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Abstract : The first aim of this paper is to show that a polynomially demicompact operator
satisfying certain conditions is demicompact. Furthermore, we give a refinement of the
Schmoëger and the Rakocević essential spectra of a closed linear operator involving the class
of demicompact ones. The second aim of this work is devoted to provide some sufficient
conditions on the inputs of a closable block operator matrix to ensure the demicompactness
of its closure. An example involving the Caputo derivative of fractional of order α is provided.
Moreover, a study of the essential spectra and an investigation of some perturbation results.
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1. Introduction

Let X and Y be two Banach spaces. The set of all closed densely defined
(resp. bounded) linear operators acting from X into Y is denoted by C(X,Y )
(resp. L(X,Y )). We denote by K(X,Y ) the subset of compact operators
of L(X,Y ). For T ∈ C(X,Y ), we use the following notations: α(T ) is the
dimension of the kernel N (T ) and β(T ) is the codimension of the range R(T )
in Y . The next sets of upper semi-Fredholm, lower semi-Fredholm, Fredholm
and semi-Fredholm operators from X into Y are, respectively, defined by:

Φ+(X,Y ) = {T ∈ C(X,Y ) such that α(T ) < ∞ and R(T ) closed in Y },

Φ−(X,Y ) = {T ∈ C(X,Y ) such that β(T ) < ∞ and R(T ) closed in Y },

Φ(X,Y ) := Φ−(X,Y ) ∩ Φ+(X,Y )

and

Φ±(X,Y ) := Φ−(X,Y ) ∪ Φ+(X,Y ).
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For T ∈ Φ±(X,Y ), the index is defined as i(T ) := α(T ) − β(T ). A
complex number λ is in Φ+T ,Φ−T ,Φ±T or ΦT if λ − T is in Φ+(X,Y ),
Φ−(X,Y ), Φ±(X,Y ) or Φ(X,Y ), respectively. If X = Y , then L(X,Y ),
C(X,Y ), K(X,Y ), Φ(X,Y ), Φ+(X,Y ), Φ−(X,Y ) and Φ±(X,Y ) are replaced
by L(X), C(X), K(X), Φ(X), Φ+(X), Φ−(X) and Φ±(X), respectively. If
T ∈ C(X), we denote by ρ(T ) the resolvent set of T and by σ(T ) the spec-
trum of T . Let T ∈ C(X). For x ∈ D(T ), the graph norm ∥.∥T of x is
defined by ∥x∥T = ∥x∥ + ∥Tx∥. It follows from the closedness of T that
XT := (D(T ), ∥.∥T ) is a Banach space. Clearly, for every x ∈ D(T ) we have
∥Tx∥ ≤ ∥x∥T , so that T ∈ L(XT , X). A linear operator B is said to be
T -defined if D(T ) ⊆ D(B). If the restriction of B to D(T ) is bounded from
XT into X, we say that B is T -bounded. An operator T ∈ L(X,Y ) is said
to be weakly compact if T (B) is, relatively weakly compact in Y for every
bounded set B ⊂ X. The family of weakly compact operators from X into Y
is denoted by W(X,Y ). If X = Y , the family of weakly compact operators
on X which is denoted by W(X) := W(X,X) is a closed two-sided ideal of
L(X).

Definition 1.1. LetX and Y be two Banach spaces and let F ∈ L(X,Y ).
The operator F is called:

(a) Fredholm perturbation if T + F ∈ Φ(X,Y ) whenever T ∈ Φ(X,Y ).

(b) Upper semi-Fredholm perturbation if T + F ∈ Φ+(X,Y ) whenever T ∈
Φ+(X,Y ).

(c) Lower semi-Fredholm perturbation if T + F ∈ Φ−(X,Y ) whenever T ∈
Φ−(X,Y ).

The set of Fredholm, upper semi-Fredholm and lower semi-Fredholm per-
turbations are denoted by F(X,Y ),F+(X,Y ) and F−(X,Y ), respectively.

The concept of demicompactness appeared in the literature since 1966 in
order to discuss fixed points. It was introduced by W. V. Petryshyn [16] as
follows:

Definition 1.2. An operator T : D(T ) ⊆ X −→ X is said to be demi-
compact if for every bounded sequence (xn)n in D(T ) such that xn − Txn →
x ∈ X, there exists a convergent subsequence of (xn)n. The family of demi-
compact operators on X is denoted by DC(X).

It is clear that the sum, the product of demicompact operators and the
product of a complex number by a demicompact operator are not necessar-
ily demicompact. W.V. Petryshyn [16] and W.Y. Akashi [1] used the class
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of demicompact operators to obtain some results on Fredholm perturbation.
In fact, in 1966 W. V. Petryshyn [16] studied various conditions on a con-
tinuous 1-set-contractive map T of a real Banach space X, which ensure the
surjectivity. In the same paper, the author generalized to k-set-contractions
the results obtained in [10] for Lipschitzian pseudo-contractive maps. In 1983
W.Y. Akashi [1] generalized some known results in the classical theory of lin-
ear Fredholm operators in which the compact operators played a fundamental
role. For this the author introduced a new class of operators containing the
class of compact operators. Recently, W. Chaker, A. Jeribi and B. Krichen
[4] continued this study to investigate the essential spectra of densely defined
linear operators. In the same work, it was proved that for a closed operator
T , if T is demicompact, then I−T is an upper semi-Fredholm operator and if
µT is demicompact for all µ ∈ [0, 1], then I − T is a Fredholm operator with
index zero. In 2014, B. Krichen [11] gave a generalization of this notion by
introducing the class of relative demicompact linear operators with respect to
a given linear operator.

The theory of block operator matrices arise in various areas of mathemat-
ics and its applications: in systems theory as Hamiltonians (see [7]), in the
discretization of partial differential equations as large partitioned matrices due
to sparsity patterns, in saddle point problems in non-linear analysis (see [3]),
in evolution problems as linearization of second order Cauchy problems and as
linear operators describing coupled systems of partial differential equations.
Such systems occur widely in mathematical physics, e.g. in fluid mechanics
(see [6]), magnetohydrodynamics (see [15]), and quantum mechanics (see [21]).
In all these applications, the spectral properties of the corresponding block
operator matrices are of vital importance as they govern for instance the time
evolution and hence the stability of the underlying physical systems. From
the most important works on the spectral theory of block operator matrices,
we mention [9], in which the author developed the essential spectra of 2 × 2
and 3 × 3 block operator matrices. We also mention [22], in which it was
presented a wide panorama of methods to investigate the essential spectra of
block operator matrices. In this paper, we will study the demicompactness
properties of the following matrix operator L0 acting on the Banach space
product X ×X which is defined by:

L0 =

(
A B
C D

)
.

In general, the entries of L0 are unbounded. The operator A acts on the
Banach space X and has the domain D(A), D acts on the same Banach space
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X and is defined on D(D) and the intertwining operator B (resp. D) is defined
on D(B) (resp. D(D)) and acts from X into itself. Below, we shall assume
that D(A) ⊂ D(C) and D(B) ⊂ D(D). Note in general that the operator L0

is neither closed nor closable operator even if its entries are closed operators.
In [2] it was proved that under some conditions, L0 is closable and its closure
is denoted by L. In the literature, many important results were obtained
concerning the spectral theory of this type of operators. We mention from
these works the paper [22] in which the authors investigated the essential
spectra of the matrix operator by means of an abstract nonzero two-sided
ideal. The central aim of this work is to use the concept of demicompactness
to investigate the essential spectra of L, the closure of L0. More precisely, we
are concerned with the following essential spectra:

σe1(T ) = {α ∈ C such that α− T /∈ Φ+(X)} := C\Φ+T ,

σe4(T ) = {α ∈ C such that α− T /∈ Φ(X)} := C\ΦT ,

σe5(T ) = C\ρ5(T ),

σe7(T ) =
∩

K∈K(X)

σap(T +K),

σe8(T ) =
∩

K∈K(X)

σδ(T +K),

where

ρ5(T ) = {α ∈ C such that α ∈ ΦT and i(α− T ) = 0},

σap(T ) =
{
λ ∈ C such that inf

x∈D(T );∥x∥=1
∥(λ− T )x∥ = 0

}
,

and
σδ(T ) = {λ ∈ C such that λ− T is not surjective}.

The subsets σe1(·) and σe4(·) are, respectively the Gustafson and the Wolf
essential spectra [8]. σe5(·) is the Schechter essential spectrum [18]. σe7(·) is
the essential approximate point spectrum or the Schmoëger essential spectrum
and σe8(·) is the essential defect spectrum or the Rakocević essential spectrum
(see for instance [9, 17, 18, 19, 23]). Note that for T ∈ C(X), we have:

σe1(T ) ⊂ σe4(T ) ⊂ σe5(T ) = σe7(T ) ∪ σe8(T ),

and
σe1(T ) ⊂ σe7(T ).

Let us recall the following lemma whose the proof can be found in [9].
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Lemma 1.1. Let T ∈ C(X), then

(i) λ /∈ σe7(T ) if, and only if, (λ− T ) ∈ Φ+(X) and i(λ− T ) ≤ 0.

(ii) λ /∈ σe8(T ) if, and only if, (λ− T ) ∈ Φ−(X) and i(λ− T ) ≥ 0.

Proposition 1.1. ([19]) Let T ∈ C(X), then

λ /∈ σe5(T ) if, and only if, (λ− T ) ∈ Φ(X) and i(λ− T ) = 0.

This paper is organized in the following way. In Section 2, we recall some
definitions and results needed in the rest of the paper. In Section 3, we show
that under some conditions, a polynomially demicompact operator is demi-
compact and we give an example involving the Caputo derivative of fractional
of order α. In Section 4, we give a fine description of the essential approxi-
mate point spectrum and the essential defect spectrum. In Section 5, we prove
in Proposition 5.1 that under some conditions, µL is demicompact for each
µ ∈ ρ(A) and we give, in Theorem 5.3, a necessary condition for which I−L is
an upper semi-Fredholm operator on a Banach space with the Dunford-Pettis
property (see Definition 2.1). In Section 6, we investigate the essential spectra
of the matrix operator L.

2. Preliminary results

We start this section by recalling some Fredholm results related with demi-
compact operators.

Theorem 2.1. ([4]) Let T ∈ C(X). If T is demicompact, then I − T is
an upper semi-Fredholm operator.

Theorem 2.2. ([4]) Let T ∈ C(X). If µT is demicompact for each µ ∈
[0, 1], then I − T is a Fredholm operator of index zero.

Theorem 2.3. ([4]) Let T : D(T ) ⊆ X −→ X be a closed linear operator.
If T is a 1-set-contraction then µT is demicompact for each µ ∈ [0, 1).

In the next, we give a lemma which shows that, in a special Banach Space
X, the sum of demicompact and weakly compact operators is demicompact.
To this end, we recall the following definition.
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Definition 2.1. A Banach space X is said to have the Dunford-Pettis
property (in short DP property) if every bounded weakly compact operator
T from X into another Banach space Y transforms weakly compact sets on
X into norm-compact sets on Y .

Remark 2.1. It was proved in [13] that if X is Banach space with DP
property, then

W(X) ⊂ F(X).

Lemma 2.1. Let X be a Banach space with DP property. If A ∈ DC(X)
and B ∈ W(X), then A+B ∈ DC(X).

Proof. Let (xn)n be a bounded sequence in D(A) such that ((I − A −
B)xn)n converges. Since B ∈ W(X), then there exists a subsequence of (xn)n,
still denoted (xn)n, such that the operator (Bxn)n is weakly convergent. We
deduce from the fact that X has DP property, that (Bxn)n has a convergent
subsequence and therefore ((I − A)xn)n has also a convergent subsequence.
Using demicompactness of A, we infer that (xn)n has a convergent subsequence
and we conclude that A+B is demicompact.

3. Polynomially demicompact operators

It was shown in [12] that a polynomially compact operator T , element of
P(X) := {T ∈ L(X) such that there exists a nonzero complex polynomial
P (z) =

∑p
r=0 arz

r satisfying P (1) ̸= 0, P (1) − a0 ̸= 0, and P (T ) ∈ K(X)},
is demicompact. In this section, we show that this result remains valid for a
broader class of polynomially demicompact operators on X. To this end we
let PDC(X) be the set defined by PDC(X) := {T ∈ L(X) such that there
exists a nonzero complex polynomial P (z) =

∑p
r=0 arz

r satisfying P (1) ̸= 0
and 1

P (1)P (T ) ∈ DC(X)}. We note that PDC(X) contains the set P(X).

Theorem 3.1. If T ∈ PDC(X), then T is demicompact.

Proof. We first give the following relation that we will use in the proof.
Since I − T commutes with I, Newton’s binomial formula allows us to write

T j = I +

j∑
i=1

(−1)iCi
j(I − T )i.
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By making some simple calculations, we may write

P (T ) = P (1)I +

p∑
j=1

aj

(
j∑

i=1

(−1)iCi
j(I − T )i

)
. (3.1)

We start now proving our theorem. To this end we let T ∈ PDC(X), then
there exists a nonzero complex polynomial P such that P (1) ̸= 0. We shall
prove that T is a demicompact operator. To do so, it suffices from Theorem 2.1
in [5] to establish that I − T is an upper semi-Fredholm operator. First, we
prove that α(I − T ) < ∞. We let x ∈ N (I − T ), then Tx = x and therefore

P (T )x =

p∑
j=0

ajT
jx = P (1)x.

Hence, x ∈ N (I− 1
P (1)P (T )) which implies that N (I−T ) ⊂ N (I− 1

P (1)P (T )).

Since 1
P (1)P (T ) is demicompact, we deduce that α(I − 1

P (1)P (T )) < ∞ and

as consequence, α(I − T ) < ∞. In order to complete the proof, we will check
that R(I − T ) is closed. Indeed, since N (I − T ) is finite dimensional, then
there exists from Lemma 5.1 in [19] a closed subspace X0 of X such that

X = N (I − T )⊕X0.

Next, we let T0 be the restriction of I − T to X0. Then, T0 is continuous and
we shall see that N (T0)= {0}. Since X0 is also closed and (I − T )(X0) =
T0(X0) = (I − T )(X) = R(I − T ), we need only to prove that T0(X0) is
closed. To this end, we shall prove that T−1

0 : T0(X0) −→ X0 is continuous.
By linearity, it is equivalent to that T−1

0 is continuous at 0. Assume the
contrary, for every n ∈ N, there exists a sequence (xn)n in X0 which does not
converge to 0 such that (I − T )(xn) converges to 0. Then, we can find ε > 0
such that ∥xn∥ ≥ ε > 0 for all n ∈ N. Then,

1

∥xn∥
≤ 1

ε
for all n ∈ N.

It is clear that yn := xn/∥xn∥ has a norm equal to 1 and (I − T )(yn) → 0.
This together with the relation (3.1) leads to(

P (T )− P (1)
)
yn → 0.

Since P (1) ̸= 0, then (
I − 1

P (1)
P (T )

)
yn → 0.
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Using the demicompactness of 1
P (1)P (T ), we deduce that (yn)n admits a con-

verging subsequence to an element y in X0, verifying ∥y∥ = 1. Using the
closedness of I − T , we get (I − T )y = 0, which implies that y ∈ N (I − T ).
This contradict the fact X0 ∩ N (I − T ) = {0} and ∥y∥ = 1, which achieves
the proof.

Remark 3.1. The converse of Theorem 3.1 is not true, in fact if we take
a demicompact operator T such that −T is not demicompact, then T 2 is not
demicompact.

Example. Before giving the example we recall the following definition
and theorems.

Definition 3.1. The Caputo derivative of fractional order α of function
x ∈ Cm is defined as

CD
(α)
0,t x(t) = D

(−m+α)
0,t

dm

dtm
x(t) =

1

Γ(m− α)

∫ t

0
(t− τ)m−α−1x(m)(τ)dτ,

in which m−1 < α < m ∈ N and Γ is the well-known Euler Gamma function.

Theorem 3.2. [14] If x(t) ∈ C1[0, T ], for T > 0 then

CD
(α2)
0,t CD

(α1)
0,t x(t) = CD

(α1)
0,t CD

(α2)
0,t x(t) = CD

(α1+α2)
0,t x(t); t ∈ [0, T ],

where α1 and α2 ∈ R+ and α1 + α2 ≤ 1.

Theorem 3.3. [14] If x(t) ∈ Cm[0, T ], for T > 0 then

CD
(α)
0,t x(t) = CD

(αn)
0,t · · · CD

(α2)
0,t CD

(α1)
0,t x(t); t ∈ [0, T ],

where α =
∑n

i=1 αi; αi ∈ (0, 1], m− 1 ≤ α < m ∈ N and there exists ik < n,

such that
∑ik

j=1 αj = k, and k = 1, 2, . . . ,m− 1.

Let Cω be the space of continuous ω-periodic functions x : R −→ R and
C ′
ω the space of continuously differentiable ω-periodic functions x : R −→ R.

Cω equipped with the maximum norm ∥ · ∥∞ and C ′
ω with the norm given by

∥ · ∥1∞ = max{∥u∥∞, ∥u∥′∞} for u ∈ C′
ω are Banach spaces. Let us consider the

following differential equation:

x′(t) = a(t)x′(t− h1) + b(t)x(t− h2) + f(t).
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Here, a and b are continuous ω-periodic functions such that |a(t)| < k, (k <
∞), where k < 1

ω if ω > 2 or k < 1
2 if ω ≤ 2; f ∈ Cω is a given function

and x ∈ C′
ω is an unknown function. This equation can be rewritten in the

operator from
Gx−Ax = f,

where G : C′
ω −→ Cω is given by the formula

(Gx)(t) = x′(t),

and the operator A : C′
ω → Cω by the formula

(Ax)(t) = a(t)x′(t− h1) + b(t)x(t− h2).

Let us consider the polynomial P (X) = Xn and the operator T = CD
( 1
n
); n ∈

N\{0}, where CD
( 1
n
) is the Caputo derivative of fractional order 1

n . Applying
Theorem 3.3, we get

P (T ) = Tn(x) = [CD
( 1
n
)]nx(t) = x′(t).

Clearly, P (T ) is bounded linear operator with ∥P (T )∥ = 1 and therefore,
P (T ) is 1-set-contractive. Hence, using Theorem 2.3, we get

µCD
( 1
n
) ∈ DC(X) ∀ µ ∈ [0, 1[.

4. Characterization of Schmoëger and Rakocević
essential spectra

The aim of this section is to give a refinement of the essential approximate
point spectrum and the essential defect spectrum. For this, let X be a Banach
space and T ∈ C(X). Let us consider the following sets ΛX ,ΥT (X), and
ΨT (X), respectively, defined by:

ΛX =
{
J ∈ L(X) such that µJ is demicompact for all µ ∈ [0, 1]

}
,

ΥT (X) =
{
K ∈ L(X) such that ∀λ ∈ ρ(T +K), −(λ− T −K)−1K ∈ ΛX

}
,

ΨT (X) =
{
K is T -bounded such that ∀λ ∈ ρ(T +K),

−K(λ− T −K)−1 ∈ ΛX

}
.

We also denote:

σr(T ) :=
∩

K∈ΥT (X)

σap(T +K) and σl(T ) :=
∩

K∈ΨT (X)

σδ(T +K).
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Theorem 4.1. Let T ∈ C(X), we have

σe7(T ) = σr(T ),

and

σe8(T ) = σl(T ).

Proof. We first should remark that

λ− T = (λ− T −K)[I + (λ− T −K)−1K], (4.1)

and

λ− T = [I +K(λ− T −K)−1](λ− T −K). (4.2)

Let us notice that for T ∈ C(X), and K be a T -bounded operator such that
λ ∈ ρ(T +K), then, according to closed graph theorem (Lemma 2.1 in [18]),
K(λ−T−K)−1 is a closed linear operator defined onX and then bounded. We
start by showing that σe7(T ) ⊂ σr(T ) (resp. σe8(T ) ⊂ σl(T )). For λ /∈ σr(T )
(resp. λ /∈ σl(T )), there exists K ∈ ΥT (X)(resp. K ∈ ΨT (X)) such that
λ− T −K is injective (resp. surjective). It follows that λ− T −K ∈ Φ+(X),
(resp. Φ−(X)) and i(λ − T − K) ≤ 0, (resp. i(λ − T − K) ≥ 0). Now,
since K ∈ ΥT (X), (resp. K ∈ ΨT (X)), −(λ − T − K)−1K ∈ ΛX , (resp.
−K(λ−T−K)−1 ∈ ΛX), whenever λ ∈ ρ(T+K). Using Theorem 2.2 we show
that I+(λ−T−K)−1K, (resp. I+K(λ−T−K)−1) is a Fredholm operator and
i(I+(λ−T −K)−1K) = 0, (resp. i(I+K(λ−T −K)−1) = 0). Which implies
that (I + (λ− T −K)−1K) ∈ Φ+(X), (resp. (I +K(λ− T −K)−1 ∈ Φ−(X)
and i(I + (λ− T −K)−1K) ≤ 0, (resp. i(I +K(λ− T −K)−1) ≥ 0). Hence,
applying Theorem 5.26 (resp. 5.30) in [19] on (4.1) (resp. (4.2)), we obtain
λ − T ∈ Φ+(X) (resp. Φ−(X)) and i(λ − T ) ≤ 0 (resp. i(λ − T ) ≥ 0).
Thanks to Lemma 1.1, we conclude that λ /∈ σe7(T ) (resp. λ /∈ σe8(T )).
Conversely, remark that K(X) ⊂ Υ(X) (resp. K(X) ⊂ Ψ(X)). In fact, if
K ∈ K(X) and λ ∈ ρ(T + K), then −µ(λ − T − K)−1K ∈ K(X) ⊂ DC(X)
(resp. −µK(λ− T −K)−1 ∈ K(X) ⊂ DC(X)). Hence, σr(T ) ⊂ σe7(T ) (resp.
σl(T ) ⊂ σe8(T )).

Corollary 4.1. Let T ∈ C(X) and let Γ(X) be a subset of X containing
K(X). Then,

(i) if Γ(X) ⊂ ΥT (X), then σe7(T ) =
∩

K∈Γ(X)

σap(T +K)
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(ii) if Γ(X) ⊂ Ψ(X), then σe8(T ) =
∩

K∈Γ(X)

σδ(T +K).

Proof. Since K(X) ⊂ Γ(X) ⊂ ΥT (X) (resp. K(X) ⊂ Γ(X) ⊂ Ψ(X)), we
obtain∩
K∈ΥT (X)

σap(T +K) ⊂
∩

K∈Γ(X)

σap(T +K) ⊂
∩

K∈K(X)

σap(T +K) := σe7(T ),

(resp.∩
K∈ΨT (X)

σδ(T +K) ⊂
∩

K∈Γ(X)

σδ(T +K) ⊂
∩

K∈K(X)

σδ(T +K) := σe8(T ) ).

The use of Theorem 4.1 allows us to conclude that

σe7(T ) =
∩

K∈Γ(X)

σap(T +K),

and

σe8(T ) =
∩

K∈Γ(X)

σδ(T +K).

Hence, we get the desired result.

5. Demicompactness results for operator matrices

In this section, we are concerned with some new results which can be used
to determinate the essential spectra of the matrix operator L, the closure of
L0, on the space X × X, where X is a Banach space. In the product space
X ×X, we consider an operator which is formally defined by a matrix

L0 :=

(
A B
C D

)
, (5.1)

where the operator A acts on X and has domain D(A), D is defined on
D(D) and acts on the Banach space X, and the intertwining operator B
(resp. C) is defined on the domain D(B) (resp., D(D)) and acts on X. In
the following, it is always assumed that the entries of this matrix satisfy the
following conditions, introduced in [20].
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(H1) A is closed, densely defined linear operator on X with nonempty resol-
vent set ρ(A).

(H2) The operator B is a densely defined linear operator on X and for (hence
all) µ ∈ ρ(A), the operator (A− µ)−1B is closable. (In particular, if B
is closable, then (A− µ)−1B is closable).

(H3) The operator C satisfies D(A) ⊂ D(C), and for some (hence all) µ ∈
ρ(A), the operator C(A−µ)−1 is bounded. (In particular, if C is closable,
then C(A− µ)−1 is bounded).

(H4) The lineal D(B)∩D(D) is dense in X and for some (hence all) µ ∈ ρ(A),
the operator D − C(A− µ)−1B is closable. We will denote by S(µ) its
closure.

Remark 5.1. (i) Under the assumptions (H1) and (H2), we infer that for
each µ ∈ ρ(A) the operator G(µ) := (A− µ)−1B is bounded on X.

(ii) From the assumption (H3), it follows that the operator: F (µ) := C(A −
µ)−1 is bounded on X.

We recall the following result which describes the operator L0.

Theorem 5.1. ([2]) Let conditions (H1)-(H3) be satisfied and the lineal
D(B)∩D(D) be dense in X. Then, the operator L0 is closable and the closure
L of L0 is given by:

L = µ−

(
I 0

F (µ) I

)(
µ−A 0

0 µ− S(µ)

)(
I G(µ)

0 I

)
. (5.2)

Or, spelled out,

L : D(L) ⊂ (X ×X) −→ X ×X(
x

y

)
−→ L

(
x

y

)
=

(
A
(
x+G(µ)y

)
− µG(µ)

C
(
x+G(µ)y

)
− S(µ)y

)
,

with

D(L) =

{(
x
y

)
∈ X ×X such that x+G(µ)y ∈ D(A) and y ∈ D

(
S(µ)

)}
.

Note that the description of the operator L does not depend on the choice of
the point µ ∈ ρ(A).
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Remark 5.2. Let λ ∈ C. It follows from (5.2) that

λ− L =

(
I 0

F (µ) I

)(
λ−A 0

0 λ− S(µ)

)(
I G(µ)

0 I

)
− (λ− µ)M(µ)

:= UV (λ)W − (λ− µ)M(µ),

(5.3)

where

M(µ) =

(
0 G(µ)

F (µ) F (µ)G(µ)

)
.

Proposition 5.1. Let L0 the matrix operator defined in (5.1) satisfies
(H1)-(H4) and let L be its closure. Suppose that there is µ ̸= 0 such that
1
µ ∈ ρ(A). If the operator µS( 1µ) is demicompact, then µL is a demicompact
operator.

Proof. Let

(
xn
yn

)
n

∈ D(L) be a bounded sequence such that

(
x′n
y′n

)
:= (I − µL)

(
xn

yn

)
→

(
x0

y0

)
.

Recalling the factorization (5.2), one has

L =
1

µ
I −

(
I 0

F
(
1
µ

)
I

)(
1
µ −A 0

0 1
µ − S

(
1
µ

))(I G
(
1
µ

)
0 I

)
.

Then,(
x′n
y′n

)
=

(
I 0

F
(
1
µ

)
I

)(
I − µA 0

0 I − µS
(
1
µ

))(I G
(
1
µ

)
0 I

)(
xn

yn

)
.

It follows that(
I 0

−F
(
1
µ

)
I

)(
x′n
y′n

)
=

(
I − µA 0

0 I − µS
(
1
µ

))(I G
(
1
µ

)
0 I

)(
xn

yn

)
.

Therefore, we get the following system:
(I − µA)−1x′n = xn +G

(
1
µ

)
yn.

−F
(
1
µ

)
x′n + y′n =

(
I − µS

(
1
µ

))
yn.

(5.4)
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The use of the second equation of the system (5.4) allows us to conclude
that (I − µS( 1µ))yn is convergent. This together with the demicompactness

of µS( 1µ) show that (yn)n has a convergent subsequence. Since G( 1µ) and

(I − µA)−1 are bounded operators, we infer that (xn)n has a convergent sub-
sequence, which proves the demicompactness of µL and this shows our claim.

For more generalization, we give the following result.

Theorem 5.2. Let L0 the operator defined in (5.1) satisfies (H1)-(H4)
and let L be its closure. Suppose that for a certain µ ∈ ρ(A), there is λ ∈
C\{0} such that λA ∈ DC(X). Then, if F (µ) ∈ K(X) and λS(µ) ∈ DC(X),
we have that λL ∈ DC(X ×X).

Proof. Take the following bounded sequence

(
xn
yn

)
∈ D(L) such that(

x′n
y′n

)
:= (I − λL)

(
xn

yn

)
→

(
x0

y0

)
.

Let µ ∈ ρ(A) be such that there is a complex nonzero number λ verifying
λA ∈ DC(X). Thanks to Remark 5.2, one has

1

λ
− L =

(
I 0

F (µ) I

) 1
λ −A 0

0
1

λ
− S(µ)

(I G(µ)

0 I

)
−
(
1

λ
− µ

)
M(µ),

where

M(µ) =

(
0 G(µ)

F (µ) F (µ)G(µ)

)
.

Thus,

I − λL =

(
I 0

F (µ) I

)(
I − λA 0

0 I − λS(µ)

)(
I G(µ)

0 I

)
− (1− λµ)M(µ).

Therefore,(
x′n
y′n

)
=

(
I 0

F (µ) I

)(
I − λA 0

0 I − λS(µ)

)(
I G(µ)

0 I

)(
xn

yn

)

− (1− λµ)M(µ)

(
xn

yn

)
.

(5.5)
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Observe that (5.5) is equivalent to(
I 0

−F (µ) I

)(
x′n
y′n

)
+ (1− λµ)

(
I 0

−F (µ) I

)
M(µ)

(
xn

yn

)

=

(
I − λA 0

0 I − λS(µ)

)(
I G(µ)

0 I

)(
xn

yn

)
.

Moreover, by making some simple calculations, we may show that(
x′n

−F (µ)x′n + y′n

)
+

(
(I − λµ)G(µ)yn

(I − λµ)F (µ)xn

)
=

(
(I − λA)xn + (I − λA)G(µ)yn(

I − λS(µ)
)
yn

)
,

in equivalent way, x′n − λ(µ−A)G(µ)yn = (I − λA)xn.

−F (µ)x′n + y′n + (I − λµ)F (µ)xn = (I − λS(µ))yn.
(5.6)

We deduce from the fact that F (µ) ∈ K(X) and (xn)n is bounded, that (1−
λµ)F (µ)xn has a convergent subsequence. Hence, from the second equation
of system (5.6), we infer that (I − λS(µ))yn has a convergent subsequence.
Using the demicompactness of λS(µ), we deduce that there exists a convergent
subsequence of (yn)n. Now, since G(µ) and µ− A are bounded, we conclude
from the first equation of system (5.6) that (I − λA)xn has a convergent
subsequence. This together with the fact that λA is demicompact allows us
to conclude that (xn)n has a convergent subsequence. Therefore, there exists a

subsequence of

(
xn
yn

)
n

which converges onD(L). Thus, λL is demicompact.

Theorem 5.3. Let X be a Banach space with DP property. Assume
that the operator L0 defined in (5.1) and acting on X × X satisfies (H1)-
(H4) and denote L its closure. Suppose that µ ∈ ρ(A), G(µ) ∈ W(X) and
F (µ) ∈ F+(X). If the operators A and S(µ) are demicompact, then I − L is
an upper semi-Fredholm operator.

Proof. Let µ ∈ ρ(A) be such that G(µ) ∈ W(X). Since F (µ) is bounded,
then the product F (µ)G(µ) ∈ W(X). Therefore, we can deduce from Re-
mark 2.1 that F (µ)G(µ) ∈ F+(X). This together with the fact that F (µ) ∈
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F+(X) and G(µ) ∈ W(X) ⊂ F+(X) give us M(µ) ∈ F+(X × X). Next,
according to (5.3), we have for λ = 1:

I − L =

(
I 0

F (µ) I

)(
I −A 0

0 I − S(µ)

)(
I G(µ)

0 I

)
− (1− µ)M(µ)

:= UV (1)W − (1− µ)M(µ).

Since A and S(µ) are demicompact and thanks to Theorem 2.1, the operators
I − A and I − S(µ) are upper semi-Fredholm, hence V (1) ∈ Φ+(X × X).
The boundedness of the operators U and W and their inverses gives us that
UV (1)W is an upper semi-Fredholm operator. Owing to the fact that M(µ) ∈
F+(X ×X), it follows that I − L is an upper semi-Fredholm operator.

Theorem 5.4. Let X be a Banach space with DP property. Assume that
the operator L0 defined in (5.1) acting on the product space X ×X satisfies
(H1)-(H4) and denote L its closure. Suppose that [1,+∞[⊂ ρ(A). Then, if
there exists a complex number λ such that λD ∈ DC(X) and C(I−λA)−1B ∈
W(X), we have that λL ∈ DC(X ×X).

Proof. We assume that the assumption holds and we take

(
xn
yn

)
n

a bounded

sequence in D(L) which verifies(
x′n
y′n

)
:= (I − λL)

(
xn

yn

)
→

(
x0

y0

)
,

where [1,+∞[⊂ ρ(A). According to the Frobenius-Schur factorization, one
has

λL = I −

(
I 0

Fλ(1) I

)(
I − λA 0

0 I − Sλ(1)

)(
I Gλ(1)

0 I

)
,

where Fλ(1) = λC(λA− I)−1 , Sλ(1) = λD − λ2C(λA− I)−1B and Gλ(1) =
λ(λA− I)−1B. It follows that(

x′n
y′n

)
=

(
I 0

Fλ(1) I

)(
I − λA 0

0 I − Sλ(1)

)(
I Gλ(1)

0 I

)(
xn

yn

)
,

thus,(
I 0

−Fλ(1) I

)(
x′n
y′n

)
=

(
I − λA 0

0 I − Sλ(1)

)(
I Gλ(1)

0 I

)(
xn

yn

)
,
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which allows us to get the following system x′n = (I − λA)xn + (I − λA)Gλ(1)yn.

−Fλ(1)x
′
n + y′n =

(
I − Sλ(1)

)
yn.

(5.7)

Since, λD ∈ DC(X) and C(λA−I)−1B ∈ W(X), we infer by the use of Lemma
2.1 that the operator λD− λ2C(λA− I)−1B is demicompact. Now, it is easy
to show that if a closable operator is demicompact, then its closure is also
demicompact. Consequently, Sλ(1) is a demicompact operator. Moreover, it
should be observed that the second equation of the system (5.7) implies the
convergence of ((I − Sλ(1))yn)n, hence (yn)n has a convergent subsequence.
Next, since Gλ(1) is bounded and (I − λA) is invertible and has a bounded
inverse, the first equation of the system (5.7) implies that (xn)n has a conver-

gent subsequence. Therefore, there exists a convergent subsequence of

(
xn
yn

)
n

which converges in D(L). Hence, the demicompactness of λL is proved.

The following corollary gives a sufficient condition to guarantee the demi-
compactness of L, the closure of the closable matrix operator L0.

Corollary 5.1. Let X be a Banach space with DP property. Assume
that the operator L0 defined in (5.1) and acting on X×X satisfies (H1)-(H4)
and denote L its closure. Suppose that [1,+∞[⊂ ρ(A). Then, if D ∈ DC(X)
and C(I −A)−1B ∈ DC(X), we have that L ∈ DC(X ×X).

Proof. The proof is a direct application of Theorem 5.4 for λ = 1.

6. Essential spectra of matrix operators
by means of demicompactness

We start this section by giving some notations that we will need in the
proof. Let L0 be the matrix operator defined in (5.1). Assume that L0

satisfies (H1)-(H4) and denote L its closure. Let α ∈ C\{0} and we suppose
that [1,+∞[⊂ ρ(A). Applying Remark 5.2 on the operator 1

αL and for the
case λ = 1, one has
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I − 1

α
L =

(
I 0

F 1
α
(µ) I

)(
I − 1

αA 0

0 I − S 1
α
(µ)

)(
I G 1

α
(µ)

0 I

)
− (1− µ)M 1

α
(µ)

:= U 1
α
V 1

α
W 1

α
− (1− µ)M 1

α
(µ),

(6.1)

where

M 1
α
(µ) :=

(
0 G 1

α
(µ)

F 1
α
(µ) F 1

α
(µ)G 1

α
(µ)

)
, F 1

α
(µ) :=

1

α
C

(
1

α
A− µ

)−1

,

G 1
α
(µ) :=

1

α

(
1

α
A− µ

)−1

B and S 1
α
(µ) :=

1

α
D − 1

α2
C

(
1

α
A− µ

)−1

B.

Theorem 6.1. Let X be a Banach space with DP property. Assume that
the matrix operator L0 defined in (5.1) satisfies (H1)-(H4) and denote L its
closure. Suppose that [1,+∞[⊂ ρ(A), then we have:

(i) If for all α ∈ C\{0}, the operators 1
αD ∈ DC(X), 1

α2C
(
I − 1

αA
)−1

B ∈
W(X) and M 1

α
(µ) ∈ F+(X ×X), then

σe1(L)\{0} = σe1(A)\{0} ∪ σe1(αS 1
α
(µ))\{0}.

(ii) If for all λ ∈ [0, 1] and α ∈ C\{0} the operators λ
αD ∈ DC(X), C(I −

λ
αA)−1B ∈ W(X) and M(µ) ∈ F(X ×X), then

σei(L)\{0} = σei(A)\{0} ∪ σei
(
αS 1

α
(µ)
)
\{0}, where i ∈ {4, 5},

and

σei(L)\{0} ⊆ σei(A)\{0} ∪ σei
(
αS 1

α
(µ)
)
\{0}, where i ∈ {7, 8}.

Proof. (i) Let α ∈ C\{0} be such that α /∈ σe1(L). Then,

α− L = α

(
I − 1

α
L

)
∈ Φ+(X ×X). (6.2)
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Clearly, αI ∈ Φ+(X ×X). We get then the following equivalence

α− L ∈ Φ+(X ×X) ⇐⇒
(
I − 1

α
L

)
∈ Φ+(X ×X).

Since 1
αD ∈ DC(X) and 1

α2C
(
I − 1

αA
)−1

B ∈ W(X), it follows from Corollary
5.1 that the operator 1

αL is demicompact. Hence, thanks to Theorem 2.1, the
operator I − 1

αL ∈ Φ+(X × X). Using the fact that M 1
α
(µ) ∈ F+(X × X),

we infer that I − 1
αL ∈ Φ+(X ×X) if, and only if, the operator U 1

α
V 1

α
(µ)W 1

α

is such too. Now, observe that U 1
α
and W 1

α
are invertible and have bounded

inverses, hence I − 1
αL ∈ Φ+(X ×X) if, and only if, V 1

α
(µ) has this property,

if and only if, I − 1
αA ∈ Φ+(X) and I −S 1

α
(µ) ∈ Φ+(X). Which is equivalent

to that α−A ∈ Φ+(X) and α− αS 1
α
∈ Φ+(X). Thus,

σe1(L)\{0} = σe1(A)\{0} ∪ σe1
(
αS 1

α
(µ)
)
\{0}.

(ii) We claim that

σe4(L)\{0} = σe4(A)\{0} ∪ σe4
(
αS 1

α
(µ)
)
\{0}.

For this purpose, take α ∈ C\{0}. Since αI ∈ Φ(X), then α−L ∈ Φ(X ×X)
if, and only if, the operator (I − 1

αL) ∈ Φ(X ×X). Next, since λ
αD ∈ DC(X)

and C(I − λ
αA)

−1B ∈ W(X) for all λ ∈ [0, 1], we deduce from Theorem 5.4

that the operator λ
αL is demicompact. Hence, according to Theorem 2.2, we

have I − 1
αL ∈ Φ(X ×X). Using (6.1) and the fact that M 1

α
(µ) ∈ F(X ×X),

we infer that I − 1
αL is a Fredholm operator if, and only if, the operator

U 1
α
V 1

α
(µ)W 1

α
is such too. Now, observe that U 1

α
and W 1

α
are invertible and

have bounded inverses, hence I − 1
αL ∈ Φ(X ×X) if, and only if, V 1

α
(µ) has

this property if, and only if, I − 1
αA ∈ Φ(X) and I − S 1

α
(µ) ∈ Φ(X). Thus

the desired result follows.

Now, we prove the same equality for the Schechter’s essential spectrum.
To this end, we take α ∈ C\{0}. It is easy to see that α−L ∈ Φ(X ×X) and
i(α−L) = 0 if, and only if, the operator (I− 1

αL) ∈ Φ(X×X) and i(I− 1
αL) =

0. Since λ
αD ∈ DC(X) and C(I− λ

αA)
−1B ∈ W(X) for all λ ∈ [0, 1], it follows

from Theorem 5.4 that the operator λ
αL is demicompact. Hence, according to

Theorem 2.2, the operator I− 1
αL ∈ Φ(X×X) and i(I− 1

αL) = 0. Using (6.1)
and the fact that M 1

α
(µ) ∈ F(X × X), we infer that I − 1

αL is a Fredholm
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operator with index zero if, and only if, the operator U 1
α
V 1

α
(µ)W 1

α
is such

too. Note that U 1
α
and W 1

α
are invertible and have bounded inverses, then

I − 1
αL is Fredholm with index zero if, and only if, V 1

α
(µ) has this property,

if and only if, I − 1
αA and I − 1

αS(µ) are Fredholm operator with index zero.
Therefore, α − A ∈ Φ(X) and i(α − A) = 0 and α − αS 1

α
(µ) ∈ Φ(X) and

i(α− αS 1
α
(µ)) = 0. Hence α /∈ σe5(A)\{0} ∩ σe5(αS 1

α
(µ))\{0}. Thus,

σe5(A)\{0} ∪ σe5(αS 1
α
(µ))\{0} ⊆ σe5(L)\{0}. (6.3)

Conversely, let 0 ̸= α /∈ σe5(A) ∩ σe5(αS 1
α
(µ)), then α − A ∈ Φ(X) and

i(α − A) = 0 and α − αS 1
α
(µ) ∈ Φ(X) and i(α − αS 1

α
(µ)) = 0. Which is

equivalent to write I − 1
αA ∈ Φ(X) and i(I − 1

αA) = 0 and I −S 1
α
(µ) ∈ Φ(X)

and i(I−S 1
α
(µ)) = 0. The boundedness of the operators U 1

α
andW 1

α
and their

inverses and the fact that M 1
α
(µ) ∈ F(X×X) give us that I− 1

αL ∈ Φ(X×X)

and i(I − 1
αL) = 0. Therefore, α − L ∈ Φ(X × X) and i(α − L) = 0, hence

α /∈ σe5(L)\{0}. This immediately shows that

σe5(L)\{0} ⊆ σe5(A)\{0} ∪ σe5
(
αS 1

α
(µ)
)
\{0}. (6.4)

Now, the use of (6.3) and (6.4) makes us to conclude that

σe5(L)\{0} = σe5(A)\{0} ∪ σe5
(
αS 1

α
(µ)
)
\{0}.

We give now the proof for i = 7. Note that the case i = 8 can be checked
in the same manner. Let α ∈ C\{0}, we have proved for i = 5 that I − 1

αL ∈
Φ(X × X) and i(I − 1

αL) = 0. This implies that I − 1
αL ∈ Φ+(X × X)

and i(I − 1
αL) ≤ 0. If α /∈ σe7(A) ∩ σe7(αS 1

α
(µ)), then α − A ∈ Φ+(X) and

i(α−A) ≤ 0 and α−S 1
α
(µ) ∈ Φ+(X) and i(α−αS 1

α
(µ)) ≤ 0. It remains to get

I− 1
αA ∈ Φ+(X) and i(I− 1

αA) ≤ 0 and I−S 1
α
(µ) ∈ Φ+(X) and i(I−S 1

α
(µ)) ≤

0. Since U 1
α
and W 1

α
are invertible and have bounded inverses and using the

fact that M 1
α
(µ) ∈ F+(X × X), we infer that I − 1

αL ∈ Φ+(X × X) and

i(I − 1
αL) ≤ 0. Therefore, α − L ∈ Φ+(X ×X) and i(α − L) ≤ 0. Now, by

applying Lemma 1.1, we conclude that α /∈ σe7(L)\{0} and then,

σe7(L)\{0} ⊆ σe7(A)\{0} ∪ σe7
(
αS 1

α
(µ)
)
\{0}.

Hence, the theorem is proved.
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