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Abstract

The Direct Product encoding of a string a ∈ {0, 1}n on an underlying domain V ⊆
([n]
k

)
, is a

function DPV (a) which gets as input a set S ∈ V and outputs a restricted to S. In the Direct
Product Testing Problem, we are given a function F : V → {0, 1}k, and our goal is to test
whether F is close to a direct product encoding, i.e., whether there exists some a ∈ {0, 1}n such
that on most sets S, we have F (S) = DPV (a)(S). A natural test is as follows: select a pair
(S, S′) ∈ V according to some underlying distribution over V × V , query F on this pair, and
check for consistency on their intersection. Note that the above distribution may be viewed as a
weighted graph over the vertex set V and is referred to as a test graph.

The testability of direct products was studied over various domains and test graphs: Dinur
and Steurer (CCC ’14) analyzed it when V equals the k-th slice of the Boolean hypercube and the
test graph is a member of the Johnson graph family. Dinur and Kaufman (FOCS ’17) analyzed
it for the case where V is the set of faces of a Ramanujan complex, where in this case V = Ok(n).
In this paper, we study the testability of direct products in a general setting, addressing the
question: what properties of the domain and the test graph allow one to prove a direct product
testing theorem?

Towards this goal we introduce the notion of coordinate expansion of a test graph. Roughly
speaking a test graph is a coordinate expander if it has global and local expansion, and has
certain nice intersection properties on sampling. We show that whenever the test graph has
coordinate expansion then it admits a direct product testing theorem. Additionally, for every k
and n we provide a direct product domain V ⊆

(
n
k

)
of size n, called the Sliding Window domain

for which we prove direct product testability.

2012 ACM Subject Classification Theory of computation → Probabilistic computation

Keywords and phrases Property Testing, Direct Product, PCP, Johnson graph, Ramanujan
Complex, Derandomization

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2018.11

Acknowledgements We are truly grateful to Irit Dinur for her constant support throughout this
project and for her many illuminating and helpful discussions and comments. We also thank the
anonymous reviewers for their detailed and useful feedback.

1 This work was supported by Irit Dinur’s ERC-CoG grant 772839.

© Elazar Goldenberg and Karthik C. S.;
licensed under Creative Commons License CC-BY

38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2018).
Editors: Sumit Ganguly and Paritosh Pandya; Article No. 11; pp. 11:1–11:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/162456664?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:elazargo@mta.ac.il
mailto:karthik.srikanta@weizmann.ac.il
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


11:2 Towards a General Direct Product Testing Theorem

1 Introduction

The direct product encoding of a function is a way to aggregate multiple values of the input
function using a single query. Justifying the vague intuition that it is much harder to compute
multiple values of a function rather then a single value of it, the direct product encoding has
been successfully used in several contexts of hardness amplification. The hardness can either
measure the fraction of inputs on which every reasonable-time algorithm fails to compute
the input function, or the fraction of unsatisfied assignments of a given CNF-formula or the
communication complexity of the function.

In most of the PCP constructions an assignment to the given input is broken into many
tiny pieces. Each small piece is encoded individually and then one should be able to test
whether these tiny pieces could be stitched together into a global assignment. This testability
task is referred to as an agreement test, and instantiations of it include low degree tests such
as the plane vs. plane [12], the line vs. line test [1] and the cube vs. cube test [2], and the
direct product test used in [8].

More concretely, we associate the direct product encoding of strings of size n, with some
underlying domain2 V which is a collection of subsets of [n] of cardinality k. Given a string
a ∈ {0, 1}n its direct product encoding on the domain V , denoted by DPV (a), is defined as
follows: For every set S ∈ V we define DPV (a)(S) = a|S (where a|S is the restriction of a
to the coordinates in S). In this paper we study the testability of this encoding, namely:
Given F : V → {0, 1}k we want to decide whether F agrees with some DPV (a) on most sets
S while querying F only on a few locations, specifically two. In other words, we focus on
two-query tests in the paper where we pick a pair of subsets (both in the domain) according
to some fixed distribution and then check if the two subsets agree on their intersection. We
say that a domain V admits a direct product testing theorem if there exists a two-query
test T satisfying the following: For every ε ≥ 0 and F : V → {0, 1}k if T accepts F with
probability 1− ε, then we have F (S) = DPV (a)(S) for some a ∈ {0, 1}n on 1−O(ε)-fraction
of the sets S in V , where the constant behind the O notation is independent of |V | and k.

This question was studied under various domains. Dinur and Steurer [9] analyzed a
two-query test under the domain V =

([n]
k

)
. Recently, Dinur and Kaufman [6] studied this

question in a much shrunken domain, which is obtained by considering the set of the faces of
a high dimensional expander. However, both of these proofs are tailored to the structure of
their own domain and cannot be (trivially) generalized to other domains. It is natural to ask
whether a more generalized argument can be applied covering both of these domains, and on
which domains it may be applied. The main question we are investigating is as follows:

Which domains admit a two-query direct product testing theorem?

Let us elaborate more about the previous proofs. The proofs given by [9] and [6] first
analyze the testability in the high error regime, i.e. when the acceptance probability is slightly
bounded away from 0. They show that any function that passes the test with non-negligible
probability ε must agree with some legal codeword DPV (a) on Ω(ε) fraction of sets. Then
they analyze the test in the low error regime, i.e. when the acceptance probability of the
test is close to 1. Finally they stitch local tiny agreements into a single codeword and show
that the agreement is almost everywhere.

2 For the ease of presentation, we only consider domains which are a subset of
([n]

k

)
in this section.

However, in the rest of the paper we consider V which is a collection of subsets of [n], and all our results
are proved for this more general case.
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We would like to establish a direct product testing theorem using a more straightforward
approach: we decode a string from the input function F using the majority operator and
then show that if the test passes with high probability then F is close to the direct product
encoding of the decoded string. More precisely, given the input function F , we define a
string a ∈ {0, 1}n as follows: for every coordinate i ∈ [n] we set ai to be the majority value
of F (S)i, where the majority is taken over the sets that contain i. Next we show that if
F passes the test with probability 1 − ε then F must be 1 − O(ε)-close to DPV (a). We
remark that Dinur and Reingold [8] indeed followed this proof strategy, however, their proof
admits only a relaxed notion of closeness between the input function and the direct product
encoding of the decoded string (namely, that on most sets S, F (S) and DPV (a)(S) agree
only on most of the coordinates in S).

Observe that any two-query test on a domain V gives rise to a weighted graph whose
vertex set is V and the weight we assign for each pair (S, S′) is the probability of this pair
being picked by the test3. We refer to this graph as the test graph. We say that a test graph
yields a tester for the domain V , if for every ε ≥ 0 and every function F : V → {0, 1}k the
following holds: if the test accepts F with probability 1− ε, then F must be 1−O(ε)-close to
some DPV (a). Here the test corresponds to picking an edge (S, S′) at random (according to
the distribution of weights on the edges) and accepting if and only if F (S)|S∩S′ = F (S′)|S∩S′ .

Another proof insight that we desire is the explicit use of the properties of the underlying
test graph. For example, one property that the test graph must satisfy to be a tester is that
for most edges (S, S′) the intersection between S and S′ is linear in k. Assume not, then we
consider the following construction of F : We start from F = DPV (a) for some a ∈ {0, 1}n
and then for each S ∈ V we reset the value of F (S)i for some random i ∈ S. Then for most
sets (S, S′) with small intersection the test accepts but F is far from any direct product
codeword. Another property that the test graph must have is some notion of expansion.
Summing up, our more refined question is as follows:

What properties of the test graph yields a tester for its underlying
domain?

1.1 Our Results
Our conceptual contributions in this paper are two-fold. First, we introduce a notion
called coordinate expansion which captures the properties of direct product testable domains.
Second, we introduce the sliding window domain which is of size exactly equal to the universe
and is direct product testable. Our main technical contribution is showing that domains
having coordinate expansion with certain parameters admit a direct product theorem.

1.1.1 A General Direct Product Theorem
We introduce below the notion of coordinate expansion. Informally, a coordinate expander
has both global and local expansion properties, and has good intersection properties.

I Definition 1 ((λ, ρ)-Coordinate Expander). Let G = (V,E) be a test graph, where V ⊆
([n]
k

)
.

For i ∈ [n] let Vi = {S ∈ V |i ∈ S} and Gi be the subgraph of G induced by the vertices in
Vi. The graph G is called (λ, ρ)-coordinate expander if:

3 In this paper we analyze test graphs which are undirected.

FSTTCS 2018



11:4 Towards a General Direct Product Testing Theorem

1. λ(G) < λ (where λ(G) = max{|λ2(AG)| ,
∣∣λ|V |(AG)

∣∣} and AG is the normalized adjacency
matrix of G).

2. For every i ∈ [n] we have that λ(Gi) < λ and for each S ∈ Vi the probability that a
uniformly random neighbor S′ of S is in Vi is at least ρ.

3. For every subset S and T ⊆ S, satisfying |T | ≥ 2/ρ , the probability that for a uniformly
random neighbor S′ of S we have |S′ ∩ T | ≤ ρ |T | /2 is upper bounded bounded by λ .

Notice that condition 1 implies that the test graph must be a good expander (in the
traditional sense). Moreover, condition 2, implies that on certain local subsets (i.e., subsets
containing a common coordinate) of vertices, the induced subgraph must be expanding as
well. Finally, condition 3 implies that the neighbors of every subset S samples well every
subset T of S.

Observe that condition 2 is necessary for the test graph to be a direct product tester. To see
this, consider a test graph that does not satisfy this property, namely, there exists a coordinate
i ∈ [n] for which: there exits a set Bi ⊂ Vi such that PrS′∈Vi

[S′ /∈ Bi|S ∈ Bi] = o(1). Then,
we show that the test graph does not yield a tester. Indeed, consider the following construction
of F : we first choose F = DPV (a) for some a ∈ {0, 1}n. Then for every S ∈ Bi we change
the value of F (S)i to 1−ai. Clearly, the distance of F from a direct product encoding equals
δ := |Bi| / |V |. However, the rejection probability equals:

2· Pr
S′∼S

[S ∈ Bi and S′ ∈ Vi\Bi] ≤ 2·Pr[S ∈ Bi]·Pr[S′ ∈ Vi]· Pr
S′∈Vi

[S′ /∈ Bi|S ∈ Bi] = o(1)·δ.

Then, we show our main technical result that coordinate expansion implies direct product
testing (for a certain range of parameters).

I Theorem 2. Let ρ ≥ 1/2 and λ ≤ 1/33. Let G = (V,E) be a test graph, V ⊆
([n]
k

)
, let

ε ≥ 0, and F : V → {0, 1}k. Let G be a (λ, ρ)-coordinate expander. If F passes the test
implied by the test graph G with probability 1 − ε then F is 1 − O(ε)-close to DPV (a) for
some a ∈ {0, 1}n.

The overview of the above proof is given in Section 1.2. Also, as an application of the
above theorem, we show4 a direct product theorem for the test graph isomorphic to the
Johnson graph J(n, k) when k is close to n/2, where J(n, k) is a graph whose vertex set is
the set of all subsets of [n] of cardinality k, and two subsets have an edge if their intersection
is equal to k/2. This should be compared to [9], where they show the direct product for the
Johnson graph for all the layers up to n/2 (i.e., for all J(n, k) where k ≤ n/2).

The main open problem stemming from our work is to improve the parameters in
Theorem 2. In particular, does the following hold?

I Open Problem 3. Does (1/2, 1/2)-coordinate expansion imply a direct product theorem?

A positive resolution of the above open question would imply direct product testability
on the test graph isomorphic to the Johnson graph for every layer of the Boolean hypercube
(completely recovering the results in [9]). It even implies a direct product testability on a
new domain: where the subsets are stemming from d-dimensional subspaces of Fm2 and two
subsets are connected by an edge if they intersect on a (d− 1)-dimensional subspace (this
is referred to as the Grassmann graph). Finally, we would like to recall that Theorem 2

4 The claim as written here is slightly inaccurate. Please refer to Appendix B for a precise statement.
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states that (1/33, 1/2)-coordinate expansion implies a direct product theorem, i.e., in order to
positively resolve Open Problem 3, we might need to improve the analysis in the proof of
Theorem 2 to accommodate test graphs with weaker expansion properties.

In fact, if we can resolve Open Problem 3 in a slightly stronger way i.e., if we show that
for some small enough constant γ > 0, we have (1/2 + γ, 1/2)-coordinate expansion implies a
direct product theorem then we recover the testability result of [6] on Ramanujan complexes.
Summarizing, we view the study of coordinate expansion as providing a unified framework
to prove direct product theorems. Also, it might be useful in the future to establish direct
product testability for new domains (in a black-box manner).

1.1.2 Sliding Window Domain

In this subsubsection, we define a new direct product testable domain which we call the
sliding window domain, and also discuss about the necessary and sufficient structure that a
domain (and test graph) should have, in order to admit direct product testing.

For every n, k, the sliding window domain A ⊆
([n]
k

)
is the collection of all contiguous

k-sized subsets (windows) of [n], i.e., A = {{i, . . . , i+ k − 1} | i ∈ [n]}, where the addition
is done modulo n. Two vertices (i.e., subsets in A) have an edge in the test graph, if their
intersection is non-empty. Notice that |A| = n and yet we show that it admits a direct
product theorem (see Theorem 9 for a simple proof).

Let us put the above result in context with the recent breakthrough of Dinur and Kaufman
[6]. In [6], the authors obtain a direct product testable domain (subset of

([n]
k

)
) of size O(2k2

n).
The domain arises from the highly non-trivial object called Ramanujan complex. Such a
domain is studied because apart from admitting a direct product theorem over a domain
of size linear in the universe (i.e., n), it also has other desirable properties such as distance
amplification which are needed for applications in gap and hardness amplification. Thus, our
direct product testing result (Theorem 9) provides a conceptual clarification that if one is
only interested in direct product testing as a property testing question, then there is a very
simple domain of size n, namely the sliding window domain, which is testable.

Roughly speaking, a domain (subset of
([n]
k

)
) has distance amplification if for every two

strings of relative distance δ, the relative distance between their direct product encoding is
Ω(kδ). This seems to be a crucial property for PCP applications of direct product testing.
Thus, the construction of the sliding window domain provides a conceptual clarification as to
why we need high dimensional expanders: we can obtain direct product testing from simple
constructions like the sliding window domain and we can obtain distance amplification from
known constructions of vertex expanders (see Appendix D); but to obtain both simultaneously,
[6] needed high dimensional expanders. We leave it as an open question whether there exists
a simple construction admitting both direct product testability and distance amplification.

I Open Problem 4. Is there a (relatively) simple domain of linear size in the universe (i.e.,
n) for which we have both direct product testing and distance amplification?

Lack of Global Expansion. We would like to now briefly discuss about the minimal structure
of the domain (and the test graph) sufficient to prove a direct product theorem. This is
highlighted by the sliding window domain, an in particular by the proof of its testability
(Lemma 10 to be precise). Notice that GA has very bad edge-expansion/vertex-expansion but
is a very good local expander, i.e., the induced subgraph containing any particular coordinate

FSTTCS 2018



11:6 Towards a General Direct Product Testing Theorem

has good expansion (in fact is a clique). Lemma 10 guarantees that in such situations5
the domain admits direct product testing if for every vertex in the test graph, and every
element in that vertex, the probability of retaining that element when moving to a uniformly
random neighbor is bounded from below by a positive constant. The probability of retaining
a coordinate when moving to a random neighbor is 1/2 in A, and thus A admits a direct
product theorem. Therefore, A demonstrates that direct product testing does not require
the test graph to be an expander (like the Johnson/Ramanujan graph) but only needs to
have certain local expansion properties. Finally, recall that we had earlier argued that local
expansion is necessary (to justify the need for condition 2 in Definition 1) for direct product
testing.

Finally, it seems that conditions 1 and 3 in coordinate expansion are not (necessarily)
needed for direct product testing, but are merely artifacts of our proof (Theorem 2). How-
ever, these conditions might imply distance amplification6 and are typically guaranteed in
structured domains of interest (namely, Johnson, Grassmannian, and Ramanujan).

1.2 Technical Contribution: Proof Overview of Theorem 2
For the sake of convenience, through out this subsection, we fix V =

([n]
k

)
and the test would

pick pairs (S, S′) that intersect on k/2 elements and checks for agreement. As suggested
above there is a natural way to decode any function F : V → {0, 1}k using the majority
operator: define a string a ∈ {0, 1}n by setting ai to be the majority value of F (S)i for
all S 3 i. We define B = {S|F (S) 6= DPV (a)(S)}, i.e., B is the subset of the domain that
disagrees with the direct product encoding of the decoded string. Also for S ∈ B we call
i ∈ S conflicting if F (S)i 6= ai. Our goal is to show that the test rejects with probability
Ω(|B| / |V |) as |B|/|V | is the relative distance between F and DPV (a).

Indeed fix S ∈ B, then it must contain at least one conflicting coordinate, say i. Observe
that with probability 1/2 we also have that i ∈ S′. Now if S′ were a random set containing
i, then since at least half of the elements that contain i agree with the majority value, the
test rejects with probability 1/2. And the overall rejection probability of the test would be
at least |B|4|V | and we are done.

However, S′ is not a random set that contains i, it intersects with S on further k/2− 1
coordinates. Therefore, it may well be that among the neighbors of S that contain i we do
not see the majority value so often. A natural way to overcome this is by aggregating all Ss’
that contain i and disagree with the majority value on i. We could try to show that if we
start from some member of this set then with constant probability we reach S′ that contains
i and resides outside of this aggregated set (by using the local expansion property). But
this leads into another problem: using this argument sets S that contain many conflicting
coordinates are counted many times, whereas sets that contain few conflicting coordinates
are counted much less.

Our analysis proceeds by studying the variance of the number of conflicting coordinates
in the following manner. We first sort the set B based on the number of their conflicting
coordinates. Let BL (resp. BH) be the first (resp. last) third of the elements in B according
the sorting. We first show that if the number of conflicting coordinates of each member in
BL is much smaller than it is in BH , then the test rejects with probability Ω( |B||V | ). To show
this, we prove that whenever the test picks S ∈ BH then with constant probability S′ is in

5 Lemma 10 can be generalized to accommodate test graphs which are locally subgraphs that strongly
satisfy the expander mixing lemma.

6 This would be an interesting question to resolve in either direction.
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BL ∪ {V \B} (by using the global expansion property). Moreover, there is a large subset Γ
of conflicting coordinates in S which are also in S′ (follows from condition 3 in Definition 1).
However, S′ has few conflicting coordinates in total (by our choice of S′), and thus, there
must be a coordinate in Γ that agrees with the majority value on S′ but disagrees on it on S
and hence the test rejects the edge (S, S′).

On the other hand, if the number of conflicting coordinates does not vary a lot among
these sets, then we analyze the test by selecting (at random) a single conflicting coordinate in
S and focusing on the rejection probability based only on the value of the selected coordinate.

1.3 Related Work
The question of testing the direct product was studied extensively when the underlying
domain V =

([n]
k

)
[10, 8, 5, 9, 11]. In this setting, Goldreich and Safra [10] proposed a

constant query test. Dinur and Reingold [8] suggested the two-query test mentioned above
and analyzed it in the high acceptance regime but with a relaxed distance measure.

The state of the art in this context is the result of Dinur and Steurer7 [9] dealing with
the domain V =

([n]
k

)
where k varies between 2 and n/2. They analyze the aforementioned

two-query test with k/2-intersection size. They analyze it in the high acceptance regime and
show that

([n]
k

)
indeed admits a direct product testing theorem. The proof is quite involved

and in particular analyzes first the low acceptance regime. Recently, in a breakthrough paper,
Dinur and Kaufman [6] analyzed the two-query test when the underlying domain is obtained
from the set of faces of a Ramanujan complex. Their approach crucially relies on the result
of [9].

We remark that the direct product testability question was further analyzed in the low
acceptance regime under the domain

([n]
k

)
, see [5, 11, 7] and also under the domain where

the universe is Fm2 , and the domain is the set of all subspaces of Fm2 [11].

1.4 Organization of the Paper
Section 2 lists the notations and technical tools that we use in the paper. In Section 3
we formalize the notion of direct products and their testing. In Section 4 we prove our
main technical result, namely, that whenever the underlying test graph is a (λ, ρ)-coordinate
expander it admits a direct product testing theorem. Finally, in Section 5 we introduce the
sliding window domain for which we show a direct product theorem.

2 Preliminaries

In this section, we list the notations and technical tools used in this paper.

Notations. We use the following notations throughout the paper. We denote the set
{1, . . . , n} by [n]. For any n, k ∈ N, with k ≤ n, we denote by

([n]
k

)
, all subsets of [n] of

cardinality k. For any set S, we denote by P(S) the power set of S, i.e., the set of all subsets
of S. For any graph G(V,E) and any two subsets S, T ⊆ V , we denote by E(S, T ) the set
of all edges between S and T . For any x, y ∈ {0, 1}n, we denote by ∆(x, y) the relative
Hamming distance between x and y given by the fraction of coordinates in which x and y
differ.

7 The result in [9] is stated in the language of tuples, i.e., the domain is a subset of [n]k, but their result
also holds when the domain is a collection of k-sized subsets of [n]. See [4] for more details.
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11:8 Towards a General Direct Product Testing Theorem

Johnson Graph Family. For every n, k, t ∈ N such that t ≤ k ≤ n, J(n, k, t) is a graph
which is a member of the Johnson graph family, whose vertex set is

([n]
k

)
, and whose edge set

is {(S, S′) | S, S′ ∈
([n]
k

)
, |S ∩ S′| = t}.

Expander Mixing Lemma. The following is a standard claim concerning the expansion of
two sets in expander graphs. For completeness we include a proof in Section A:

I Claim 5. Let G = (V,E) be a d-regular graph and A be its adjacency matrix. Let λ be its
second largest eigenvalue in absolute value. Let S, T ⊆ V satisfying: |S| ≤ |V | /2 then:

Pr
(u,v)

[v ∈ T |u ∈ S] ≤ |T |
|V |

+ λ

d

√
|T |
|S|

,

where the probability is given by first picking u uniformly at random from S, and then picking
v according to A. Furthermore, let µ be a distribution on S satisfying that for every two
elements b, b′ ∈ S: µ(b) ≤ cµ(b′), then:

Pr
(u,v)

[v ∈ T | u ∼ µ] ≤ |T |
|V |

+ λ

d
·

√
c |T |
|S|

3 Direct Product Testing: The Setting

In this section, we formalize the notion of direct products and their testing. Specifically,
we formalize the notion of direct product testing through test graphs, which is slightly
non-standard but it helps in introducing the notion of coordinate expansion in a later section
succinctly.

For every subset S of [n], let FS be the class of all functions whose domain is S and
range is {0, 1}. Let V ⊆ P([n]) be the domain of the direct product. Let FV be the class of
all functions whose domain is V and maps every subset S in V to a function in FS . The
direct product encoding is a function DPV : {0, 1}n → FV defined as follows: for every string
a ∈ {0, 1}n, and every subset S ∈ V , let DPV (a)S be defined as the projection function
which maps S to aS , the string a restricted to only the coordinates in S.

I Definition 6. For two functions F,G ∈ FV we define their relative distance as:

∆(F,G) = |{S ∈ V |F (S) 6= G(S)}|
|V |

.

For a function F and a set of functions G̃ we define the distance between F and G̃ as the
minimal distance between F and some function G ∈ G̃. If ∆(F, G̃) ≤ δ, we say that F is
1− δ-close to G̃, otherwise, it is δ-far from G̃.

For every function F ∈ FV , we define dec(F ) as follows: Given F construct aF ∈ {0, 1}n
in the following way,

aFi = maj
S∈V
S3i

(F (S)i).

Then, we define dec(F ) := DPV (aF ).
Let GV be a graph whose vertex set is V . Then we interpret GV as a test graph on

functions defined on FV in the following sense:
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Test T (GV ):
Input: A function F ∈ FV .
Procedure: Pick an edge (S, S′) in GV uniformly at
random.
Output: Accept if and only if F (S)|S∩S′ = F (S′)|S∩S′ .

It is important to note that we allow self loops and multiple edges between a pair of
vertices. Also, we can generalize the above direct product testing setting to the case when V
is a multiset of P([n]), and the results in this paper still hold. However, we choose not to
handle this more general setting for the sake of clarity of presentation. The above remark
also applies to the case of studying test graphs which are not regular in degree, that are not
considered in this paper. Finally, throughout the paper, we drop the subscript V in GV , if
V is clear from the context.

4 Direct Product Testing: Coordinate Expansion

In this section we prove our main technical result, namely, that whenever the underlying
test graph is a (λ, ρ)-Coordinate Expander (defined next) it admits a direct product testing
theorem.

I Definition 7 ((λ, ρ)-Coordinate Expander). Let n ∈ N and let G = (V,E) be a test graph,
where V ⊆ P([n]). For i ∈ [n] let Vi = {S ∈ V |i ∈ S} and Gi be the subgraph of G induced
by the vertices in Vi. Let λ(G) = max{|λ2(AG)| ,

∣∣λ|V |(AG)
∣∣}, where AG is the normalized

adjacency matrix of G. The graph G is called (λ, ρ)-coordinate expander if:
1. λ(G) < λ and for every i ∈ [n] we have λ(Gi) < λ.
2. For every i ∈ [n] and for each S ∈ Vi we have Pr

S′∼S
[S′ ∈ Vi] ≥ ρ.

3. For every subset S and T ⊆ S, satisfying |T | ≥ 2/ρ , we have Pr
S′∼S

[|S′ ∩T | ≤ ρ|T |/2] ≤ λ.

Informally, a domain is a coordinate expander if the test graph is an expander and every
induced subgraph of the test graph containing a fixed coordinate is also an expander8, and it
has good correlation/intersection properties – i.e., for any subset S and coordinate i ∈ S, an
uniformly random neighbor of S contains i with constant probability (say ρ > 0), and for
every S in the domain, and any subset T of S, the number of elements of T that we see in a
random neighbor of S is close to the expected number, which is ρ · |T |. Below, we see that
coordinate expansion of the test graph implies a direct product theorem for the underlying
domain.

I Theorem 8. Let n ∈ N, and let ρ ≥ 1/2 and λ ≤ 1/33 be some constants. Let G = (V,E)
be a graph, V ⊆ P([n]), let ε ≥ 0, and F ∈ FV . Let G be a (λ, ρ)-coordinate expander. If F
passes T (G) with probability 1− ε then F is 1−O(ε)-close to dec(F ).

Proof. Let F ∗ := dec(F ) = DPV (aF ). We define B,C ⊆ V as follows:

B = {S | F (S) 6= F ∗(S)} and C = V \B.

Let β = |B| / |V |. Given a subset S ∈ V we say that a coordinate i is conflicting if the value
of F (S) at i does not equal aFi . For a set S denote by B(S) the set of conflicting coordinates
in S. We show that T (G) rejects with probability at least Ω(β).

8 Actually, the property of an expander that we need is that for any two sets of vertices S, T in the graph,
the number of edges between S and T is roughly equal to α|S||T |, where α is the density of the edge
set of the graph.

FSTTCS 2018



11:10 Towards a General Direct Product Testing Theorem

Let us sort in ascending order the elements of B based on the number of coordinates on
which they disagree with F ∗. For a parameter 0 ≤ p ≤ 1 we define the set B≥p as the set of
last (1− p) |B| elements of B (and similarly the set B≤p is the set of the first p |B| elements
of B). We denote by mp the number of conflicting coordinates of the p |B|-th element of B.

Let c = 3/40. We consider two cases based on mc,m1/2 and m1−c.

Case 1: m1−c > 2
ρ

m1/2 or m1/2 > 2
ρ

mc

For both the possibilities we have similar arguments, which is why they are clubbed under
one case, but will be handled separately for ease of presentation.

Case 1A: m1−c > 2
ρ

m1/2

The probability that an uniformly random S ∈ V is in B≥1−c is cβ. Now by Claim 5, we get
that

Pr[S′ ∈ B>1/2|S ∈ B≥1−c] < β/2 + λ

√
1
2c ,

so with probability at least 1− β/2− λ
√

1
2c if S ∈ B≥1−c then S′ ∈ B≤1/2 ∪ C.

Now, by the third property of (λ, ρ)-coordinate expander, the probability that |S′ ∩B(S)|
≤ ρ

2 |B(S)| is at most λ. Notice that the probability that |S′ ∩B(S)| ≤ m1/2 is at least the
probability that |S′ ∩B(S)| ≤ ρ

2 |B(S)| (because m1/2 <
ρ
2m1−c ≤ ρ

2 |B(S)|). Hence we have
that the probability that |S′ ∩B(S)| ≤ m1/2 is at most λ.

Overall, using union bound, conditioned on S ∈ B≥1−c, the probability that S′ ∈
B≤1/2 ∪ C and |S′ ∩B(S)| > m1/2 is at least 1− β/2− λ

√
1
2c − λ. But in such a case since

S′ ∈ B≤1/2 ∪ C we get |B(S′)| ≤ m1/2, so there exists at least one coordinate i ∈ S ∩ S′ on
which F (S′)i = aFi but F (S)i 6= aFi , so the test rejects. In total T rejects with probability at
least cβ

(
1− β/2− λ

√
1
2c − λ

)
≥ cβ

(
1/2− λ

(√
1
2c + 1

))
(where we used a trivial bound

that β ≤ 1). Notice that 1/2− λ
(√

1
2c + 1

)
> 0 holds for c = 3/40 whenever λ ≤ 0.13.

Case 1B: m1/2 ≥ 2
ρ

mc

In this case we would like to mimic the proof strategy of the previous case. That is we
would like to show that with non-zero constant probability a random neighbor in B≥1/2 is in
B≤c ∪ C. By an application of Claim 5, we get:

Pr[S′ ∈ B>c|S ∈ B≥1/2] < (1− c)β + λ
√

2− 2c,

so with probability at least 1− (1− c)β − λ
√

2− 2c if S ∈ B≥1/2 then S′ ∈ B≤c ∪ C.
Now, by the third property of (λ, ρ)-coordinate expander, the Pr[|S′ ∩B(S)| ≤ ρ

2 |B(S)|]
is at most λ. Notice that mc ≤ ρ

2m1/2 ≤ ρ
2 · |B(S)| and thus Pr[|S′ ∩B(S)| ≤ ρ

2 |B(S)|] ≥
Pr[|S′ ∩B(S)| ≤ mc]. Therefore we have Pr[|S′ ∩B(S)| ≤ mc] ≤ λ.

Overall, using union bound, conditioned on S ∈ B≥1/2, the probability that S′ ∈ B≤c ∪C
and |S′ ∩B(S)| > mc is at least 1 − (1 − c)β − λ

√
2− 2c − λ. But in such a case since

S′ ∈ B≤c ∪ C we get |B(S′)| ≤ mc, so there exists at least one coordinate i ∈ S ∩ S′ on
which F (S′)i = aFi but F (S)i 6= aFi , so the test rejects. In total T rejects with probability
at least β

2
(
1− (1− c)β − λ

√
2− 2c− λ

)
≥ β

2
(
c− λ

(√
2− 2c+ 1

))
(where we used a trivial

bound that β ≤ 1). Notice that
(
c− λ

(√
2− 2c+ 1

))
> 0 holds for c = 3/40 whenever

λ ≤ 0.03177.
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Case 2: m1−c ≤ 4
ρ2 mc

Define B(c,1−c) as the set B \ (B≤c ∪ B≥1−c). Observe that in B(c,1−c) the number of
conflicting coordinates is between mc and 4mc/ρ

2. Now we would like to consider a different
test T ′(G) that selects S, S′ according to G. If S /∈ B(c,1−c) then T ′ accepts. Otherwise,
it picks uniformly at random i0 ∈ B(S) and checks for consistency only on i0, namely: It
rejects iff i0 ∈ S′ and F (S)i0 6= F (S′)i0 . Clearly the rejection probability of T ′(G) is at most
the rejection probability of T (G). We conclude the proof by showing that T ′(G) rejects F
with probability Ω(β).

With probability (1− 2c)β the test T ′ selects S ∈ B(c,1−c) and we would like to analyze
the rejection probability conditioned on that. For this sake we bound the probability of the
following events:

E1 is the event where S′ ∈ B≤c ∪B≥1−c.
E2 is the event where i0 ∈ S′ and S′ /∈ B̃i0 where B̃i = {S ∈ B(c,1−c)|F (S)i 6= aFi }.

If the event E2 occurs but E1 does not, then it must be the case that F (S′)i0 = aFi0 . Hence
T ′ rejects. As a consequence Pr[T ′ rejects] ≥ (1 − 2c)β(Pr[E2|S ∈ B(c,1−c)] − Pr[E1|S ∈
B(c,1−c)]). Thus it suffices to show that (Pr[E2|S ∈ B(c,1−c)] − Pr[E1|S ∈ B(c,1−c)]) is a
positive constant bounded away from 0.

To bound the probability for the event E1 we use Claim 5: The probability of E1

conditioned on S ∈ B(c,1−c) is at most 2cβ + λ
√

2c
1−2c .

Since the graph G is a (λ, ρ)-coordinate expander then for each i ∈ S, we have that
Pr[i ∈ S′] ≥ ρ, in particular this is true for i0, hence: Pr[i0 ∈ S′] ≥ ρ.

Now we divide the event E2 into disjoint events depending on the value of i0 and bound
the rejection probability of T ′ conditioned on specific value of i0. Fix i ∈ [n] and assume
that T ′ selects S, S′ ∈ Vi and sets i0 = i (so S ∈ B̃i). We denote by βi the fraction |B̃i|

|Vi| .
Observe that βi ≤ 1/2, since otherwise the majority value would become the value of F (S)i,
but we have S ∈ B̃i.

Note, that under the assumption that T ′ selects i0 = i and S ∈ B̃i, sets S with few
conflicting coordinates are more likely to be chosen than those who have many of them.
However, since by our assumption the number of conflicting coordinates is between m∗ and
4
ρ2m

∗, then sets with m∗ conflicting coordinates are only 4/ρ2-times more probable than
those having 4

ρ2m
∗-conflicting coordinates. Denote by µ the distribution of picking S ∈ B̃i

assuming that T ′ selects i0 = i. By an application of Claim 5 we get:

Pr
S∼µ,S′

[S′ ∈ B̃i] ≤
∣∣B̃i∣∣
|Vi|

+ λ

√
4
ρ2 ≤

1
2 + 2λ/ρ

So we get that,

Pr[E2|S ∈ B(c,1−c)] =
(

1− Pr
S∼µ,S′

[S′ ∈ B̃i | i0 ∈ S′]
)
· Pr[i0 ∈ S′] ≥

ρ

2 − 2λ.

Summing up, we get:

Pr[T ′ rejects|S ∈ B(c,1−c)] ≥ Pr[E2|S ∈ B(c,1−c)]− Pr[E1|S ∈ B(c,1−c)]

≥ ρ

2 − 2λ−
(

2c+ λ

√
2c

1− 2c

)

≥ 1
4 − 2c− λ

(
2 +

√
2c

1− 2c

)
,

a constant bounded away from 0 for c = 3/40 whenever λ < 0.04. J
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In Appendix B, we consider the test graph J(n, k, k/2) and show a direct product theorem
when k is close to n/2.

5 Sliding Window Domain

In this section, we introduce the sliding window domain for which we show a direct product
theorem.

Construction. Let k, n ∈ N such that k ≤ n. Let A be a collection of n subsets of [n] of
Hamming weight k.

A = {{i, . . . , i+ k − 1} | i ∈ [n]},

where the addition is done9 modulo n.

Testability. The domain of our direct product test is A. The corresponding test is as
follows:

Test T :
Input: A function F : A → {0, 1}k.
Procedure: Pick uniformly at random S ∈ A. Then
pick uniformly at random S′ ∈ A such that S ∩ S′ 6= ∅.
Output: Accept if and only if F (S)|S∩S′ = F (S′)|S∩S′ .

The test graph GA of the above is given by the vertex set A and the edge set {(S, S′) |
S ∩ S′ 6= ∅}. The correctness of the above test is shown below. We would like to emphasize
that |A| = n and yet admits a direct product theorem.

I Theorem 9. Let ε ≥ 0 and F ∈ FA. If F passes T (GA) with probability 1− ε then F is
(1− 4ε)-close to dec(F ).

Proof. We will in fact prove a more general direct product testing result.

I Lemma 10. Let n ∈ N and G = (V,E) be a d-regular graph where V ⊆ P([n]), let ε ≥ 0,
and F ∈ FV . For every i ∈ [n], let the induced subgraph of Vi in G be a clique (with self
loops). Additionally, let c > 0 be a constant such that for every S ∈ V and every i ∈ S,
the probability that a uniformly random neighbor S′ of S in G contains i is at least c. If F
passes T (G) with probability 1− ε then F is (1− 2ε

c )-close to dec(F ).

Now we show that the above lemma gives the proof of the theorem. Let Ai = {S ∈ A |
i ∈ S}. Note that for every i ∈ [n], the induced subgraph of Ai in G is a clique (with self
loops) because any two subsets in Ai have i in their intersection and thus have non-empty
intersection. Also for every S ∈ A and every i ∈ S, the probability that a uniformly random
neighbor S′ of S in G contains i is at least 1/2. Thus, from Lemma 10 the theorem follows. J

We complete the proof of the above theorem by showing Lemma 10 below.

9 Strictly speaking, the addition is done modulo n and then the resulting number is incremented by one.
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Proof of Lemma 10. Let F ∗ := dec(F ) = DPV (aF ). Let B ⊆ V be defined as follows:

B = {S | F (S) 6= F ∗(S)}.

Let Ci ⊆ Vi be defined as follows:

Ci = {S ∈ Vi | F (S)i = aFi }.

By definition of aFi , it is clear that |Ci| ≥ |Vi|/2.
Since F passes T (G) with probability 1− ε this implies that the number of edges that

fail T (G) is at most ε · |V |d2 .
Fix S ∈ B. Fix i ∈ [n] (arbitrarily) such that F (S)i 6= F ∗(S)i. Now observe that

whenever S′ ∈ Ci, the test T (G) rejects the edge (S, S′) in G because F (S)i 6= aFi = F (S′)i.
This implies that there are at least |Ci| ≥ |Vi|/2 ≥ cd/2 many edges incident on S that fail
the test T (G). Therefore, there are in total at least |B| · cd/4 edges that fail the test. Recall
that the total number of rejected edges is at most ε · |V |d2 . Thus we have that |B|/|V | ≤ 2ε

c .
The proof is concluded by noting that the distance between F and F ∗ is exactly |B|/|V |. J

Note that Lemma 10 holds even when the induced subgraph of Vi in G is a clique without
self loops. In Appendix C, we provide a couple of direct product theorems on domains that
are known in literature as an immediate consequence of this lemma.

Lack of Global Expansion. Notice that GA has very bad edge-expansion/vertex-expansion
but is a very good local expander, i.e., the induced subgraph containing any particular
coordinate has good expansion (in fact is a clique). Lemma 10 guarantees that and thus A
admits a direct product theorem. Therefore, A demonstrates that direct product testing
does not require the test graph to be an expander (like the Johnson/Ramanujan graph) but
only to have certain local expansion properties.

Sub-linear Size Domains. We remark here that we could consider subsets Ã of A of size
smaller than n which still admit a direct product theorem. For example consider Ã as
follows:

Ã = {{ik/2, . . . , ik/2 + k − 1} | i ∈ [2n/k]},

and the test graph GÃ is given by the vertex set Ã and the edge set {(S, S′) | S ∩ S′ 6= ∅}.
It is easy to see that Ã admits a direct product theorem by applying Lemma 10. Again, we
emphasize that |Ã| = 2n/k and yet admits a direct product theorem.

Comparison with Dinur and Kaufman. One might wonder that if direct product testing
results can be established on linear sized direct product domains using simple constructions
such as the sliding window domain then, why did [6] work so hard and use extremely heavy
objects such as high dimensional expanders to obtain linear sized direct product domains.
This is because for applications to gap and hardness amplification, it is desirable that a
direct product domain also has distance amplification (defined below) and high dimensional
expanders have distance amplification whereas the sliding window domain does not.

I Definition 11 (Distance Amplification, [6]). A direct product domain V ⊆
([n]
k

)
is said to

have distance amplification if for every x, y ∈ {0, 1}n such that δ := ∆(x, y) < 1/k, we have
that ∆(DPV (x),DPV (y)) = Ω(kδ).
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11:14 Towards a General Direct Product Testing Theorem

Thus, the construction of the sliding window domain provides a conceptual clarification as
to why we need high dimensional expanders: we can obtain direct product testing from simple
constructions like the sliding window domain and we can obtain distance amplification from
known constructions of vertex expanders (see Appendix D); but to obtain both simultaneously,
[6] needed high dimensional expanders.
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distribution vector that describes µ. First observe that:

Pr
(u,v)

[v ∈ T | u ∼ µ] = 1
d
· (pµ)t ·A · 1T ,

where the probability is taken over u that is drawn according to µ and v is a uniformly
random neighbor of u. Note that 1V is an eigenvector of A corresponding to the largest
eigenvalue (in absolute value) of d. We decompose the vectors: pµ,1T as follows:

pµ = 1
|V |

1V + ~p and 1T = γ1V + ~t.

Note that γ = |T |
|V | and ~p,~t are both orthogonal to 1V and let β = |S|

|V | . In these notations:

1
d
· (pµ)t ·A · 1T = 1

d

(
1
|V |

1V + ~p

)t
·A · (γ1V + ~t)

= γ + 〈~pA,~t〉

≤ γ + λ

d
‖~p‖ ·

∥∥~t∥∥ ,
where in the last step we used the Cauchy-Schwarz inequality and the fact that ‖~pA‖ ≤ λ ‖~p‖.
Now since the value of each coordinate of pµ is upper bounded by c

|S| we get: ‖~p‖2 =

‖pµ‖2 − 1
|V |2 ‖1V ‖

2 ≤ c
|S| −

1
|V | , and

∥∥~t∥∥2 = (γ(1− γ)) |V |. So:

Pr
(u,v)

[v ∈ T | u ∼ µ] = 1
d
· (pµ)t ·A · 1T

≤ γ + λ

d
·

√(
c

|S|
− 1
|V |

)
γ(1− γ) |V |

≤ γ + λ

d
·

√
cγ |V |
|S|

= |T |
|V |

+ λ

d
·

√
c|T |
|S|

J

B Application of Theorem 8: Ω(n)-slice of the Hypercube

In this section, we consider the test graph J(n, k, k(0.5 + ε)), where ε is some small constant.
The domain of the direct product encoding is

([n]
k

)
. The pair (S, S′) is connected by an edge

if and only if: |S ∩ S′| = k/2(0.5 + ε). We show that:

I Claim 12. Let ε = 1/64. Let n ∈ N, let 1/2− ε ≤ c ≤ 1/2 be a constant and let k = c · n,
then the graph J(n, k, k · (1/2 + ε)) is (1/33, 1/2)-coordinate expander for large enough n.

Proof.
1. The proof of the second largest eigenvalue in absolute value was recently confirmed in [3]

and we use it below. Note that λ0 =
(

k
k/2+εk

)(
n−k

k/2−εk
)
, which is the degree of the graph.

Theorem 3.10 in [3] states that λ1 below is the second largest eigenvalue in absolute value
when

λ1 = −
(

1
0

)(
k

k/2 + εk

)(
n− k − 1

k/2 + εk − 1

)
+
(

1
1

)(
k − 1

k/2 + εk

)(
n− k

k/2 + εk

)
≤ λ0/33
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2. Fix i ∈ [n]. Then the graph Gi is isomorphic to J(n− 1, k − 1, k/2− 1 + εk). Therefore
by the first item λ(Gi) < λ. Clearly, for every value of i ∈ [n] and for each S ∈ Vi the
probability that i ∈ S′ equals 1/2 + ε.

3. We verify here the proof for t > 16. The case when t = 4, 8, 12, 16 can be routinely
calculated and verified.

Pr[|T ∩ S′| ≤ t/4] ≤ t

4 ·
(
t
t/4
)
·
(

k−t
k/2−t/4

)(
k
k/2
)

≤ t

4 ·
(
t
t/4
)
·
(

k−t
k/2−t/2

)(
k
k/2
)

≤ t

4 · (1.01)2H(1/4)t(1.01) 2k−t√
k − t

·
2
√
k/2

2k

≤ t

2 · (1.02)
√

k

k − t
· 2−.43t

< 1/33
Where in third line we used Stirling’s approximation that for all n ≥ 16 to derive:

2n

2
√
n/2
≤
(
n
n/2
)
≤ (1.01) 2n√

πn/2
and

(
n
εn

)
≤ (1.01)2H(ε)n. J

As a corollary we get that we test the direct product encoding when the domain V equals([n]
k

)
for values of k which are close to n/2. Recall that [9] established this result for all

k ≤ n/2.

C Simple Applications of Lemma 10

In this subsection, we consider two direct product domains, namely
( [n]
n/2
)
and

([n]
2
)
and prove

a direct product theorem for these domains when the test graph is a clique and a member of
Johnson graph family respectively.

C.1 n/2 slice of the Hamming cube
A natural two-query test on the n/2 slice of the Hamming cube is as follows:

Test T :
Input: A function F :

( [n]
n/2
)
→ {0, 1}n/2.

Procedure: Pick uniformly and independently at random S, S′ ∈( [n]
n/2
)
.

Output: Accept if and only if F (S)|S∩S′ = F (S′)|S∩S′ .

We now interpret the above test in the language established in Section 3. In the above
test, the domain V of the direct product is

( [n]
n/2
)
and the test graph G is a clique with self

loops. Therefore, for every i ∈ [n], the induced subgraph of Vi in G is a clique (with self
loops). And, for every S ∈ V and every i ∈ S, the probability that a uniformly random
neighbor S′ of S in G contains i is 1/2. Thus, from Lemma 10 we have that for any F ∈ FV ,
if F passes T (G) with probability 1− ε then F is (1− 4ε)-close to dec(F ).

C.2 J(n, 2, 1) of the Johnson Graph Family
For the domain

([n]
2
)
, we note that if we pick two elements from

([n]
2
)
uniformly and inde-

pendently at random then they have empty intersection with probability almost 1. Therefore,
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the same test as for the n/2 slice of the Hamming cube does not work here. Nonetheless,
there is still a natural two-query test for the domain

([n]
2
)
described as follows:

Test T :
Input: A function F :

([n]
2
)
→ {0, 1}2.

Procedure: Pick uniformly at random S ∈
([n]

2
)
. Then

pick uniformly at random S′ ∈
([n]

2
)
such that |S∩S′| =

1.
Output: Accept if and only if F (S)|S∩S′ = F (S′)|S∩S′ .

We now interpret the above test in the language established in Section 3. In the above
test, the domain V of the direct product is

([n]
2
)
and the test graph G is J(n, 2, 1). Note that

for every i ∈ [n], the induced subgraph of Vi in G is a clique (without self loops) because any
two distinct subsets in Vi have i in their intersection and thus have intersection size equal to
1. Also for every S ∈ V and every i ∈ S, the probability that a uniformly random neighbor
S′ of S in G contains i is 1/2. Thus, from Lemma 10 we have that for any F ∈ FV , if F
passes T (G) with probability 1− ε then F is (1− 4ε)-close to dec(F ).

D Linear Sized Domains having Distance Amplification

In this section, we show how to construct a collection of sets which have distance amplification.
To do so we rely on the existence of vertex expanders.

I Definition 13 (Vertex Expansion). Let G(V,E) be a d-regular graph. For every subset
S ⊆ V let ∂(S) = {u ∈ V \ S | ∃v ∈ S such that (u, v) ∈ E}. The vertex isoperimetric
constant h(G) is defined as follows:

h(G) = min
0≤|S|≤|V |/d

|∂(S)|
|S| · d

.

We say that G is a vertex expander if h(G) is a constant bounded away from 0.

I Theorem 14 (Folklore). For all d > 2, a random d-regular graph is a vertex expander with
high probability.

Given a d-regular graph G(V,E) (where n := |V |) which is a vertex expander with vertex
isoperimetric constant γ > 0, we show how to construct AG ⊆

([n]
d

)
of cardinality n such

that AG has distance amplification. We identify the vertices in V with [n] and construct AG
as follows:

AG = {∂({v}) | v ∈ V }.

I Claim 15. AG has distance amplification.

Proof. Fix distinct x, y ∈ {0, 1}n. Let δ := ∆(x, y) ≤ 1/d. Let R ⊆ [n] be the set of
coordinates on which x and y differ. Clearly, |R| ≤ n/d. The number of subsets in AG
that contain an element in R is at least γd|R|. Therefore we have ∆(DPAG

(x),DPAG
(y)) ≥

γδd. J
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