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Abstract
We consider the following set membership problem in the bitprobe model – that of storing subsets
of size at most three from a universe of size m, and answering membership queries using two
adaptive bitprobes. Baig and Kesh [2] proposed a scheme for the problem which takes O(m2/3)
space. In this paper, we present a proof which shows that any scheme for the problem requires
Ω(m2/3) amount of space. These two results together settle the space complexity issue for this
particular problem.
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1 Introduction

Given a universe U containing m elements, consider the problem of storing an arbitrary
subset S of size at most n. Once we have stored some such subset, we are required to answer
membership queries of the form “Is x in S?” The solutions to these problems are referred to
as schemes. The resources that we consider to evaluate schemes for the problem are the space
required by the data structure, denoted by s, and the number of bits of the data structure
accessed to answer the membership queries, denoted by t. This particular class of static
membership problems is referred to in the literature as the bitprobe model.

1.1 The Bitprobe Model
Schemes for the bitprobe model are further classified based on how the decision is made to
probe a particular bit of the data structure for some query. If for a given query, the location
of a bitprobe is independent of the result obtained from the previous bitprobes, then such a
scheme is called a non-adaptive scheme. On the other hand, if the location of the current
bitprobe depends on the results obtained from the previous bitprobes, then such a scheme is
called an adaptive scheme.

Given a universe U and the size of the subset to be stored, say n, the design of any scheme
has two components – the storage scheme and the query scheme. Given an arbitrary subset
S of size at most n, the storage scheme sets the bits of the data structure such that the
membership queries can be answered correctly. The query scheme handles arbitrary queries
of the form “Is x in S?”

Radhakrishnan et al. [7] introduced the following notation to represent the various schemes
in the model – a scheme that takes s amount of space and requires t bitprobes to answer
membership queries correctly is denoted as (n, m, s, t)A or (n, m, s, t)N depending on whether
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the scheme is adaptive or non-adaptive, respectively. Sometimes, the notations sA(n, m, t)
and sN (n, m, t) are used to denoted the space requirement for the respective schemes.

1.2 The Problem Statement
The space complexity for two adaptive bitprobe schemes storing subsets of size one (n =
1, t = 2) is well understood – the lower bound is Ω(m1/2), and there is an explicit scheme that
matches this lower bound [1, 5]. For subsets of size two (n = 2, t = 2), there is a scheme due
to Radhakrishnan et al. [6] that takes O(m2/3) amount of space. They further conjectured
that this is also the minimum space required for the problem. Though progress has been
made towards proving the lower bound [6, 7], the problem still remains open.

In this paper, we consider the problem of storing subsets of size at most three, and
answering membership queries using two adaptive bitprobes, i.e. n = 3 and t = 2. Particularly,
we look into the lower bound on space for the class schemes solving the problem.

Garg and Radhakrishnan [4] has proposed a general upper and lower bound for all
adaptive schemes using two bitprobes, which are as follows.

sA(n, m, 2) = O(m1− 1
4n+1 ).

sA(n, m, 2) = Ω(m1− 1
bn/4c )

When applied to the particular case of storing three elements, the upper and lower bounds
come out to be O(m12/13) and Ω(1), respectively. Garg [3] improved the general upper bound
in his thesis to the following.

sA(n, m, 2) = O(m1− 1
4n−1 )

This improves the bound for the three element case to O(m11/12). Further improvement of
the upper bound was made by Baig and Kesh [2] when they came up with a scheme that
takes O(m2/3) space.

A much better lower bound was proposed by Radhakrishnan et al. [7] when they proved
that for storing subsets of size at most two (n = 2), the space required is Ω(m4/7). As a
corollary, their result puts a lower bound for the scenario when n = 3.

In this paper, we make the following claim – an adaptive scheme storing subsets of size at
most three from a universe of size m and answering membership queries using two bitprobes
requires Ω(m2/3) amount of space, i.e.

sA(3, m, 2) = Ω(m2/3) (Theorem 19).

This claim, along with the scheme due to Baig and Kesh [2] resolves the space complexity
question for n = 3 and t = 2.

2 Two Bitprobe Schemes

In this section, we discuss the components of an adaptive two-bitprobe scheme, restate a few
notations from the literature, and introduce some new ones used in the proof of our claim.

2.1 The Decision Tree
The data structure for two-bitprobe adaptive schemes consists of three tables, namely A,B,
and C. Every element in our universe has a location reserved in each of the three tables, a
location which stores a single bit. For an element x, we use the notations A(x),B(x), and
C(x) to denote its location in the three tables. We abuse this notation a bit, and use these
notations to also denote the bits stored in those locations.
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A

B C

No Yes No Yes

0 1

0 1 0 1

Figure 1 The decision tree of an element.

Given a subset S of the universe U , the storage scheme sets the bits of these tables in
such a way that the query scheme answers membership questions correctly. The arrangement
and the purpose of these three tables will become more apparent from the query scheme,
discussed below.

The design of the query scheme is as follows. Upon the query “Is x in S?”, the first
bitprobe in made in table A at the location A(x). Depending on whether the bit stored in
the location is 0 or 1, the second bitprobe is made in table B or C, respectively. Finally, if
the second bitprobe returned 1, we declare that the element x is a member of S, else if 0 is
returned, we declare that x is not a member of S.

The description of the query scheme can be represented in the form of tree, shown in
Figure 1, and is known as the decision tree.

2.2 Blocks

We borrow the terminology introduced in Radhakrishnan et al. [6] and define the notion
of blocks.

I Definition 1. The set of all elements of the universe U that query the same location in
table A is said to form a block.

It follows that if elements u and v belong to the same block, then A(u) = A(v). Con-
sequently, we have as many blocks as there are bits in table A. Blocks are significant for the
following reason – all the elements of a block will either query table B or C, depending on
whether the bit corresponding to the block stores a 0 or a 1, respectively.

Given a block, each of its elements will be numbered uniquely starting from 1. We will
call this number corresponding to an element within a block as the index of the element.

The notion of blocks together with the notion of indices gives us a unique way of identifying
the elements of the universe U – the block number in table A, and the index within that
block. Henceforth, we are going to use the following notation to label any element. If an
element belongs to block a, and its index within the block is i, then we are going to address
that element as ai.

As a block is essentially a set, we will use the notation |a| to denote the number of
elements block a contains. Table A being a collection of blocks, we use the notation |A| to
denote its size.

FSTTCS 2018
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2.3 Sets
In tables B and C, for the sake of convenience, which will become apparent as the proof
progresses, we use the term sets instead of blocks for elements querying the same location.

I Definition 2. Elements that query the same location in table B are said to belong the
same set. The same terminology is used for elements that query the same location in table C.

So, there are as many sets in tables B and C as there are bits. Similar to table A, we will
use the notation |B| and |C| to denote the sizes of the respective tables.

We now define two of the key notions employed in the proof of the lower bound, that of
the mass of a set and the universe of a set.

I Definition 3. The mass of a set is the total number of elements in all of those blocks of
table A which has one or more elements in the set. For a set W , its mass is denoted by mW .

I Definition 4. Given the set W , we construct a new set corresponding to W using the
following steps.
Step 1. Collect all the elements in all of those blocks of table A which has a member in

set W .
Step 2. From the resulting set, remove the elements of set W .
This set will be denoted as UW , the universe of W . The size of this set is

|UW | = mW − |W |. (1)

To take an example, suppose the set W = { a1, e1, f2, h3 }. Let the members of the
relevant blocks a, e, f , and h be

a = {a1, a2, a3};
e = {e1, e2};
f = {f1, f2, f3, f4}; and

h = {h1, h2, h3, h4, h5},

then,

mW = |a|+ |e|+ |f |+ |h|
UW = {a2, a3, e2, f1, f3, f4, h1, h2, h4, h5}.

3 Clean and Dirty Sets

In this section, we define and discuss two categories of sets, namely clean sets and dirty sets.

I Definition 5. A set is said to be dirty if the set contains more than one element from
some block of table A. On the other hand, if all of the elements of a set are from distinct
blocks of table A, then that set is said to be clean.

For example, the set { a1, a2, b3, c4 } is a dirty set as it contains two elements from block
a. On the other hand, the set { e1, f1, g3 } is a clean set. Note that same indices, as in the
later set, are allowed, but same block numbers are not.

We now make an important observation about the relationship between blocks and
dirty sets.
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I Lemma 6. If a set in any of the tables is dirty due to the elements of a block of table A,
then all of the elements of that block must belong to distinct sets in the other table.

In other words, if some block of table A makes some set dirty in table B, then it cannot
make any set dirty in table C, and vice versa. This is similar to what has been considered by
Radhakrishnan et al. [6] as part of item 4 in Section 4. We reprove it in our teminology.

Proof. Without loss of generality, let the elements a1 and a2 (the first and the second
elements of block a) belong to the same set W in table B. So, the set W is dirty due to
block a. We will prove that the elements of this block will necessarily belong to distinct sets
in table C.

Let us construct the subset S so as to contain the element a1 but not the element a2.
In this case, A(a) cannot be 0. If A(a) is indeed 0, then upon query for the element a1, we
would get a 0 from table A, and the second query for a1 must be in table B. As a1 belongs
to the set W of table B, and as a1 belongs to the subset S, the bit corresponding to the set
W must be set to 1.

Under this assignment, we look into the queries for the element a2. As A(a) = 0, the
second query for a2 will be in table B. As we have assumed that a1 and a2 belong to the set
W in B, the second query for a2 will be to the bit corresponding to the set W . As the bit
stored is 1, we will deduce that a2 belongs to S, which would be incorrect.

So, A(a) cannot store 0, and hence it must store 1. So, the second query for all the
elements of block a will be made in table C.

In table C, if two elements of block a are again together in some set, we can put one of
the elements in S but not the other, and we will reach a contradiction similar to the one
above. Note that the subset S is allowed to contain at most three elements, and to arrive at
the contradiction we need to put at most two elements in S.

We can thus conclude that the elements of block a must belong to distinct sets in
table C. J

The next lemma shows the relationship between multiple blocks that create dirty sets in
table B

I Lemma 7. Consider all of those blocks of table A that make one or more sets dirty in
table B. All of the elements from all of those blocks must necessarily be in distinct sets of
table C.

Proof. Without loss of generality, let the elements a1 and a2 of block a make some set dirty
in table B. Putting one of them in subset S but not the other, and reasoning along the lines
of the proof of Lemma 6, we will have A(a) = 1. Similarly, if we have the elements b1 and b2
of block b making some set dirty in table B, we can put one of them in S and not the other,
and ensure that A(b) = 1.

Now, suppose that the elements ai and bj belong to a set X in table C. In this scenario,
we will add ai to subset S as its third member. As the second query for ai will be in table C,
we will have to set the bit corresponding to the set X to 1.

With this assignment, we look in the query “Is bj in S?” As A(b) is 1, the second query
of bj will be in table C. As it belongs to set X, we will get a 1 for the second query and
incorrectly deduce that bj is a member of S.

This tells us that all the elements of blocks a and b must belong to distinct sets of table
C. It is to be noted that it has been implicitly assumed that the elements a1, a2, b1, and b2
are distinct from ai and bj , which need not necessarily be true. In such a case too it can be
argued, as above, that the elements of the two blocks cannot share a set in table C. J

FSTTCS 2018
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The aforementioned restrictions on the blocks creating dirty sets help us to estimate the
total number elements in all of those blocks of table A which are responsible for creating
dirty sets in table B.

Consider those blocks of table A that create dirty sets in table B. Let the total number
of elements in all of those blocks combined be NB. Lemma 7 tells us that of those elements
must belong to distinct sets in table C. This observation immediately puts the following
bound on NB –

NB ≤ |C|.

We can do the same exercise for table C, and count the total number of elements in all of
the blocks responsible for creating dirty sets in table C. If that number is NC , then we will
arrive at the relation

NC ≤ |B|.

In our data structure, let us remove all of those NB elements from their respective sets
and put in singleton sets in table B, and we do the same for the NC elements in table C.
This will make all of the sets in the tables B and C clean. Of course, this comes with an
additional cost to the size our data structure, and the its new size will be

|A|+ 2|B|+ 2|C|.

If the sizes of all of the tables in our initial data structure be s each, resulting in the
total size to be 3s to begin with, after the adjustment mentioned above we will have a data
structure whose size is at most 5s, an increase by a constant factor, and no asymptotic
penalty.

We can further introduce s empty blocks in table A and make the sizes of the three tables
uniform. With these observations, we can make the following claim.

I Theorem 8. Given a (3, m, s, 2)A-scheme, we can have an equivalent (3, m, 2 × s, 2)A

adaptive scheme where the data structure has only clean sets.

Henceforth, we will talk exclusively about schemes with clean sets only, and whose table
sizes are all equal, and prove the lower bound for this class of schemes. Theorem 8 guarantess
that the lower bound claim will also hold for the general class of schemes, with or without
dirty sets.

4 Mass of a set

The following relationship holds between the total mass of all the sets of tables B and C, and
the sizes of the blocks of table A.

I Lemma 9. For the sets of tables B and C, and the blocks of table A, the following equality
is true.∑

W∈B
mW =

∑
X∈C

mX =
∑
a∈A
|a|2 (2)

Proof. Consider a block a of table A. As we are dealing with schemes containing clean
sets only, the elements of the block a will be distributed in exactly |a| sets of table B. This
implies that block a will contribute to the masses of |a| sets of table B. In other words, the
term |a| will occur as summand in the masses of |a| sets of table B.
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So, in the total mass of all the sets of table B, |a| will occur as a summand exactly |a|
times. In other words, the contribution of block a to the total mass of table B is |a|2, and
the equality follows.

We can similarly argue about table C. J

I Lemma 10. The following inequality holds between the masses of the sets of tables B and
C, and the size of table A –∑

W∈B
mW =

∑
X∈C

mX ≥
m2

|A|
. (3)

Proof. Consider the sum from Equation 2∑
a∈A
|a|2.

Using the arithmetic mean geometric mean inequality, we can show that the sum is minimized
when all the summands are equal, i.e.

∑
a∈A
|a|2 ≥ |A| ×

(∑
a∈A |a|
|A|

)2

.

By using the fact that
∑

a∈A |a| = m, we get the desired R.H.S. J

It is interesting to note that the total mass of either of the tables B and C is minimized
when all of the blocks of table A are of equal size.

5 Bad Elements

In this section, we give a characterisation of certain elements of our universe U as being bad
for some particular sets of table C.

I Definition 11. Suppose an element ai from block a of table A belongs to a set W of table
B, and to a set X in table C. Such an element is said to be a bad element for the set X if
the following holds:
1. ai shares the set W with two other elements bj and ck, from blocks b and c, respectively.
2. There exists elements bl and cn, different from the elements bj and ck, such that they

share a set in table C.

Figure 2 describes pictorially the notion of a bad element.

As in the above instance, let us suppose that the element ai is a bad element for the set
X of table C. We discuss below why, given such an arrangement of elements, is ai referred to
as bad for the set X.

5.1 Property of a bad element
Consider the following subset S = { ai, bl }. We show that if we want to store this subset,
then A(a) must be set to 1, and we show this by contradiction.

If it is indeed the case that A(a) = 0, then upon query for the element ai, we will go
to table B for the second query. As ai belongs to the set W in table B, and as it is also a
member of subset S, the bit corresponding to W must be set to 1.

FSTTCS 2018
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Table B

ai

bj

ck

...

Set W

Table C

ai

...

Set
X

bl

cn

...

Set
Y

Figure 2 In this arrangement, ai is a bad element for the set X. Note that j 6= l and k 6= n.
Further, the sets X and Y need not necessarily be distinct.

This would imply that A(b) = 1. If it is not, and A(b) is set to 0, then the second query
for the element bj would in table B. As bj is a member of the set W in table B, we would
get a 1 against the second query and incorrectly assume bj is a member of S. So, we see
that A(b) must be 1. We can similarly argue that A(c) must also be 1.

As shown in Figure 2, the elements bl and cn belong to the set Y in table C. From the
arrangement of elements above, we can further deduce that as bl is a member of S, and it is
also a member of the set Y in table C, the bit corresponding to the set Y must be set to 1.
If we now consider the query “Is cn in S?”, we would find out that we would incorrectly get
that cn is a member of S.

This shows that if the subset S contains the elements ai and bl, then A(a) cannot be 0,
and hence it must be set to 1. We summarise our findings in the following lemma.

I Lemma 12. If the subset S contains the elements ai and bl, then A(a) must be set to 1.

5.2 Universe of X

We would show that no two elements of UX \ a, the universe of X minus the elements of
block a, can share a set in table B, and we arrive at this by contradiction.

Let us suppose, without loss of generality, that the elements x1 and y1 belong to set X,
implying that the elements of the blocks x and y will be part of UX . Let us further assume
that the elements x2 and y2, which are members of UX , share the set Z in table B. The
arrangement of the elements can be seen in Figure 3.

In this scenario we will show next that while trying to store the subset S = { ai, bl, x2 },
the query for the element y2 will give an incorrect answer.

As the subset S contains the elements ai and bl, Lemma 12 tells us that A(a) must be
equal to 1. This means that the second query for ai will be in table C. ai belongs to the set
X in this table, and hence the bit corresponding to the X must be set to 1.

The element x1 is not a member of S, so the second query for this element cannot be in
table C. If it is, then it will query the bit corresponding to the set X and get a 1, implying x1
is a member of S. To ensure that the second query is in table B, we ought to have A(x) = 0.
We can argue similarly about the block y, and conclude that A(y) = 0.

With A(x) = 0, the second query for the element x2 must be in table B. Considering the
fact that x2 is a member of the subset S, the bit corresponding to the set Z in table B must
be set to 1(Figure 3).
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Table B

ai

bj

ck

...

Set W

x2

y2

...

Set
Z

Table C

ai

x1

y1

...

Set
X

bl

cn

...

Set
Y

Figure 3 In this arrangement, ai is a bad element. Note that j 6= l and k 6= n.

Let us now consider the query “Is y2 in S?” As A(y) = 0, the second query for y2 will
be in table B. In this table, y2 belongs to the set Z, and hence, the second query for this
element will return a 1, implying incorrectly that y2 is a member of S.

We summarise our findings in the following lemma.

I Lemma 13. Suppose that an element ai is bad for a set X in table C. Then, the elements
of UX \ a must belong to distinct sets in table B.

5.3 Bounded Sets of Table C

Lemma 13 tells us that the elements of UX \ a must belong to distinct sets in table B. Hence,
the size of UX is bounded by the size of B.

|UX | − |a| ≤ |B|
=⇒ mX ≤ |B|+ |a|+ |X| (from Equation 1),

giving us the following corollary to the lemma above.

I Corollary 14. If a set X of table C contains a bad element from a block a of table A, then
the mass of X must satisfy the following inequality.

mX ≤ |B|+ |a|+ |X|. (4)

We now come to reason why elements with the property, as stated in Definition 11, are said
to be bad for sets of table C. A bad element in a set of table C puts an upper bound on the
mass of that set. For small data structures, the sizes of the sets of the tables B and C must
be large, so that the number of distinct sets is small. A bad element in a set, on the other
hand, restricts the size of the set.

For easy reference, we characterise these sets as bounded sets because their mass has an
upper bound.

I Definition 15. A set in table C which contains one or more bad elements is called a
bounded set.

FSTTCS 2018
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5.4 Large Sets of Table B
I Lemma 16. Consider a set W of table B whose mass satisfies the following inequality.

mW ≥ 2× |C|+ |W |+ 1.

Then, all of the elements of set W are bad elements.

Proof. If some set W of table B satisfies the above inequality, then the size of the universe
of W , which is mW − |W |, has more than twice the number of elements than there are sets
in table C. Hence, there is at least one set in table C which contains three elements or more
of UW .

Without loss of generality, let us assume that all of the elements of W have index 1,
i.e. W = { a1, b1, c1, d1, . . . }. Let us assume further that the set X of table C is the set
containing at least three elements of UW ; let those elements be a2, b2, and c2.

If we consider the element c1, it satisfies the definition of a bad element - a1 and b1 along
with c1 belong to the set W in table B, and the elements a2 and b2 belong to the set X

in table C. We can say the same for every element of W except for a1 and b1. So, we get
|W | − 2 bad elements in the set W .

a1 is also a bad element due to b1, c1, b2, c2, and similarly b1. So, all of the elements of
W are bad for one or the other set of table C. J

We characterise these sets of table B as large sets.

I Definition 17. A set W in table B is called a large set if its mass satisfies the following
inequality.

mW ≥ 2× |C|+ |W |+ 1. (5)

We next highlight an important relation between the masses of large sets of table B and
the bounded sets of table C.

I Lemma 18. The total mass of the large sets of table B is less than or equal to the total
mass of the bounded sets of table C.

Proof. Let ai be an element that belongs to a large set W in table B. Then, two things hold
true – ai is a bad element, and ai contributes the amount |a| to the mass of the large set W .

In table C, if ai belongs to set X, then two things hold true here as well – X is a bounded
set, and ai contributes the amount |a| to the mass of X.

So, every contribution to the total mass of a large set will also have an equal amount of
contribution to the total mass of bounded sets.

Additionally, there could be bad elements due to sets that are not large, or there would
be elements in bounded sets that are not bad. Both of these will contribute to the mass of
bounded sets, but not to that of large sets. Consequently, the inequality follows. J

6 The Lower Bound

Baig and Kesh [2] have shown that there exists an adaptive scheme that stores subsets of size
at most three elements from a universe of size m, and answers memberships queries using
two bitprobes. The space required by the scheme is 3 ×m2/3. In other words, we have a
(3, m, 3×m2/3, 2)A-scheme.
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In this section, we will show that a (3, 2×m, 3×m2/3, 2)A scheme cannot exist. Thus, a
3×m2/3-sized datastructure is not sufficient if the universe size is doubled, giving us the
desired contradiction.

Section 3 tells us that we will only have to look into schemes with data structures having
the following properties – all of the sets are clean, and the sizes of the three tables are equal.
So we have the following setting.

|U | = 2m

n = 3
t = 2

|A| = |B| = |C| = m2/3

If the total number of elements is 2m, then Lemma 10 tells us that the total mass of all
the sets of table B or table C is at least

(2m)2

|A|
= (2m)2

m2/3 = 4m4/3.

The mass of a set W which is not large is at most

2× |C|+ |W | = 2m2/3 + |W | (from Equation 5).

In the worst case, the total number of such sets could at most m2/3 – the size of table B –
and the total number of elements belonging to such sets could be 2m. So, the total mass of
all such non-large sets of table B is

m2/3 × 2×m2/3 + 2m = 2×m4/3 + 2m.

This means that the total mass of the large sets of table B is at least

4m4/3 − 2×m4/3 − 2m = 2m4/3 − 2m (6)

If table C, the mass of a bounded set X is at most

|B|+ |a|+ |X| = m2/3 + |a|+ |X| (Corollary 14).

Here, a is the block to which the bad element belongs. In the case that all of the sets of
table C are bounded, then the total mass of all bounded sets is at most

m2/3 ×m2/3 + 2m + 2m = m4/3 + 4m. (7)

Equations 6 and 7 tell us that as long as m ≥ 73, the total mass of large sets of table
B is strictly greater than the total mass of bounded sets of table C, which is absurd as it
contradicts Lemma 18.

This tells us that a (3, 2×m, 3×m2/3, 2)A-scheme cannot exist. We now arrive at the
final result.

I Theorem 19. sA(3, m, 2) = Ω(m2/3).
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7 Conclusion

In this paper, we have provided a lower bound for two-bitprobe adaptive schemes storing
subsets of size at most three (Theorem 19), which matches with the upper bound for the
problem proposed by Baig and Kesh [2]. This, as alluded to earlier, settles the space
complexity problem for this particular n and t.

The lower bound for the problem where n = 2 and t = 2, conjectured by Radhakrishnan
et al. [6] to be Ω(m2/3), still remains open. We hope that the notions of the mass of a set
(Definition 3) and the universe of a set (Definition 4) would help us better understand the
data structure for this problem, and consequently resolve the conjecture.
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