathcal{N} is observable iff,
i) for every observation \mathcal{O}_{i}, and every cyclic behavior $t_{1} \ldots t_{n}$ of $\operatorname{LTS}(\mathcal{N}), \mathcal{O}_{i}\left(t_{1} \ldots t_{n}\right) \neq \emptyset$,
ii) For every reachable marking M of \mathcal{N}, every observation \mathcal{O}_{i} and every pair of conflicting transitions t_{1}, t_{2} enabled in M, there exists a bound k_{c} such that for every pair of paths $\rho=t_{1} \cdot t_{1,1} \ldots t_{1, p}$ and $\rho_{2}=t_{2} \cdot t_{2,1} \ldots t_{2, q}$, if $p>k_{c}$ or $q>k_{c}$ then $\mathcal{O}_{i}\left(O_{\rho_{1}}\right) \neq \mathcal{O}_{i}\left(O_{\rho_{2}}\right)$, where $O_{\rho_{1}}\left(\operatorname{resp} O_{\rho_{2}}\right)$ is the process of \mathcal{N} obtained by successively appending $t_{1}, t_{1,1}, \ldots$ (resp. $t_{2}, t_{2,1}, \ldots$) to M_{0}.
iii) for every observation \mathcal{O}_{i} and every cyclic behavior $M \xrightarrow{\rho} M$ of $\operatorname{LTS}(\mathcal{N})$ with $\rho=$ $t_{1} \ldots t_{n}$ and such that $t_{1} \ldots t_{n}$ can be partitioned into sets $T_{1}, T_{2}, \ldots T_{k}$ of independent transitions $\forall j, j^{\prime} \in 1 . . k$, there exists $t_{j} \in T_{j}$ and $t_{j^{\prime}} \in T_{j^{\prime}}$ such that $\mathcal{O}_{i}\left(t_{j}\right) \neq \mathcal{O}_{i}\left(t_{j^{\prime}}\right)$.

Condition i) forbids cyclic behaviors that cannot be observed. This is a sensible restriction often required for diagnosis (where it is called convergence, as in [6]). It guarantees that an event cannot be equivalent to an arbitrary number of predecessors. Condition ii) indicates that each branch of a choice in the net is eventually visible by each observation after a bounded duration. Condition $i i i$) says that parallel sequences of transitions cannot grow up to an arbitrary size without becoming distinguishable by all observations.

- Proposition 24. Let $\mathcal{N}=\left(P, T, F, M_{0}, \lambda\right)$ be a safe labeled observable Petri net for observations $\mathcal{O}_{1}, \ldots, \mathcal{O}_{k}$. Then \mathcal{N} is K-layered, for some $K \leq \max \left(2 \cdot k_{c}, 3 \cdot|T|\right)$
- Corollary 25. HyPOL model-checking is decidable for observable safe Petri nets.

6 Conclusion

HyPOL is a local logic for hyperproperties of partially observed set of labeled partial orders. It is powerful enough to express properties such as non-interference in distributed systems. This logic follows the same line as local logics such as $T L C^{-}$or $L D_{0}$, as it depicts shapes of causal chains in partially ordered computations. In addition, it is possible to check whether some finite behavior has occurred in the past, and a new modal operator is introduced to move from an event in an LPO to another equivalent event in another LPO. Unsurprisingly, such a powerful logic is undecidable, even for simple models such as safe labeled Petri nets. However, upon some restrictions, one can bring back verification of HyPOL formulas to verification of MSO properties on unfoldings of nets decorated with additional edges that simulate equivalences. The restrictions forbid nets with infinite unobservable runs, and
assume bounds on the depth of indistinguishable suffixes. In this context, equivalence of runs only depends on a bounded future and past of each event, and decorated unfoldings have bounded treewidth. So far, we do not know whether K-layeredness is decidable for a fixed K. Another interesting question is existence of a bound K such that a net \mathcal{N} is K-layered. We strongly believe that some restrictions used in observable nets can be relaxed, or adapted to consider larger classes of nets for which decorated unfoldings are of bounded treewidth or split-width [14]. A natural question that follows is whether these classes of nets have sensible and decidable syntactic characterizations.

References

1 R. Alur, P. Cerný, and S. Chaudhuri. Model Checking on Trees with Path Equivalences. In TACAS 2007, volume 4424 of $L N C S$, pages 664-678. Springer, 2007.
2 E. Badouel, M.A. Bednarczyk, A.M. Borzyszkowski, B. Caillaud, and P. Darondeau. Concurrent Secrets. Discrete Event Dynamic Systems, 17(4):425-446, 2007.
3 P. Baldan, T. Chatain, S. Haar, and B. König. Unfolding-based Diagnosis of Systems with an Evolving Topology. In 19th International Conference on Concurrency Theory (CONCUR'08), volume 5201 of LNCS, pages 203-217. Springer, 2008. URL: http://www. lsv.ens-cachan.fr/Publis/PAPERS/PDF/BCHK-concur08.pdf.
4 P. Baldan, T. Chatain, S. Haar, and B. König. Unfolding-based Diagnosis of Systems with an Evolving Topology. Information and Computation, 208(10):1169-1192, October 2010. doi:10.1016/j.ic.2009.11.009.
5 B. Bérard, S. Haar, and L. Hélouët. Hyper Partial Order Logic. HAL-Inria, 2018. URL: https://hal.inria.fr/hal-01884390.
6 B. Bérard, S. Haar, S. Schmitz, and S. Schwoon. The Complexity of Diagnosability and Opacity Verification for Petri Nets. In PETRI NETS'17, volume 10258 of LNCS, pages 200-220. Springer, 2017.
7 B. Bérard, L. Hélouët, and J. Mullins. Non-interference in Partial Order Models. ACM Trans. Embedded Comput. Syst., 16(2):44:1-44:34, 2017.
8 E. Best, P. Darondeau, and R. Gorrieri. On the Decidability of Non Interference over Unbounded Petri Nets. In Proc. of SecCo, volume 51 of EPTCS, pages 16-33, 2010.
9 B. Bollig, D. Kuske, and I. Meinecke. Propositional Dynamic Logic for Message-Passing Systems. Logical Methods in Computer Science, 6(3), 2010.
10 M.R. Clarkson, B. Finkbeiner, M. Koleini, K.K. Micinski, M.N. Rabe, and C. Sánchez. Temporal Logics for Hyperproperties. In POST, pages 265-284, 2014.
11 M.R. Clarkson and F.B. Schneider. Hyperproperties. Journal of Computer Security, 18(6):1157-1210, 2010.
12 B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-Order Logic, a language theoretic approach. Cambridge Univ. Press, 2012.
13 Bruno Courcelle. The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs. Inf. Comput., 85(1):12-75, 1990.
14 A. Cyriac, P. Gastin, and K.N. Narayan Kumar. MSO decidability of multi-pushdown systems via split-width. In CONCUR 2012, volume 7454 of $L N C S$, pages 547-561, 2012.
15 J. Engelfriet. Branching Processes of Petri Nets. Acta Inf., 28(6):575-591, 1991.
16 J. Esparza, S. Römer, and W. Vogler. An Improvement of McMillan's Unfolding Algorithm. Formal Methods in System Design, 20(3):285-310, 2002.
17 T. Gazagnaire, L. Hélouët, and S. S. Yang. Logic-based diagnosis for distributed systems. Perspectives in Concurrency, a festschrift for P.S. Thiagarajan, pages 482-505, 2009.
18 J.A. Goguen and J. Meseguer. Security policies and security Models. In Proc. of IEEE Symposium on Security and Privacy, pages 11-20, 1982.

19 A. Habel. Hyperedge Replacement: Grammars and Languages, volume 643 of LNCS. Springer, 1992.
20 C. Lautemann. Tree Automata, Tree Decomposition and Hyperedge Replacement. In Graph-Grammars and Their Application to Computer Science, 4th International Workshop, volume 532 of LNCS, pages 520-537. Springer, 1990.
21 P. Madhusudan and B. Meenakshi. Beyond Message Sequence Graphs. In FST TCS'01: Foundations of Software Technology and Theoretical Computer Science, volume 2245 of LNCS, pages 256-267. Springer, 2001.
22 P. Madhusudan, P.S. Thiagarajan, and S. Yang. The MSO Theory of Connectedly Communicating Processes. In FSTTCS'05, volume 3821 of LNCS, pages 201-212. Springer, 2005.

23 H. Mantel. Possibilistic Definitions of Security - An Assembly Kit. In Proc. of the 13th IEEE Computer Security Foundations Workshop, (CSFW'00), pages 185-199, 2000.
24 F. Mattern. Time and global states of distributed systems. Proc. Int. Workshop on Parallel and Distributed Algorithms, pages 215-226, 1988.
25 K.L. McMillan. A Technique of State Space Search Based on Unfolding. Formal Methods in System Design, 6(1):45-65, 1995.
26 B. Meenakshi and R. Ramanujam. Reasoning about layered message passing systems. Computer Languages, Systems \& Structures, 30(3-4):171-206, 2004.
27 D.A. Peled. Specification and Verification of Message Sequence Charts. In FORTE/PSTV'00, volume 183 of IFIP Conference Proceedings, pages 139-154. Kluwer, 2000.
28 N. Robertson and P.D. Seymour. Graph minors. X. Obstructions to tree-decomposition. J. Comb. Theory, Ser. B, 52(2):153-190, 1991.
29 A. Sabelfeld and A.C. Myers. Language-based information-flow security. IEEE Journal on Selected Areas in Communications, 21(1):5-19, 2003.
30 A. Spelten, W. Thomas, and S. Winter. Trees over Infinite Structures and Path Logics with Synchronization. In 13th International Workshop on Verification of Infinite-State Systems, INFINITY 2011, volume 73 of EPTCS, pages 20-34, 2011.

A Proof of Theorem 5

- Theorem 5. Satisfiability of a HyPOL formula is undecidable.

Proof. The proof consists of a reduction of the Post Correspondence Problem (PCP). Recall that an instance I of PCP is a sequence $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ of n pairs of words over some alphabet. A (non trivial) solution of size k is a (non empty) sequence of indices $\sigma=i_{1} \ldots i_{k}$ such that $x_{i_{1}} \ldots x_{i_{k}}=y_{i_{1}} \ldots y_{i_{k}}$. If the alphabet contains at least two letters, PCP is undecidable for $n \geq 7$. Moreover, we can assume that for all $1 \leq i \leq n, x_{i} \neq y_{i}$ (otherwise the problem can be trivially decided with a solution of size $k=1$).

Given an instance I, we build a formula ϕ_{I} of HyPOL such that ϕ_{I} is satisfiable if and only if I has a (non trivial) solution.

Let I be the sequence $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ of words over alphabet A. We write $z=$ $z(1) \ldots z(\ell)$ where $\ell=|z|$ is the length of word z, with $\ell_{i}=\left|x_{i}\right|$ and $h_{i}=\left|y_{i}\right|, 1 \leq i \leq n$ and we consider the family of templates $T_{i}, 1 \leq i \leq n$, as depicted in Figure 7. The set of events of T_{i} is $E_{i}=\left\{x_{i}, y_{i}, s_{i}, e_{i}\right\} \cup\left\{x_{i, j} \mid 1 \leq j \leq \ell_{i}\right\} \cup\left\{y_{i, j} \mid 1 \leq j \leq h_{i}\right\}$ and labels are in $P_{i}=A \cup\left\{\sharp\right.$, start $_{i}$, end $\left._{i}\right\}$. We set Ind $=\left\{\right.$ start $_{i}$, end $\left._{i}, 1 \leq i \leq n\right\}, S=\left\{\right.$ start $\left._{i}, 1 \leq i \leq n\right\}$ and the global set of labels is $P=\cup_{i=1}^{n} P_{i}$. Intuitively, a solution $\sigma=i_{1} \ldots i_{k}$ will be described by the sequence of templates $T_{i_{1}} \ldots T_{i_{k}}$.

Figure 7 Templates T_{i} and T_{\sharp}.

To detect that a solution ends with an event labeled by \sharp, we define the formula stop ::= $\lambda_{=\{\sharp\}} \wedge \neg E X_{P, i d}$ true. We can express that any event with label \sharp has at most two predecessors:

$$
\text { two-pred } \sharp::=A G_{P, i d}\left(\lambda_{=\{\sharp\}} \Longrightarrow \neg \operatorname{match}\left(\mathcal{O}_{\sharp}, T_{\sharp}, f_{\sharp}\right)\right)
$$

where T_{\sharp} is the pattern depicted onFigure 7 right and \mathcal{O}_{\sharp} keeps any event with label \sharp unchanged and relabels all other events with b. Now, if \mathcal{O}_{S} denotes the projection on S, keeping only events with labels in S, a solution is described by:

$$
\text { IsSeqIndex }::=E G_{S, \mathcal{O}_{S}}\left(\vee_{i=1}^{n} H o l d s T_{i}\right) \wedge E F_{P, i d} \text { stop }
$$

where $\operatorname{Holds} T_{i}::=$ match $\left(i d, T_{i}, s_{i}\right)$. Finally, we consider the subset \mathcal{W} of orders of $\mathcal{L} P O(P)$ where all labels are singletons. Note that this condition can be ensured by the formula Sing $::=A G_{P, i d}\left(\vee_{p \in P} \lambda_{=\{p\}}\right)$. For an order $O=(E, \leq, \lambda) \in \mathcal{W}$, we write $E=E_{A} \cup E_{\sharp} \cup E_{\text {ind }}$ as a disjoint union with $E_{A}=E \cap \lambda^{-1}(A), E_{\sharp}=E \cap \lambda^{-1}(\{\sharp\})$ and $E_{\text {ind }}=E \cap \lambda^{-1}($ Ind $)$. We define the observation function $\mathcal{O}_{\text {sol }}$ over \mathcal{W} by keeping all events and restricting \leq to $(E \times E) \backslash\left(\left(E_{A} \times E_{\text {ind }}\right) \cup\left(E_{\text {ind }} \times E_{A}\right)\right)$, thus removing the order between letters and indices. The formula ϕ_{I} is then defined by:

$$
\phi_{I}::=\text { two-pred } \sharp \wedge \text { IsSeqIndex } \wedge\left(\text { stop } \Longrightarrow E X_{\equiv, \mathcal{O}_{\text {sol }}} \text { true }\right),
$$

where the last sub-formula means that from some final \sharp, it will not be possible to distinguish between paths with labels from the x_{i} 's and those with labels from the y_{i} 's.

Then, there is an order O in \mathcal{W} satisfying ϕ_{I} if and only if I has a non trivial solution.

B Construction of a hyperarc replacement grammar for $\mathcal{U}(\mathcal{N})$

- Proposition 12. Let \mathcal{N} be a safe labeled Petri net. Then, there exists a hyperedge replacement grammar $\mathcal{G}_{\mathcal{N}}$ that generates $\mathcal{U}(\mathcal{N})$.
- Definition 26. A hyperarc is a pair (l, V), where l is a label, and $V \subseteq \mathbb{N}$ is an ordered set of vertices. A hypergraph is a triple (V, E, H) where V is a set of vertices, E a set of edges, and H a set of hyperarcs. A hyperedge replacement grammar (HRG) is defined as a pair $\mathcal{G}=(A x, \mathcal{R})$, where $A x$ is a hypergraph called the axiom of the grammar and \mathcal{R} is a set of rules. A grammar rule is a pair (L, R) where L, the left part of the rule is a hyperarc, and R, the right part of the rule is a hypergraph that contains all vertices of L.

Let $G=(V, E, H)$ be a hypergraph and $h=\left(l_{h}, V_{h}\right) \in H$ a hyperarc. Let $r=(L, R)$ be a rule where $L=(l, X)$ is a hyperarc with label $l=l_{h}$ and the same number of vertices as V_{h}, and $R=\left(V_{R}, E_{R}, H_{R}\right)$. The application of rule r to G simply replaces hyperarc h in G by the right part R. More formally, application of r produces a hypergraph $G^{\prime}=\left(V^{\prime}, E^{\prime}, H^{\prime}\right)$ with $V^{\prime}=V \uplus\left(\alpha\left(V_{R}\right) \backslash X\right), E^{\prime}=E \uplus \alpha\left(E_{R}\right)$ and $H^{\prime}=H \backslash\{h\} \uplus \alpha\left(H_{R}\right)$, where $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ is a map that associates with the $j^{\text {th }}$ vertex of X the identity of the $j^{\text {th }}$ vertex in V_{h}, and associates with vertices of $V_{R} \backslash X_{R}$ a fresh identity that does not appear in V. We denote by $G \xrightarrow{r} G^{\prime}$ this rewriting step, and by $\mathcal{G}^{\omega}(G)$ the (possibly infinite) limit graph obtained by application of rules of grammar \mathcal{G} on G.

Let $\mathcal{N}=\left(P, T, F, M_{0}, \lambda\right)$ be a safe labeled Petri net. We fix an arbitrary order $<_{P}$ on places. Given a marking M, and a set of integers $1 \ldots|M|$, we denote by $\operatorname{index}(p, M) \in 1 \ldots|M|$ the rank of place p in the sequence of integers representing marked places in M. Similarly, given a marking M and a list of integers representing this marking, we denote by place (i) the place represented by index i.

We have seen in section 4 an algorithm to build inductively an unfolding of a safe Petri net \mathcal{N}. This unfolding can be infinite, but exhibits a regular structure. Furthermore, many verification algorithms addressing reachability of coverability questions work on a structure called a complete finite prefix. A complete finite prefix is built inductively as an unfolding, but stops within a finite number of steps, according to some criterion that forbids the addition of events fulfilling some properties. A stopping criterion frequently met is the reachability criterion: it forbids a possible extension if adding the considered event produces a configuration that ends in a marking that was already visited in the branching process [25]. These events are called cut-off events. The principle of the HRG construction described hereafter is to build a complete finite prefix of net \mathcal{N}, to find the markings that can be reached when appending cut-off events to maximal configurations of the prefix. We then use these markings as hyperarcs, and the part of the prefix occurring after the marking as the right part of a grammar rule.

Let us first recall some definitions borrowed from [25]. Let $O N=(B, E, F)$ be an occurrence net and let S be a configuration of $O N$. We denote by S the set of all places that are maximal w.r.t. to this configuration, i.e., the set X of all places such that $\forall p \in X, \forall e \in S, p \notin \bullet e$ and $\forall p \in X, \forall e \in E \backslash S, p \notin e^{\bullet}$. Let μ be a homomorphism from $O N$ to \mathcal{N}. The final state of a configuration $\mathcal{F}(S)$ is the marking $\mu\left(S^{\bullet}\right)$. The local configuration of an event e is the set $\downarrow e$.

Let $B R$ be a branching process. A possible extension e is a cut-off event (w.r.t. the reachability criterion) iff there exists another event e^{\prime} such that $\mathcal{F}\left(\downarrow e^{\bullet}\right)=\mathcal{F}\left(\downarrow e^{\bullet \bullet}\right)$, and $\left|\downarrow e^{\prime \bullet}\right|<\left|\downarrow e^{\bullet}\right|$. Now, the algorithm to compute a complete finite prefix is the following:
0) Start from the initial branching process $B R_{0}$

1) find the set $P E$ of possible extensions of $B R_{i}$, i.e., the fresh pairs (X, t) such that X is a co-set of $B R$ and $\mu_{i}(X)=\bullet t ;$
2) Compute $N E=\{p e \in P E \mid p e$ is not a cut-off event $\}$
3) while $N E$ is not empty,
4) choose a particular event $e=(X, t)$ in $N E$
5) $E_{i+1}=E_{i} \cup\{e\}$
$B_{i+1}=B_{i} \cup X^{\prime}$ with $X^{\prime}=\left\{(e, p) \mid p \in t^{\bullet}\right\}$
$F_{i+1}=F_{i} \cup(X \times\{e\}) \cup\left(\{e\} \times X^{\prime}\right)$
μ_{i+1} extends μ_{i} by $\mu_{i+1}(e)=t$ and for any $b=(e, p) \in X^{\prime}, \mu_{i+1}(b)=p$.
λ_{i+1} extends λ_{i} by $\lambda_{i+1}(e)=\lambda(t)$.
6) compute the set $P E$ of possible extensions of $B R_{i+1}$;
7) Compute $N E=\{p e \in P E \mid p e$ is not a cut-off event $\}$
8) endwhile

It is well known (see for instance [25]) that:

- the construction of a complete finite prefix w.r.t. the reachability criterion terminates,
- all cuts of the prefix (and in fact even all those of the unfolding) correspond via μ to a reachable marking, and
- conversely, all reachable markings of an unfolded net are represented by at least one cut in the prefix.
Let us call $\operatorname{CFP}(\mathcal{N})$ the complete finite prefix thus built; then for every reachable marking M of \mathcal{N}, there exists a configuration S of $\operatorname{CFP}(\mathcal{N})$ such that $\mathcal{F}\left(S^{\bullet}\right)=M$.

We can now detail the construction of a HRG that generates the unfolding of \mathcal{N}. We first build $\operatorname{CFP}(\mathcal{N})$ using the algorithm above. Then, we compute the set $P E$ of possible extensions in $\operatorname{CFP}(\mathcal{N})$, and add these possible extensions to $\operatorname{CFP}(\mathcal{N})$. Let $B R_{C F P, P E}$ be the branching process obtained by adding these events, and let $S_{1}, \ldots S_{k}$ be the maximal configurations of $B R_{C F P, P E}$. For every S_{i} there exists at least one configuration S_{i}^{\prime} of $C F P(\mathcal{N})$ such that $\mathcal{F}\left(S_{i} \bullet\right)=\mathcal{F}\left(S_{i}^{\prime} \bullet\right)$. Note that for the reachability cut-off criterion, there can be more than one configuration of this form. We can choose arbitrarily one of them, for instance the configuration with the minimal number of events. For such a configuration S_{i}^{\prime} we denote by $\uparrow_{B R_{C F P, P E}} S_{i}^{\prime}$ the restriction of $B R_{C F P, P E}$ to events and conditions that are descendants of S_{i}^{\prime}.

We build the grammar $\mathcal{G}_{\mathcal{N}}=(A x, \mathcal{R})$ as follows. We set $A x=\left(N_{0}, H_{0}\right)$ where $N_{0}=$ $B R_{C F P, P E}$ and $H_{0}=\left\{\left(l_{i}, X_{i}\right) \mid S_{i}\right.$ is a maximal configuration of $\left.B R_{C F P, P E}\right\}$ where each X_{i} is an ordered set of vertices containing all conditions in $S_{i} \bullet$ (we can order vertices according to $<_{P}$ and according to the place $\mu(b)$ represented by each condition b in X_{i}).

Then, for every maximal configuration S_{i} in $B R_{C F P, P E}$, we create a rule $r_{i}=\left(L_{i}, R_{i}\right)$ where L_{i} is a hyperarc $L_{i}=\left(l_{i}, 1 \ldots\left|S_{i} \bullet\right|\right)$, and $R_{i}=\left(V_{i}, E_{i}, H_{i}\right)$, where $\left(V_{i}, E_{i}\right)$ is a copy of $\uparrow_{B R_{C F P, P E}} S_{i}^{\prime}$, in which conditions in S_{i}^{\prime} are numbered $1 \ldots\left|S_{i}^{\prime} \bullet\right|$ Last, H_{i} is the set of hyperarcs of the form $h=\left(l_{i}, X_{i}\right)$, where X_{i} is a set of conditions contained in $E_{i} \cap B R_{C F P, P E}$.

One can notice that $\mathcal{G}_{\mathcal{N}}$ may have up to $2^{|P|}$ rules. We can show that $\mathcal{G}_{\mathcal{N}}^{\omega}(A x)=\mathcal{U}(\mathcal{N})$.

C Proof of Proposition 19

- Proposition 19. Let ϕ be a HyPOL formula. Then there exists an MSO formula ψ such that $\mathcal{N} \models \phi$ iff $G_{\mathcal{U}(\mathcal{N})} \models \psi$.

Proof. Without leaving MSO, we can define a particular labeling to differentiate events and conditions in $G_{\mathcal{U}(\mathcal{N})}$: We write $\operatorname{Cond}(x)$ for the predicate that holds for every condition and Event (x) for the predicate that holds on all events.

We first define some basic formulas, holding at some node of $G_{\mathcal{U}(\mathcal{N})}$:

- true holds for every element of $G_{\mathcal{U}(\mathcal{N})}$;
- $\operatorname{Lab}(x) \cap D \neq \emptyset$ is equivalent to the formula $\bigvee_{d \in D} l a b_{d}(x)$;
- Event (x) holds under any interpretation that assigns an event of $G_{\mathcal{U}(\mathcal{N})}$ to x;
- $\operatorname{Cond}(x)$ holds under any interpretation that assigns a condition of $G_{\mathcal{U}(\mathcal{N})}$ to x;
- $e d g e(x, y)$ holds under an interpretation that assigns a condition b to x and an event e to y, and such that $b \in{ }^{\bullet} e$, or an event e to x and a condition b to y such that $b \in e^{\bullet}$;
- $\quad e d g e_{i}(x, y)$ holds under any interpretation \mathcal{I} that assigns events $\mathcal{I}(x)$ and $\mathcal{I}(y)$ of $G_{\mathcal{U}(\mathcal{N})}$ to x and y and such that $\mathcal{I}(x) \xrightarrow{i} \mathcal{I}(y)$.

From these building blocks, we can define more advanced expressions.

- $\operatorname{succ}(x, y)$ is a formula that holds under an interpretation \mathcal{I} such that $e=\mathcal{I}(x)$ is an event, $f=\mathcal{I}(y)$ is an event, and the pair of events e, f is in immediate successor relation in $G_{\mathcal{U}(\mathcal{N})}$. Formally, this is written as:
$\operatorname{succ}(x, y)::=\exists z, \operatorname{Event}(x) \wedge \operatorname{Event}(y) \wedge \operatorname{Cond}(z) \wedge \operatorname{edge}(x, z) \wedge e d g e(z, y)$.
- isMinimal (x, X) is a formula that holds under an interpretation that maps variable x to an event, X to a set of nodes of $G_{\mathcal{U}(\mathcal{N})}$, and such that $\mathcal{I}(x)$ is minimal in X with respect to the causal ordering of $G_{\mathcal{U}(\mathcal{N})}$. Formally, we write: $\operatorname{isMinimal}(x, X)::=x \in X \wedge \operatorname{Event}(x) \wedge \nexists y \in X, \operatorname{succ}(y, x)$.
- isMaximal (x, X) is similar to the previous formula, and requires $\mathcal{I}(x)$ to be maximal in X. It is defined as: $\operatorname{isMaximal}(x, X)::=x \in X \wedge \operatorname{Event}(x) \wedge \nexists y \in X, \operatorname{succ}(x, y)$
- isAChain (x, X) is a formula that holds for any interpretation \mathcal{I} in which X is a chain (a totally ordered sequence of events w.r.t. the successor relation) starting from x. It is formulated as follows:

$$
\begin{aligned}
& \operatorname{isMinimal}(x, X) \wedge \forall y \in X, \\
\operatorname{isAChain}(x, X)::= & (i s \operatorname{Minimal}(y, X) \Longrightarrow x=y) \wedge \\
& (\exists z \in X, \operatorname{succ}(y, z)) \Longrightarrow\left(\nexists z^{\prime} \in X, z \neq z^{\prime} \wedge \operatorname{succ}\left(y, z^{\prime}\right)\right)
\end{aligned}
$$

- $x \leq y$ can be defined as the formula:

$$
\begin{aligned}
& \operatorname{Event}(x) \wedge \operatorname{Event}(y) \wedge \exists X, x \in X \wedge y \in X \\
x \leq y::= & \wedge \forall z \in X, \operatorname{succ}\left(z, z^{\prime}\right) \Longrightarrow z^{\prime} \in X \\
& \wedge \forall u \in X, \nexists u^{\prime}, \operatorname{succ}\left(u^{\prime}, u\right) \Longrightarrow u=x
\end{aligned}
$$

More intuitively, this formula says that $\mathcal{I}(X)$ is the set of all successors of $\mathcal{I}(x)$ in $G_{\mathcal{U}(\mathcal{N})}$, and it contains $\mathcal{I}(y)$. This is a standard formula frequently used when addressing properties of partially ordered sets.

- $x<y$ (covering) is defined by $x<y::=x \leq y \wedge \nexists z, z \neq x, z \neq y, x \leq z \wedge z \leq y$.
- Let \mathcal{O} be a particular observation erasing events that do not carry a label from a particular subset D, and restrict covering of the obtained order to pairs of events carrying specific pairs of labels in $R \subseteq \Sigma \times \Sigma$. Then one can define $x<_{\mathcal{O}} y$ as the formula stating that the labels attached to x and y are contained in D, that $(\operatorname{lab}(x), \operatorname{lab}(y)) \in R$, that there exists a path from x to y such that every intermediate event visited between x and y carries a label that does not belong to D. This type of construction applies for all kind of labeling-based projection and order restriction. More formally :

$$
\begin{aligned}
& \operatorname{Event}(x) \wedge \operatorname{Event}(y) \wedge \operatorname{Lab}(x) \cap D \neq \emptyset \wedge \operatorname{Lab}(y) \cap D \neq \emptyset \\
& \wedge x \leq y \\
& \wedge \forall \mathcal{O} y::=x<z \wedge z<y \Longrightarrow \operatorname{Lab}(z) \cap D=\emptyset \\
& \wedge \bigvee_{(a, b) \in R} \operatorname{lab}_{a}(x) \wedge \operatorname{lab}_{b}(y)
\end{aligned}
$$

We are now ready to transform HyPOL formulas into MSO formulas. For every hypol formula ϕ we will build inductively an MSO formula ψ. The inductive construction will use fresh first order variables x, y, \ldots and second order variables X, Y, \ldots at every induction step. Further, as HyPOL formulas should hold at a particular event, we will design ψ with a particular free variable x depicting the event at which ψ must hold. For every HyPOL formula ϕ, letting ψ be the MSO formula obtained by translation of ϕ into MSO, for every order O in $\mathcal{O} r d(P R(\mathcal{N}))$ and every event $e \in E_{O}, O, e \models \phi$ if and only if ψ holds in $G_{\mathcal{U}(\mathcal{N})}$ under an interpretation that assigns e to x. We hence define $\psi=M S O(\phi, x, C)$ where C is a context listing variable names already used, x is a free variable in ψ that appears in C, and ψ is an MSO formula over x and fresh variable names not used in C. For a given HyPOL formula ϕ, we build inductively $\psi=M S O(\phi, x, C)$ as follows:

- if $\phi=$ true then $\operatorname{MSO}(\phi, x, C)=$ true for any variable x and context C;
- if $\phi=\neg \phi^{\prime}$ then $M S O(\phi, x, C)=\neg\left(M S O\left(\phi^{\prime}, x, C\right)\right)$;
- if $\phi=\phi_{1} \wedge \phi_{2}$ then $\operatorname{MSO}(\phi, x, C)=\operatorname{MSO}\left(\phi_{1}, x, C\right) \wedge M S O\left(\phi_{2}, x, C\right)$;
- if $\phi=E X_{D, \mathcal{O}} \phi^{\prime}$ then $M S O(\phi, x, C)=\exists y, x \leq_{\mathcal{O}} y \wedge M S O\left(\phi, y, C^{\prime}\right)$ where y is a fresh variable name (w.r.t. C and to the set $C_{x \leq \mathcal{O} y}$ of variables used to encode subformula $\left.x \leq_{\mathcal{O}} y\right)$ and $C^{\prime}=C \cup\{y\} \cup C_{x \leq_{\mathcal{O}} y} ;$
- if $\phi=\operatorname{match}(\mathcal{O}, T, f)$ where $T=\left(E,<_{T}, \lambda_{T}\right)$, with $E=\{f\} \cup\left\{e_{1}, e_{|E|-1}\right\}$ then $M S O(\phi, x, C)=\exists x_{1}, \ldots x_{|E|-1}, \bigwedge_{\left(f, e_{i}\right) \in<_{T}} x<_{\mathcal{O}} x_{i}$
$\wedge \bigwedge^{\left(f, e_{i}\right) \in<_{T}} x_{j}<_{\mathcal{O}} x_{i}$
$\left(e_{i}, e_{j}\right) \in<_{T}$
$\wedge \bigwedge_{i \in 1} \operatorname{Lab}\left(x_{i}\right) \supseteq \lambda_{T}\left(x_{i}\right)$
where $x_{1}, \ldots x_{|E|-1}$ are fresh variable names (w.r.t. C);
- if $\phi=E X_{\equiv, \mathcal{O}_{i}} \phi^{\prime}$ then
$M S O(\phi, X, C))=\exists y, \operatorname{edge}_{i}(x, y) \wedge M S O\left(\phi^{\prime}, y, C^{\prime}\right)$
where y is a fresh variable name (w.r.t. C) and $C^{\prime}=C \cup\{y\}$;
- if $\phi=\phi_{1} E U_{D, \mathcal{O}} \phi_{2}$ then

$$
\begin{aligned}
M S O(\phi, x, C)=\exists X, \quad \text { isAChain }(x, X) & \wedge \forall y \in X, \exists y^{\prime}, y<_{\mathcal{O}} y^{\prime} \Longrightarrow M S O\left(\phi_{1}, y, C^{\prime}\right) \\
& \wedge \nexists y^{\prime}, y<_{\mathcal{O}} y^{\prime} \Longrightarrow M S O\left(\phi_{2}, y, C^{\prime}\right)
\end{aligned}
$$

where y, y^{\prime}, X are fresh variable names (w.r.t. C and to the sets $C_{y, y^{\prime}}$ and $C_{\text {chain }}$ of variables used to encode respectively formulas $y<_{\mathcal{O}} y^{\prime}$ and $\left.\operatorname{isAChain}(x, X)\right)$ and $C^{\prime}=C \cup\{y\} \cup C_{y, y^{\prime}} \cup C_{\text {chain }} ;$

- if $\phi=E G_{D, \mathcal{O}} \phi^{\prime}$ then $\operatorname{MSO}(\phi, x, C)=\exists y, \operatorname{Event}(y) \wedge x<_{\mathcal{O}} y \wedge M S O\left(\phi^{\prime}, y, C^{\prime}\right)$ where y is a fresh variable name (w.r.t. C) and $C^{\prime}=C \cup\{y\}$.

We have assumed that the unfolding of \mathcal{N} has a unique starting event denoted by \perp and carrying label \perp. We can prove by induction on the length of HyPOL formulas that $\mathcal{N} \models \phi$ iff $G_{\mathcal{U}(\mathcal{N}} \models \exists s, x, l a b_{\perp}(s) \wedge \operatorname{succ}(s, x) \wedge M S O(\phi, x,\{s, x\})$.

