
Quasipolynomial Hitting Sets for Circuits with
Restricted Parse Trees

Ramprasad Saptharishi1

Tata Institute of Fundamental Research, Mumbai, India
ramprasad@tifr.res.in

Anamay Tengse2

Tata Institute of Fundamental Research, Mumbai, India
tengse.anamay@tifr.res.in

Abstract
We study the class of non-commutative Unambiguous circuits or Unique-Parse-Tree (UPT) cir-
cuits, and a related model of Few-Parse-Trees (FewPT) circuits (which were recently introduced
by Lagarde, Malod and Perifel [18] and Lagarde, Limaye and Srinivasan [17]) and give the fol-
lowing constructions:

An explicit hitting set of quasipolynomial size for UPT circuits,
An explicit hitting set of quasipolynomial size for FewPT circuits (circuits with constantly
many parse tree shapes),
An explicit hitting set of polynomial size for UPT circuits (of known parse tree shape), when
a parameter of preimage-width is bounded by a constant.

The above three results are extensions of the results of [2], [10] and [9] to the setting of UPT
circuits, and hence also generalize their results in the commutative world from read-once oblivious
algebraic branching programs (ROABPs) to UPT-set-multilinear circuits.

The main idea is to study shufflings of non-commutative polynomials, which can then be used
to prove suitable depth reduction results for UPT circuits and thereby allow a careful translation
of the ideas in [2], [10] and [9].

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory, The-
ory of computation → Complexity classes

Keywords and phrases Unambiguous Circuits, Read-once Oblivious ABPs, Polynomial Identity
Testing, Lower Bounds, Algebraic Circuit Complexity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2018.6

Related Version A full version of the paper is available at https://arxiv.org/abs/1709.
03068.

Acknowledgements We thank the organizers of the NMI Workshop on Arithmetic Complexity
2017 where we learned of the circuit classes that we study in this paper. We thank Nutan Limaye
and Srikanth Srinivasan for numerous discussions that eventually led to these results. We thank
Rohit Gurjar for pointing out a subtlety in a previous draft of this paper, and also thank Amir
Shpilka for inviting RS to Tel Aviv University (where this discussion took place). We also thank
the anonymous reviewers for their valuable suggestions.

1 Research supported by Ramanujan Fellowship of DST.
2 Supported by a fellowship of the DAE.

© Ramprasad Saptharishi and Anamay Tengse;
licensed under Creative Commons License CC-BY

38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2018).
Editors: Sumit Ganguly and Paritosh Pandya; Article No. 6; pp. 6:1–6:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/162456659?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:ramprasad@tifr.res.in
mailto:tengse.anamay@tifr.res.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.6
https://arxiv.org/abs/1709.03068
https://arxiv.org/abs/1709.03068
http://www.imsc.res.in/~meena/nmi17-wac/nmi-2017-arithmetic-complexity.html
http://www.imsc.res.in/~meena/nmi17-wac/nmi-2017-arithmetic-complexity.html
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2 Quasipolynomial Hitting Sets for Circuits with Restricted Parse Trees

1 Introduction

The field of algebraic complexity deals with classifying multivariate polynomials based on
their hardness. Typically, the complexity of a polynomial is measured by the size of the
smallest circuit computing it (an arithmetic circuit is a directed acyclic graph made up of
internal nodes that are labeled with + or × and leaves labelled with variables or constants
from the field; size of the circuit is the number of nodes). The central question in this field is
to construct an explicit family of polynomials ({Permn} is the top candidate) that requires
large arithmetic circuits to compute it. This is also called the “VP vs VNP” question (named
after Valiant [26]), and thought of as an algebraic analogue of the “P vs NP” question.

So far, the best lower bound we have for general arithmetic circuits computing an n-
variate degree d polynomial is a barely super-linear Ω(n log d) lower bound by Baur and
Strassen [6]. Recent research has focused on proving lower bounds for restricted classes of
circuits, either by bounding the depth of such circuits or by focusing on other syntactic
restrictions. One such syntactic restriction is to consider non-commutative circuits, where we
assume that the underlying variables x1, . . . , xn do not commute. In the non-commutative
model, there is an inherent order in which elements are multiplied and this adds restrictions
on the way monomials can be computed (xy 6= yx here and hence x2 + 2xy+ y2 6= (x+ y)2 =
x2 + xy + yx+ y2). It is therefore natural to expect that it should be easier to prove lower
bounds in this model.

Nisan [20] introduced the non-commutative model, specifically the non-commutative
algebraic branching programs (ABP). In his seminal paper, he showed exponential lower
bounds against non-commutative ABPs for the non-commutative versions of the determinant
and permanent polynomials (among others). In fact, using his technique, one could even
reconstruct the smallest non-commutative ABP given just oracle access to that polynomial
(cf. [16])! Although we have exponential lower bounds for non-commutative ABPs, we do
not have any non-trivial lower bounds for non-commutative circuits. Hrubeš, Wigderson and
Yehudayoff [12] presented an approach via sum-of-squares lower bounds but we do not have
any non-trivial lower bounds for the class of general non-commutative circuits.

Limaye, Malod and Srinivasan [19] extended Nisan’s lower bound to non-commutative
skew circuits, which are circuits where every multiplication gate has at most one child that is a
non-leaf. Lagarde, Malod and Perifel [18] initiated the study of non-commutative unambiguous
circuits, or Unique Parse Tree (UPT) circuits. These circuits and their generalizations are
the main models of study in this paper.

Arvind and Raja [5] also studied lower bounds for various subclasses of commutative
set-multilinear circuits. Some of the models they studied include analogues of UPT and
FewPT circuits. They proved lower bounds for UPT and FewPT set-multilinear circuits, and
also for other subclasses of set-multilinear circuits called narrow set-multilinear circuits and
interval set-multilinear circuits, the latter of which assumes the sum-of-squares conjecture of
Hrubeš, Wigderson and Yehudayoff [12].

1.1 The model of study
A parse tree of a circuit is obtained by starting at the root, and at every + gate choosing exactly
one child, and at every × gate choosing all its children (formally defined in Theorem 2.1).
Informally, a parse tree of a circuit is basically a certificate of computation of a monomial
in a circuit. Lagarde, Malod and Perifel [18] introduced a subclass of non-commutative
circuits called Unique Parse Tree (UPT) circuits or unambiguous circuits where all parse
trees of the circuit have the same shape (formally defined in Theorem 2.2). The class of

R. Saptharishi and A. Tengse 6:3

non-commutative UPT circuits subsumes the class of non-commutative ABPs as any ABP
can be expressed as a left-skew circuit. A related model of set-depth-∆ formulas was studied
by Agrawal, Saha and Saxena [3] that is a subclass of UPT circuits where the underlying
parse trees are extremely regular3.

Lagarde, Malod and Perifel [18] extended the techniques of Nisan [20] to give exponential
lower bounds for UPT circuits. Subsequently, Lagarde, Limaye and Srinivasan [17] extended
the lower bounds to the class of circuits with parse trees of not-too-many shapes (at most
2o(n) shapes).

1.2 Polynomial identity testing

A Polynomial Identity Test (PIT) is an algorithm that, given a circuit as input, checks if
the circuit is computing the zero polynomial or not. The standard Ore-DeMillo-Lipton-
Schwartz-Zippel lemma [22, 7, 24, 28] provides a simple randomized algorithm but the goal
is to construct an efficient deterministic PIT. A stronger test is what is called a black-box
PIT where we are only provided evaluation access to the circuit. Hence, a black-box PIT is
essentially equivalent to constructing a hitting set, i.e., a set of points (or matrices, in the
non-commutative case) H such that every non-zero polynomial from the class of interest
is guaranteed to evaluate to a nonzero value on some element a ∈ H. PITs that use the
structure of the circuit are called white-box PITs.

The task of constructing efficient PITs is intimately connected to the task of proving
lower bounds [11, 15, 1]. Once we have a lower bound for a class C, it is natural to ask
if we can also construct efficient PITs for that class. Raz and Shpilka [23] gave the first
deterministic polynomial time white-box PIT for the class of non-commutative ABPs. Forbes
and Shpilka [8] gave a quasipolynomial (nO(logn)) size hitting set for non-commutative ABPs.
This was achieved by studying a natural commutative analogue of non-commutative ABPs,
and this was the class of Read-Once Oblivious Algebraic Branching Programs (ROABPs)
where the variables are read in a “known order”.

The class of ROABPs is interesting in its own right owing to the connection with the
“RL vs L” question. In fact, much of the hitting set constructions for ROABPs has been
inspired by Nisan’s [21] pseudorandom generator for RL (which has seed length O(log2 n)).
As mentioned earlier, Forbes and Shpilka gave a hitting set of size nO(logn) for polynomial
sized ROABPs when the order in which variables are read was known. Agrawal, Gurjar,
Korwar and Saxena [2] presented a different hitting set for the class of commutative ROABPs
that did not need the knowledge of the order in which the variables were read. Subsequently,
Gurjar, Korwar, Saxena and Thierauf [10] studied polynomials that can be computed as a
sum of constantly many ROABPs (of possibly different orders) and presented a polynomial
time white-box PIT, and also a quasipolynomial time black-box PIT for this class.

Lagarde, Malod and Perifel [18], besides presenting lower bounds for non-commutative
UPT circuits, also gave a polynomial time white-box PIT for this class. This was extended by
Lagarde, Limaye and Srinivasan [17] to a white-box algorithm for non-commutative circuits
with constantly many parse tree shapes (analogous to the result of [10]). The question of
constructing black-box PITs was left open by them, and we answer this in our paper.

3 the formula is levelled, and all nodes at a level have the same fan-in

FSTTCS 2018

6:4 Quasipolynomial Hitting Sets for Circuits with Restricted Parse Trees

1.3 Our results
Polynomial Identity Testing
Our main results are hitting sets for the class of polynomials computed by UPT circuits and
related classes.

I Theorem 1.1 (Hitting sets for UPT circuits). There is an explicit hitting set Hd,n,s of
at most (snd)O(log d) size for the class of degree d n-variate homogeneous non-commutative
polynomials in F 〈x1, . . . , xn〉 that are computed by UPT circuits of size at most s.

This result builds on the technique of basis isolating weight assignments introduced by
[2] for constructing hitting sets for ROABPs. Furthermore, we can also extend the hitting
set to the class of non-commutative circuits that have few shapes (analogous to [10]’s hitting
set for sums of few ROABPs).

I Theorem 1.2 (Hitting sets for circuits with few parse tree shapes). There is an explicit hitting
set Hd,n,s,k of size at most (s2knd)O(log d) for the class of n-variate degree d homogeneous
non-commutative polynomials in F 〈x1, . . . , xn〉 that are computed by non-commutative circuits
of size at most s consisting of parse trees of at most k shapes.

Both the above theorems are fully black-box in the sense that it is not required to
know the underlying shape(s). For the case of non-commutative ABPs (and more generally,
ROABPs in a known order), Gurjar, Korwar and Saxena [9] presented a more efficient hitting
set when the width of the ABP is small. For UPT circuits, there is a natural notion of
preimage-width of a UPT circuit (formally defined in Theorem 2.3) that corresponds to the
notion of width of an ABP. We show an analogue of the hitting set of Gurjar, Korwar and
Saxena for the class of UPT circuits of small preimage-width if the underlying shape of the
parse trees is known.

I Theorem 1.3 (Hitting sets for known-shape low-width UPT circuits). Let Cn,d,T,w be the
class of n-variate degree d non-commutative polynomials that are computable by UPT circuits
of preimage-width at most w and underlying parse-tree shape as T . Over any field of zero
or large characteristic, there is an explicit hitting set Hn,d,T,w of size wO(log d) poly(nd) for
Cn,d,T,w.

These hitting sets also translate to the natural commutative analogues of UPT set-
multilinear circuits etc. (formally defined in Theorem 5.1).

Structural results
If f is a non-commutative polynomial of degree d and if σ ∈ Sd is a permutation on d letters,
we define the shuffling of f by σ (denoted by ∆σ(f)) as the natural operation of permuting
each word of f according to σ.

The three PIT statements stated above begin with the following depth reduction statement
about UPT circuits.

I Theorem 1.4 (Depth reduction for UPT circuits). Let f be an n-variate degree d polynomial
that is computable by a UPT circuit of preimage-width w. Then, there is some σ ∈ Sd such
that ∆σ(f) can be computed by a UPT circuit of O(log d) depth and preimage-width O(w2).

The above theorem implies that ∆σ(f) is computable by an ABP of quasipolynomial size.
We also show that this blow-up of quasipolynomial size is tight.

R. Saptharishi and A. Tengse 6:5

I Theorem 1.5 (Separating UPT circuits and ABPs, under shuffling). There is an explicit
n-variate degree d non-commutative polynomial f that is computable by UPT circuits of
preimage-width w = poly(n, d) such that for every σ ∈ Sd, the polynomial ∆σ(f) requires
non-commutative ABPs of size (nd)Ω(lognd) to compute it.

We also extend the lower bound of [18] to give a polynomial computed by a skew circuit
that requires exponential sized UPT circuits under any shuffling. Details can be found in the
full version.

1.4 Proof ideas
As mentioned, the starting point of all these results is the depth reduction. From a result
of Nisan [20], the palindrome polynomial Pald is known to require ABPs of size 2Ω(d) even
though it can be computed by a polynomial sized UPT circuit. Therefore, Pald cannot be
computed by a circuit of depth o(d/ log d). The key insight here is that even though Pald
cannot be computed by small depth non-commutative circuits, a shuffling of the palindrome
is ∑

w1,...,wd∈[n]

xw1xw1xw2xw2 · · ·xwdxwd =
d∏
i=1

(x1x1 + · · ·+ xnxn) ,

which is of course computable by an O(log d) depth UPT formula even. Hence we attempt
to reduce the depth under a suitable shuffling.

In order to establish the depth reduction (Theorem 1.4) we follow the strategy of Valiant,
Skyum, Berkowitz and Rackoff [27] and Allender, Jiao, Mahajan and Vinay [4] but make use
of the UPT structure (work with different frontier nodes and gate quotients) based on the
underlying shape of the parse trees. It was pointed out to us that the key ideas in our proof
of depth reduction were used by Arvind and Raja ([5]) for a commutative analogue of UPT
circuits.

This depth reduction immediately yields that there is a quasipolynomial sized ABP
computing a shuffling of f . We show that this blow-up is tight (Theorem 1.5) by essentially
following the proof of Hrubeš and Yehudayoff [13] to separate monotone ABPs and monotone
circuits in the commutative world.

In order to obtain hitting sets for UPT circuits, one could potentially just use the fact
that there is a quasipolynomial sized ABP computing a shuffling of f and just use the
known hitting sets for non-commutative ABPs [8] to obtain a hitting set of poly(ndw)O(log2 d).
However, we directly work with the UPT circuit and lift the technique of basis isolating
weight assignments of Agrawal, Gurjar, Korwar and Saxena [2] to this more general setting
to obtain Theorem 1.1. Theorem 1.3 is an easy generalization of the ideas of Gurjar, Korwar
and Saxena [9] once we observe that the depth reduction keeps the preimage-width small.

Theorem 1.2 essentially follows the same ideas of Gurjar, Korwar, Saxena and Thierauf [10].
The techniques of [10] are general enough that once a circuit class has a characterizing set of
dependencies and a basis isolating weight assignment, there is a natural method to lift the
techniques to work with the sum of few elements from this class. [10] use this for ROABPs
and we use this for UPT circuits.

To summarize, once we obtain the depth reduction, much of the results in this paper is
a careful translation of prior work of [13], [2], [10], [9] to the setting of UPT (or FewPT)
circuits. Consequently, this also generalizes the hitting sets of [2, 10, 9] from ROABPs to
UPT (or FewPT) set-multilinear circuits. Such a generalization was unknown prior to this
work.

FSTTCS 2018

https://arxiv.org/abs/1709.03068

6:6 Quasipolynomial Hitting Sets for Circuits with Restricted Parse Trees

2 Preliminaries

2.1 Notation
We use F 〈x1, . . . , xn〉 to refer to the ring of polynomials in non-commuting variables
{x1, . . . , xn}. For a parameter d, we use F 〈x1, . . . , xn〉deg=d to refer to the set of poly-
nomials in F 〈x1, . . . , xn〉 that are homogeneous and of degree d. Similarly, the set of
polynomials of degree at most d will be denoted by F 〈x1, . . . , xn〉deg≤d.
We use boldface letters x and y to denote sets of variables (the number of variables would
be clear from context). We shall also use [d] to refer to the set {1, 2, . . . , d}.
The paper will sometimes shift between the commutative and the non-commutative
domains. We use x whenever we are talking about non-commutative variables, and y, z
for variables in the commutative domain.

2.2 Basic definitions
UPT and FewPT circuits
I Definition 2.1 (Parse trees). A parse tree T of a circuit C is a tree obtained as follows:

the root of C is the root of T ,
if v ∈ T is a × gate, then all the children of v in C are the children of v in T in the same
order,
if v ∈ T is a + gate, then exactly one child of v in C is a child of v in T .

Gates are replicated to ensure that T is a tree. The value of the parse tree T , denoted by
[T], is just the product of the leaf labels in T .

Intuitively, a parse tree is a certificate that a monomial was produced in the computation
of C (though it could potentially be canceled by other parse trees computing the same
monomial). Therefore, if f is the polynomial computed by C, then

f =
∑

T is a parse tree
[T].

I Definition 2.2. (UPT and FewPT circuits) A circuit C computing a homogeneous poly-
nomial is said to be a Unique Parse Tree (UPT) circuit if all parse trees of C have the same
shape (that is, they are identical except perhaps for the gate names).

A circuit C that computes a homogeneous polynomial is said to be a FewPT(k) circuit if
the parse trees of C have at most k distinct shapes.

I Definition 2.3 (Preimage-width). Suppose C is a UPT circuit and say T is the shape of
the underlying parse trees. For a node τ ∈ T and a gate g ∈ C, we shall say that g is a
preimage of τ , denoted by g ∼ τ , if and only if there is some parse tree T ′ of C where the
gate g appears in position τ .

The preimage-width of a UPT circuit C is the largest size of preimages of any node τ ∈ T .
That is,

preimage-width(C) = max
τ∈T
|{g ∈ C : g ∼ τ}| .

It is clear that if C is a UPT circuit of preimage-width w computing a homogeneous
degree d polynomial, then the size of C is at most dw. The preimage-width of a UPT circuit
is a more useful measure to study than the size of the circuit. A simple concrete example
of this is that the standard conversion of homogeneous ABPs to homogeneous circuits in

R. Saptharishi and A. Tengse 6:7

fact yields UPT circuits. Furthermore, the width of the ABP is directly related to the
preimage-width of the resulting UPT circuit.

I Observation 2.4. If f is computable by a width w homogeneous algebraic branching
program, then f can be equivalently computed by UPT circuits of preimage-width w2.

×p-products
I Definition 2.5 (×p-products). For any d1, d2 ≥ 0 and p satisfying 0 ≤ p ≤ d2, define a
map ×p : F 〈x1, . . . , xn〉deg=d1

×F 〈x1, . . . , xn〉deg=d2
→ F 〈x1, . . . , xn〉deg=d1+d2

as the unique
bilinear that satisfies

xw1 · · ·xwd1
×p xv1 · · ·xvd2

= xv1 · · ·xvpxw1 · · ·xwd1
xvp+1 · · ·xvd2

.

For instance, the usual multiplication (or concatenation) operation is just ×0.

Shuffling of a polynomial
I Definition 2.6 (Shuffling of a non-commutative polynomial). Let Pd(x1, . . . , xn) be a ho-
mogeneous degree d non-commutative polynomial from F 〈x1, . . . , xn〉deg=d. Given any
permutation σ ∈ Sd over d-letters, we can define the shuffling of Pd via σ as the unique linear
map ∆σ : F 〈x1, . . . , xn〉deg=d → F 〈x1, . . . , xn〉deg=d that is obtained by linearly extending

∆σ(xw1 · · ·xwd) = xwσ(1) · · ·xwσ(d) .

2.3 Basic lemmas
Canonical UPT circuits, and types of gates
We shall say that a UPT circuit C with underlying parse tree shape T is canonical if for
every gate g ∈ C there is some node τ ∈ T such that every parse tree of C involving g has g
only in position τ . That is, every gate of the circuit has a unique type associated with it.

I Lemma 2.7 ([18]). Suppose if f ∈ F 〈x1, . . . , xn〉 is a homogeneous, degree d, non-
commutative polynomial computed by a non-commutative UPT circuit of preimage-width w.
Then, f can be equivalently computed by a canonical UPT circuit of preimage-width w as
well.

For a canonical UPT circuit where the parse trees have shape T , we shall say that g has
type τ if τ ∈ T is the unique node in T such that g ∼ τ .

Fix a τ ∈ T and let i be the number of leaves of the subtree rooted at τ , and let p be the
number of leaves to the left of τ in the inorder traversal of T . We shall then say that τ (or a
gate g ∈ C of type τ) has position-type (i, p). The following lemma allows us to write the
polynomial computed by the circuit as a small sum of ×p-products.

I Lemma 2.8 ([18]). Let f be a polynomial computed by a canonical UPT circuit C of
preimage-width w and say T is the shape of the underlying parse trees. If τ ∈ T with
position-type (i, p), then we can write f as

f(x) =
w∑
r=1

gr(x)×p hr(x),

where deg gr = i and deg hr = deg(f)− i for all r = 1, . . . , w.

FSTTCS 2018

6:8 Quasipolynomial Hitting Sets for Circuits with Restricted Parse Trees

3 Depth reduction for UPT circuits

This section shall address Theorem 1.4, which we recall below.

I Theorem 1.4 (Depth reduction for UPT circuits). Let f be an n-variate degree d polynomial
that is computable by a UPT circuit of preimage-width w. Then, there is some σ ∈ Sd such
that ∆σ(f) can be computed by a UPT circuit of O(log d) depth and preimage-width O(w2).

It was pointed out to us that a similar depth reduction was also proved by Arvind and
Raja [5]. They showed that a commutative UPT set-multilinear circuit can be depth-reduced
to a corresponding quasipolynomial sized O(log d) depth UPT set-multilinar formula via
Hyafil’s [14] depth reduction. Using techniques similar to [27], one can directly obtain a
polynomial sized UPT circuit of depth O(log d). Though this can be inferred from the results
in [5], we state and prove it in the form needed for the non-commutative setting.

3.1 UPT ⊗-circuits

To prove the depth reduction, we will move to an intermediate model of UPT ⊗-circuits.

I Definition 3.1 (UPT ⊗-circuits). The class of UPT ⊗-circuits is a generalization of
homogeneous non-commutative circuits in that the internal gates are + gates and ×p gates
instead of the usual + and × gates. We shall also say that the circuit is semi-unbounded if
all ×p gates have fan-in bounded by 2 (with no restriction on + gates).

A parse tree for an ⊗-circuit is similar to parse trees in a general non-commutative circuit
but the internal nodes of the parse tree are labelled by + and ×p (with the p specified at
each gate).

We shall say that an ⊗-circuit C is UPT if every parse tree is of the same shape, i.e. two
parse trees in C can differ only in the gate names.

To prove Theorem 1.4, we begin by depth reducing the circuit to get an ⊗-circuit computing
f of O(log d) depth. We then convert that to a UPT circuit computing a shuffling of f .

I Lemma 3.2 (Depth reducing to ⊗-circuits). Let f ∈ F 〈x1, . . . , xn〉 be a homogeneous degree
d polynomial that is computable by a UPT circuit of size s. Then, f can equivalently be
computed by a semi-unbounded UPT ⊗-circuit of size O(s2) and depth O(log d).

The rough sketch is to follow a similar process as in [27] by defining a suitable notion of
a gate quotient [u : v] for this setting. The set of frontier nodes is different from the previous
depth reduction results but Theorem 2.8 allows us to essentially follow the same strategy to
obtain the above depth-reduced UPT circuit.

Proof. Let C be the UPT circuit computing f(x1, . . . , xn) and say T is the shape of the
parse trees of C. For any node τ ∈ T , let Fτ be the set of all gates in C whose position in T
is τ . For two gates u, v ∈ C, we shall say that u � v if the place of u in T is an ancestor of
the place of v in T . We shall abuse notation and use u � τ to mean that u’s position in T is
an ancestor of τ ∈ T . For a gate u ∈ C, let [u] refer to the polynomial computed at that
gate. Similar to [27, 4], we define inductively the following notion of a gate quotient for any

R. Saptharishi and A. Tengse 6:9

pair of gates u, v ∈ C:

[u : v] =

0 if u � v,

1 if u = v,

[u1 : v] + [u2 : v] if u = u1 + u2,

[u1 : v] · [u2] if u = u1 × u2 and u1 � v,
[u1] · [u2 : v] if u = u1 × u2 and u2 � v.

I Claim 3.3. For any u ∈ C, if τ ∈ T such that u � τ , then

[u] =
∑
w∈C
w∼τ

[w]×p [u : w] (3.1)

for a suitable p depending just on τ and the type of u. Furthermore, suppose u, v ∈ C with v
being a multiplication gate and if τ ∈ T such that u � τ � v then

[u : v] =
∑
w∈C
w∼τ

[w : v]×p [u : w]. (3.2)

for a suitable p depending just on τ and the type of u and v.

We’ll defer this proof to later and first finish the proof of Theorem 3.2. With (3.1) and (3.2),
we can construct the ⊗-circuit C ′ for f just as in [27, 4]. The circuit C ′ would have gates
computing each [u] and [u : v] for nodes u, v ∈ C with u � v and v being a multiplication
gate. The wirings in C ′ is built by appropriate applications of (3.1) and (3.2).

Let u ∈ C and say deg[u] = du. The plan would be to set up the computation in C ′ so
that using an O(1) depth computation, we can compute [u] using gates whose degrees are
a constant factor smaller than du. Consider any parse tree rooted at u, and starting from
u follow the higher degree child. Let τ be the last point on the path with degree ≥ du/2
(degree of its children will be < du/2). Applying (3.1),

[u] =
∑
w∼τ

[w]×p [u : w]

=
∑
w∼τ

([w1]× [w2])×p [u : w] where w = w1 × w2.

Now observe that each of the terms on the RHS, [u : w], [w1], [w2] have degree at most du/2,
as we wanted. Furthermore, each coordinate of tuple ([u : w], [w1], [w2]) are all of the same
type as we run over all w ∼ τ .

We now need to show how to compute [u : v] for a pair u � v. Say deg[u] = du and
deg[v] = dv. For this, start with some parse tree rooted at u and walk down the path leading
to the place of v, and let τ be the last point on this path such that deg τ ≥ du+dv

2 . Using
(3.2),

[u : v] =
∑
w∼τ

[w : v]×p [u : w]

=
∑
w∼τ

([w1]× [w2 : v])×p [u : w]

where w = w1 × w2 and w2 � v (the other possibility is identical). By the choice of τ ,
we have deg[u : w],deg[w2 : v] ≤ du−dv

2 . However, the best bound we can give on deg[w1]

FSTTCS 2018

6:10 Quasipolynomial Hitting Sets for Circuits with Restricted Parse Trees

is du − dv. Nevertheless, we can apply (3.1) again on [w1] by finding a suitable τ ′ ≺ w1
satisfying deg τ ′ ≥ degw1

2 and write

[u : v] =
∑
w∼τ

([w1]× [w2 : v])×p [u : w]

=
∑
w∼τ

((∑
w′∼τ ′

[w′]×p′ [w1 : w′]
)
× [w2 : v]

)
×p [u : w]

=
∑
w∼τ

∑
w′∼τ ′

((([w′1]× [w′2])×p′ [w1 : w′])× [w2 : v])×p [u : w]

By the choice of τ and τ ′, each of the factors on the RHS have degree at most (du−dv)
2 as we

wanted. Furthermore, once again, all of the summands consists of similarly typed factors.
This naturally yields an ⊗-circuit computing f of depth O(log d) and size O(s2). Since

all summands consist of similarly typed factors, it follows that the circuit is UPT as well. J

Proof of Claim 3.3. The proof is by induction. As a base case, suppose u ∼ τ . Then, [u]
is just the sum of the values of parse trees. Some of the parse trees use u. Of all nodes
w ∈ C such that w ∼ τ , only [u : u] = 1 and every other [u : w] = 0. Therefore, clearly
[u] =

∑
w∼τ [w] · [u : w].

Now suppose u � τ and say we already know that [u′] =
∑
w∼τ [w]×p [u′ : w] for every

u � u′ � τ . If u = u1 + u2, then

[u] = [u1] + [u2]

=
(∑
w∼τ

[w]×p [u1 : w]
)

+
(∑
w∼τ

[w]×p [u2 : w]
)

=
∑
w∼τ

[w]×p ([u1 : w] + [u2 : w])

=
∑
w∼τ

[w]×p [u : w].

Similarly, suppose [u] = [u1] × [u2]. We have two cases depending on whether u1 � τ or
u2 � τ .

If u1 � τ , then

[u] = [u1]× [u2]

=
(∑
w∼τ

[w]×p [u1 : w]
)
× [u2]

=
∑
w∼τ

[w]×p ([u1 : w]× [u2])

=
∑
w∼τ

[w]×p [u : w].

If u2 � τ , then

[u] = [u1]× [u2]

= [u1]×
(∑
w∼τ

[w]×p [u2 : w]
)

=
∑
w∼τ

[w]×p+degu1 ([u1]× [u2 : w])

=
∑
w∼τ

[w]×p+d1 [u : w].

Essentially the same proof works for (3.2) as well. J

I Lemma 3.4 (⊗-circuits to circuits for a shuffling). Let f ∈ F 〈x1, . . . , xn〉 be a homogeneous
degree d polynomial that is computable by a UPT ⊗-circuit C ′ of size s. Consider the circuit
C ′′ obtained by replacing all ⊗ gates in C ′ by × gates. Then, C ′′ computes ∆σ(f) for some
σ ∈ Sd.

R. Saptharishi and A. Tengse 6:11

Proof. We shall prove this by induction. We need a slightly stronger inductive hypothesis
which is that the choice of permutation σ depends only on the shape of the parse trees in C ′.

Say u is the root of C ′. Suppose u is a + gate and say u = u1 + u2 + · · · + ur. If
u′ = u′1 + · · ·+ u′r is the resulting computation in C ′′ then by the inductive hypothesis, we
know that there is a σ ∈ Sd such that [u′i] = ∆σ([ui]). Therefore,

[u′] =
r∑
i=1

∆σ([ui]) = ∆σ([u]).

Suppose u = u1 ×p u2 with deg[u1] = d1 and deg[u2] = d2. Say u1 =
∑
α∈[n]d1 aαxα and∑

β∈[n]d2 bβxβ . Then, [u] =
∑
α,β aαbβ ·xα×pxβ . If u′, u′1 and u′2 is the resulting computation

in C ′′, then

[u′] = [u′1]× [u′2]
= ∆σ1([u1])×∆σ2([u2]) for some σ1 ∈ Sd1 , σ2 ∈ Sd2 ,

=
∑
α,β

aαbβ · (∆σ1(xα)×∆σ2(xβ))

=
∑
α,β

aαbβ ·∆σ(xα ×p xβ) for some σ ∈ Sd,

= ∆σ([u]) J

The following corollary is immediate from the fact that any circuit of depth d and size s
can be computed by a formula of size sO(d) and hence an ABP of size sO(d).

I Corollary 3.5. If f ∈ F 〈x1, . . . , xn〉 is a homogeneous degree d polynomial that is computable
by a UPT circuit of size s, then there is some σ ∈ Sd such that ∆σ(f) is computable by a
non-commutative algebraic branching program of size sO(log d).

Furthermore, the shuffling σ that permits this can also be efficiently computed given the
underlying shape for the circuit computing f .

3.2 UPT circuits of constant width
For a UPT circuit C, recall that we say that its preimage-width is w if for every node τ in
the shape T , there are at most w gates of C that have type τ . The following observation is
evident from the proof of the above depth reduction.

I Observation 3.6. If C is a UPT circuit of width w, then the depth reduced circuit C ′ as
obtained in Theorem 1.4 has width O(w2).

This observation would allow us to yield a more efficient hitting set for the class of small
width known shape UPT circuits. Details are present in the full version.

4 Separating ROABPs and UPT circuits

I Theorem 1.5 (Separating UPT circuits and ABPs, under shuffling). There is an explicit
n-variate degree d non-commutative polynomial f that is computable by UPT circuits of
preimage-width w = poly(n, d) such that for every σ ∈ Sd, the polynomial ∆σ(f) requires
non-commutative ABPs of size (nd)Ω(lognd) to compute it.

The polynomial and the proof technique described here were introduced by Hrubeš and
Yehudayoff [13] to separate monotone circuits and monotone ABPs in the commutative
regime. The polynomial used here is a non-commutative analogue of the polynomial used by
[13]. Much of the proof is the argument of [13] tailored to the non-commutative setting.

FSTTCS 2018

https://arxiv.org/abs/1709.03068

6:12 Quasipolynomial Hitting Sets for Circuits with Restricted Parse Trees

4.1 The polynomial
Let Td denote the complete binary tree of depth d (with 2d leaves) and let D = 2d+1 − 1
refer to the number of nodes in Td. We shall say that a colouring γ : Td → Zm is legal if for
every node u ∈ T , if v and w are the children of u then γ(u) = γ(v) + γ(w) mod m.

Let v1, . . . , vD be the vertices of Td listed in an in-order manner (left-subtree listed
inductively, then the root, and then the right-subtree listed inductively). We now define the
non-commutative polynomial Pd(x1, . . . , xm) ∈ F 〈x1, . . . , xm〉 of degree D = 2d+1 − 1 as

Pd(x1, . . . , xm) =
∑

γ∈[m]D
γ is legal

xγ(v1)xγ(v2) · · ·xγ(vD). (4.1)

I Lemma 4.1 (Upper bound). For every m, d > 0, the polynomial Pd(y1, . . . , ym) can be
computed by a non-commutative UPT circuit of size O(m2d).

(Refer to the full version for a proof.)

I Theorem 4.2 (Lower bound). For every permutation σ ∈ SD, any non-commutative ABP
computing the polynomial ∆σ(Pd) has width mΩ(d).

Hence for d = logm, we have that Pd(x1, . . . , xm) is computable by a UPT circuit of size
O(m2 logm) but for every σ ∈ SD the above theorem tells us that ∆σ(Pd) requires ABPs of
width mΩ(logm) to compute it. The lower bound follows on exactly same lines as the [13]. A
proof is present in the full version.

5 Hitting sets for non-commutative models

Commutative brethren of non-commutative models
This reduction to an appropriate commutative case was used by Forbes and Shpilka [8] to
reduce constructing hitting sets for non-commutative ABPs to hitting sets for commutative
ROABPs (more precisely, to set-multilinear ABPs). They studied the image of the non-
commutative polynomial under the map Ψ : F 〈x1, . . . , xn〉deg=d → F[y1,1, . . . , yd,n] which is
the unique F-linear map given by Ψ : xw1 · · ·xwd 7→ y1,w1 · · · yd,wd .

For the model of non-commutative UPT circuits, the appropriate commutative model is
a restriction of set-multilinear circuits that we call UPT set-multilinear (UPT-SML) circuits.

I Definition 5.1 (Set-multilinear circuits). Let y = y1t· · ·tyd be a partition of the variables.
A circuit C computing a polynomial f ∈ F[y] is said to be a set-multilinear circuit with
respect to the above partition if:

each gate g ∈ C is labelled by a subset Sg ⊆ [d] and g computes a polynomial over
variables

⋃
i∈Sg yi where every monomial of [g] is divisible by exactly one variable in yi

for each i ∈ Sg,
if g is a + gate, then the subset that labels g also labels each of its children,
if g is a × gate with g1 and g2 being its children, then the subsets Sg1 and Sg2 labelling
g1 and g2 respectively is a partition of Sg, i.e. Sg = Sg1 t Sg2 .

We shall say the circuit C is UPT set-multilinear if every parse tree of C is of the same
shape and identically labelled. That is, if g and g′ are × gates labelled by a set S ⊆ [d], and
if g = g1 × g2 with S1 and S2 labelling g1 and g2, then the children of g′ are also labelled by
S1 and S2 respectively.

We shall say the set-multilinear circuit C is FewPT(k) set-multilinear if the circuit consists
of parse trees of at most k different shapes.

https://arxiv.org/abs/1709.03068
https://arxiv.org/abs/1709.03068

R. Saptharishi and A. Tengse 6:13

A natural generalization that will be useful later is a multi-output UPT set-multilinear circuit,
which is a UPT set-multilinear circuit that potentially has multiple output gates, which are
all labelled with the same subset.

Forbes and Shpilka [8] showed that constructing hitting sets for these commutative models
suffices for the non-commutative models by a simple reduction (details in the full version).
We shall therefore focus on these commutative models for the hitting set constructions. And
since we have already seen that such circuits can be depth reduced4 to O(log d) depth, it
suffices to construct a hitting set for O(log d)-depth UPT and FewPT set-multilinear circuits.

5.1 Hitting sets for UPT set-multilinear circuits
I Theorem 5.2 (Hitting sets for UPT set-multilinear circuits). Let C be the class of n-variate
degree d set-multilinear polynomials (with respect to y = y1 t · · · tyd) that are computable by
UPT set-multlinear circuits of preimage-width w and depth r. Then, for M =

((
w
2
)
n2d+ 1

)2,
the set

H =
{

(b11, . . . , bdn) : p ∈ [M]r , ak ∈ A , bij =
r+1∏
k=1

a2(i−1)n+(j−1) mod pi
k

}

is a hitting set for C of size poly(ndw)r.

The proof of this theorem is obtained by constructing what is called a basis isolating
weight assignment for polynomials simultaneously computed by a multi-output UPT-SML
circuit, heavily borrowing from the ideas in [2]. The details of the hitting set construction
are present in the full version.

5.2 Poly-sized hitting sets for constant width UPT circuits
I Theorem 1.3 (Hitting sets for known-shape low-width UPT circuits). Let Cn,d,T,w be the
class of n-variate degree d non-commutative polynomials that are computable by UPT circuits
of preimage-width at most w and underlying parse-tree shape as T . Over any field of zero
or large characteristic, there is an explicit hitting set Hn,d,T,w of size wO(log d) poly(nd) for
Cn,d,T,w.

This is an easy extension of the ideas from [9], a proof can be found in the full version.

6 FewPT circuits

In this section we describe the black-box identity test for FewPT(k) circuits. The following
lemma from [17] shows that this class is equivalent to polynomials computed by sum of k
UPT circuits (of possibly different shapes).

6.1 Preliminaries
I Lemma 6.1 ([17], Lemma 16). Let f(x) be a polynomial computed by FewPT(k) circuit
of preimage-width w. Then f can be equivalently computed by a sum of k UPT circuits of
preimage-width w each.

4 the shuffling just reorders the partition of the set-multilinear circuit

FSTTCS 2018

https://arxiv.org/abs/1709.03068
https://arxiv.org/abs/1709.03068
https://arxiv.org/abs/1709.03068

6:14 Quasipolynomial Hitting Sets for Circuits with Restricted Parse Trees

Like in [17], we will refer to this class by Σk -UPT. We shall further qualify this notation
to use Σk -UPT(w) to denote the class of circuits that is a sum of k UPT circuits of
preimage-width w.

From this lemma, we can focus on constructing hitting sets for Σk -UPT-SML circuits.
The proof largely follows the ideas of Gurjar, Korwar, Saxena and Thierauf [10]5.

Notation
Let y = y1t· · ·tyd be a partition of the variables and let S = {s1, . . . , sp} be a subset of [d].
Define the set of variables yS = ys1 ∪ · · · ∪ysp and the set of monomials yS = ys1 ×· · ·×ysp .
Also, define y−S = y \ yS and y−S = y[d]\S .

IDefinition 6.2 (Coefficient operator). Let f =
∑
m∈y[d] αmm be a set-multilinear polynomial

of degree d, for S ⊆ [d] and a monomial m ∈ yS , define coeffm : F [y] → F [y−S] to be as
follows.

coeffm(f) =
∑

m′∈y−S
α(m·m′)m

′

where α(m·m′) is the coefficient of mm′ in f .

I Lemma 6.3. Let y = y1 t . . . t yd be a partition and f(y) be a set-multilinear polynomial
(with respect to the above partition) computed by a UPT-SML circuit of preimage-width w
and underlying parse-tree shape T . Suppose g(y) is another set-multilinear polynomial (under
the same partition) that cannot be computed by a UPT-SML circuit of preimage-width w
with the same shape T .

Then, there exists S ⊆ [d] and R ∈ F[yS]1×w′ , and P,Q ∈ F[y−S]w′×1 satisfying f = RP ,
g = RQ with w′ ≤ w2 such that:

For each i ∈ [w′], there is a monomial mi ∈ yS such that the i-th element of P and Q is
coeffmi(f) and coeffmi(g) respectively,
there is a vector Γ ∈ F1×w′ of support size at most w + 1 such that ΓP = 0 and ΓQ 6= 0,
the coefficient space of R is full-rank, i.e. if we interpret R as a matrix over F by
listing each of its w′ entries as a column vector of coefficients, then this matrix has full
column-rank.
the vector of polynomials R is simultaneously computable by a UPT-SML circuit of
preimage-width at most w′.

This lemma is a fairly natural and straightforward generalization of [10, Lemma 4.5] and
a proof of this is provided in the full version.

I Lemma 6.4. Suppose f(y) is a non-zero polynomial computed by a Σk -UPT-SML(w)
circuit. Suppose wt : y→Mr is a weight assignment that satisfies the following properties:

wt is a BIWA for spaces of polynomials simultaneously computed by UPT-SML circuits
of preimage-width at most w(w + 1),
For any g in Σk−1 -UPT-SML(w(w + 1)), the polynomial g(y + twt) ∈ F(t)[y] has a
monomial with non-zero coefficient that depends on at most ` distinct variables in y.

5 [10] constructed hitting sets for sums of ROABPs and we use similar techniques for sums of UPT circuits.
Roughly speaking, if we have a class C that has a characterizing set of dependencies for which we know
how to construct BIWAs, then we can also construct hitting sets for ΣkC.

https://arxiv.org/abs/1709.03068

R. Saptharishi and A. Tengse 6:15

Then, the polynomial f(y + twt) has a monomial, depending on at most log(w(w + 1)) + `

distinct variables in y, with a non-zero coefficient.

This is essentially a restatement of [10, Lemma 4.6, Lemma 4.8] and follows from their
proof. Unravelling the recursion, we get the following corollary.

I Corollary 6.5. Let f(y) be a non-zero polynomial that can computed by a Σk -UPT-SML(w)
circuit. Suppose wt : y → Mr is a BIWA for the class of polynomials simultaneously
computed by UPT-SML circuits of preimage-width at most w2O(k) . Then, the polynomial
f(y + twt) ∈ F(t)[y] has a monomial with a non-zero coefficient that depends on at most
2O(k) logw variables in y.

Once we are guaranteed to retain a monomial of small-support, we can construct a hitting
set by enumerating over all possible supports and applying the Schwartz-Zippel lemma
[22, 7, 24, 28] (or apply standard generators such as the Shpilka-Volkovich generator [25]).
This completes the proof of Theorem 1.2, which we restate below for convenience.

I Theorem 1.2 (Hitting sets for circuits with few parse tree shapes). There is an explicit hitting
set Hd,n,s,k of size at most (s2knd)O(log d) for the class of n-variate degree d homogeneous
non-commutative polynomials in F 〈x1, . . . , xn〉 that are computed by non-commutative circuits
of size at most s consisting of parse trees of at most k shapes.

7 Open problems

An interesting open problem (at least to us) is whether we can give non-trivial hitting sets
for the class of non-commutative skew circuits. Lagarde, Limaye and Srinivasan [17] provide
a white-box PIT in some restricted settings when the skew circuits are somewhat closer to
UPT (with some restriction on what sort of parse trees they can have) but removing this
restriction would be a great step forward.

Another issue is that the current construction of hitting sets for FewPT circuits (which
build on [10]) incurs quasipolynomial losses at two different places. The first is in the
construction of the basis isolating weight assignment (BIWA), and we only know to construct
that using quasipolynomially large weights. The other is in a brute-force enumeration of all
monomials of support O(log s). As a result, even if at a later date we have a construction of a
BIWA with polynomially large weights, this proof would still only yield a quasipolynomially
large hitting set for FewPT circuits. It would be interesting to see if this brute-force
enumeration could be circumvented.

References
1 Manindra Agrawal. Proving Lower Bounds Via Pseudo-random Generators. In Proceedings

of the 25th International Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2005), pages 92–105, 2005. doi:10.1007/11590156_6.

2 Manindra Agrawal, Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Hitting-Sets for RO-
ABP and Sum of Set-Multilinear Circuits. SIAM Journal of Computing, 44(3):669–697,
2015. doi:10.1137/140975103.

3 Manindra Agrawal, Chandan Saha, and Nitin Saxena. Quasi-polynomial hitting-set for
set-depth-∆ formulas. In Proceedings of the 45th Annual ACM Symposium on Theory of
Computing (STOC 2013), pages 321–330, 2013. eccc:TR12-113. doi:10.1145/2488608.
2488649.

FSTTCS 2018

http://dx.doi.org/10.1007/11590156_6
http://dx.doi.org/10.1137/140975103
http://eccc.hpi-web.de/report/2012/113/
http://dx.doi.org/10.1145/2488608.2488649
http://dx.doi.org/10.1145/2488608.2488649

6:16 Quasipolynomial Hitting Sets for Circuits with Restricted Parse Trees

4 Eric Allender, Jia Jiao, Meena Mahajan, and V. Vinay. Non-Commutative Arithmetic
Circuits: Depth Reduction and Size Lower Bounds. Theoretical Computer Science, 209(1-
2):47–86, 1998. doi:10.1016/S0304-3975(97)00227-2.

5 Vikraman Arvind and S. Raja. Some Lower Bound Results for Set-Multilinear Arithmetic
Computations. Chicago Journal of Theoretical Computer Science, 2016. URL: http://
cjtcs.cs.uchicago.edu/articles/2016/6/contents.html.

6 Walter Baur and Volker Strassen. The Complexity of Partial Derivatives. Theoretical
Computer Science, 22:317–330, 1983. doi:10.1016/0304-3975(83)90110-X.

7 Richard A. DeMillo and Richard J. Lipton. A Probabilistic Remark on Algebraic Program
Testing. Information Processing Letters, 7(4):193–195, 1978. doi:10.1016/0020-0190(78)
90067-4.

8 Michael A. Forbes and Amir Shpilka. Quasipolynomial-Time Identity Testing of Non-
commutative and Read-Once Oblivious Algebraic Branching Programs. In Proceedings
of the 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2013),
pages 243–252, 2013. Full version at arXiv:1209.2408. doi:10.1109/FOCS.2013.34.

9 Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Identity Testing for Constant-Width, and
Commutative, Read-Once Oblivious ABPs. In Proceedings of the 31st Annual Computa-
tional Complexity Conference (CCC 2016), pages 29:1–29:16, 2016. arXiv:1601.08031.
doi:10.4230/LIPIcs.CCC.2016.29.

10 Rohit Gurjar, Arpita Korwar, Nitin Saxena, and Thomas Thierauf. Deterministic Identity
Testing for Sum of Read-once Oblivious Arithmetic Branching Programs. In Proceedings of
the 30th Annual Computational Complexity Conference (CCC 2015), pages 323–346, 2015.
arXiv:1411.7341. doi:10.4230/LIPIcs.CCC.2015.323.

11 Joos Heintz and Claus-Peter Schnorr. Testing Polynomials which Are Easy to Compute
(Extended Abstract). In Proceedings of the 12th Annual ACM Symposium on Theory of
Computing (STOC 1980), pages 262–272, 1980. doi:10.1145/800141.804674.

12 Pavel Hrubes, Avi Wigderson, and Amir Yehudayoff. Non-commutative circuits and the
sum-of-squares problem. In Proceedings of the 42nd Annual ACM Symposium on Theory
of Computing (STOC 2010), pages 667–676, 2010. doi:10.1145/1806689.1806781.

13 Pavel Hrubeš and Amir Yehudayoff. On Isoperimetric Profiles and Computational Complex-
ity. In Proceedings of the 43rd International Colloquium on Automata, Languages and Pro-
gramming (ICALP 2016), pages 89:1–89:12, 2016. eccc:TR15-164. doi:10.4230/LIPIcs.
ICALP.2016.89.

14 Laurent Hyafil. On the Parallel Evaluation of Multivariate Polynomials. SIAM Journal of
Computing, 8(2):120–123, 1979. Preliminary version in the 10th Annual ACM Symposium
on Theory of Computing (STOC 1978). doi:10.1137/0208010.

15 Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests
means proving circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004. Pre-
liminary version in the 35th Annual ACM Symposium on Theory of Computing (STOC
2003). doi:10.1007/s00037-004-0182-6.

16 Adam R. Klivans and Amir Shpilka. Learning Restricted Models of Arithmetic Circuits.
Theory of Computing, 2(10):185–206, 2006. Preliminary version in the 16th Annual Confer-
ence on Computational Learning Theory (COLT 2003). doi:10.4086/toc.2006.v002a010.

17 Guillaume Lagarde, Nutan Limaye, and Srikanth Srinivasan. Lower Bounds and PIT for
Non-Commutative Arithmetic circuits with Restricted Parse Trees. Electronic Colloquium
on Computational Complexity (ECCC), 24:77, 2017. eccc:TR17-077. URL: https://eccc.
weizmann.ac.il/report/2017/077.

18 Guillaume Lagarde, Guillaume Malod, and Sylvain Perifel. Non-commutative computa-
tions: lower bounds and polynomial identity testing. Electronic Colloquium on Computa-

http://dx.doi.org/10.1016/S0304-3975(97)00227-2
http://cjtcs.cs.uchicago.edu/articles/2016/6/contents.html
http://cjtcs.cs.uchicago.edu/articles/2016/6/contents.html
http://dx.doi.org/10.1016/0304-3975(83)90110-X
http://dx.doi.org/10.1016/0020-0190(78)90067-4
http://dx.doi.org/10.1016/0020-0190(78)90067-4
http://arxiv.org/abs/1209.2408
http://dx.doi.org/10.1109/FOCS.2013.34
http://arxiv.org/abs/1601.08031
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.29
http://arxiv.org/abs/1411.7341
http://dx.doi.org/10.4230/LIPIcs.CCC.2015.323
http://dx.doi.org/10.1145/800141.804674
http://dx.doi.org/10.1145/1806689.1806781
http://eccc.hpi-web.de/report/2015/164/
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.89
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.89
http://dx.doi.org/10.1137/0208010
http://dx.doi.org/10.1007/s00037-004-0182-6
http://dx.doi.org/10.4086/toc.2006.v002a010
http://eccc.hpi-web.de/report/2017/077/
https://eccc.weizmann.ac.il/report/2017/077
https://eccc.weizmann.ac.il/report/2017/077

R. Saptharishi and A. Tengse 6:17

tional Complexity (ECCC), 23:94, 2016. URL: http://eccc.hpi-web.de/report/2016/
094.

19 Nutan Limaye, Guillaume Malod, and Srikanth Srinivasan. Lower Bounds for Non-
Commutative Skew Circuits. Theory of Computing, 12(1):1–38, 2016. eccc:TR15-22.
doi:10.4086/toc.2016.v012a012.

20 Noam Nisan. Lower bounds for non-commutative computation. In Proceedings of the 23rd
Annual ACM Symposium on Theory of Computing (STOC 1991), pages 410–418, 1991.
Available on citeseer:10.1.1.17.5067. doi:10.1145/103418.103462.

21 Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992. doi:10.1007/BF01305237.

22 Øystein Ore. Über höhere kongruenzen. Norsk Mat. Forenings Skrifter, 1(7):15, 1922.
23 Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-commutative

models. Computational Complexity, 14(1):1–19, 2005. Preliminary version in the 19th
Annual IEEE Conference on Computational Complexity (CCC 2004). doi:10.1007/
s00037-005-0188-8.

24 Jacob T. Schwartz. Fast Probabilistic Algorithms for Verification of Polynomial Identities.
Journal of the ACM, 27(4):701–717, 1980. doi:10.1145/322217.322225.

25 Amir Shpilka and Ilya Volkovich. Read-once polynomial identity testing. Computational
Complexity, 24(3):477–532, 2015. Preliminary version in the 40th Annual ACM Symposium
on Theory of Computing (STOC 2008). doi:10.1007/s00037-015-0105-8.

26 Leslie G. Valiant. Completeness Classes in Algebra. In Proceedings of the 11th Annual
ACM Symposium on Theory of Computing (STOC 1979), pages 249–261, 1979. doi:10.
1145/800135.804419.

27 Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff. Fast Parallel Compu-
tation of Polynomials Using Few Processors. SIAM Journal of Computing, 12(4):641–644,
1983. Preliminary version in the 6th Internationl Symposium on the Mathematical Found-
ations of Computer Science (MFCS 1981). doi:10.1137/0212043.

28 Richard Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and Algeb-
raic Computation, EUROSAM ’79, An International Symposiumon Symbolic and Algebraic
Computation, volume 72 of Lecture Notes in Computer Science, pages 216–226. Springer,
1979. doi:10.1007/3-540-09519-5_73.

A Relative computational power of restricted parse tree models

In this section we discuss the relative computational power of the models studied in the
paper and their algebraic branching program counterparts.

We begin by recalling that Lagarde, Malod and Perifel [18] show that the computational
power of non-commutative UPT circuits lies strictly between that of ABPs and circuits. In
other words their work refines the strict separation between ABPs and circuits given by the
seminal work of Nisan [20]. Each of these results use a generalization of the notion of partial
derivative matrix which was first introduced by Nisan. We skip defining the generalized
partial derivative matrix formally for brevity. A formal definition can be found in the proof
of Theorem 1.5 in the full version. The following statements will help in understanding the
rest of this section.

Nisan [20] showed that for any homogeneous non-commutative polynomial f the width of
a (homogeneous) ABP computing it, in the layer i, is exactly equal to the rank of the
partial derivative matrix of f for degree i.
Lagarde et al. [18] show that in the smallest UPT circuit of shape T computing a
polynomial f , the number of gates of a type τ ∈ T is equal to the rank of the generalized
partial derivative matrix for the type τ .

FSTTCS 2018

http://eccc.hpi-web.de/report/2016/094
http://eccc.hpi-web.de/report/2016/094
http://eccc.hpi-web.de/report/2015/22/
http://dx.doi.org/10.4086/toc.2016.v012a012
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.5067
http://dx.doi.org/10.1145/103418.103462
http://dx.doi.org/10.1007/BF01305237
http://dx.doi.org/10.1007/s00037-005-0188-8
http://dx.doi.org/10.1007/s00037-005-0188-8
http://dx.doi.org/10.1145/322217.322225
http://dx.doi.org/10.1007/s00037-015-0105-8
http://dx.doi.org/10.1145/800135.804419
http://dx.doi.org/10.1145/800135.804419
http://dx.doi.org/10.1137/0212043
http://dx.doi.org/10.1007/3-540-09519-5_73
https://arxiv.org/abs/1709.03068

6:18 Quasipolynomial Hitting Sets for Circuits with Restricted Parse Trees

Thus, the ranks of the appropriate generalized partial derivative matrices for f characterize
the ABP complexity and the UPT complexity of f . As discussed in section 1.3, we have
strict separations between ABPs, UPT circuits and general circuits, even under shufflings.
We now provide an informal discussion about constant width (or preimage-width) models for
the sake of completeness.

A.1 Constant width models
For ease of exposition, we will use the term width to refer to both the width of an ABP and
the preimage-width of a UPT circuit. The intended meaning will be clear from the context.

We can obtain a strict separation between constant width ABPs and constant width UPT
circuits using the proof of Theorem 1.5. This is done by working with a constant variate
version of the polynomial described in the proof. We skip the details to avoid repeating the
proof. A more interesting comparison is that of ABPs of unrestricted (poly(n)) width and
constant width UPT circuits, which we discuss now.

A.1.1 ABPs vs constant width UPT circuits
Let fn be the following non-commutative variant of the elementary symmetric polynomial
on n-variables of degree d = n/2.

fn :=
∑

1≤i1<···<id≤n
xi1xi2 · · ·xid

Note that the generalized partial derivative matrix of fn for any interval of positions I ⊂ [d]
will have rank ≥ n− d = Ω(n). Moreover, any shuffling of fn has the same property, since
the rank does not depend on how we “order” the indices in [n]. Hence, any UPT circuit
computing fn or even a shuffling of fn, requires poly(n) width. However, it is easy to see
that fn has a poly(n) sized ABP.

I Fact A.1. (Informal) There is a polynomial fn that is computable by a poly(n) sized ABP,
but any shuffling of fn requires UPT circuits of width Ω(n).

Consider the bivariate palindrome polynomial of degree 2n, for a growing parameter n.

Pn(x1, x2) =
∑

(i1,...,in)∈[2]n
(xi1xi2 · · ·xin) · (xin · · ·xi2xi1)

It is easy to verify that the rank of the partial derivative matrix of Pn(x1, x2) for degree n, is
exactly 2n. Also note that the polynomial has a UPT circuit of constant width. However, as
remarked before in the paper, there is a shuffling of the palindrome polynomial that makes it
simple for ABPs. Therefore we get the following fact, when shufflings are not allowed.

I Fact A.2. (Informal) The classes of constant width UPT circuits and ABPs are incom-
parable.

Let us now look at the case when shufflings are allowed.

Say fn(x) is an n-variate homogeneous polynomial of degree poly(n). If f has a UPT circuit
C of width w, then Theorem 1.4 gives us that a shuffling of fn, say f ′n, has a UPT circuit C ′
of depth O(logn) and width O(w2). Let T be the shape of C ′ and let g ∈ C ′ be a gate with
type τ ∈ T . Note that any path in C ′, from g to the root of C ′, goes through O(logn) gates,

R. Saptharishi and A. Tengse 6:19

each of which is one out of the O(w2) gates of its type. Therefore even a trivial conversion
of C ′ to a formula replicates any gate g ∈ C ′ at most wO(logn) times. We therefore have the
following.

I Fact A.3. (Informal) If fn(x) is computable by a constant width UPT circuit of size
poly(n), then a shuffling of fn is computable by an ABP of size poly(n).

FSTTCS 2018

	Introduction
	The model of study
	Polynomial identity testing
	Our results
	Proof ideas

	Preliminaries
	Notation
	Basic definitions
	Basic lemmas

	Depth reduction for UPT circuits
	UPT otimes-circuits
	UPT circuits of constant width

	Separating ROABPs and UPT circuits
	The polynomial

	Hitting sets for non-commutative models
	Hitting sets for UPT set-multilinear circuits
	Poly-sized hitting sets for constant width UPT circuits

	FewPT circuits
	Preliminaries

	Open problems
	Relative computational power of restricted parse tree models
	Constant width models
	ABPs vs constant width UPT circuits

