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Abstract
Nisan and Szegedy [14] conjectured that block sensitivity is at most polynomial in sensitivity
for any Boolean function. There is a huge gap between the best known upper bound on block
sensitivity in terms of sensitivity – which is exponential, and the best known separating examples
– which give only a quadratic separation between block sensitivity and sensitivity.

In this paper we give various new constructions of families of Boolean functions that exhibit
quadratic separation between sensitivity and block sensitivity. Our constructions have several
novel aspects. For example, we give the first direct constructions of families of Boolean functions
that have both 0-block sensitivity and 1-block sensitivity quadratically larger than sensitivity.
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1 Introduction

The Sensitivity Conjecture posed by Nisan and Szegedy [14] is one of the most intriguing,
yet elusive problems in computational complexity theory.

The sensitivity s(f) of a Boolean function f is the maximum over all inputs x of the
number of coordinate positions i such that changing the value of the i-th bit of x changes the
value of the function. The block sensitivity bs(f) of a Boolean function f is the maximum
over all inputs x of the number of disjoint blocks of bits such that changing the value of all
bits of x in any given block changes the value of the function. (See Section 2 for more formal
definitions.) Sensitivity was introduced by Cook, Dwork and Reischuk [8] as a measure to
prove lower bounds on the parallel complexity of Boolean functions in the CREW PRAM
model. Nisan [13] defined the more general block sensitivity measure, and showed that the
CREW PRAM complexity of any Boolean function f is characterized by its block sensitivity
up to constant factors as Θ(log bs(f)). Nisan also showed that several other complexity
measures, including certificate complexity and decision tree depth are polynomially related
to block sensitivity. Nisan and Szegedy [14] showed that the degree of real polynomials
representing a Boolean function f is also polynomially related to its block sensitivity. These
relations extend to approximate representation by real polynomials and to randomized
and quantum decision tree depth. Thus, a number of important complexity measures are
polynomially related to block sensitivity. See [6, 11] for a survey.

However, it remains open to fully understand the relationship between sensitivity and
block sensitivity. Of course for any Boolean function f , s(f) ≤ bs(f). Nisan and Szegedy
[14] conjectured that block sensitivity is at most polynomial in sensitivity for any Boolean
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function f . They even raised the possibility that bs(f) = O(s(f)2). This possibility is
still not ruled out - the best separation so far remains quadratic. The current best upper
bound on block sensitivity in terms of sensitivity by Ambainis et al. [2, 4] is exponential:
bs(f) ≤ s(f)2s(f)−1. (More precisely, bs(f) ≤ max{2s(f)−1(s(f) − 1

3 ), s(f)} [4].) This
improves the earlier upper bounds of Kenyon and Kutin and Simon [12, 16].

The first example of a function with quadratic separation between its sensitivity and block
sensitivity was given by Rubinstein [15] who constructed a function f with bs(f) = 1

2s(f)2.
Other constructions with quadratic separation were given in [19, 7, 10, 5]. The largest
separation so far is achieved by the construction of Ambainis and Sun [5] who gave a function
f with bs(f) = 2

3s(f)2 − 1
3s(f).

Improving the constant 2
3 in the separation would be interesting, since a function f

with bs(f) > cs(f)2 for a constant c > 1 would imply a construction with superquadratic
separation by iterated composition of the function f [3].

In order to better understand the relationship between sensitivity and block sensitivity, the
one-sided versions of the measures 0-sensitivity s0(f), 1-sensitivity s1(f), 0-block sensitivity
bs0(f) and 1-block sensitivity bs1(f) have also been extensively studied. These measures
are obtained by restricting attention to inputs x ∈ f−1(0) for defining 0-sensitivity and
0-block sensitivity and to inputs x ∈ f−1(1) for defining 1-sensitivity and 1-block sensitivity,
respectively. (See Section 2 for formal definitions.) Then s(f) = max{s0(f), s1(f)} and
bs(f) = max{bs0(f), bs1(f)}.

Ambainis and Prusis [3] (improving the constant of a statement in [12]) proved that
bs0(f) ≤ 2

3s0(f)C1(f) where C1(f) denotes the 1-certificate complexity of f . See Section
2 for the definition of certificate complexity. On the other hand, [13] proved that C1(f) ≤
bs1(f)s0(f). The analogous statements also hold for upper bounding bs1 and C0, respectively.
Combining these results implies that in order to obtain much stronger separation between
sensitivity and block sensitivity it is necessary to construct functions f such that both bs0(f)
and bs1(f) are significantly larger than s(f).

Avishay Tal [18] pointed out to us, that one can get such examples by the following trick.
Let g be any function with bs(g) = Ω(s(g)2), then taking f(x, y) = g(x) ∨ ¬g(y) will give
min{bs0(f), bs1(f)} = Ω(s(f)2). Notice however that in this example the function f will not
give an asymptotically larger separation between its block sensitivity and sensitivity than
what was achieved by the function g unless bs1(g) = θ(bs0(g)). Thus, limitations on the
separation that follow from properties of the function g will be inherited by the function f .
By direct constructions, the largest simultaneous separation has been min{bs0(f), bs1(f)} =
Ω(s(f)log2 3) in [1]. On the other hand, all previous direct constructions with quadratic
separation between bs(f) and s(f) had min{bs0(f), bs1(f)} = O(s(f)).

1.1 Our Results
In this paper we give various new constructions of families of Boolean functions that exhibit
quadratic separation between sensitivity and block sensitivity. Our constructions have several
novel aspects.

We provide the first direct constructions of families of Boolean functions f with
min{bs0(f), bs1(f)} = Ω(s(f)2). Our simultaneous quadratic separation of both 0-block
sensitivity and 1-block sensitivity from sensitivity is based on a more refined study of the
effects of function composition on these measures. We also present sufficient conditions for
achieving such simultaneous separations and give several examples of functions satisfying
these conditions.

All previous constructions - with the exception of Chakraborty’s functions [7] - were of
the form f = ORm ◦ gk that is f : {0, 1}mk → {0, 1} was obtained by composing the m-bit
OR function with an appropriately chosen inner function g on k bits. Chakraborty [7] did
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not use function composition at all. As for the choice of the inner function, [10] defined the
inner function g based on codewords of a Hamming code. All other constructions (including
Chakraborty [7]) used the presence of certain patterns in the input x to set the function
value g(x) to 1.

We observe that other function compositions instead of OR-composition can also yield
quadratic separations. We define new functions, that could be used as inner or outer
functions, based on algebraic criterions related to multiplication in finite fields or polynomial
multiplication.

We also give new examples of functions to match the current best constant of 2
3 by

Ambainis and Sun [5] among the known quadratic separations. We give a general condition
for achieving quadratic separations with the 2

3 constant for functions defined by families of
certificates. The function by Ambainis and Sun [5] fits into this framework.

2 Preliminaries

Let f : {0, 1}n → {0, 1} be a Boolean function. For x ∈ {0, 1}n and i ∈ [n] we denote by xi

the input obtained by flipping the i-th bit of x. More generally, for S ⊆ [n] we denote by xS

the input obtained by flipping the bits of x in all coordinates in the subset S.

I Definition 1 (Sensitivity). The sensitivity s(f, x) of a Boolean function f on input x is
the number of coordinates i ∈ [n] such that f(x) 6= f(xi). The 0-sensitivity and 1-sensitivity
of f are defined as s0(f) = max{s(f, x) : f(x) = 0} and s1(f) = max{s(f, x) : f(x) = 1},
respectively. The sensitivity of f is defined as s(f) = max{s(f, x) : x ∈ {0, 1}n} =
max{s0(f), s1(f)}.

I Definition 2 (Block Sensitivity). The block sensitivity bs(f, x) of a Boolean function f on
input x is the maximum number of pairwise disjoint subsets S1, . . . , Sk of [n] such that for
each i ∈ [k] f(x) 6= f(xSi). The 0-block sensitivity and 1-block sensitivity of f are defined as
bs0(f) = max{bs(f, x) : f(x) = 0} and bs1(f) = max{bs(f, x) : f(x) = 1}, respectively. The
block sensitivity of f is defined as bs(f) = max{bs(f, x) : x ∈ {0, 1}n} = max{bs0(f), bs1(f)}.

It is convenient to refer to coordinates i ∈ [n] such that f(x) 6= f(xi) as sensitive bits for
f on x. Similarly, a subset S ⊆ [n] is called a sensitive block for f on x if f(x) 6= f(xS).

I Definition 3 (Partial assignment). Given an integer n > 0, a partial assignment α is a
function α : [n]→ {0, 1, ?}. A partial assignment α corresponds naturally to a setting of n
variables (x1, x2, . . . xn) to {0, 1, ?} where xi is set to α(i). The variables set to ? are called
unassigned or free, and we say that the variables set to 0 or 1 are fixed.
We say that x ∈ {0, 1}n agrees with α if xi = α(i) for all i such that α(i) 6= ?.
The size of a partial assignment α is defined as the number of fixed variables of α.

I Definition 4 (Certificate). For a function f : {0, 1}n → {0, 1} and input x ∈ {0, 1}n a
partial assignment α is a certificate of f on x if x agrees with α and any input y agreeing
with α satisfies f(y) = f(x).
The size of a certificate α is defined as the size of the partial assignment α.

I Definition 5 (Certificate Complexity). The certificate complexity C(f, x) of a Boolean
function f on input x is the size of the smallest certificate of f on x. The 0-certificate
complexity and 1-certificate complexity of f are defined as C0(f) = max{C(f, x) : f(x) = 0}
and C1(f) = max{C(f, x) : f(x) = 1}, respectively. The certificate complexity of f is defined
as C(f) = max{C(f, x) : x ∈ {0, 1}n} = max{C0(f), C1(f)}.

FSTTCS 2018
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I Definition 6 (Function defined by a set of partial assignments). Let C = {c1, c2, . . . ct} be a
set of partial assignments c1, c2, . . . ct : [n]→ {0, 1, ?}.
Then C naturally defines a function gC : {0, 1}n → {0, 1} as:
gC(x) = 1 iff x agrees with some partial assignment ci ∈ C.

I Definition 7 (Distances). The distance between two inputs x, y ∈ {0, 1}n is defined as the
number of bits in which they differ.
The distance between an input x ∈ {0, 1}n and a partial assignment α : [n] → {0, 1, ?} is
defined as the minimum distance between x and any input y agreeing with α.
The distance between two partial assignments α, β : [n]→ {0, 1, ?} is defined as the minimum
distance between any input x agreeing with α and any input y agreeing with β.

I Definition 8 (Function Composition). For Boolean functions f : {0, 1}m → {0, 1} and
g : {0, 1}k → {0, 1} the function f ◦ g : {0, 1}mk → {0, 1} is defined on z ∈ {0, 1}mk as

f ◦ g(z) = f(g(z1, . . . zk), g(zk+1, . . . , z2k), . . . , g(z(m−1)k+1, . . . , zmk))

Properties of function composition were formally studied with respect to sensitivity and
block sensitivity (as well as other related measures) in [17, 9]. We note the following two
properties, relevant for us.

I Lemma 9. [17, 9] For any Boolean functions f and g we have s(f ◦ g) ≤ s(f)s(g).

I Definition 10. [17] For z ∈ {0, 1} we say that f : {0, 1}n → {0, 1} is in z-good form, if
(1) f(zn) = z and (2) bs(f) = bs(f, zn)

I Lemma 11. [17] If both f and g are in 0-good form, or if both f and g are in 1-good form,
then bs(f ◦ g) ≥ bs(f)bs(g).

2.1 Previous Constructions with Quadratic Separation
All previous constructions that achieve quadratic separation between sensitivity and block
sensitivity - with the exception of Chakraborty’s functions [7] - were based on the following
“OR-composition Lemma” first used by Rubinstein [15].

I Lemma 12. [15] For any function g : {0, 1}m → {0, 1}, we have:
s0(ORn ◦ g) = ns0(g)
bs0(ORn ◦ g) = nbs0(g)
s1(ORn ◦ g) = s1(g)
bs1(ORn ◦ g) = bs1(g)

The quadratic separations of [15, 19, 5, 10] are based on using this lemma and considering
functions of the form f = ORn ◦ g for appropriately chosen inner functions g.

Next we briefly describe the previous constructions of functions with quadratic separation.

1. Rubinstein’s function [15] Define g : {0, 1}2m → {0, 1} as:
g(x) = 1 iff x2j −1 = x2j = 1 for some j ∈ [m] and xi = 0 for i 6= 2j − 1, 2j.
This gives s0(g) = 1, s1(g) = bs1(g) = 2m, bs0(g) = m.
Let f = OR2m ◦ g. Then s0(f) = s1(f) = bs1(f) = 2m, bs0(f) = 2m2, giving bs(f) =
1
2 s(f)2.

2. Virza’s function [19] Define g : {0, 1}2m+1 → {0, 1} as:
g(x) = 1 iff one of the following holds:
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1) ∃j ∈ [m] such that (x2j−1 = x2j = 1) and (xi = 0 ∀ i 6= 2j − 1, 2j).
2) (x2m+1 = 1) and (xi = 0 ∀ i 6= 2m+ 1).

This gives s0(g) = 1, s1(g) = bs1(g) = 2m+ 1, bs0(g) = m+ 1.
Let f = OR2m+1 ◦g. Then s0(f) = s1(f) = bs1(f) = 2m+1, bs0(f) = (m+1)(2m+1).
Therefore, bs(f) = 1

2s(f)2 + 1
2s(f).

3. Ambainis and Sun’s function [5] Define g : {0, 1}2(2m+1) → {0, 1} as:
g(x) = 1 iff ∃j ∈ [2m+ 1] such that:
1) x2j−1 = x2j = 1, and
2) For all i ∈ [m], x2j+2i = x2j−2i = x2j−2i−1 = 0.
Here, the index of x is taken modulo (2(2m+ 1)) i.e. we index x as if it were laid around
a circle.
This gives s0(g) = 1, s1(g) = bs1(g) = 3m+ 2, bs0(g) = 2m+ 1.
Let f = OR3m+2 ◦ g. Then s0(f) = s1(f) = bs1(f) = 3m+ 2, bs0(f) = (3m+ 2)(2m+ 1).
Therefore, bs(f) = 2

3s(f)2 − 1
3s(f).

4. Function based on Hamming Code [10]:
Consider the hamming code on m = 2r − 1 bits.
Define g : {0, 1}m → {0, 1} as:
g(x) = 1 iff x is a codeword of the hamming code on m bits.
This gives s0(g) = 1, s1(g) = bs1(g) = m, bs0(g) = m+1

2 .
Let f = ORm ◦ g. Then, s0(f) = s1(f) = bs1(f) = m, bs0(f) = m(m+1)

2 . Thus
bs(f) = 1

2s(f)2 + 1
2s(f).

Finally, we describe a construction by Chakraborty that does not involve function
composition. Another similar construction appeared in [7].

5. Chakraborty’s function [7] For integers k,m such that 2 < k < m and 2k | m, the function
gk : {0, 1}m → {0, 1} is defined as follows.
For x = (x0, . . . xm−1), gk(x) = 1 iff ∃ i ∈ {0, . . .m−1} such that xi = xi+1( mod m) = 1
and xj = 0 for all j ∈ {i+ 2( mod m), . . . , i+ k − 1( mod m)}.
Then, s0(gk) = 2m

k , s1(gk) = k, bs0(gk) = m
2 and bs1(gk) = k.

Therefore, setting k =
√

2m gives s(g√2m) =
√

2m and bs(g√2m) = m
2 . So we have

bs(g√2m) = 1
4s(g√2m)2.

3 New Building Blocks for Quadratic Separation

Here we define several new functions that we will use as inner or outer functions in various
function compositions to obtain quadratic separations.

3.1 A General Framework Based on Certificates
For an odd integer m, consider a set of partial assignments C = {c1, c2, . . . cm} on a set of
variables X with |X | = 2m. We say that the set of partial assignments C is good if it satisfies
the following 2 properties:
(a) The distance between any two partial assignments ci, cj ∈ C is at least 3.
(b) Each partial assignment ci has exactly 2 bits set to 1, 3

2 (m − 1) bits set to 0 and the
remaining bits free.

Consider the function gC defined by a good set of partial assignments. We prove the following
lemma for such a function gC :

FSTTCS 2018
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I Lemma 13. For an odd integer m, and any function gC : {0, 1}2m → {0, 1} defined by a
good set of partial assignments C, we have:
(1) s0(gC) = 1
(2) s1(gC) = 3m+1

2
(3) bs0(gC) ≥ m

Proof. We first note that the set of partial assignments C also forms a set of 1-certificates
for gC such that every 1-input agrees with exactly one partial assignment from C.
1. s0(gC) = 1. This follows from property (a) of a good set of partial assignments since: for

any 0-input x, there is at most one certificate ci ∈ C such that x is at a distance 1 from
it.

2. s1(gC) = 3m+1
2 . This follows from property (a): Consider a 1-input x agreeing with

ci. The bits fixed by ci form exactly the set of sensitive bits for f on x, since any two
certificates in C are at a distance of at least 3 from each other.

3. bs0(gC) ≥ m. Follows from properties (a),(b): Consider the input 02m which is a 0-input
(due to property (b)).
Recall that any two certificates ci, cj must be at a distance at least 3 from each other.
But since each certificate only sets exactly 2 bits to 1, this implies that the bits set to 1
by ci must be disjoint from the bits set to 1 by cj , for any ci, cj ∈ C.
Therefore, for the 0-input 02m, the pair of bits set to 1 by a certificate ci gives a
sensitive block for every i ∈ [m]. All these blocks are mutually disjoint and therefore
bs0(gC) ≥ m. J

I Theorem 14. Consider any function gC : {0, 1}2m → {0, 1} defined by a good set of partial
assignments C, for an odd integer m. Then the function f = OR 3m+1

2
◦ gC has:

bs(f) = 2
3s(f)2 − 1

3s(f).

We note that the inner function defined by Ambainis and Sun [5] can be shown to fit
into this framework.

We will use Lemma 13 to analyze the functions defined in subsection 3.3.

3.2 Using Finite Field Multiplication
In this subsection, we give constructions of families of functions based on Finite Field
Multiplication, which achieve quadratic separation between block sensitivity and sensitivity.

Fix an irreducible polynomial p of degree m in F2[z] and consider the representation of
the elements of F2m as univariate polynomials modulo p.
For a ∈ {0, 1}m, we interpret a = (a0, . . . am−1) as an element of F2m under this representa-
tion.

I Definition 15 (Function based on Finite Field Multiplication). The function gF F : {0, 1}m ×
{0, 1}m → {0, 1} is defined as follows:
gF F (a, b) = 1 iff a · b = c, where c ∈ F2m is the element represented as (0, . . . , 0, 1) and
multiplication is over the field F2m .

We prove the following lemma listing the values of sensitivity and block sensitivity for the
function gF F :
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I Lemma 16. For the function gF F : {0, 1}m × {0, 1}m → {0, 1}, we have:
s0(gF F ) ≤ 2
bs0(gF F ) ≥ m
s1(gF F ) = 2m
bs1(gF F ) = 2m

Proof.
s0(gF F ) ≤ 2:
For any non-zero a ∈ F2m , there exists a unique b ∈ F2m such that a · b = (0, . . . , 0, 1)
i.e. gF F (a, b) = 1. Therefore, for any input (a, b) ∈ g−1

F F (0), at most 1 bit j of a may be
flipped to get aj · b = (0, 0 . . . 1) i.e. a has at most 1 sensitive bit. Similarly, at most 1 bit
of b may be sensitive.
s1(gF F ) = 2m
Consider any input (a, b) ∈ g−1

F F (1). Flipping any bit of a or b changes the value of the
product a · b. Therefore every bit of (a, b) is sensitive, giving s1(gF F ) = 2m.
bs0(gF F ) ≥ m
Consider the 0-input a = (0, . . . 0), b = (0, . . . 0).
For each j ∈ {0, . . .m− 1}, we can flip the pair of bits (aj , bm−1−j), so that their product
becomes c = (0, . . . , 0, 1). This gives m disjoint sensitive blocks.
bs1(gF F ) = 2m
This follows since: 2m ≥ bs1(gF F ) ≥ s1(gF F ) = 2m J

The following theorem follows from Lemma 16 and the OR-composition Lemma.

I Theorem 17. The function f = ORm ◦ gF F has:

bs(f) ≥ 1
4s(f)2

We now modify the function gF F to improve the constant of separation from 1
4 to 1

2 .

I Definition 18. The function g∗F F : {0, 1}m × {0, 1}m → {0, 1} is defined as follows:
g∗F F (a, b) = 1 iff the following two conditions hold:
1. a · b = c, where c ∈ F2m is the element represented as (0, . . . , 0, 1) and multiplication is

over the field F2m

2. a0 ⊕ a1 . . .⊕ am−1 = 1

I Lemma 19. For the function g∗F F : {0, 1}m × {0, 1}m → {0, 1}, we have:
s0(g∗F F ) = 1
bs0(g∗F F ) ≥ m
s1(g∗F F ) = 2m
bs1(g∗F F ) = 2m

Proof. Note that Conditions 1. and 2. of Definition 18 both have to hold for 1 inputs, and
at least one is violated for 0 inputs.

s0(g∗F F ) = 1
For a 0-input (a, b) which satisfies condition 1., flipping any bit of a or b changes the
product a · b and condition 1. is no longer satisfied. Therefore, such a 0-input has no
sensitive bit.
For any 0-input (a, b) which leaves condition 1. unsatisfied, both a and b can have at
most one sensitive bit each as observed in the proof of Lemma 16.
We further note that for any given 0-input (a, b), only one of a or b can have a sensitive
bit because condition 2 has to hold for 1-inputs. Therefore, s0(g∗F F ) = 1.

FSTTCS 2018
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s1(g∗F F ) = 2m
Consider any 1-input (a, b). Flipping any bit of a or b changes the value of the product
a · b and condition 1. is no longer satisfied. Therefore every bit of (a, b) is sensitive, giving
s1(g∗F F ) = 2m.
bs0(g∗F F ) ≥ m
Consider the 0-input a = (0, . . . 0), b = (0, . . . 0).
For each j ∈ {0, . . .m− 1}, we can flip the pair of bits (aj , bm−1−j), so that their product
becomes c = (0, 0 . . . 1) to satisfy the first condition. Since aj has exactly one 1, the
second condition is satisfied as well, and g∗F F (aj , bm−1−j) = 1. This gives m disjoint
sensitive blocks and therefore, bs0(g∗F F ) ≥ m.
bs1(g∗F F ) = 2m
This follows since: 2m ≥ bs1(g∗F F ) ≥ s1(g∗F F ) = 2m. J

Using Lemma 19 and the OR-composition Lemma gives the following theorem.

I Theorem 20. The function f = OR2m ◦ g∗F F has:

bs(f) ≥ 1
2s(f)2.

I Remark. We could replace c = (0, . . . , 0, 1) in the above definitions by other field elements
and still achieve quadratic separations. In fact using any c ∈ F2m , we would get s0 ≤ 2 and
s1 = 2m for the inner function. However, we need to choose c carefully to guarantee that bs0
of the inner function is large enough.

3.3 Using Polynomial Multiplication
We now describe another family of functions similar in essence to the one involving finite
field multiplication, but easier to analyze.

Here we consider polynomials over the Integers. For a ∈ {0, 1}m, we interpret the
bits of a = (a0, . . . am−1) as the coefficients of a univariate polynomial pa that is pa(z) =
a0 + a1z + . . . am−1z

m−1.

I Definition 21 (Function based on Polynomial Multiplication). The function gpoly : {0, 1}m×
{0, 1}m → {0, 1} is defined as follows:
gpoly(a, b) = 1 iff pa(z) · pb(z) has a non-zero coefficient for zm−1 and has coefficient 0 for zj

for all j < m− 1.

It is convenient to use the following equivalent definition.

I Definition 22 (Alternative definition). Consider the set of partial assignments C =
{c0, c1 . . . cm−1} on variables (a, b) where a = (a0, . . . am−1) and b = (b0, . . . bm−1) defined as
below:
For every i ∈ {0, . . .m− 1},

ci(aj) =


1, if j = i

0, if j < i

?, if j > i

ci(bj) =


1, if j = m− 1− i
0, if j < m− 1− i
?, if j > m− 1− i
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Now the function gpoly is the function defined by the set of partial assignments C i.e. gC .

We now analyze this function for its sensitivity and block sensitivity:

I Lemma 23. For gpoly : {0, 1}m × {0, 1}m → {0, 1}, we have:
s0(gpoly) = 2
bs0(gpoly) = m

s1(gpoly) = m+ 1
bs1(gpoly) = m+ 1

Proof.
1. s0(gpoly) = 2:

s0(gpoly) ≤ 2: Let (a, b) be any 0-input of gpoly. Let i ∈ {0, . . .m− 1} be the smallest
index such that ai = 1 (if it exists - let i = m if it does not) and j be the smallest
index such that bj = 1(if it exists - let j = m otherwise). Then, we have two cases:
Case 1: i + j > m − 1. In this case, the only bits which can be flipped to change

the value of gpoly from 0 to 1 are am−1−i (unless i = m) and bm−1−j (unless j = m).
Case 2: i + j < m − 1. Now, the only way to flip a bit and possibly change the

value of gpoly to 1 is by flipping the bits ai or bj .
s0(gpoly) ≥ 2: The following 0-input (a, b) achieves s0(gpoly, (a, b)) = 2:

Let am−1 = 1, ai = 0 ∀i < (m− 1).
Similarly, bm−1 = 1, bi = 0 ∀i < (m− 1).
Notice that (a, b) has 2 sensitive bits: a0 and b0.

2. s1(gpoly) = m + 1:
First, we observe from the alternative definition of gpoly that every 1-input of gpoly agrees
with a certificate ci from the set C. Therefore, C1(gpoly) ≤ (m+ 1).
Therefore, s1(gpoly) ≤ (m+ 1).
Also, note that every two certificates of C are at a distance of at least 2 from each other.
Therefore, for any 1-input (a, b) of gpoly, each of the m + 1 bits where it agrees with
ci ∈ C is sensitive. So s1(gpoly) = m+ 1.

3. bs0(gpoly) = m:
We first prove bs0(gpoly) ≥ m. Consider the 0-input with ai = bi = 0 ∀ i ∈ {0, . . .m− 1}.
We can flip the pair of bits ai, bm−1−i for i ∈ {0, . . .m− 1} so that the function changes
value from 0 to 1. Therefore, bs0(gpoly) ≥ m.
Next we prove bs0(gpoly) ≤ m. Since s0(gpoly) = 2, any 0-input other than the all-0 input
can have only at most 2 blocks of size 1 each and all the other blocks must have size at
least 2. Therefore, bs0(gpoly) ≤ 2 + (m− 2) = m.

4. bs1(gpoly) = m + 1:
As observed before, C1(gpoly) ≤ (m+ 1). Also, s1(gpoly) = m+ 1.
Since s1(gpoly) ≤ bs1(gpoly) ≤ C1(gpoly), we have bs1(gpoly) = m+ 1. J

Lemma 23 and the OR-composition Lemma imply the following theorem.

I Theorem 24. Consider gpoly : {0, 1}m × {0, 1}m → {0, 1} for any odd integer m.
Then the function f = ORm+1

2
◦ gpoly has:

bs(f) = 1
2s(f)2 − 1

2s(f)

We modify the above function to improve the constant of separation from 1
2 to 2

3 .
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I Definition 25. The function g∗poly : {0, 1}m×{0, 1}m → {0, 1}, is defined as: g∗poly(a, b) = 1
iff all the following conditions are met:
1. pa(z) ·pb(z) has a non-zero coefficient for zm−1 and has coefficient 0 for zj for all j < m−1
2. If j is the smallest index such that aj = 1, then

ai = 0 for all i such that i > j and i⊕ j = 1
3. If k is the smallest index such that bk = 1, then

bi = 0 for all i such that i > k and i⊕ k = 0

It is again helpful to consider an equivalent definition based on certificates.

I Definition 26 (Alternative definition). Consider the set of partial assignments C ′ =
{c′0, c′1, . . . c′m−1} on variables (a, b) where a = (a0, . . . am−1) and b = (b0, . . . bm−1) defined
as below:
For every i ∈ {0, . . .m− 1},

c′i(aj) =


1, if j = i

0, if j < i

0, if j > i and i⊕ j = 1
?, if j > i and i⊕ j = 0

c′i(bj) =


1, if j = m− 1− i
0, if j < m− 1− i
0, if j > m− 1− i and (m− 1− i)⊕ j = 0
?, if j > m− 1− i and (m− 1− i)⊕ j = 1

Now the function g∗poly is the function defined by the set of partial assignments C ′ i.e. gC′ .

I Lemma 27. Consider g∗poly : {0, 1}m × {0, 1}m → {0, 1} for any odd integer m. Then
s0(g∗poly) = 1
bs0(g∗poly) ≥ m
s1(g∗poly) = 3m+1

2
bs1(g∗poly) = 3m+1

2

Proof. It is clear from the alternative definition of g∗poly that it is defined by a set of good
assignments.Therefore, we can use Lemma 13 to prove that:

s0(g∗poly) = 1
bs0(g∗poly) ≥ m
s1(g∗poly) = 3m+1

2
Furthermore, from the alternative definition of g∗poly, every 1-input has a certificate of size at
most 3m+1

2 .
Therefore, bs1(g∗poly) ≤ C1(g∗poly) ≤ 3m+1

2 .
Also, bs1(g∗poly) ≥ s1(g∗poly) = 3m+1

2 .
Therefore bs1(g∗poly) = 3m+1

2 . J

The following theorem follows from Lemma 27 and the OR-composition Lemma.

I Theorem 28. Consider g∗poly : {0, 1}m × {0, 1}m → {0, 1} for any odd integer m.
Then the function f = OR 3m+1

2
◦ g∗poly has:

bs(f) ≥ 2
3s(f)2 − 1

3s(f).

Note that this bound matches the current best quadratic separation of [5].
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4 Additional Properties of Function Composition

As we noted in Section 2, properties of function composition have been formally studied in
[17, 9] in the context of separating sensitivity and block sensitivity. Here we take a closer
look at the effect of function composition on the measures 0-sensitivity, 1-sensitivity, 0-block
sensitivity and 1-block sensitivity. These properties provide the tools we need to obtain
quadratic separation of both 0-block sensitivity and 1-block sensitivity from sensitivity.

First we define measures to quantify the number of sensitive bits for f on x which are
equal to 0 and those that are equal to 1 in x.

I Definition 29. For a function f : {0, 1}n → {0, 1} and input x ∈ {0, 1}n, we define:
σ1(f, x) = |{i|xi = 1 AND f(x) 6= f(xi)}|,
σ0(f, x) = |{i|xi = 0 AND f(x) 6= f(xi)}|.

We will use the following notation. We index the bits of the input y ∈ {0, 1}mn to f ◦ g
as y = (y11, y12, . . . y1m, y21, . . . y2m, . . . yn1, . . . ynm).
We denote by yi the i-th group of m bits of y, that is yi = (yi1, yi2, . . . yim).

I Lemma 30. For any functions f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1}, we have:

s0(f ◦ g) = max
x∈f−1(0)

{σ0(f, x)s0(g) + σ1(f, x)s1(g)},

s1(f ◦ g) = max
x∈f−1(1)

{σ0(f, x)s0(g) + σ1(f, x)s1(g)}.

Proof. We first prove the first equation. The second equation has an analogous proof.
LHS ≥ RHS. Consider the input a ∈ f−1(0) for which (σ0(f, a)s0(g) + σ1(f, a)s1(g)) is

maximized. Note that s0(g), s1(g) don’t change for different choices of a ∈ f−1(0). Now,
consider an input y ∈ {0, 1}mn such that, a = (g(y1), . . . g(yn)) and for each i ∈ [n], if
ai = g(yi) = 0, then s(g, yi) = s0(g) and if ai = g(yi) = 1, then s(g, yi) = s1(g). So if
ai = 0, we choose as yi a 0-input of g which achieves the 0-sensitivity of g, and similarly,
if ai = 1, we choose as yi a 1-input of g which achieves the 1-sensitivity of g.
Since a ∈ f−1(0), y must be a 0-input of f ◦ g. Therefore, we have

s0(f ◦ g) ≥ s(f ◦ g, y) ≥ σ0(f, a)s0(g) + σ1(f, a)s1(g).

LHS ≤ RHS. Consider the input y ∈ {0, 1}mn which achieves the 0-sensitivity of f ◦ g i.e.
s0(f ◦ g) = s(f ◦ g, y). Let g(y1) = x1, g(y2) = x2 and so on, and let x = (x1, x2 . . . xn).
Consider the expression (σ0(f, x)s0(g) + σ1(f, x)s1(g)). Now, if a bit yij of y is sensitive
for f ◦ g, then the bit xi = g(yi) must be a sensitive bit for f on x.
Now, consider the set X0 of indices i ∈ [n] constructed the following way: i is included in
X0 iff xi = g(yi) = 0 and there is a bit yij sensitive for f ◦ g on y.
Similarly, we define the set X1 of indices i ∈ [n] constructed the following way: i is
included in X1 iff xi = g(yi) = 1 and there is a bit yij sensitive for f ◦ g on y.
Note that for every i ∈ X0, the bit xi is a 0-bit of x and f is sensitive to the i-th bit on x.
So |X0| ≤ σ0(f, x).
Similarly |X1| ≤ σ1(f, x).
Now,

s(f ◦ g, y) =
∑
i∈X0

s(g, yi) +
∑

j∈X1

s(g, yj)

≤
∑
i∈X0

s0(g) +
∑

j∈X1

s1(g)

≤ σ0(f, x)s0(g) + σ1(f, x)s1(g).
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Therefore,

s0(f ◦ g) = s(f ◦ g, y) ≤ σ0(f, x)s0(g) + σ1(f, x)s1(g) ≤ RHS. J

To simplify the equations of Lemma 30 (at the cost of being less precise), we define
σ0

0(f) := max
x∈f−1(0)

σ0(f, x)

σ1
0(f) := max

x∈f−1(1)
σ0(f, x)

σ0
1(f) := max

x∈f−1(0)
σ1(f, x)

σ1
1(f) := max

x∈f−1(1)
σ1(f, x)

Finally, we define:

σ0(f) := max{σ0
0(f), σ1

0(f)}

σ1(f) := max{σ0
1(f), σ1

1(f)}

We can now use Lemma 30 to get the following bounds:

I Corollary 31. For any functions f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1}

s0(f ◦ g) ≤ σ0
0(f)s0(g) + σ0

1(f)s1(g)

s1(f ◦ g) ≤ σ1
0(f)s0(g) + σ1

1(f)s1(g)

Note that the equalities in Lemma 30 change to inequalities in Corollary 31, since the
max of σ0(f, x) and σ1(f, x) may be achieved on different inputs among x ∈ f−1(0) (or
among x ∈ f−1(1), respectively).
We now state some simple observations for these measures.

I Lemma 32. For any function f : {0, 1}n → {0, 1}, and any input x, we have:
1. s(f, x) = σ0(f, x) + σ1(f, x)
2. σ0

0(f) ≤ s0(f)
3. σ0

1(f) ≤ s0(f)
4. σ0

0(f) + σ0
1(f) ≥ s0(f)

5. σ1
0(f) ≤ s1(f)

6. σ1
1(f) ≤ s1(f)

7. σ1
0(f) + σ1

1(f) ≥ s1(f)
The proof of Lemma 32 is straightforward from the definitions.

Now we present an observation about these measures for monotone functions.

I Lemma 33. For any monotone function f : {0, 1}n → {0, 1}, we have:
σ1

0(f) = 0
σ0

1(f) = 0

The proof follows from the definition of monotone functions.
We now consider the effects of function composition on 0- block sensitivity and 1-block

sensitivity.

I Lemma 34. For any functions f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1}, we have:

bs0(f ◦ g) ≥ bs0(f) ·min{bs0(g), bs1(g)},

bs1(f ◦ g) ≥ bs1(f) ·min{bs0(g), bs1(g)}.
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Proof. Consider x ∈ {0, 1}n such that f(x) = 0 and bs0(f) = bs(f, x).
Now, consider input y ∈ {0, 1}mn such that, x = (g(y1), . . . g(yn)) and for each i ∈ [n], if
xi = g(yi) = 0, then bs(g, yi) = bs0(g) and if xi = g(yi) = 1, then bs(g, yi) = bs1(g). So
if xi = 0, we choose as yi a 0-input of g on which its 0-block sensitivity is achieved, and
similarly, if xi = 1, we choose as yi a 1-input of g on which its 1-block sensitivity is achieved.
Now, we claim that bs0(f ◦ g, y) ≥ bs0(f) min{bs0(g), bs1(g)}. To see this, let ρ1, ρ2, . . . , ρk

be the disjoint sensitive blocks for f on x where k = bs(f, x). For each of these sensitive
blocks, there are at least min{bs0(g), bs1(g)} disjoint blocks of y such that flipping any of
them changes the value of f ◦ g. This gives at least bs0(f) · min{bs0(g), bs1(g)} disjoint
sensitive blocks for f ◦ g on the input y, and the first equation follows.
The second equation can be proved in an analogous way. J

We get a stronger form of Lemma 34 if f satisfies some additional conditions.

I Lemma 35. For any functions f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1}
if f satisfies (1) f(0n) = 0, (2) bs0(f) = bs(f, 0n), then bs0(f ◦ g) ≥ bs0(f) · bs0(g)
and if f satisfies (1) f(1n) = 1, (2) bs1(f) = bs(f, 1n), then bs1(f ◦ g) ≥ bs1(f) · bs1(g)

Proof. Consider input y ∈ {0, 1}mn such that, 0n = (g(y1), . . . g(yn)) and bs(g, yi) = bs0(g)
for each i ∈ [n].

Now, we claim that bs(f ◦g, y) ≥ bs0(f)bs0(g). To see this, let ρ1, ρ2, . . . , ρk be the disjoint
sensitive blocks for f on input 0n, where k = bs(f, 0n). For each of these k = bs(f, 0n)
sensitive blocks, there are bs0(g) disjoint blocks of y that we can flip and change the value of
f ◦ g.
This gives bs0(f) · bs0(g) disjoint sensitive blocks for f ◦ g on the input y.
The second inequality can be proved analogously. J

Comparing the statement of Lemma 35 with Lemma 11 of Tal [17] we note that in the
context of 0-block sensitivity and 1-block sensitivity it is enough to require an additional
condition for the outer function. On the other hand the condition on the inner function in
Lemma 11 of Tal [17] is necessary as illustrated by considering f = ORn and g = ANDn.

Note that the conditions we require are similar to, but slightly different from being in
z-good form: It follows from the definition, that if f is in z-good form, then bs(f) = bsz(f).
Our conditions do not require that bs(f) = bsz(f) for a specific z.

5 Quadratic Separation of both bs0(f) and bs1(f) from s(f)

We obtain constructions of functions with quadratic separation of both 0-block sensitivity and
1-block sensitivity from sensitivity by considering various compositions of our new building
blocks as well as some of the inner functions used in previous quadratic separations.

I Theorem 36. Consider gpoly : {0, 1}m × {0, 1}m → {0, 1}.
Let f : {0, 1}4m2 → {0, 1} be defined as f = gpoly ◦ gpoly.
Then, we have:

s0(f) = 2(m− 1)
bs0(f) ≥ m2

s1(f) = 4(m− 1)
bs1(f) ≥ m(m+ 1)

Therefore, we have:

min{bs0(f), bs1(f)} = Ω(s(f)2).
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Proof. In this proof, we refer to gpoly by g, and we use the notation bsmin(f) = min{bs0(f),
bs1(f)}.

We first prove the following claims about σ-values for g:

I Claim 37. For any input x ∈ g−1(0) exactly one of the following must be true:
σ0(g, x) = s(g, x) and σ1(g, x) = 0
σ1(g, x) = s(g, x) and σ0(g, x) = 0

Proof of Claim. For any 0-input x = (a, b) of g, (1) of Lemma 32 states that:
σ0(g, x) + σ1(g, x) = s(g, x).
As in the definition of gpoly, consider the polynomials pa(z), pb(z). If the lowest degree
monomial of pa(z)pb(z) with a non-zero coefficient is zt then, we have 2 cases:
Case 1: t < m− 1. In this case, no 0-bit of a or b can be sensitive. Therefore, σ0(g, x) = 0
and σ1(g, x) = s(g, x).
Case 2: t > m− 1. In this case, no 1-bit of a or b can be sensitive. Therefore, σ1(g, x) = 0
and σ0(g, x) = s(g, x). J

I Claim 38. For an input x ∈ g−1(1),
σ0(g, x) = m− 1
σ1(g, x) = 2

Proof of Claim. Recall the alternative definition based on certificates. Any 1-input x of g
belongs to a unique subcube given by a certificate ci ∈ C. Since the subcubes corresponding
to different certificates in C are disjoint and at a distance of at least 2 from each other, every
bit of x that is fixed by ci is sensitive.
Since each certificate fixes exactly 2 bits to 1 and (m−1) bits to 0, we have σ0(g, x) = (m−1)
and σ1(g, x) = 2. J

We can now use Lemma 30 to compute the sensitivity of f :
s0(f) = 2s1(g) = 2(m− 1).
s1(f) = (m− 1) · 2 + 2 · (m− 1) = 4(m− 1)
Since g(02m) = 0 and bs0(g) = bs(g, 02m), we can use Lemma 35 to get:
bs0(f) ≥ bs0(g)2 = m2.
We can use Lemma 34 to get:
bs1(f) ≥ bs1(g) ·min{bs0(g), bs1(g)} = m(m+ 1).
Therefore, we have bs(f) ≥ s(f)2

16 and bsmin(f) = Ω(s(f)2). J

We prove the following general theorem:

I Theorem 39. For functions f : {0, 1}n → {0, 1} and g : {0, 1}n → {0, 1} such that the
following conditions hold:
1. σ1(f) = c1, where c1 is some fixed constant
2. s0(g) = c2, where c2 is some fixed constant
3. bs0(f), bs1(f), bs0(g), bs1(g) = θ(n)
We have,

min{bs0(f ◦ g), bs1(f ◦ g)} = Ω(s(f ◦ g)2).

The proof is straightforward from Corollary 31 and Lemma 34.
This theorem allows us to use various compositions of our new building blocks and some

of the inner functions of previous constructions to obtain other functions with both 0-block
sensitivity and 1-block sensitivity quadratically larger than sensitivity.



S. Chaubal and A. Gál 13:15

In particular, let f, g be any two functions from the following list of functions: Rubinstein’s
inner function [15], Virza’s inner function [19], Ambainis and Sun’s inner function [5], gpoly,
g∗poly. In addition, we can also let g be gF F , g∗F F , or the inner function of the function based
on Hamming Code [10]. Then, bs0(f ◦ g) and bs1(f ◦ g) are both quadratically larger than
s(f ◦ g).
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