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Abstract
The well-known k-disjoint path problem (k-DPP) asks for pairwise vertex-disjoint paths between
k specified pairs of vertices (si, ti) in a given graph, if they exist. The decision version of the
shortest k-DPP asks for the length of the shortest (in terms of total length) such paths. Similarly,
the search and counting versions ask for one such and the number of such shortest set of paths,
respectively.

We restrict attention to the shortest k-DPP instances on undirected planar graphs where
all sources and sinks lie on a single face or on a pair of faces. We provide efficient sequential
and parallel algorithms for the search versions of the problem answering one of the main open
questions raised by Colin de Verdière and Schrijver [13] for the general one-face problem. We do
so by providing a randomised NC2 algorithm along with an O(nω/2) time randomised sequential
algorithm, for any fixed k. We also obtain deterministic algorithms with similar resource bounds
for the counting and search versions. In contrast, previously, only the sequential complexity of
decision and search versions of the “well-ordered” case has been studied. For the one-face case,
sequential versions of our routines have better running times for constantly many terminals.

The algorithms are based on a bijection between a shortest k-tuple of disjoint paths in the
given graph and cycle covers in a related digraph. This allows us to non-trivially modify estab-
lished techniques relating counting cycle covers to the determinant. We further need to do a
controlled inclusion-exclusion to produce a polynomial sum of determinants such that all “bad”
cycle covers cancel out in the sum allowing us to count “pure” cycle covers.
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1 Introduction

1.1 The k-disjoint paths problem
The k-Disjoint Path Problem, denoted by k-DPP, is a well-studied problem in algorithmic
graph theory with many applications in transportation networks, VLSI-design and most
notably in the algorithmic graph minor theory (see for instance [19] and references therein).
The k-DPP can be formally defined as follows: Given a (directed/undirected) graph G =
(V,E) together with k specified pairs of terminal vertices (si, ti) for i ∈ [k], find k pairwise
vertex-disjoint paths Pi from si to ti, if they exist. One may similarly define an edge-disjoint
variant (EDPP) of the problem. We will mainly focus on the vertex-disjoint variant in this
paper though several of our results are translated to an edge-disjoint variant as well. The
Shortest k-DPP asks to find k pairwise vertex-disjoint paths of minimum total length. We
consider the following variants of Shortest k-DPP:
1. Decision: given w, decide if there is a set of k-disjoint paths of length at most w.
2. Construction/Search: construct one set of shortest k-disjoint paths.
3. Counting: count the number of shortest k-disjoint paths.

1.2 Finding k-disjoint paths: Historical overview
The existence as well as construction versions of k-DPP are well-studied in general as well as
planar graphs. The problem in general directed graphs is NP-hard even for k = 2 [16]. It
is one of Karp’s NP-hard problems [18] (when k is part of the input) and remains so when
restricted to undirected planar graphs [20] and [22] extends this to EDPP as well. In fact,
EDPP remains NP-hard even on planar undirected graphs when all the terminals lie on a
single face [29].The problem of finding two disjoint paths, one of which is a shortest path, is
also NP-hard [14].

The existence of a One/Two-Face k-DPP was studied in [24] as part of the celebrated
Graph Minors series. This was extended (for fixed k) to graphs on a surface [25] and general
undirected graphs [26] in later publications in the same series [26]. A solution to this problem
was central to the Graph Minors Project and adds to the importance of the corresponding
optimization version. Even when k is part of the input, Suzuki et al. [30] gave linear time
and O(n logn) time algorithms for the One-Face and the Two-Face case, respectively and
[31] gave NC algorithms for both. In directed graphs, for fixed k polynomial time algorithms
are known when the graph is either planar [28] or acyclic [16].

Though there are recent exciting works on planar restrictions of the problem (e.g. [7])
and even on grid graphs where all the terminals lie on the outer-face [9], the One-Face or
Two-Face setting might appear on first-look to be a bit restrictive. However, the One-Face
setting occurs naturally in the context of routing problems for VLSI circuits where the graph
is a two dimensional grid and all the terminals lie on the outer face. In Relaxations of the
One-Face setting become intractable, e.g., “only all source-terminals on one face” is hard to
even approximate under a reasonable complexity assumption (NP 6= quasi-P [8]).

1.3 Shortest k-DPP: Related work
The optimization problem is considerably harder. A version of the problem is called length-
bounded DPP, where each of the path need to have length bounded by some integer `. This
problem is NP-hard in the strong sense even in the One-Face case for unbounded k [34]. For
the shortest k-DPP, where we want to minimise the sum of the lengths of the paths, very few
instances are known to be solvable in polynomial time. For general undirected graphs, very
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recently, Björklund and Husfeldt [3] have shown that shortest 2-DPP admits a randomised
polynomial time algorithm. The deterministic polynomial time bound for the same – to this
date – remains an intriguing open question.

For planar graphs, Colin de Verdière and Schrijver [13] and Kobayashi and Sommer [19]
give polynomial time algorithms for shortest k-DPP in some special cases. An O(kn logn)
time algorithm is given in [13] for the case when the sources are incident on one face and
sinks on another. In [19] an O(n4 logn) time and O(n3 logn) time algorithm is given when
the terminal vertices are on one face for k ≤ 3 or on two faces for k = 2, respectively. For
arbitrary k, linear time algorithm is known for bounded tree-width graphs [27]. Polynomial
time algorithms are also known through reducing the problems to the minimum cost flow
problem when all the sources (or sinks) coincides or when the terminal vertices lie on a face
in the (parallel) order s1, s2, . . . , sk, tk, . . . , t2, t1 [34].

In [13] the authors ask about the existence of a polynomial time algorithm provided all
the terminals are on a common face, for which we give an efficient deterministic algorithm
for k = O(logn). The only progress on this was made by Borradaile et al. [5] where an
O(kn5) time algorithm is presented when corresponding sources and sinks are in series on
the boundary of a common face and more recently, by Erickson and Wang [15] who give an
O(n6) time algorithm for k = 4. All the previous One-Face planar results are strictly more
restrictive or orthogonal to our setting and our sequential algorithms are more efficient (for
fixed k). We are able to tackle the counting version that is typically harder than the decision
version. Also, to the best of our knowledge, none of the previous works have addressed the
parallel complexity of these problems. Very recently, Björklund and Husfeldt [4] presented
an algorithm for the k = 2 case in max-degree 3 planar graphs with no restriction on the
placement of the terminals. Interestingly, like our algorithms, their algorithm also uses
determinants (with some additional techniques) to count the solutions.

1.4 Our results and techniques
I Theorem 1. Given an undirected planar graph with k pairs of source and sink terminals
on the boundary of a common face we can count all shortest k-disjoint paths between the
terminals in O(4knω/2+1) time.

Here ω < 2.373 is the matrix multiplication constant. We also get efficient randomised
algorithm (through isolation a la [23] and matrix inversion) and deterministic algorithm
(using the counting procedure as an oracle) to construct a witness.

I Theorem 2. Given an undirected planar graph with k pairs of source and sink terminals on
the boundary of a common face, finding a shortest set of k-disjoint paths between the terminals
is in randomised O(4knω/2) time and in deterministic O(4knω/2+2) time, respectively.

The counting algorithm is based on computing several determinants in parallel along with a
large matrix inversion which, for k logarithmic in n, can be computed using NC (efficient-
parallel) algorithms, i.e., using uniform circuits of polynomial size and polylogarithmic depth.
Hence we also get the following result.

I Theorem 3. Given an undirected planar graph with k pairs of source and sink terminals on
the boundary of a common face and k logarithmic in n, we can count all shortest k-disjoint
paths between the terminals in NC.

From the randomised procedure of Theorem 2 we also get a randomized NC (RNC) algorithm
to construct a witness. Our algorithms work for weighted graphs where each edge is assigned
a weight which is polynomially bounded in the number of vertices. All our results also hold

FSTTCS 2018
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Table 1 Summary of Results. The dependence on k and n of our results (in bold) is emphasized.
Note that ω is the matrix multiplication constant.

Problem Variant Sequential Parallel
Deterministic Randomised

One-Face General
Decision 4knω/2 NC
Counting 4knω/2+1 NC
Search 4knω/2+2 4knω/2 RNC

Two-Face Parallel
Decision knω NC
Counting knω+1 NC
Search knω+2 (kn log n[13]) knω RNC

for the case when all the source vertices lie on a single face and the sinks on another, with an
extra nω/2 factor blow up in the sequential runtime. Though a more efficient algorithm for
the search version is known from [13], we provide an efficient parallel algorithm which is also
able to count. Our algorithms extend to a variant of the edge-disjoint version of the problem
(for decision and search) by known reductions to the vertex disjoint case. We obtain running
times independent of k when the terminal vertices on the faces are in parallel order. We
summarize our main results in Table 1. The proof of Theorem 1 depends on the following
ideas:

An injection from k disjoint paths to cycle covers in a related graph for the general case.
The injection above reduces to a bijection in the parallel case. (Lemma 29)
An identity involving telescoping sums to simplify the count of k-disjoint paths.
(Lemma 16)

We sketch these ideas in more detail below.

Proof Sketch
Throughout the following sketch we talk about pairings which are essentially a collection of
k source-sink pairs, though not necessarily the same one which was specified in the input.
We refer to this input pairing by M0.
1. One-Face Case. We first convert the given undirected planar graph into a directed

one such that each set of disjoint paths between the source-sink pairs in M0 corresponds
to directed cycle covers (Lemma 5). In this process, we might introduce “bad” cycle
covers corresponding to pairings of terminals which are not required and they need to be
cancelled out. Each “bad” cycle cover which was included, can be mapped to a unique
pairing, say M1. Since the “bad” cycle cover occurs in M0 as well as M1 we can cancel it
out by adding or subtracting the determinant ofM1 fromM0. However, M1 can introduce
further “bad” cycle covers which again need to be cancelled. We show that all the “bad”
cycle covers like this can be cancelled by adding or subtracting determinants exactly like
in an inclusion-exclusion formula over a DAG (Lemma 16). This process terminates with
the so called “parallel” pairings (where the correspondence between k-disjoint paths and
cycle covers with k non-trivial cycles is a bijection) (Lemma 29).

2. Counting. The cycle covers in a graph can be counted by a determinant - more precisely,
we have a univariate polynomial which is the determinant of some matrix such that every
cycle cover corresponds with one monomial in the determinant expansion. Since the “bad”
cycle covers cancel out in the inclusion-exclusion, the coefficient of the least degree term
gives the correct count of the shortest cycle covers in M0 which can then be extracted
out by interpolation.
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3. Two-Face Case. The inclusion-exclusion formula exploited the topology of the One-Face
case which is not present in the Two-Face case. Here, this approach breaks down as the
pairings can not be put together as a DAG. We resolve this for a special case when all
sources are on one face and all sinks are on the other by using a topological artifice to
prune out pairings which cause cycles. For the Two-Face case, we need the number of
cycle covers with a certain winding number modulo k. This can be read off from the
monomial with the appropriate exponent in the determinant polynomial.

Main Technical Contribution
Our main technical ingredient here is the Cancellation Lemma 16 that makes it possible to
reduce the count of disjoint paths to signed counts over a larger set in such a way that the
spurious terms cancel out. This reduces the count of disjoint paths to the determinant. To
the best of our knowledge this is the first time a variant of the disjoint path problem has
been reduced to the determinant, a parallelizable quantity (in contrast [3] reduce 2-DPP to
the Permanent modulo 4 for which no parallel algorithm is known).

1.5 Organization
We recall some preliminaries in Section 2 and describe the connection between k-disjoint
paths and the determinant in Section 3. In Section 4 we discuss the general One-Face case
and in Section 5 the parallel Two-Face case. We extend our results for shortest k-DPP to a
variant of shortest k-EDPP in Section 6. We conclude in Section 7 with some open ends.

2 Preliminaries

An embedding of a graph G = (V,E) into the plane is a mapping from V to different points
of R2, and from E to internally disjoint simple curves in R2 such that the endpoints of the
image of (u, v) ∈ E are the images of vertices u, v ∈ V . If such an embedding exists then G
is planar. The faces of an embedded planar graph G are the maximal connected components
of R2 that are disjoint from the image of G. We can find a planar embedding in logspace
using [2, 12]. In this paper we assume G to be an embedded planar graph. We say that a
set of k terminal pairs {(si, ti) : i ∈ [k]} is One-Face if the terminals all occur on a single
face F . They are in parallel order if the pairs occur in the order s1, s2, . . . , sk, tk, . . . , t2, t1
on the facial boundary and in serial order if they occur in the order s1, t1, s2, t2, . . . , sk, tk.
Otherwise they are said to be in general order. If all the k terminal pairs occur on two faces
F1 and F2, we call it Two-Face. Here they are in parallel order if the sources s1, s2, . . . , sk
occur on one face and all the sinks t1, t2, . . . , tk, are on another. Though conventionally the
face containing the terminals is drawn as the outer (infinite) face, for the ease of exposition
here we consider it to be bounded. The region inside the face (including the face boundary)
is a closed set and the graph is embedded on the other side of the face, which is an open set.

Recall that a cycle cover is a collection of directed vertex-disjoint cycles incident on every
vertex in the graph. Our proofs go through by reducing the problems to counting/isolating
cycle covers. Since the determinant of the adjacency matrix of a graph is the signed sum of
its cycle covers, we can count the lightest cycle covers by ensuring that all such cycle covers
get the same sign. Similarly, isolating one lightest cycle cover enables us to extract it via
determinant computations. We note the following seemingly innocuous but important fact:

I Fact 4 (see e.g. [21]). The sign of a permutation π ∈ Sn equals (−1)n+c where c is the
number of cycles in the cycle decomposition of π.

FSTTCS 2018
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Figure 1 (a) Parallel. (b) Serial. (c) General Terminal Orderings.

3 Disjoint paths, cycle covers and determinant

We first describe a basic graph modification step using which we can show connections
between cycle covers and shortest k-DPP. In the rest of the paper, we will first perform the
modification before applying our algorithms.

Modification Step. Let G be an undirected graph with 2k terminal vertices. We add k new
special vertices r1, . . . , rk to get a new graph G′ and let A be the corresponding adjacency
matrix. We add unit weight self loops to all non-special vertices and weigh the rest of the
edges of G′ by x. The terminals are paired together into k disjoint ordered pairs. We refer
to the ith pair as (si, ti), where si is the source and ti is the sink. For each terminal pair
i, we add directed edges of unit weight from the sink ti to ri and from ri to the source si.
By slightly abusing the terminology we refer to these pair of edges (essentially a directed
path of length two) together as a demand edge. These k demand edges together defines the
input pairing. In general any set of k demand edges between the terminals (not necessarily
directed from the sources to the sinks) that do not share any endpoints defines a pairing
which essentially gives a bijection between two equal sized partitions of the 2k terminals (e.g.
in the input pairing each ti maps to si). Let the resulting mixed graph, containing both
directed and undirected edges, be H. It can be thought of as a directed graph where each
undirected edge corresponds to a pair of directed edges oriented in the opposite directions.
Let B be the resultant weighted adjacency matrix corresponding to H and it can be written
as D+ xA where D is the matrix with 1’s for non-special vertices and zeroes for special ones
on the diagonal and 1’s for the newly added subdivided demand edges as off diagonal entries.
There is a bijection between cycle covers in the graph and monomials4 in the determinant
det(D+xA). Each cycle cover in turn consists of disjoint cycles which are one of three types:
1. consisting alternately of paths between two terminals and demand edges.
2. a non-trivial cycle avoiding all terminals.
3. a trivial cycle i.e. a self loop.
Thus every cycle cover contains a set of k disjoint paths. Further any collection of k disjoint
paths between the terminals (not necessarily in the specified pairing) can be extended using
the edges on the uncovered vertices (by the paths) in at least one way to a cycle cover of the
above type.

Finally we have extensions of “pure” k-disjoint paths (which are between a designated
set of pairs of terminals), which are in bijection with a subset of all cycle covers. We call
the corresponding set of cycle covers pure cycle covers. This bijection carries over to some
monomials (the so called pure monomials) of the determinant. Thus we obtain the following:

4 Here we think of the entries of the matrix as formal variables and many such monomials combine to
give a term.
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I Lemma 5. Let B = D+ xA as above. The non-zero monomials in det(B) are in bijection
with the cycle covers in the graph H and every cycle cover in H is also an extension of a
k-disjoint path in G. This bijection also applies to the subset of “pure” k-disjoint paths to
yield, so called pure cycle covers and pure monomials. Moreover, the bijection preserves the
degree of a monomial as the length of the cycle cover it is mapped to.

Let’s focus on the terms that correspond to minimum length pure cycle covers. Then these
terms have the same exponent `, the length of this shortest pure cycle cover. This is also the
least exponent amongst all the pure monomials occurring in the determinant. Notice that
their sign is the same. To see this, consider the sign given by (−1)n+c (see Fact 4) where n
is the number of vertices and c the number of cycles in the cycle cover. The number of non
self-loop cycles is k, the minimum number of cycles needed to cover all the vertices without
self loops and equalling the number of source sink pairs. Notice that any extra cycles can be
replaced by self loops yielding a cycle cover of strictly smaller length hence will not figure
in the minimum exponent term. The number of self loops is therefore n − `. Hence the
total number of cycles is k + n− ` for each of these terms hence the sign is (−1)k−` which is
independent of the specific shortest cycle cover under consideration.

I Lemma 6. The shortest pure cycle covers all have the same sign.

Notice that ultimately we want to cancel out all monomials which are not pure. In the
One-Face case described in Section 4 we show how to do this in the Cancellation Lemma 16.
In the Two-Face case, we cannot do this in general but by measuring how paths wind around
the faces, we can characterize the cycle covers which we wish to obtain (see Theorem 26).

4 Disjoint Paths on One Face: The General Case

In the Appendix B we consider an important special case - when all demands are in parallel
and now we proceed to the more general case. We consider an embedding of an undirected
planar graph G with all the terminal vertices on a single face in some arbitrary order. The
primary idea is, given graph G to construct a sequence of graphs H so that in the signed
sum of the determinants of the graphs in H the uncancelled minimum weight cycle covers
are in bijection with the shortest k-disjoint paths of G.

Notation and Modification. Let s1, . . . , sk and t1, . . . , tk be the source and the sink vertices
respectively, incident on a face F in some arbitrary order. Consider the graph GM0 obtained
by applying the modification step in Section 3 on G with respect to the input pairing M0
such that each special vertex ri is placed inside F and so are the edges (ti, ri), (ri, si). Label
the terminals in the counter clockwise order by {1, 2, . . . , 2k} and let `(t) denote the label of
terminal t. A demand edge (u, v) is said to be forward if `(u) < `(v) and reverse otherwise.
For any pairing M if the edges of M are forward we declare the pairing to be in standard
form.

4.1 Pure Cycle Covers
We define pure cycle covers of a graph to be cycle covers in which each non-trivial cycle
(cycles that are not self-loops) either avoids all terminals or consists only of a terminal and
its mate, where the mate of a terminal is specified in the pairing under consideration. In
other words, in a pure cycle cover no two terminal pairs are part of the same cycle. Let
the graph obtained by deleting all vertices and edges strictly outside F in GM0 be ĜM0 .

FSTTCS 2018
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Figure 2 Compatible and Incompatible Pairings where M = {(1, 8), (2, 7), (3, 6), (4, 5)}(len(M) =
16) and M ′ = {(1, 8), (2, 3), (4, 5), (6, 7)}(len(M ′) = 10).

Though F does not remain a face in GM0 , it is a cycle nonetheless. If two edges in ĜM0 cross
then the paths joining corresponding endpoints outside F in GM0 will also cross. So the
terminals cannot interlace (see Definition 8), because otherwise there is no solution. A bit
more formally, the following is a consequence of the fact that two cycles in the plane must
cross each other an even number of times. Notice that the following condition is necessary
but not sufficient.

I Observation 7. Unless ĜM0 is outerplanar there is no pure cycle cover in G.

4.2 Cancelling Bad Cycle Covers
I Definition 8. Consider two forward demand edges h1 = (u1, v1) and h2 = (u2, v2). We
say h1 and h2 are in series if either both endpoints of h1 are smaller than both the endpoints
of h2 or vice-versa. If however, the sources of h1 and h2 are smaller than the corresponding
sinks then the demands could be in parallel or interlacing with each other as follows.
1. Parallel: either `(u1) < `(u2) < `(v2) < `(v1) or `(u2) < `(u1) < `(v1) < `(v2).
2. Interlacing: either `(u1) < `(u2) < `(v1) < `(v2) or `(u2) < `(u1) < `(v2) < `(v1).
We don’t use interlacing demands in the One-face case. The concept is needed in Section 5.

I Definition 9. An ordered pair 〈M,M ′〉 of pairings is compatible if, when we orient M in
the standard form then there is a way to orient M ′ such that the union of the two directed
edge sets forms a set of directed cycles. We refer to this set of directed cycles as M ∪M ′.

See Figure 2 for an example. Let 〈M,M ′〉 form a compatible pair. We call the edges of M
as internal edges (drawn inside the face) and those of M ′ as external edges (drawn outside).

I Lemma 10. Compatibility is reflexive and antisymmetric i.e. 〈M,M〉 is always compatible
and for M 6= M ′ if 〈M,M ′〉 is compatible then 〈M ′,M〉 isn’t.

Proof. 〈M,M〉 is always a compatible pair as for any pairingM inside just putM outside with
demand edges directed in the opposite direction. Antisymmetry follows from Lemma 12. J

I Definition 11. Define len(u, v) = `(v)− `(u) for every demand edge (u, v). Let len(M)
be the sum of lengths of demand edges of M when the pairing M is placed inside and len( ~M)
be the sum of lengths of the demand edges when the pairing comes with directions not
necessarily in the standard form.

For external demand edges len(u, v) may be negative, but for internal edges len(u, v) is
positive since the internal demand edges are always drawn with `(u) < `(v). Call a standard
pairing to be the parallel pairing if for each demand edge (u, v) we have `(u) + `(v) = 2k + 1.
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Similarly we have the serial pairing where for each demand edge (u, v) we have `(v)−`(u) = 1.
Then notice that len(M) achieves the maximum value when M is the parallel pairing and
achieves the minimum value in the case when M is the serial pairing.

I Lemma 12. If 〈M,M ′〉 is a compatible pair and M 6= M ′ then len(M) < len(M ′).

Proof. It suffices to prove this for a non-trivial cycle C in M ∪M ′. Let the edges of the cycle
C be partitioned into A,A′ according to which one is inside. We have len(A) + len( ~A′) = 0
where ~A′ is A′ oriented according to the orientation of M ′ when placed outside (because each
vertex of C occurs with opposite sign in len(A) and len( ~A′). Notice that to go from ~A′ to
A′ we need to convert the reverse edges to forward edges, which increases the absolute value
of len( ~A′)). Since in absolute value A and ~A′ have the same length, the lemma follows. J

A set of disjoint paths R in G between a collection of pairs of terminals which form a pairing
M is called a routing. We say that R corresponds to M in this case i.e. the mapping between
the terminals is given by the routing R. For pairings M,M ′ let W (〈M,M ′〉) denote the
weighted signed sum of all cycle covers consisting of the pairing M inside the face in forward
direction and routing R′ that correspond to the pairing M ′, outside the face. Note that the
cycle covers are computed on the mixed graph GM . It follows immediately that W (〈M,M〉)
denotes the weighted sum of all pure cycle covers of M .

I Observation 13. W (〈M,M ′〉) will be zero unless 〈M,M ′〉 is a compatible pair.

Also notice that the cycle cover has an arbitrary set of (disjoint) cycles covering vertices not
lying on the routing in the sense that we may cover such vertices by non self-loops. Let’s abbre-
viate W (〈M, ∗〉) =

∑
M ′:M ′ is a pairingW (〈M,M ′〉). From Lemma 12 and Observation 13

we have that:

I Proposition 14. W (〈M, ∗〉) =
∑
M ′:len(M ′)>len(M)∨M ′=M W (〈M,M ′〉)

I Proposition 15. For a compatible pair 〈M,M ′〉, W (〈M,M ′〉) = (−1)k−cM,M′W (〈M ′,M ′〉)
where cM,M ′ is the number of cycles passing through at least one demand edge in the union
M ∪ M ′ (and k the total number of terminal pairs and equals the number of cycles in
〈M ′,M ′〉).

Proof. Notice that the paths belonging to the routing R′ are the same in both 〈M,M ′〉 and
〈M ′,M ′〉. Thereafter it is an immediate consequence of the assumption that the number of
cycles in M ∪M ′ is cM,M ′ + k′ (where k′ is the the number of cycles avoiding all terminals
in 〈M,M ′〉), in M ′ ∪M ′ is k+ k′ (because the number of cycles avoiding all terminals is the
same in both 〈M,M ′〉 and 〈M ′,M ′〉) and of Fact 4. J

Thus by plugging in the values from Proposition 15 in Proposition 14 and rearranging, we
get the main result of this section (see example in Subsection 4.4):

I Lemma 16 (Cancellation Lemma). LetMM be the set of pairings M ′ compatible with M
such that M 6= M ′. Then,

W (〈M,M〉) = W (〈M, ∗〉) +
∑

M ′:MM

(−1)k+cM,M′+1W (〈M ′,M ′〉).

For a given pairing M0, we are interested in the least order term in W (〈M0,M0〉). From
Lemma 5 we know that for any pairing M , there is a bijection between shortest k-DPP of
M and the lightest pure cycle covers of M . Moreover, from Lemma 6 we know that all the
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19:10 Shortest k-Disjoint Paths via Determinants

lightest pure cycle covers of M occur with the same sign and exponent in the determinant
and hence also in the W (〈M,M〉) polynomial. Therefore, the coefficient of the least order
term in W (〈M0,M0〉) gives us the count of the shortest k-DPP of M0. We illustrate this
with an example in Subsection 4.4. We can now apply Lemma 16 to prove Theorems 1 and 3.

4.3 Proof of The Main Theorems
I Theorem (Theorem 1 Restated). Given an undirected planar graph with k pairs of source
and sink terminals on the boundary of a common face we can count all shortest k-disjoint
paths between the terminals in O(4knω/2+1) time.

Proof. The Cancellation Lemma 16 allows us to cancel out all cycle covers that are not pure
(i.e. those which do not correspond to the input terminal pairing M0) and replace them by
a signed sum of W (〈M, ∗〉) for various pairings. This process terminates with W (〈P, P 〉)
where P is the unique parallel pairing. Moreover, the replacement can be done in time
linear in the total number of possible terms since each pairing will be considered at most
once. Observe that there are at most 4k different pairings possible (since they correspond
to outerplanar matchings, see Observation 7 which are bounded in number by the Catalan
number 1

k+1
(2kk
<

)
4k see e.g. [17]). We obtain the count itself by evaluating the polynomial

obtained by the signed sum of determinants at O(n) distict points followed by interpolation
(see Fact 28). This accounts for a blow-up of O(n) in the running time. We know that the
determinant of an n× n matrix which corresponds to the adjacency matrix of some planar
graph, can be computed in time O(nω/2) [36] where ω < 2.373 is the matrix multiplication
constant. J

Observe that for the decision version of the shortest k-DPP, it suffices to check whether the
polynomial obtained by the signed sum of determinants is non-zero or not.

I Theorem (Theorem 3 Restated). Given an undirected planar graph with k pairs of source
and sink terminals on the boundary of a common face and k logarithmic in n, we can count
all shortest k-disjoint paths between the terminals in NC.

Proof. Lemma 16 gives us a formula using which one can isolate the pure cycle covers of M
by adding to W (〈M, ∗〉) (obtained by computing the determinant) an appropriately signed
sum of pure cycle covers of all pairingsM ′ 6= M such thatM ′ is compatible withM . Observe
that Lemma 12 allows us to order all such pairings M ′ (according to the len() metric) in
the form of a poset. We can build a matrix C (of size 4k × 4k) indexed by M,M ′ and
containing zero if 〈M,M ′〉 is not a compatible pair and the sign with which W (〈M,M ′〉)
occurs in the expression for W (〈M, ∗〉), otherwise. Since there is a partial order on the
pairings (from Lemma 12) this matrix which represents a system of linear equations Cx = b

is upper triangular. Here C is the compatibility matrix above and entries of column vector
b are W (〈M, ∗〉). Also along the diagonal we have ±1’s because W (〈M,M〉) always occurs
in the expression for W (〈M, ∗〉). Thus the determinant of C is ±1 and in particular, C is
invertible. We can invert the matrix to get the count in O(k2 + log2 n) parallel time using
4O(k)nO(1) processors [10], hence in NC2 for k = O(logn). J

I Theorem (Theorem 2 Restated). Given an undirected planar graph with k pairs of source
and sink terminals on the boundary of a common face, finding a shortest set of k-disjoint paths
between the terminals is in randomised O(4knω/2) time and in deterministic O(4knω/2+2)
time, respectively.
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First we describe a simple deterministic algorithm followed by a randomised algorithm as
well as an RNC procedure for search. These together completes the proof of Theorem 2.
Using the proof ideas from Theorem 1 and Theorem 3 we can also count the solutions for the
Two-face parallel case (see Section 5) in time O(knω+1) as well as in NC. Hence the following
procedures also work in the Two-face parallel case giving an O(knω+2) time deterministic
algorithm, an O(knω) time randomised algorithm along with an RNC algorithm.

A deterministic search algorithm. Let Ctot be the count of total number of shortest k-
disjoint paths in G. For every edge e ∈ G we remove e and count the remaining number of
shortest k-disjoint paths using the sequential counting procedure above as oracle. Let Cē be
this count. If Cē > 0, we proceed with the graph G \ e since the graph still has a shortest
k-disjoint path. If Cē = 0 then every existing shortest k-disjoint paths contains the edge e so
keep e in G and proceed with the next edge. Let H be the final graph obtained.

I Claim 17. The graph H is a valid shortest k-disjoint path.

Proof. It is easy to see that all the edges in H are part of a shortest k-disjoint path. Notice
that all the edges are part of a single shortest k-disjoint paths since otherwise we could
remove that edge, say e∗ and will have Cē∗ > 0 in H and therefore also in the graph G at
the time e∗ was under consideration, contradicting that e∗ was retained. J

Since for each edge we spend O(4knω/2+1) time, the total search time is O(4knω/2+2).

A randomised search algorithm. For the construction of shortest k-DPP we use the
following Isolation lemma introduced by Mulmuley, Vazirani, and Vazirani [23]. It is a simple
but powerful lemma that crucially uses randomness:

I Lemma 18 (Isolation Lemma). Given a non-empty F ⊆ 2[m], if one assigns for each
i ∈ [m], wi ∈ [2m] uniformly at random then with probability at least half, the minimum
weight subset of in F is unique; where the weight of a subset S is

∑
i∈S wi.

I Lemma 19. A solution to the shortest One-Face k-DPP can be constructed in randomised
O(4knω/2) time.

Proof. First we introduce small random weights in the lower order bits of the edges of the
graph G (i.e. give weights like 4n2 + re to edge e). Using Lemma 18 these are isolating for
the set of k-disjoint paths between the designated vertices, with high probability. In other
words the coefficient of least degree monomial equals ±1 in the isolating case. At the same
time the ordering of unequal weight paths is preserved. This is because the sum of the lower
order bits cannot interfere with the higher order bits of the monomial which represent the
length of the corresponding k-disjoint path.

Let the monomial with minimum exponent be xw. Our counting algorithms works for the
weighted case as explained in the remark in Subsection A.2. Borrowing notation from the
previous part we can compute Cē in parallel for each edge under the small random weights
above. If the weight is indeed isolating, we will obtain the least degree monomial in Cē
will be xw exactly when e does not belong to the isolated shortest k-disjoint paths. Thus
with probability at least half we will obtain a set of shortest k-disjoint paths. When the
assignment is not isolating the set of edges which lie on some shortest k-disjoint path will
not form a k-disjoint path itself so we will know for sure that the random assignment was
not isolating. For k = O(logn) this also gives an RNC algorithm using the NC algorithm for
counting from Theorem 3 as subroutine.
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Figure 3 An Example (a) M1 ∪M2 (b) M2 ∪M3 (c) 〈M3, ∗〉 = M3 ∪M3.

We give a randomised sequential algorithm for the problem running in time O(4knω/2)
using the idea of inverting a matrix in order to find a witness for perfect matching described in
[23]. They use it in the parallel setting but we apply it in the sequential case also. Essentially
we need to compute all the O(n) many Cē’s in O(nω/2) time. Notice that C − Cē will be
the weighted count for the k-disjoint paths that contain the edge e. This is precisely the
co-factor of the entry (u, v) where e = (u, v) and since all co-factors can be computed in
O(nω/2) time we are done. J

4.4 An Example of the One-Face Case

Let M1 = {(1, 8), (2, 5), (3, 4), (6, 7)} be the input pairing. M1 is compatible with a routing,
say R2, whose corresponding pairing is M2 = {(1, 8), (2, 7), (3, 4), (5, 6)}. We consider the
pairing M2 then which is compatible with another routing, say R3 and the corresponding
pairing be M3 = {(1, 8), (2, 7), (3, 6), (4, 5)}. Since M3 is in parallel configuration, from
Lemma 29 the only routing compatible with M3 corresponds to M3 itself and the recursion
stops. We illustrate this in Figure 3. From the above discussion, we have the following
sequence of equations.

W (〈M1,M1〉) = W (〈M1, ∗〉)−W (〈M1,M2〉)
W (〈M1,M2〉) = −W (〈M2,M2〉)
W (〈M2,M2〉) = W (〈M2, ∗〉)−W (〈M2,M3〉)
W (〈M2,M3〉) = −W (〈M3,M3〉)
W (〈M3, ∗〉) = W (〈M3,M3〉)

After substitutions we get the following formula,

W (〈M1,M1〉) = W (〈M1, ∗〉) +W (〈M2, ∗〉) +W (〈M3, ∗〉)

5 Disjoint Paths on Two faces: The parallel case

In this section, we solve the shortest k-DPP on planar graphs such that all terminals lie on
two faces, say f1, f2 in some embedding of the graph and all the demands are directed from
one face to another. The key difference between the One-Face case and the Two-Face case is
that the compatibility relation in the Two-Face case is not antisymmetric. Consequently, the
pairings in the Two-Face case cannot directly be put together as a DAG (see Figure 4) and
we are unable to perform an inclusion-exclusion (like in Lemma 16).
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Figure 4 The presence of two faces allows routings of two pairings to be present in the determinant
of each other like in this example. Paxis is a path between the two faces. (a) shows two parallel
demands on two faces and (b) shows a different configuration for the two parallel demands. Notice
that one of the two paths necessarily needs to cross the axis in order to obtain (b) from (a), whereas
to obtain the pure cycle cover of (a) both paths must cross the axis equal number of times.

Notation and Modification. We connect f1, f2 by a path Paxis in the (directed)5 dual
graph G∗. We consider the corresponding primal arcs of Paxis which are directed from f1 to
f2 (in the dual) and weigh them by y. Without loss of generality, we can assume that these
arcs are counter clockwise as seen from Paxis. Similarly, the primal arcs of Paxis which are
directed from f2 to f1(in the dual) are weighed by y−1. According to our convention, these
arcs are clockwise as seen from Paxis. We number the terminals of the graph in the following
manner. Take the face f2 and start labeling the terminals in a counter-clockwise manner
starting from the vertex immediately to the left of Paxis as 1, 2, . . . , k and then label the
terminals of f1 again in a counter-clockwise manner starting from the vertex immediately
to the right of the dual path as k + 1, . . . , 2k. Here the directions “left” and “right” are
chosen with respect to Paxis in the plane and are used consistently. For any terminal s, `(s)
describes the label associated with s. We now apply the modification step in Section 3 and
direct the demand edges forward. Throughout this section, we fix a pairing M such that
each demand edge of M has one terminal on either face. We refer to these types of demand
edges as cross demand edges and denote them by CDM . Clearly, |CDM | = k.

5.1 Pure Cycle Covers
Like in Subsection 4.1 pure cycle covers are defined to be cycle covers CC, such that each
cycle in CC which contains a terminal also contains the corresponding mate of that terminal
and no other terminal. We distribute the terminals of the cross demands(CDM ) evenly on
the faces f1 and f2 at intervals of 2π

|CDM |
. For convenience sake, assume that the graph is

embedded such that Paxis is a radial line. Our proofs go through even if this is not the case
simply by accounting for the angle between the endpoints of the axis. The other terminals,
vertices and edges of G are embedded such that the graph is planar. We begin with Lemma 20
from [24] which will be useful to analyze the Two-Face k-DPP. In their notation, the two faces
having terminals are C1, C2 with C1 inside C2 in the embedding of G. See Appendix A.3 for
details.

I Lemma 20 (Quoted from Section 5 [24]). We represent the surface on which C1, C2 are
drawn by σ = {(r, θ) : 1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π}. Let f : [0, 1]→ σ be continuous. Then it has
finite winding number θ(f) defined intuitively as 1

2π times the the total angle turned through
(measured counterclockwise) by the line OX, where O is the origin, X = f(x), and x ranges

5 By directed dual graph we mean the dual graph of G where edges are bi-directed (like in the primal).
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from 0 to 1. Let L be a set of k paths (from C1 to C2) drawn on σ, pairwise disjoint. We
call such a set L a linkage. If L is a linkage then clearly θ(P ) is constant for P ∈ L, and we
denote this common value by θ(L).

Claim 21, while not being crucial in the analysis, still helps us understand how the demand
edges occur in the parallel Two-Face case.

I Claim 21. Any three demand edges in CDM cannot interlace with each other.

Proof. Assume that the claim does not hold for three demand edges h1, h2, h3 ∈ CDM such
that l(s1) < l(s2) < l(s3). Since all three edges interlace, we have that l(t1) > l(t2) > l(t3).
If this is the case, we show that M cannot support a pure cycle cover, say CC. Let C1, C2, C3
be the cycles of CC including the demand edges h1, h2, h3 respectively. Since the cycle
cover is pure, there exist disjoint paths, say P1, P2, P3, between the endpoints of the three
demand edges. Also consider the paths P4, P5 which are comprised of the edges of f1 from
s1 to s3 via s2 and t1 to t3 without using t2. Paths P1, P3, P4, P5 form a cycle in the graph
with s2 inside and t2 outside it. Therefore, P2 must intersect either P1 or P3 which gives a
contradiction. J

We say that a cycle cover CC effectively crosses the axis x times if the total number of times
the paths in CC cross Paxis counter-clockwise is x more than the total number of times they
cross it in the clockwise direction. We abbreviate this by AxisCrossM,CC . We now show that
for any pure cycle cover CC the value of AxisCrossM,CC (modulo |CDM |)must be a constant
independent of the cycle cover itself (Lemma 23).

I Observation 22. If P is any path (on the plane) in G such that θ(P ) = 2π then P

effectively crosses the axis exactly once in the counter-clockwise direction. Similarly, when
θ(P ) = −2π then P effectively crosses the axis exactly once in the clockwise direction.

Proof (Sketch). We know that θ is a continuous function and its evaluations at the start
and end of P are zero and 2π respectively. By the intermediate value theorem, it follows
that on some point of P , θ takes on the value θ0 where θ0 which is the angle between the
start of P and any point on Paxis. Since the direction of measurement is counter-clockwise,
we conclude that P must cross Paxis exactly once in the counter-clockwise direction. The
second part of the statement follows analogously with the only difference being that the
direction of traversal of P must be clockwise in order to obtain a negative value of θ(P ). J

I Lemma 23. Assuming CDM 6= ∅, for any pure cycle cover CC, there exists a fixed integer
OM ∈ {0, 1, . . . , |CDM| − 1} (independent of CC) such that AxisCrossM,CC = ω|CDM |+ OM
where ω ∈ Z.

Proof. We only have to show that the cross demands must contribute to AxisCrossM,CC by
an amount of ω|CDM |+ OM. As CC is a pure cycle cover, we know from Lemma 20 that
each path between a terminal pair traverses the same angle, say θ = 2πω for some integer ω.
Since each path traverses the same angle, each source terminal is routed to its corresponding
sink terminal which is shifted by an angle of θ0 ∈ [0, 2π) and therefore, θ0 can be written as
2π OM

CDM
where OM ∈ {0, 1, . . . , |CDM − 1|} is the common offset. Observe that the offset is

dependent only on the pairing M and is not related to the cycle cover. Summing this angle
for all demand edges in CDM , the total angle traversed by the corresponding paths in CC
is simply θ|CDM | = 2πω|CDM |+ 2πOM. From Observation 22 every time an angle of 2π is
covered, we effectively cross the axis exactly once. Thus the value of AxisCross due to the
demands in CDM is ω|CDM |+ OM. J
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5.2 Pruning Bad Cycle Covers
As a consequence of the topology of the One-Face case, the compatibility relation for pairings
is antisymmetric and therefore a straightforward inclusion-exclusion is enough to cancel all
the “bad” cycle covers. In the Two-Face case, there may exist a set of compatible pairings
which yield routings of each other in the determinant, thus making it impossible to cancel
bad cycle covers. Therefore, we must make distinction between compatible pairings which
yield pure cycle covers and the ones which yield bad cycle covers.

I Definition 24 (Compatibility & M-Compatibility). Consider two pairings M,M ′. We say
that M ′ is compatible with M if there exists a routing R′ yielding a pure cycle cover for M ′,
which when combined with the demand edges of M , forms a cycle cover, denoted by CCR′ .
Moreover, if CCR′ satisfies the following property, we say M ′ is M-compatible for M .

AxisCrossM,CCR′ ≡ OM(mod |CDM|) (Modular Property)

From Lemma 23, it is clear that M is M-compatible with itself. We now show that any other
M ′ 6= M is not M-compatible with M .

I Lemma 25. For any routing R′ corresponding to a pairing M ′ such that M ′ 6= M ,

AxisCrossM,CCR′ 6≡ OM(mod |CDM|)

Proof. Let {P1, P2, . . . , Pk} be k disjoint paths in the routing R′. Next, we use Lemma 20
to say that each path in the set must have the same angle as seen from the center of the
concentric faces. Since the routing does not lead to a pure cycle cover of M , each source
terminal is routed to a sink terminal which is shifted by an angle of θ′0 ∈ [0, 2π) and therefore,
θ′0 can be written as 2π OR′

CDM
where OR′ ∈ {0, 1, . . . , |CDM − 1|}\{OM} is the common offset

that each path traverses. Notice that pure cycle covers will have an offset of OM 6= OR′ since
in the pure case, the offset between the source and sink must be different from that of the
offset of OR′ , otherwise R′ would be a pure cycle cover. Therefore,

θ(P1) = θ(P2) = . . . = θ(Pk) = 2ωπ + θ′0 (1)

=⇒ θ(
k⋃
i=1

Pi) = 2π(ω.|CDM |+ OR′) (2)

From Observation 22 every time an angle of 2π is covered, we effectively cross the axis
exactly once. Thus the value of AxisCross due to the routing R′ is 2ω|CDM |+ OR′ . Since,
OR′ 6≡ OM mod |CDM|, we conclude that R′ does not satisfy (Modular Property). J

I Theorem 26. Let M,M ′ be two Two-Face pairings such that M ′ is M-compatible for M .
Then it must be the case that M = M ′.

Theorem 26 is a consequence of Lemma 23 and Lemma 25.
Using the proof ideas of Theorem 1 and Theorem 3 in addition to the following, we can

also do counting in the Two-Face parallel case in time O(knω+1) as well as in NC. Unlike the
One-Face case, here the graph might not remain planar after the modification step and the
determinant computation takes O(nω) time [1]. Also, here we have a bivariate polynomial
and we need to discard the terms in the determinant polynomial whose exponent in y is not
equivalent to OM modulo k. In order to do this, we can evaluate the polynomial at each one
of the kth roots of unity and sum each of the k polynomials obtained by the k evaluations.
We describe this in Appendix A.4 in more detail. After discarding the unwanted terms in
the determinant polynomial we extract the monomial with the smallest exponent in x to
obtain the shortest pure cycle covers.
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(b) Terminal degree Reduction.

Figure 5 Degree Reduction Gadgets.

6 Edge disjoint paths

We define planar k-EDPP to be the problem of finding k edge disjoint paths in a planar
graph G between terminal pairs when, the demand edges can be embedded in G such that
planarity is preserved. We show how to transfer results for k vertex disjoint paths to k edge
disjoint paths in undirected graphs using gadgets in Figure 5 borrowed from [22].

I Lemma 27. Decision, Search for One-Face planar k-EDPP reduces to One-Face k-DPP.

Proof (Sketch). The reduction is performed in three steps. First we reduce the degrees of
terminals by using the gadget in Figure 5(b) to at most three. Next, we use the gadget in
Figure 5(a)(1) to reduce the degree of any vertex which is not a terminal to at most four.
After each application of this gadget the degree of the vertex reduces by one. A parallel
implementation of this procedure would first expand every vertex into an, at most ternary
tree and then replace each node by the gadget. We then reduce the degrees to at most three
by using the gadget in Figure 5(a)(2). Notice that since the demand edges can be embedded
in a planar manner on the designated face, the disjoint paths can only cross each other an
even number of times and hence the for every shortest EDPP we will always be able to find
a corresponding shortest DPP after using the gadget in Figure 5(a)(2). It must also be noted
that path lengths will not be preserved, however, we can give any new edges introduced in
the gadgets zero additive weight. This can be achieved by simply not weighing the new edges
by the indeterminate x in the graph modification step. Finally, observe that two paths in a
graph with maximum degree three are vertex disjoint iff they are edge disjoint. J

I Remark. Since counts are not preserved in the gadget reduction, we do not have an
NC-bound for counting k-EDPP’s.

7 Conclusion and Open Ends

We have reduced some planar versions of the shortest k-DPP to computing determinants. This
technique has the advantage of being simple and parallelisable while remaining sequentially
competitive. Is it possible to solve the Two-Face case with an arbitrary distribution of the
demand edges while obtaining similar complexity bounds? The more general question of
extending our result to the case when the terminals are on some fixed f many faces also
remains open. For the One-Face case, can we make the dependence on k from exponential
to polynomial or even quasipolynomial? Also, what about extending our result to planar
graphs or even K3,3-free or K5 free graphs or to graphs on surfaces. Can one de-randomize
our algorithm to get deterministic NC bound for the construction? It will be interesting if
one can show lower bounds or hardness results for these problems.
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A Appendix

A.1 Polynomial Interpolation
I Fact 28 (Folklore [6, 33]). Polynomial interpolation i.e. obtaining the coefficients of a
univariate polynomial given its value at sufficiently many (i.e. degree plus one) points is in
TC0 ⊆ NC1. It is also in O(n logn) time (where n is the degree of the polynomial) via Fast
Fourier Transform.

A.2 Weighted Graphs
I Remark. Our algorithms also work for weighted graphs where each edge e is assigned a
weight w(e) which is polynomially bounded in n. This can be done by putting odd (additive)
weights w′(e) = (|E|+ 1)w(e) + 1 on the edges i.e. replacing the entry corresponding to e
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in the adjacency matrix by xw′(e) instead of just x. Notice that the length of a collection
of edges has the same parity as the sum of its weights. So the calculation in Lemma 6 go
through with small changes. This implies that we do not have to convert a weighted graph
into unweighted one in order to run the counting algorithms and we get the sum of the
weights of edges instead of counts as a result.

A.3 Proof of Lemma 20
Proof. Recall, the surface on which C1, C2 are drawn is given by

σ = {(r, θ) : 1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π}

We quote from [24]. If P is a path drawn on σ with one end in C1 and the other in C2, let
f : [0, 1]→ σ be a continuous injection with image P and with f(0) ∈ C1, f(1) ∈ C2; then
we define θ(P ) = θ(f). It is easy to see that this definition is independent of the choice of f .
If P1, P2 are both paths drawn on σ from some s ∈ C1, to some t ∈ C2, then θ(P1)− θ(P2) is
an integer, and is zero if and only if P1 is homotopic to P2. Let k > 0 be some fixed integer,
and let

Mi = {(i, 2j
k
π) : 1 ≤ j ≤ k}(i = 1, 2).

If L is a linkage then clearly θ(P ) is constant for P ∈ L, and we denote this common value
by θ(L). Intuitively, this is because if any two simple paths wind around a face a different
number of times then they both must intersect. J

A.4 Computing the univariate polynomial in the Two-Face case
In this section we show that we can extract the desired coefficients of the bivariate determinant
polynomial (and thus the count) in GapL.

We firstly describe a procedure using which we can get rid of all the terms whose exponent
in y is not equivalent OM modulo k. For simplicity, let OM = 0. We first compute the
determinant which is a bivariate polynomial in this case. Since we are looking for exponents
of y to be modulo k, we evaluate this polynomial in y at all the kth roots of unity. Upon
taking their sum, all the monomials whose exponents are not equal to 0 (mod k) cancel out.
We can divide the resulting polynomial by k to preserve the coefficients. If OM 6= 0, we can
simply multiply the determinants by y−OM while performing the procedure described above.
Note than in order to do this, we must shift to a model of computation which allows us to
approximately evaluate polynomials at imaginary points. Since our determinant polynomial
now does not have terms corresponding to unwanted cycle covers, we can evaluate it at n
points and then interpolate like in the One-Face Case (Fact 28). This gives us the same
complexity as in the One-face case, with an additional blow-up of k and can also be done in
GapL modifying the algorithm in [21].

Another way of seeing that the computation is in GapLis as follows. The determinant of
an integer matrix is complete for the class GapL [11, 32, 35] and Mahajan-Vinay [21] give a
particularly elegant proof of this result by writing the determinant of an n× n matrix as
the difference of two entries of a product of n+ 1 matrices of size 2n2 × 2n2. By a simple
modification of their proof we can obtain each coefficient of the determinant - which is a
univariate polynomial (in fact for polynomials with constantly many variables) - in GapL.
One way to do so is to evaluate the polynomial at several points and then interpolate.

Alternatively, we can also modify the division-free algorithm for determinant computation
described in [21] as follows. We briefly review the algorithm described by Mahajan and Vinay
[21] to compute the determinant. Instead of writing down the determinant as a sum of cycle
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covers, they write it as a sum of clow sequences. A clow sequence which generalises from a
cycle cover allows walks that may visit vertices many times as opposed to cycles where each
vertex is visited exactly once (for more details see [21]). Even though the determinant is now
written as a sum over more terms, they show an involution where any clow sequence which
is not a cycle cover cancels out with a unique “mate” clow sequence which occurs with the
opposite sign. In order to implement this determinant computation as an algorithm, each
clow which can be realised as a closed walk in the graph is computed in a non-deterministic
manner.

Our only modification to the algorithm is as follows: in each non-deterministic path, we
maintain a O(log k)-bit counter which counts the number of times edges from Paxis have
been used in the clow sequence so far modulo k. In other words, every time the counts
exceeds k, we shift the counter to 0. At the end of the computation, the number in this
counter is exactly the exponent of y modulo k. It is easy to see that clow sequences which
are not cycle covers, still cancel out because, in a clow sequence and its mate the set of
directed edges traversed is the same. Consequently, at the end of the computation of each
clow sequence, a clow and its made get the same exponent in y modulo k. This can be done
in GapL as described in [21].

B Disjoint Paths on One-face: The parallel case

In this section, we consider directed planar graphs where all the terminal vertices lie on a
single face in the parallel order. Here we exhibit a weight preserving bijection between the
set of k-disjoint paths in the given graph and the set of cycle covers with exactly k cycles in
a modified graph G′. This enables us to count all the shortest k-DPP solutions. Unlike the
general case, here the bijection works even when the input graph is directed and we are also
able to give efficient sequential and parallel algorithms when k is part of the input. We first
modify the given graph as follows:

Notation and Modification. Let G = (V,E) be the given directed planar graph with n

vertices and m edges. Let s1, . . . , sk and tk, . . . , t1 be the source and sink vertices respectively,
all occurring on a face F in the order specified above. We apply the modification step described
in Section 3. Let the modified graph be G′ with n′ vertices and m′ edges where n′ = n+ k

and m′ = m+ 2k. G′ remains planar. Let A′ be the adjacency matrix of G′.
Recall that a cycle cover is a collection of directed vertex-disjoint cycles covering every

vertex in the graph. A k-cycle cover is a cycle cover containing exactly k non-trivial cycles
(i.e. cycles that are not self-loops). We show the following bijection:

I Lemma 29 (Parallel Bijection). There is a weight-preserving bijection between shortest
k-disjoint paths and lightest k-cycle covers in the modified graph G′.

Proof. Suppose the graph G contains a set of k disjoint paths. Consider a shortest set of
k-disjoint paths of total length `. There are k disjoint cycles in G′ corresponding to the
shortest k disjoint paths in G, using the new paths from ti to si through ri, inside the face,
for each i ∈ [k]. The n− `− k vertices which are not covered by these k cycles will use the
self loops on them, yielding a k-cycle cover of G′. All these cycle covers have the same weight
`. For the other direction, consider a k-cycle cover in G′. If each non-trivial cycle includes
exactly one pair si, ti of terminals then we are done.

Suppose not, then there is a cycle in the cycle cover which contains si and tj for some
1 ≤ i 6= j ≤ k. We further assume, without loss of generality, that there are no terminals
other than possibly sj , ti between si, tj in the direction of traversal of this cycle, called, say,
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si
sj

ti tj

ri rj

t′i t′j

s′i s′j

t1

s1

tk

sk

r1 rk
Pij

Pji

Figure 6 Parallel Configuration. The bipartite subgraph {s′
i, rj , t′

i} ∪ {s′
j , ri, t′

j} gives a K3,3,.

C. Then C must go through the vertices rj and sj since the only incoming edge incident on
rj starts at tj and the only outgoing edge leads to sj . By the same logic ti and ri are on the
cycle C. Also notice that the vertices ti, ri, si must occur consecutively in that order and
so must tj , rj , sj . Let the C be ti, ri, si, Pij , tj , rj , sj , Pji, ti where Pij , Pji are paths. Let the
face F be si, Fij , sj , Fj , tj , Fji, ti, Fi, si where Fij , Fji, Fi, Fj are paths made of vertices and
edges from F . Since C is simple Pji cannot intersect Pij .

Thus the region inside F bounded by ti, ri, si, Fij , sj , rj , tj , Fji, ti does not contain any
vertex or edge from C. Thus we can subdivide (ti, ri), (ri, si), (tj , rj), (rj , sj) to introduce
vertices t′i, s′i, t′j , s′j respectively and also the edges (t′i, t′j), (ri, rj), (s′i, s′j) without affecting
the planarity of C ∪ F . But now observe that the complete bipartite graph with {s′i, rj , t′i}
and {s′j , ri, t′j} as the two sets of branch vertices forms a minor of C ∪ F augmented with
the above vertices and edges. This contradicts the planarity of G′.

As the newly added edges (including the self loops) have weight 1, the bijection is also
weight preserving. J

I Remark. We also get an alternative shorter proof of the Parallel Bijection Lemma 29 from
Lemma 12 in Section 4 by observing that the parallel pairing is the unique pairing with
maximum length thus has no compatible pairing other than itself.
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