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Abstract 12 

This paper documents a techno-economic assessment of biomethane feedstocks from 13 

urban, rural, and coastal settings. Additionally, the effect of three upgrading technologies 14 

was investigated, ranging from commercialised systems (water scrubbing) to more 15 

advanced systems: power to gas systems employing hydrogen to capture CO2; and micro-16 

algae cultivation utilising CO2 in biogas. In total, nine scenarios were investigated based on a 17 

combination of the three feedstock groups and the three upgrading technologies. The 18 

levelized cost of energy and the incentive required to allow financial sustainability were 19 

assessed. The assessment showed that that water scrubbing was the cheapest upgrading 20 

method. The optimum scenario was the combination of urban based feedstock (food waste) 21 

with water scrubbing upgrading costing 87€/MWh, equivalent to 87c/L diesel equivalent. 22 

The incentive required was 0.13 €/m3 (or per L of diesel equivalent), however if power to 23 

gas was used to upgrade an incentive of 0.40 €/m3 was required. This was expected as food 24 

waste attracts a gate fee. Rural-based plants (using slurries and grasses) are expected to 25 

provide the majority of the resource however, for this to become a reality incentive in the 26 

range 0.86 to 1.03 €/m3 are required. 27 

 28 

Keywords: biogas; biogas upgrading; biomethane; carbon capture and reuse; power to gas; 29 

techno-economic analysis. 30 

 31 
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1 Introduction 32 

When biogas is upgraded to renewable methane, through removal of CO2 and injected to 33 

the gas grid, it has a range of applications including provision of renewable heat, electricity 34 

and/or transportation fuel. In 2015, there were 459 biogas-upgrading plants in operation in 35 

the EU producing 1,230 M Nm3 of biomethane [1] . According to the Sustainable Energy 36 

Authority of Ireland (SEAI) Ireland has a biogas potential of 0.95 Mtoe, but less than 2% of 37 

this is currently utilized [2] with no gas to grid system in place as of yet in Ireland.  38 

The sustainability criteria in the recast Renewable Energy Directive (recast RED) includes for 39 

a proposed 75% greenhouse gas (GHG) savings as compared to the fossil fuel comparator 40 

(FFC) for renewable heat by 2026. For mono-digestion of crops this level of sustainability is 41 

highly unlikely [3]. This can cause developers to consider whether it is prudent to invest in 42 

technologies today that may be deemed unsustainable in 8 years’ time.  43 

Increased sustainability is expected to be associated with concepts such as BioEnergy with 44 

Carbon Capture and Storage (BECCS) [4] and also with reuse of captured carbon. Power to 45 

gas (P2G) systems may be used to upgrade biogas to biomethane, capturing CO2 from the 46 

biogas and reacting with hydrogen from electrolysis to produce renewable methane (4H2 + 47 

CO2 = CH4 + 2H2O) as described by Ahern et al [5].  Another method of carbon capture is to 48 

combine micro-algae cultivation with removal of CO2 from biogas  as described by Xia et al. 49 

[6] . The literature is sparse in assessing the financial sustainability of such systems and 50 

assessing the cost to capture and reuse this CO2. 51 

The assessment of the financial feasibility of biogas systems may be simplified via process 52 

simulators, which allow techno-economic analysis (TEA) [7]. TEA considers process level 53 

information such as yield, sizing, and productivity. Previous techno-economic assessments 54 
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on AD includes retrofitting and expansion of a biogas facility [8], exploring digestion of 55 

forestry feedstocks with innovative pretreatments [9-11], and upgrading technologies [12, 56 

13].  Most AD plants employ conventional upgrading technologies (water scrubbing, 57 

absorption or adsorption) that have a high technology readiness level (TRL) to purify 58 

biomethane [13]. However, conventional upgrading processes do not readily capture pure 59 

streams of CO2 after upgrading for further use as a fuel. Capture and reuse of released CO2 60 

in cascading bioenergy systems can facilitate further reduction in greenhouse gas emissions 61 

[14]. New technologies such as Power to Gas (P2G) and microalgae-based upgrading offer 62 

CO2 capture and reuse combined with upgrading [14, 15]. P2G would be at a lower TRL than 63 

conventional upgrading, while microalgae upgrading would be at a lower TRL again[16].  64 

The gap in the state of the art is the lack of detailed financial assessment of carbon capture 65 

and reuse from a biogas system and the extra cost as compared to conventional upgrading. 66 

No previous study has evaluated the incentives required to operate a biogas plant using a 67 

range of feedstocks (such as from urban, rural and coastal regions) that employ different 68 

upgrading systems including for carbon capture and reuse.  69 

The innovation in this study is that BECCS is seen as critical for the below 1.5 degree 70 

temperature rise scenario. CO2 from biogas upgrading is one of the most concentrated 71 

sources of CO2 thus minimising the cost of Power to Gas systems [5]. This paper assessed, 72 

through a techno-economic analysis, the incentives required for conventional water 73 

scrubbing and the increased incentive required for scenarios that capture and allow reuse of 74 

carbon such as microalgae upgrading and power to gas systems. The innovation was shown 75 

through satisfying the following objectives: 76 
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1. Develop simulations of renewable methane from nine models using feedstocks from 77 

urban, rural, and coastal wastes using three upgrading techniques (water scrubbing, 78 

microalgae upgrading and power to gas).  79 

2. Calculate the levelized costs of energy (LCOE) over the plant lifetime of the nine 80 

scenarios. 81 

3. Assess the level of incentives required for the three upgrading mechanisms. 82 

4. Calculate the extra incentive to facilitate carbon capture and reuse. 83 

  84 

2 Methodology 85 

Substrates were chosen based on urban, rural, and coastal models while upgrading methods 86 

were chosen based on the maturity of technology; water scrubbing, microalgae upgrading 87 

and P2G. The combination of feedstock and upgrading methods resulted in the simulation of 88 

nine scenarios (Figure 1). Food wastes dominated the urban scenario, while for rural regions 89 

grass silage and slurry were the model feedstocks. The coastal model utilised slurry, grass 90 

silage, food wastes and seaweed. The choice of feedstock and upgrading method was used 91 

to label each scenario; urban feedstock was labelled as “U,” rural as “R” and coastal as “C”. 92 

Labelling upgrading methods used the following acronyms: “WS” for water scrubbing; “P2G” 93 

for power to gas systems; and “MA” for microalgae upgrading. A scenario employing coastal 94 

feedstock and power to gas upgrading therefore has an acronym of “CP2G”.  95 
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2.1 Feedstock characteristics 96 

2.1.1 Urban scenarios 97 

Urban organic wastes, predominantly food wastes (FW) are modelled with a per-capita food 98 

waste (FW) generation  of 180 kg/per person/ per year, which is the typical Irish production 99 

[17]. The design of the plant ensured feedstock availability within a 40 km radius; 100 

transporting longer distances would not be economically viable [8]. The population of 101 

Dublin (the capital city of Ireland) facilitates an annual processing capacity of 100,000 t/yr. 102 

Hence, the urban scenario had a processing capacity of 274 t FW/day. Table 1 shows the 103 

characteristics of the feedstocks including total solids (TS), volatile solids (VS) and 104 

biomethane potential (BMP). The EU Landfill Directive in essence prevents landfill of organic 105 

wastes; this disincentive is facilitated in Ireland by the introduction of tipping fees of the 106 

order of €75/t. In this study, it was assumed that FW would be treated in the AD facility at a 107 

gate fee of €50/tonne (which is cheaper than landfill). This charge is a significant  source of 108 

revenue for treating wastes [18] and has been a driver for the first biogas facilities in 109 

Ireland. It is assumed that the FW is source segregated and collected using a separate bin 110 

for organics. The waste collection trucks collect the FW from households once a week and 111 

transfer it to the AD processing facility.  112 

2.1.2 Rural scenarios 113 

Rural areas contain agricultural residues such as grass silage (GS) and cattle slurry (CS). In 114 

Ireland, grass silage production was of the order of 26 Million tonnes in 2009. There is 115 

significant potential to allow feed and energy supply [22]; estimates of  a biomethane 116 

potential of 138 PJ per annum are suggested in the literature [19, 20]. Ireland in 2016 has a 117 

population of about 6.6 M cattle, including for 1.3M dairy cows [23]; the slurry produced 118 
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has a biomethane potential of 13.7 PJ [23]. Dairy cows at two-years-old produce  119 

approximately 50kg slurry/day; if we assume a farm size of 100 cows 5 t/day of slurry is 120 

produced [19].  121 

The carbon to nitrogen (C:N) ratio of grass silage is high (of the order of 30:1) [21] while that 122 

of slurry is low; co-digestion enhances the balance in the system as well as boosting the 123 

methane yield [25]. In a study by Wall et al., the optimum grass silage to the slurry ratio in 124 

long term continuous anaerobic digestion in terms of methane yield and sustainability was 125 

80:20 by volatile solids ratio [22]. If we model a co-op of 35 Irish cattle farms each with 100 126 

cattle (or 3500 cattle in total) then the slurry production is 65,000 t/yr of slurry; then to 127 

maintain a VS ratio of 20:80, the amount of grass silage used should be 75,000 t/yr. A 20:80 128 

slurry: silage VS ratio equates to a 46:54 slurry: silage wet weight ratio. Moreover, as grass 129 

silage (ca. 29% TS) has a high dry solids content, while slurry has a high-water content (90 – 130 

94%), combining the two substrates leads to a mixable pumpable digestate. The cost of GS 131 

was modelled at €27/t, while slurry was costed at the cost of transportation alone.  132 

Transportation of slurry was assumed at a cost of €4/t. Grass silage and slurry are abundant 133 

in the south-west of Ireland where this facility is assumed to be built. The BMP of the 134 

combination of GS and CS used in the techno-economic assessments was 366 LCH4/kgVS at 135 

a loading rate of 3.5 kgVS/m3/day with a retention time of 25 days (Table 1) as per Wall et 136 

al., [25].  137 

2.1.3 Coastal scenarios 138 

Coastal areas produce wastes from diverse origins including food wastes, grass silage, slurry, 139 

and seaweed. Ireland harvests about 30,000 t/year seaweed, which corresponds to 2.5% of 140 

the global seaweed harvest [23]. The biomethane potential varies based on the species, and 141 
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in this study, L. digitata was modelled with data from Allen et al. [24]. The coastal biogas 142 

production process considered 5,000 t/yr seaweed, 50,000 t/yr silage, 45,000 t/yr slurry and 143 

2,000 t/yr FW (Table 1). It is assummed that cast seaweed of nuisance value is collected 144 

from beaches to improve amenity and as such the cost is minimal; a transportation cost of 145 

€4/t is modelled similar to slurry. In Timoleague in West Cork approximately 10,000 t of dry 146 

solids seaweed is cast on the shore each year. In Solrod, Denmark, beach cast seaweed is 147 

digested with by-products of a seaweed processing industry [25].  148 

   149 

2.2 Model Development 150 

This study used Intelligen SuperPro Designer (V 10.0) to develop the process models. The 151 

outputs of the process models are attached as supplementary files to facilitate transparency 152 

and reproduction of work.   153 

2.2.1 Biogas production (Upstream Processing) 154 

The screening of FW in urban scenarios helps in removing metals, plastics or any foreign 155 

objects in the first step. One percent of waste entering the facility is assumed to be 156 

screened before further processing takes place. This low level of contaminants requires 157 

excellent quality control in collection of food waste. An assumption here is that small 158 

amounts of food waste in small containers are collected on a frequent basis and that any 159 

contaminated bins are rejected leading to good practice over time. Screening was also used 160 

in coastal scenarios for FW. Except for slurry, all the wastes were stored in a silo, as a 161 

temporary storage upon arrival to the treatment facility. The solid wastes were screw 162 

conveyed to the shredder with an electricity consumption of 0.02 kW/(kg/h). The carbon 163 

steel shredder reduces the incoming feedstocks with a power consumption of 0.09 164 
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kW/(kg/h) [26]. Figure (i) (Appendix A) shows the complete process flow from SuperPro 165 

Designer for the UWS scenario.  166 

The digestate after AD is rich in microbial consortia and water; this is recycled back to the 167 

process together with the incoming feedstock through a centrifugal pump. Rural and coastal 168 

scenarios handling cattle slurry incorporated mixing after shredding the feedstock prior to 169 

pumping and pasteurization. To facilitate pumping, the processed feedstock had a solids 170 

concentration of between 12-15% [8, 9, 27]. The pumped materials were sent to a 171 

pasteurization tank operated at 70°C with a 1 hour retention time to kill the pathogens 172 

present [28, 29]. The excess heat post-pasteurization is heat exchanged with the incoming 173 

feed to reduce the heating load. The pasteurized feed was stored in a storage tank with a 174 

retention time of 10 hours before it was transferred to the main digester. The pasteurized 175 

feed was stored in two parallel storage tanks with a volume between 90 and 130 m3 176 

depending on the scenarios.  177 

Table 1 depicts the operating conditions including loading rate and retention times for 178 

different feedstocks considered. The digesters operated at mesophilic conditions (37°C) and 179 

consumed 0.01 kW/m3 for agitation purposes. The TS in the digestate post AD varied 180 

between 4 and 6% depending on the feedstock. Two digesters arranged in series were in 181 

operation for Urban and Rural scenarios whereas for coastal feedstock one was sufficient. 182 

The experimental data from the literature provided the methane yield for different 183 

feedstocks used in this study (Table 1). After AD, the gaseous stream was upgraded to 184 

biomethane. Farmers use the digestate after concentration free of cost. The model uses a 185 

decanter to concentrate the digestate to TS content of between 7 and 10%. The remaining 186 

water is recycled to the process. The concentrated digestate is stored in storage tanks for 90 187 
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days before distribution to farms. Conditioning the biogas is necessary for upgrading; a 188 

moisture-trap removes excess moisture. The moisture free biogas is upgraded either by 189 

water scrubbing, power to gas or microalgae.  190 

2.2.2 Water Scrubbing 191 

Water scrubbing is widely used as an upgrading method for biogas with more than 145 units 192 

installed to date [30]. It is potentially the cheapest biogas upgrading method available [31]. 193 

The WS scenarios did not capture carbon dioxide after biogas upgrading. The other two 194 

scenarios require carbon capture.  195 

In this WS model, water is pumped to the top of the absorption column at 7 bar pressure, 196 

while the biogas is compressed to 4 bar before it is fed to the bottom of the column (Figure 197 

(i) Appendix A) [32]. The solubility of the gases in the absorption column was designed 198 

based on Cozma, Wukovits, Mămăligă, Friedl and Gavrilescu [33]. The absorption column 199 

was designed using carbon dioxide as a design component with a gas and liquid phase 200 

diffusivity of 0.016 and 0.087 m2/s [34]. The absorption column had a length of between 15 201 

and 25 m with a diameter of 1.05 m. The column was packed with plastic pall rings that had 202 

a surface area of 128 m2/m3 with a critical surface tension of 0.072 N/m [35]. A methane 203 

purity of between 96-98% is achievable from the absorption column; this was compressed 204 

to a pressure of 8 bar to maintain the gas pressure standards injecting into the grid [36]. The 205 

liquid stream from the absorption column is rich in dissolved carbon dioxide and includes for 206 

dissolved methane; this is passed through a flash vessel to recover the methane.  207 

Regenerating the water and reusing it in the absorption column reduces the requirement for 208 

fresh water consumption and hence the environmental load. Similarly, a heat exchanger 209 

cooled the water (with absorbed carbon dioxide from the flash vessel) to 20°C; from here it 210 
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is sent to a stripper. In the stripper, the injected air when contacted with the cooled water 211 

strips the carbon dioxide. The operating conditions of the stripper column were similar to 212 

the absorption column, whereas the gas and liquid diffusivity were altered to 0.001 m2/s 213 

[34]. Emitting the stripped carbon dioxide from the water into the atmosphere, helps in 214 

recycling water to the process. To avoid saturation of liquid, five percent of regenerated 215 

water was replaced with fresh water. 216 

 217 

2.2.3 Microalgae Upgrading 218 

The microalgae upgrading process involves a carbonate-bicarbonate system where the 219 

carbonate reacts with the carbon dioxide resulting in bicarbonate formation [37, 38]. 220 

Microalgae uses this bicarbonate for growth and converts the bicarbonate back to 221 

carbonate, which is then recycled back to the process [16, 39] (Figure (ii) Appendix A). The 222 

raw biogas is compressed initially to four bar and enters the absorption column that works 223 

similar to a WS with a modification. Instead of water, this column uses carbonate solution 224 

for trapping carbon dioxide (Equation 1). The bicarbonate-rich solution then enters the algal 225 

raceway-pond for microalgae cultivation that eventually releases carbonate for the next 226 

cycle. Design considerations include the length-to-width ratio of the pond (10:1) and a 227 

depth of not greater than 0.3m [40]. Three reactions occur in an algal pond including: 228 

release of carbon dioxide (Equation 2); bicarbonate conversion to carbonate (Equation 3); 229 

and finally utilizing carbon dioxide to produce algae (Equation 4) [38]. The algal cultivation 230 

had a retention time of 15 days, with the following dimensions for the urban scenario 231 

(UMA): 416 m (L) × 41 m (W) × 0.3 m (H). Cultivating microalgae for an urban scenario needs 232 

eight hectares of land space. The concentration of the algae produced from the raceway 233 
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pond was limited to 4.8 g/L with a conversion efficiency of between 60 and 65% [41]. 234 

Clarifying and centrifuging the low concentrated algal biomass results in selling the 235 

microalgae as a by-product, while venting oxygen. Clarifying and centrifuging has an 236 

additional advantage in enhancing recirculation of the carbonate-rich solution back to the 237 

process. The carbonate losses ranged between 10% and 15%; fresh carbonate replaces the 238 

loss at the start of the process (Figure (ii), Appendix A). Compared with P2G upgrading that 239 

produces additional methane, MA upgrading interchanges bicarbonate to carbonate to 240 

produce microalgae as a by-product. Microalgae have commercial value as a precursor for 241 

biogas or biodiesel or other edible applications [42]. 242 

CO2 + Na2CO3 + H2O → 2 NaHCO3       Equation 1  243 

NaHCO3 →  CO2 + 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁         Equation 2  244 

NaHCO3 + 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 →  Na2CO3 + H2O       Equation 3  245 

CO2 +  H2O → Algae + 𝑁𝑁2          Equation 4 246 

2.2.4 Power to gas 247 

Power to gas (P2G) technology utilizes electricity (ideally surplus intermittent renewable 248 

electricity such as from wind turbines) to produce hydrogen by electrolysis. This hydrogen 249 

may be reacted with carbon dioxide from biogas to produce methane (Figure (iii) Appendix 250 

A) [43]. The carbon dioxide from the biogas needs to be free of hydrogen sulphide and other 251 

impurities before catalytic methanation can take place. A desulfurizer is employed to 252 

remove hydrogen sulphide in a two-step process [44]. The first step involves the conversion 253 

of Iron (III) oxide monohydrate to Iron (III) sulphide monohydrate (Equation 5). Later, the 254 
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Iron (III) sulphide monohydrate when oxidized regenerates Iron (III) oxide hydrate and the 255 

cycle continues [45] (Equation 6).   256 

𝐹𝐹𝑒𝑒2𝑁𝑁3. 𝑁𝑁2𝑁𝑁 +  3𝑁𝑁2𝑆𝑆 →  𝐹𝐹𝑒𝑒2𝑆𝑆3. 𝑁𝑁2𝑁𝑁 +  3𝑁𝑁2𝑁𝑁     Equation 5 257 

2𝐹𝐹𝑒𝑒2𝑆𝑆3. 𝑁𝑁2𝑁𝑁 +  3𝑁𝑁2 → 2𝐹𝐹𝑒𝑒2𝑁𝑁3. 𝑁𝑁2𝑁𝑁 +  6𝑆𝑆       Equation 6 258 

The electrolyser uses electricity to split hydrogen from water [46] (Equation 7). The size of 259 

the electrolyser depends on the amount of the CO2 in the biogas, an important design 260 

parameter. The electrolyser operates at 250°C, 10 bar pressure and is modelled with a 261 

conversion efficiency of 72% [15, 46]. Multiple units of electrolysers are considered when 262 

the size of the electrolyser exceeds 10MW. The cost of the electrolyser was based on 263 

previous literature [43]. 264 

2𝑁𝑁2𝑁𝑁 →  2𝑁𝑁2 + 𝑁𝑁2         Equation 7 265 

Upon hydrogen production, both the reactants (biogas and hydrogen) enter the catalytic 266 

methanation unit operating at 200°C [47] where the carbon dioxide reacts with hydrogen to 267 

produce methane and water (Equation 8). The efficiency of the catalytic methanation was 268 

modelled at 78%. This results in an overall efficiency combining electrolyser and catalytic 269 

methanation of 56% [15, 43, 47].  270 

𝐶𝐶𝑁𝑁2 +  4𝑁𝑁2 →  𝐶𝐶𝑁𝑁4 +  2𝑁𝑁2𝑁𝑁        Equation 8 271 

 272 

2.3 Economic analysis and assumptions 273 

The economic assumptions behind play a vital role in the results obtained from SuperPro 274 

Designer. Table 2 outlines the assumptions used in this study including the utilities cost and 275 

selling price of products such as methane and algae. The scenarios considered 20 years as 276 
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the lifetime of the plant, with a construction period of 18 months and start-up period of 6 277 

months. Table 1 shows the capacity of different feedstocks in each scenario considered with 278 

their associated costs. Food waste yielded gate fees of € 50/t. SuperPro Designer calculated 279 

the sizing and costing of different equipment while the digester costs were from taken from 280 

Krieg & Fischer [48]. The equipment depreciation calculation used a straight-line method 281 

that had a depreciation period of 10 years and a salvage value of 5% of direct fixed capital 282 

(DFC). Corporation tax in Ireland is 12.5%. The start-up costs account for 5% of DFC while 283 

the working capital depicts one-month operational expenses. This project assumed equity-284 

based financing on different sections including 9% interest on DFC, 12% for working capital, 285 

research, and development. DFC had a loan period of 10 years while the rest of the 286 

equipment had 6 years. Purchasing electricity was one of the key assumptions and the main 287 

economical variable in P2G systems. It is assumed that the developer bids for electricity in 288 

the open market as a wholesaler. Electricity is bid at 50€/MWh yielding an average price of 289 

35€/MWh [5]. The biomethane produced was sold at a base price of 0.20 €/m3 [49], which is 290 

the typical price of natural gas in Ireland.  291 

 292 

2.4 Sensitivity analysis 293 

The sensitivity analysis illustrates the impact of fluctuations on important parameters in the 294 

system on the output. The analysis assessed variables in scenarios that could allow 295 

feasibility with an incentive of 0.5 €/m3 methane to meet the levelized cost of energy 296 

(LCOE). This equated to a total cost of 0.7 €/m3 or €0.70/ L diesel equivalent. Any scenario 297 

that required an incentive of greater than 0.5 €/m3 methane was not considered for the 298 

sensitivity analysis (Figure 2). A number of parameters were assessed such as: capacity; 299 
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selling price of methane; purchase cost of electricity in the electrolyser; purchasing cost of 300 

feedstock; gate fee for the food waste. The fluctuation in capacity highlights the impact of 301 

economies of scale. Variations of between ±10 and ±20 percentage were assessed for effect 302 

on economics of the systems.  303 

 304 

2.5 Uncertainty analysis (Monte Carlo Simulation) 305 

Uncertainty analysis estimates the ambiguity in a calculation methodology. The Monte Carlo 306 

simulation helps in finding this ambiguity based on the data from the sensitivity analysis 307 

carried out. Figure 2 shows the methodology on the choice of scenarios considered for the 308 

sensitivity and uncertainty analysis. The sensitivity analysis had a range of ±10 and ±20 309 

percentage fluctuation yielding a broad range of incentive values. This range of incentives 310 

was used as the input for the Monte Carlo simulation. About 1000 random incentive values 311 

were generated based on the average incentive and standard deviation from the sensitivity 312 

analysis. The Monte Carlo simulation resulted in a global mean incentive, standard deviation 313 

and the probability of achieving an incentive greater than 0.2 €/m3 from the sensitivity 314 

analysis.  315 

 316 

3 Results and Discussions 317 

3.1 Technical analysis 318 

Under nine scenarios (3 feedstocks × 3 upgrading technologies), the techno-economic 319 

performance of biogas upgrading with or without carbon capture and reuse was evaluated. 320 

Figure 3 shows the overall mass balance of the nine scenarios assessed using SuperPro 321 
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Designer®. The biogas flowrate after the AD process for the urban, rural and coastal 322 

feedstocks was around 2300, 1700 and 1300 m3 STP/h respectively. The composition of 323 

methane in the biogas varied between 55 and 61% depending on the feedstock. Depending 324 

on the upgrading method employed, the final biomethane production varied. For example, 325 

P2G utilises the CO2 in biogas, to produce methane which resulted in significantly more 326 

methane (practically double) unlike WS, which released the CO2.  327 

Urban scenarios needed a larger digester (20,200 m3), in comparison with rural or coastal 328 

scenarios. Table 3 shows the sizing and costing of different equipment used in various 329 

scenarios. The biogas flowrate from each feedstock determined the sizing of the upgrading 330 

equipment. For example, UWS had a 22-m3 absorption/stripper column while the RWS and 331 

CWS had 17 and 13 m3 columns respectively. Similarly, the size of the electrolyser depends 332 

on the amount of hydrogen needed to react with CO2 (Equation 8) that in turn depends on 333 

the biogas flow rate. The size of the electrolyser varied between 10 and 18 MW depending 334 

on the substrate [15, 46]. Microalgae upgrading requires a land space between 4 and 7 335 

hectares of land for cultivation.  336 

Table 4 shows the different utilities such as electricity, steam and chilled water consumed in 337 

different scenarios. WS consumed less utilities when compared with P2G or MA. There is 338 

more certainty and optimisation associated with the high TRL of WS. The electrolyser 339 

needed between 80,000 and 142,000 MWh electricity per annum to produce hydrogen to 340 

react with CO2 to produce methane. Urban scenarios consumed more utilities than rural or 341 

coastal scenarios. Microalgae energy consumption is attributed to the aeration in the 342 

raceway pond at 8 watt/m3 (0.05 V/V/min).  343 
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The primary concern in this paper is the effect of the upgrading technology on the 344 

biomethane production. As such Figure 4 shows the energy consumption rate and energy 345 

consumption for different scenarios based on a per t or a per m3 basis. UP2G consumed 346 

0.33 MWh of electricity / t, a consumption rate of 17% of the energy produced (parasitic 347 

energy demand). On the other hand, WS as an upgrading method had the lowest parasitic 348 

energy demand of between 12% and 14% (Figure 4a). WS has a parasitic energy demand of 349 

0.13-0.15 kWh electricity / m3 renewable methane, while MA had 0.25 and 0.28 kWh / m3 350 

and P2G 1.02 and 1.05 kWh / m3 (Figure 4b). It is worth noting that the energy consumption 351 

to produce renewable methane varied mainly due to the upgrading method employed. For 352 

instance, P2G utilised CO2 that resulted in more methane, which decreased the energy 353 

consumption per unit of renewable methane production. Compared with UWS, UP2G 354 

produced 70% more methane through conversion of CO2.  355 

 356 

3.2 Economic analysis 357 

The economic analysis includes evaluating the capital costs, the operational costs, and other 358 

essential parameters that measure profitability. Table 3 shows the sizing and costing of all 359 

unit operations considered in various scenarios. Dividing the scenarios into biogas 360 

production and upgrading results in identifying the costs associated with each section. The 361 

equipment costs were highest for the urban feedstock (36 €/t/yr) followed by rural (20 362 

€/t/yr) and coastal scenarios (18 €/t/yr). The higher costs for urban scenarios could be 363 

mainly attributed to the higher solids handled in comparison with rural or coastal 364 

feedstocks. Total equipment costs for each scenario was calculated by summing the costs of 365 

biogas production and upgrading type (Table 3).  366 
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The equipment costs in the upgrading section were highest for P2G in the range of 0.124 to 367 

0.152 €/m3/yr followed by MA (0.08 – 0.10 €/m3/yr) and WS (0.04 – 0.056 €/m3/yr). The 368 

electrolyser cost between 18 and 21% of the total equipment costs (Table 3: A+B+C) in P2G 369 

upgrading. The size of the electrolyser varied between 10 and 18 MW depending on the 370 

feedstock and biogas flow rate [15, 46]. WS as an upgrading method had lower equipment 371 

costs, as it is a mature technology with more than 100 upgrading units installed by 2015 372 

[30].  373 

CAPEX accounts for the total investment required to build a biogas plant including for the 374 

different biogas upgrading methods. The choices for upgrading methods considered with or 375 

without carbon capture and reuse. The CAPEX for biogas production was highest for urban 376 

scenario (278 €/t.yr), followed by rural (160 €/t.yr) and coastal (141 €/t.yr) feedstocks. 377 

Urban scenarios treating 100,000 t/yr had a CAPEX between 32 and 50 M€ depending on 378 

the upgrading method used. P2G as an upgrading method for the Urban scenario treating 379 

100,000 t/yr needed a CAPEX of 22 M€ (Figure 5a). The CAPEX differentiation between 380 

water scrubbing and power to gas was 177€/t/a (Urban). For rural scenarios the 381 

differentiation was 111 €/t/a, and for coastal scenarios €82/t/a (Figure 5a). P2G was the 382 

most expensive upgrading method requiring between 44 and 46% of the CAPEX followed by 383 

MA and WS. It is worth mentioning that P2G and MA have a significant lower TRL that leads 384 

to less defined but significantly higher costs; these costs may reduce with the improvements 385 

in the technology [15, 46].  386 

 The OPEX included labour, raw materials, utilities and facility dependent services for 387 

running a plant. The OPEX for WS varied between 64-87 €/t depending on the feedstocks, 388 
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while for MA it was 72-110 €/t and for P2G it was 108-166 €/t (Figure 5b). The OPEX for P2G 389 

was higher due to the higher electricity consumption.  390 

Apart from selling biomethane, urban scenarios yield a revenue of 50€/t from the gate fee 391 

that helps in recovering the OPEX, while the revenues did not match the OPEX in other 392 

feedstocks. For the UWS scenario, the OPEX was 87 €/t, while the revenues were 73 €/t 393 

(Figure 5c) and as such an incentive of 14€/t is required to recover LCOE. Unlike urban 394 

scenarios, the rural and coastal feedstocks generated most of their income by selling 395 

upgraded biomethane and as such need higher incentives. 396 

The production costs showed an increasing trend with the type of feedstock and upgrading 397 

method used (Figure 6a). the urban scenario had the lowest production cost (0.73 – 0.94 398 

€/m3 renewable methane), while coastal scenarios had the highest production costs (1.04 – 399 

1.37 €/m3). WS was the cheapest upgrading method requiring between 0.12 and 0.21 €/m3 400 

to upgrade the biogas. The fluctuation in the production costs of WS was mainly due to the 401 

fluctuation in the biogas flow rate. As the biogas flow rate increased, the cost to upgrade 402 

decreased due to the economies of scale. UWS produced 2300 m3 biogas STP/h followed by 403 

RWS with 1700 m3 STP/h and coastal feedstock had a biogas flow rate of 1300 m3 STP/h. 404 

UWS had an upgrading cost of 0.12 €/m3 while CWS cost 0.21 €/m3. 405 

The MA upgrading method cost between 0.24 and 0.37 €/m3. A general trend of decreasing 406 

biogas flowrate in different feedstocks (urban to rural to coastal) led to increased 407 

production costs. In addition, the varying biomethane yield and capacity altered the biogas 408 

flowrate that in turn affected the production cost.  409 

For UWS scenario, the production cost was 0.73 €/m3 and by selling the biomethane and 410 

availing of revenues from tipping fees a unit revenue of 0.62 €/m3 was achieved. Thus, an 411 
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incentive of 0.13 €/m3 is required to meet the overall costs at zero profit (Figure 6b). An 412 

additional 2 c/m3 was added to allow a marginal income beyond the CAPEX; this was applied 413 

in all scenarios. The incentive requirement varied based on the feedstock and upgrading 414 

method employed. For urban feedstocks, the incentives required were between 0.13 and 415 

0.40 €/m3 biomethane while rural feedstocks need an incentive between 0.85 and 1.03 416 

€/m3. A cut-off ranges of 0.5 €/m3 was considered for applying sensitivity analysis. Hence, 417 

rural and coastal feedstocks were not considered for sensitivity and Monte Carlo simulation 418 

(Figure 6).  419 

3.3 Sensitivity analysis on urban scenario 420 

The sensitivity analysis included the most important factors that affect overall profitability.  421 

The factors assessed includes capacity, electricity cost, biomethane price, and gate fee.  422 

From the base case, ±10% and ±20% was considered as fluctuations. For water scrubbing 423 

and microalgae upgrading, the electricity cost had negligible effect on the incentives 424 

required (Figure 7a and 7b). Whereas for P2G upgrading, electricity cost was the second 425 

most important factor after capacity variations.  When the electricity cost reduces by 20% in 426 

P2G, the incentives required decreased to 0.33€/m3, from 0.40€/m3 in the base case (Figure 427 

7c).  For UWS, increasing the gate fee by 20% reduced the incentives required from 0.13 428 

€/m3 (base case) to 0.05 €/m3. Biomethane price had a lower effect on the sensitivity 429 

analysis in comparison with gate fee. The gate fee generated higher income (0.25 and 0.43 430 

€/m3) in comparison with the revenues from biomethane (0.2 €/m3) for urban feedstocks in 431 

the base case (Figure 6b). This shows that gate fee is a more important factor than 432 

biomethane price. Of the different factors assessed, decreasing the capacities had the most 433 
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negative impact on the incentive required. This suggests that bigger plants are needed to 434 

yield profits in Ireland.  435 

3.4 Uncertainty analysis on urban scenario 436 

A Monte Carlo simulation was performed to assess the uncertainties. The data from the 437 

sensitivity analysis was used to run the Monte Carlo simulation. The chance of incentive 438 

requirement greater than 0.2 €/m3 was used as the criteria in uncertainty analysis. Figure 8 439 

shows the results from a Monte Carlo simulation with 1000 iterations. The global average 440 

incentive required for UWS was 0.13±0.04 €/m3, which had between 4% and 6% chance of 441 

incentive requirement greater than 0.2 €/m3. The other two upgrading methods (UMA and 442 

UP2G) would need 100% higher incentives than 0.2 €/m3. The global average incentive 443 

required for microalgae and power-to-gas systems was 0.33±0.04 €/m3, and 0.40±0.04 €/m3 444 

respectively. Compared with water scrubbing, microalgae and P2G offers carbon capture, 445 

which necessitates higher incentives. The probability of incentive requirement greater than 446 

0.5 €/m3 was 0% for water scrubbing and microalgae upgrading; P2G had a 1% chance.  447 

3.5 Comparison of data with literature 448 

The Levelized cost of energy (LCOE) corresponds to the net cost of the energy incurred by 449 

the plant over its lifetime divided by the net energy produced over its lifetime (Equation 9). 450 

LCOE helps in comparing costs of different technologies through use of a uniform unit that 451 

facilitates comparison. Figure 9 shows the LCOE of different biochemical technologies and 452 

results from this study. The results from this study have an LCOE between 0.02 and 0.04 453 

€/MJ of biomethane produced. It is worth mentioning that algal biodiesel and Fischer-454 

Tropsch diesel had an LCOE of the order of 0.06 €/MJ and biochemical ethanol production 455 

varied between 0.01 and 0.07 €/MJ depending on the feedstock and processing method 456 
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[50]. The results for LCOE reported from this study, and other biochemical technologies 457 

from the literature were comparable. Such data allows assessment of a range of incentives 458 

required to allow countries to decarbonise at minimal cost to the taxpayer.  459 

𝐿𝐿𝐶𝐶𝑁𝑁𝐿𝐿 =
[𝐶𝐶𝐶𝐶𝑃𝑃𝐸𝐸𝐸𝐸 (€)]+[𝑂𝑂𝑃𝑃𝐸𝐸𝐸𝐸 � €

𝑦𝑦𝑦𝑦�×20 (𝑦𝑦𝑦𝑦𝑦𝑦)]

�𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑎𝑎𝑎𝑎𝐵𝐵 𝑝𝑝𝑦𝑦𝐵𝐵𝑝𝑝𝑝𝑝𝑝𝑝𝐵𝐵𝑝𝑝 �𝑚𝑚3
𝑦𝑦𝑦𝑦 �×20 (𝑦𝑦𝑦𝑦𝑦𝑦)�

       Equation 1 460 

WS upgrading is widely used across the AD facilities, as it is cost and energy efficient. The 461 

investment costs, energy and production cost of different studies reported in the literature 462 

were compared and analysed with the data from this study. The investment costs of biogas 463 

upgrading were measured based on the raw biogas flow rate (Nm3/h); this decreased 464 

exponentially with the increase in flow rate for lower flows [51-53]. Bauer reported the cost 465 

curve showing the specific investments costs at different biogas flow rates [13, 54]. The 466 

coastal scenarios had the lowest biogas flow rate at about 1300 Nm3/h while the rural and 467 

urban scenarios matched with the literature (Figure 10 a)[55]. The reason for the higher 468 

costs could be due to the lower biogas flow rates, the amount of CO2 in the raw biogas and 469 

operating conditions.  470 

The energy consumption in this study for WS upgrading ranged between 0.20 and 0.25 471 

kWh/ Nm3 : this fits the literature curve [13, 27, 54, 56] (Figure 10b). There were certain 472 

outliers at lower biogas flow rates that could need to be investigated on a case-to-case basis 473 

[57, 58]. Bauer et. al [13] reported energy consumption between 0.20 and 0.30 kWh/ Nm3 474 

depending on the flow rate where lower flow rates consumed higher energy. The 475 

production costs in this study varied between 0.12 and 0.21 €/m3 biomethane produced. 476 

The production costs reported in the literature varied between 0.09 and 0.30 €/m3 477 

biomethane [59, 60].  478 
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4 Conclusions 479 

A techno-economic assessment was carried out for feedstocks associated with different 480 

regions. In the Urban (U) scenarios the model feedstock was source segregated food waste, 481 

in the Rural (R) scenarios slurry and grass silage, whilst for Coastal (C) scenarios source 482 

segregated food waste, grass silage and seaweed was the modelled feedstock. Three 483 

upgrading technologies were employed which were at different technology readiness levels. 484 

Commercialised water scrubbing (WS), power to gas systems (PG), at demonstration level, 485 

and micro-algae (MA) upgrading systems which are at concept stage. 486 

As expected food waste digestion (with an associated gate fee) coupled with the 487 

commercialised upgrading system (UWS) required the least incentive to allow financial 488 

sustainability. The suggested minimum incentive was 0.13 €/m3 equivalent to 13c/L diesel 489 

equivalent or 13€/MJ. Power to gas on the other hand required a minimum incentive of 0.40 490 

€/m3 (UPG) an addition of 27c/l diesel equivalent. This is a limited market and on its own is 491 

of insufficient scale to supply a new green gas industry. 492 

The abundant feedstocks from agriculture in the rural scenarios required larger incentives of 493 

between 85 and 103 €/MWh. As modelled in this scenario Power to Gas upgrading (RPG) 494 

yielded the lowest required incentive. The reason for this is almost half the feedstock is 495 

sourced from electricity as opposed to feedstocks, which are either weak in methane 496 

potential and voluminous (slurry) or need to be purchased (grass silage). This is a crucial 497 

output: Hydrogen upgrading when the hydrogen is sourced from electricity via electrolysis 498 

can be economically competitive when the feedstock in the biogas facility is expensive 499 

(grass silage) or has a low specific methane yield (slurry). 500 

 501 



24 
 

Funding Information 502 

This work is funded by the Environmental Protection Agency, Ireland (EPA 2016-RE-DS-6) 503 

with co-funding from Gas Networks Ireland. Prof Murphy is funded by the Science 504 

Foundation Ireland (SFI) MaREI Centre (Grant no. 12/RC/2302). 505 

Supplementary Files  506 

The outputs of the simulations were attached as supplementary materials facilitate the 507 

transparency and reproduction of the work.  508 

Conflict of interest 509 

The authors declare no conflicts of interests.  510 

Abbreviations 511 

AD – Anaerobic digestion 512 
BMP – Biomethane potential 513 
CS – Cattle slurry 514 
DFC – Direct fixed capital  515 
FW – Food waste 516 
IRR – Internal rate of return 517 
MTOE – Million tonnes of oil equivalent 518 
OFMSW – Organic fractions of municipal solid waste 519 
P2G – Power to gas  520 
PBP – Payback period  521 
ROI – Return on Investment 522 
t – Tonne  523 
TEA – Techno-economic analysis 524 
TRL – Technology readiness level 525 
TS – Total solids 526 
VS – Volatile solids 527 
wwt – wet weight tonne 528 

 529 

  530 



25 
 

List of figures 531 

 532 

Figure 1. Schematics of nine scenarios used in this study in a combination of three 533 

feedstocks and three upgrading methods. 534 

Figure 2. A systematic methodology to shortlist and undertake sensitivity analysis and 535 

Monte Carlo Simulation.  536 

Figure 3. The overall mass balance of different biomethane systems with and without 537 

carbon capture. 538 

Figure 4. (a) Energy input, output and consumption rate based on input and output, (b) 539 

Share of electricity consumption for different sections including biogas production and 540 

biomethane upgrading. 541 

Figure 5. Different economic metrics: (A) CAPEX, and CAPEX/t/yr of feedstock (B) OPEX, and 542 

OPEX/t of feedstock processed, (C) Share of revenue between biomethane and others (algae, 543 

tipping fee) and Revenue/t of the substrate.  544 

Figure 6. (A) Production cost for the different sections, (B) Split of revenues and incentives 545 

required to meet the LCOE in each scenario. 546 

Figure 7. Sensitivity analysis of the urban scenarios on factors that affect the incentives.  547 

Figure 8. Uncertainty analysis on the urban scenarios using Monte Carlo simulation. X-axis 548 

refers to the incentives required in €/m3, while the Y-axis corresponds to the number of 549 

iterations appearing in a particular incentive. The blue color corresponds to an incentive 550 



26 
 

requirement less than 0.2€/m3 to meet the LCOE. Similarly, the red color corresponds to the 551 

incentives requirement greater than 0.2€/m3. 552 

Figure 9. Levelized cost of energy from this study in comparison with different energy 553 

systems from literature [50].  554 

Figure 10. Comparison of data with literature using water scrubbing as an upgrading method. 555 

(a) CAPEX based on raw biogas, (b) Electricity consumption based on raw biogas and (c) 556 

Production cost based on biomethane. 557 

  558 



27 
 

Table 1. Feedstocks used in different scenarios, their characteristics, BMP and costs.   

Scenario Composition 
Capacity 

(t/yr.) 

TS 

(%) 

VS 

(%) 

BMP  

(L CH4/kgVS) 

OLR 

(kgVS/m3/day) 

HRT 

(days) 
Cost (€/t) References 

Urban FW 100,000 29.4 28 470 
3.0 30 

-50* 
[17, 18, 61, 

62] 

Rural 

Grass silage 75,000 29.3 26.8 

366 3.5 25 

27 [19, 63, 64] 

Slurry 65,000 9.6 7.5 1. 4ψ [63, 65] 

Coastal 

Grass silage 50,000 29.3 26.8 

347 3.5 25 

27 [19, 63, 64] 

Slurry 45,000 9.6 7.5 2. 4ψ [63, 65] 

FW 2,000 29.4 28 -50* [18, 61, 65] 

Seaweed 5,000 14.2 10.3 4ψ [24, 66] 

*The negative costs indicate the tipping fee to discard organic wastes without landfilling.  
ψ The cost here refers to the transportation of slurry or seaweed from production to treatment facility.  
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Table 2. List of assumptions used in this work. 
 

Type Assumption 
Algae 10 €/t 
Annual operating hours 7,920 h 
Construction period 18 months 
Depreciation method Straight-line 
Depreciation period 10 years 
Digestate 0 €/t 
Discount rate 7% 
Income tax 12.5% 
Inflation  4% 
Insurance 1% on DFC* 
Lifetime of the plant 20 years 
Methane selling price 0.20€/m3 STP 
Salvage value 5% 
Start-up costs 5% on DFC* 
Start-up period 6 months 
Working capital 1-month OPEX 
Electricity 35€/MWh 

*DFC – direct fixed capital   
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Table 3. Sizing and costing of different equipment used in different scenarios  

  
Unit Operation Unit 

Feedstock Type 
 Urban Rural Coastal 

  Size Cost (€) Size Cost (€) Size Cost (€) 

U
ps

tr
ea

m
 S

ec
tio

n 

Silo/Bin m3 392 65,000 297 65,000 225 65,000 
Screw Conveyor m3 15 36,000 15 26,000 15 18,000 
Shredder t/h 13 104,000 10 94,000 13 86,000 
Centrifugal Pump kW 1 15,000 1 16,000 0.75 14,000 
Pasteurization m3 28 37,000 30 40,000 21 27,000 
Heat Exchanger m2 2×61 152,000 2×68 164,000 97 100,000 
Storage Tank m3 2×140 292,000 2×150 312,000 2×103 220,000 
Digester m3 2×10,100 1,750,000 2×8,865 1,726,000 12,400 893,000 
Decanter m3 3×54 903,000 34 226,000 22 176,000 
Digestate m3 23,000 253,000 23,000 255,000 17,700 247,000 

         
 Upstream (A)   Urban 3,607,000 Rural 2,924,000 Coastal 1,846,000 
         
      UWS RWS CWS 

     Size Cost (€) Size Cost (€) Size Cost (€) 

W
at

er
 S

cr
ub

bi
ng

 

Centrifugal Pump kW 7 34,000 7 34,000 7 35,000 
Centrifugal Pump kW 1 15,000 1 15,000 1 15,000 
Compressor kW 123 140,000 92 84,000 70 73,000 
Compressor kW 16 61,000 11 61,000 8 61,000 
Compressor kW 3 61,000 3 61,000 3 61,000 
Absorber m3 22 78,000 17 62,000 13 47,000 
Stripper m3 22 78,000 17 62,000 13 47,000 
Cooler m2 2 9,000 2 9,000 1.5 8,000 

 Total WS (B1)   476,000  388,000  347,000 
 Unlisted (C1)   1,021,000  828,000  548,000 
         
 Net (A+B1+C1)   UWS 5,104,000 RWS 4,140,000 CWS 2,741,000 
         
         
     UMA   RMA   CMA   

     Size Cost (€) Size Cost (€) Size Cost (€) 

M
ic

ro
al

ga
e 

Raceway Pond m3 4×4,995 340,000 3×5,000 252,000 2×5,800 190,000 
Centrifugal Pump kW 2 20,000 1.3 17,000 1 16,000 
Clarifier m2 33 66,000 25 56,000 19 48,000 
Decanter m3/h 2,500 219,000 1,800 219,000 1.4 219,000 
Compressor kW 115 131,000 84 80,000 62 68,000 
Compressor kW 15 61,000 11 61,000 8 61,000 
Absorber m3 22 78,000 17 62,000 13 47,000  

Total MA (B2)   915,000  747,000  649,000  

Unlisted (C2)   1,131,000  918,000  624,000 
  Net (A+B2+C2)   UMA 5,653,000 RMA 4,589,000 CMA 3,119,000 
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      UP2G RP2G CP2G 
     Size Cost (€) Size Cost (€) Size Cost (€) 

Po
w

er
 to

 g
as

 Desulfurizer t/h 3 15,000 2 15,000 2 15,000 
Electrolyser MW 2×9 1,438,000 2×7 1,378,000 10 731,000 
Catalytic 
methanation m3 4×2400 740,000 3×2400 555,000 3×2650 374,000 
Compressor kW 368 387,000 268 289,000 197 217,000  

Total P2G (B3)   2,580,000  2,237,000  1,337,000  

Unlisted (C3)   1,547,000  1,290,000  796,000 
         

  Net (A+B3+C3)   UP2G 7,734,000 RP2G 6,451,000 CP2G 3,979,000 
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Table 4. Different utilities used in various scenarios with their unit price.  

  

Unit 

Unit 
price 

(€) 

Urban Rural Coastal 

  UWS UMA UP2G RWS RMA RP2G CWS CMA CP2G 
Power MWh 35 14,500 15,900 33,400 11,200 12,200 25,500 8,400 9,200 18,900 
Steam t 10.56 1,900 1,900 1,900 2,000 2,000 2,000 1,400 1,400 1,400 
Cooling Water t 0.04 430,200 425,100 7,322,100 263,400 257,400 5,469,200 182,800 176,100 4,013,200 
Chilled Water t 0.35 47,800 211,100  40,400 176,400  35,100 146,000  
El. Electrolyser MWh 35   141,800   107,500   79,200 
Steam (High P) t 22     12,300     9,300     6,800 
*All the values were rounded to the nearest hundreds. 
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Figure 1. Schematic of nine scenarios used in this study in a combination of three feedstocks and three upgrading methods. 

  



33 
 

 

Figure 2. A systematic methodology to shortlist and undertake sensitivity analysis and Monte Carlo Simulation.  
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Figure 3. The overall mass balance of different biomethane systems with and without carbon capture and reuse. 
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Figure 4. (a) Energy input, output and consumption rate based on input and output, (b) 

Share of electricity consumption for different sections including biogas production and 

biomethane upgrading. 
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Figure 5. Different economic metrics: (a) CAPEX, and CAPEX/t/yr of feedstock (b) OPEX, and 

OPEX/t of feedstock processed, (c) Share of revenue between biomethane and others (algae, 

tipping fee) and Revenue/t of the substrate.  
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Figure 6. (a) Production cost for the different sections, (b) Split of revenues and incentives 

required to meet the LCOE in each scenario.  
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Figure 7. Sensitivity analysis of the urban scenarios on factors that affect the incentives.  
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Figure 8. Uncertainty analysis on the urban scenarios using Monte Carlo simulation. X-axis 

refers to the incentives required in €/m3, while the Y-axis corresponds to the number of 

iterations appearing in a particular incentive. The blue color corresponds to an incentive 

requirement less than 0.2€/m3 to meet the LCOE. Similarly, the red color corresponds to the 

incentives requirement greater than 0.2€/m3. 
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Figure 9. Levelized cost of energy from this study in comparison with different energy 

systems from literature [50].  
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Figure 10. Comparison of data with literature using water scrubbing as an upgrading 
method. (a)  CAPEX based on raw biogas, (b) Electricity consumption based on raw biogas 
and (c) Production cost based on biomethane.  
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