
Deep Learning Concepts
for Evolutionary Art

Fazle Rabbi Tanjil

Submitted in partial fulfilment

of the requirements for the degree of

Master of Science

Department of Computer Science

Brock University
St. Catharines, Ontario

c©Fazle Rabbi Tanjil, 2018



Abstract

A deep convolutional neural network (CNN) trained on millions of images forms a

very high-level abstract overview of any given target image. Our primary goal is to

use this high-level content information of a given target image to guide the automatic

evolution of images. We use genetic programming (GP) to evolve procedural textures.

We incorporate a pre-trained deep CNN model into the fitness. We are not performing

any training, but rather, we pass a target image through the pre-trained deep CNN

and use its the high-level representation as the fitness guide for evolved images. We

develop a preprocessing strategy called Mean Minimum Matrix Strategy (MMMS)

which reduces the dimensions and identifies the most relevant high-level activation

maps. The technique using reduced activation matrices for a fitness shows promising

results. GP is able to guide the evolution of textures such that they have shared

characteristics with the target image. We also experiment with the fully connected

“classifier” layers of the deep CNN. The evolved images are able to achieve high

confidence scores from the deep CNN module for some tested target images. Finally,

we implement our own shallow convolutional neural network with a fixed set of filters.

Experiments show that the basic CNN had limited effectiveness, likely due to the lack

of training. In conclusion, the research shows the potential for using deep learning

concepts in evolutionary art. As deep CNN models become better understood, they

will be able to be used more effectively for evolutionary art.
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Chapter 1

Introduction

Evolutionary art has been the subject of great interest since its inception. There has

been a lot of effort to create art with the help of computational intelligence [17, 51,

45, 56]. Due to the exploratory nature of evolutionary computation, evolutionary

methodologies have been very successful in this application area. Many of the early

attempts using evolutionary computation were interactive, i.e. evolved image fitness

is manually assigned a score based on the visual appeal [29]. After that, techniques

for automatic evolution have been of interest. The main goal is to improve the artistic

quality and sophistication of evolved images.

One of the major challenges in the process of creating automatic art is how to

intelligently guide the high-level characteristics of evolved images. It is an important

part of creative image generation because, even for human artists, high-level represen-

tations are critical. Finding new ways to give higher-level control to the evolutionary

art system is therefore worth investigating.

Previously the idea of having a high-level abstract overview of a target object

image has been difficult to realize. Many computer vision algorithms have been de-

veloped to detect certain low-level features of an image, but these algorithms are

usually ad hoc solutions that deal with low-level pixel information. Recently, break-

throughs in deep artificial neural networks [50] [20] [33] [22] and the concept of deep

learning greatly resolves this problem [22]. A deep convolutional neural network

(CNN) trained on millions of images forms a very high-level abstract overview of

image content [22]. A deep CNN is made of millions of neurons with weights and

activations which fire or activate based on different inputs. They have biases associ-

ated with them such that neurons only activate after crossing some threshold value.

These neurons along with their all weights, biases, and activations form an abstract

representation of the given input.

1



CHAPTER 1. INTRODUCTION 2

In short, we can say that a deep CNN is capable of having a high-level abstract

overview of an image regardless of the low-level pixel positions or spatial information.

It can also retain spatial invariance which means slight changes in low-level pixels

does not affect the overall high-level representation. Therefore, this might be used as

an intelligent tool to guide evolutionary art. This thesis is based on this idea, and we

will investigate whether it can be successfully applied to evolutionary art.

1.1 Goals and Motivation

Our goal is to investigate and develop a creative evolutionary system using genetic

programming integrated with a trained deep CNN. The deep CNN will serve as a

fitness guide to the evolutionary system. We will not be performing any training,

but instead, we will use a pre-trained deep CNN. We will pass a target object image

(or content image) to the deep CNN. It will form a high-level overview of that given

target image. The high-level content information will be used as a fitness target for

evolution so that evolved images will retain some of the characteristics of the content

image. This way, the evolutionary system be guided by the content image during its

exploration of images.

In the past, there were no novel ways or algorithms to represent the content image

in a high-level abstraction. Popular computer vision algorithms like SIFT [37], HOG

[16], and SURF [10] try to detect the local features like a key point, an edge, or

a blob, but fail to capture overall high-level image representation. They essentially

work as feature detectors. However, major problem with those is that they have a

very limited generalization capability. On the other hand, deep CNN uses several

hidden layers to hierarchically model the high-level representation of an image. For

example, the first layer might detect edges in the image. The second layer might detect

corners present in the content image based on the previous layer’s detected edges. The

third layer detects other features. Changes in one feature do not drastically change

the whole representation of an image in the higher layer. Each deep layer captures

characteristics of multiple features of the previous layer. This will be a very important

aid to our evolutionary system. The evolutionary technique we will primarily focus

on is Genetic Programming (GP). GP automatically tries to solve problems without

knowing the concrete form of the problem in advance. It will be interesting to see

how GP generates “creative solutions” while guided by the deep CNN.

Our research will be predominantly focused on customizing the deep CNN ar-

chitecture to fit with our GP system. We will investigate which components of the
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deep CNN are more effective when used in GP fitness. We will also experiment with

a complete deep CNN system including the final output (or classification) layer to

guide evolution. The classification layer is the most abstract representation of the

target object within the deep CNN. To investigate the concept further, we will also

design our own basic convolutional neural network from scratch and use it in image

evolution.

1.2 Thesis Structure

The thesis is organized as follows. Chapter 2 provides background information on

the underlying concepts we will be using, such as an introduction to deep learning,

convolutional neural network, procedural textures, and genetic programming. In

Chapter 3, we will discuss previous work which motivates our research. Chapter 4

describes the overall architecture of the GP/deep CNN system. Chapter 5 presents

experiments using the convolution layers of the deep CNN and explores different

fitness strategies. It also provides a description of the GP language, parameters, and

analysis of the best GP results. Chapter 6 explores the use of the fully connected

layer as a fitness target instead of using the convolutional layers. In Chapter 7, we

describe our own implementation of a basic CNN and use it for image evolution.

Finally, Chapter 6 summarizes the thesis and discusses future work.



Chapter 2

Background

2.1 Deep Learning

2.1.1 Definitions

Deep learning is a type of machine learning, which tries to exploit the unknown

structure in the input distribution to find good representations, in multiple levels,

with higher-level learned features defined in terms of lower-level features [11]. It

enables computer systems to improve with experience and data [28]. The definition

of deep learning is somewhat broad. Simply speaking, deep learning allows computers

to learn from experience and understand the world in terms of a hierarchy of concepts,

with each concept defined in terms of its relation to simpler concepts. The hierarchy

of concepts allows the computer to learn complicated concepts by building them out

of simpler ones. If we draw a graph showing how these concepts are built on top of

each other, the graph is deep, with many layers. For this reason, this approach to AI

is called deep learning [28].

From another perspective, deep learning can be described as a class of machine

learning techniques, where numerous layers of non-linear information processing steps

are arranged in hierarchical supervised models/architectures. These models are then

exploited for unsupervised feature learning. The process of hierarchical representa-

tions of the data is the core of deep learning techniques, where the higher-level features

are defined from the lower-level features [19]. It is important to note that there are

two key aspects of deep learning: (i) models of multiple layers of non-linear infor-

mation processings, (ii) methods for supervised or unsupervised learning of feature

representation at the higher layers [19].

Deep learning uses a mixture of ideas from other research areas like graphical mod-

4



CHAPTER 2. BACKGROUND 5

eling, optimization, pattern recognition, and signal processing [19]. In fact, in case of

artificial neural networks, the concept of deep hierarchy is applied in terms of multi-

ple hidden layers of the network. A feedforward deep neural network or (multi-layer

perceptron) is be the most common example of deep learning [28]. Deep learning’s

accuracy in pattern recognition in a supervised manner comes from the fact that

there are massive data sets available nowadays which can be used for rigorous train-

ing. Other factors contributing to the accuracy of deep learning methodologies are

massively increased computing power and increased availability of affordable GPUS’s

and improvement in machine learning training algorithms such as backpropagation

algorithms.

2.1.2 Background

The basis of deep learning architecture is derived from the artificial neural network.

In fact, the most common example of deep learning model is a feedforward deep

network or multilayer perceptron (MLP). A perceptron takes many binary inputs

x1, x2, ..., xn and produces a single output. Usually, there is a method to compute the

output. One such method is the use of real number weights w1, w2, ..., wn associated

with each input, which signifies the relationship of input to output. The perceptron’s

output is calculated by the weighted sum
∑

j wjxj, which is then evaluated whether

it is more than some threshold value. The real number threshold value is a parameter

of the perceptron. The mathematical model of a simple binary perceptron can be

expressed as:

Output =

{
0, if

∑
j wjxj ≤ threshold value

1, if
∑

j wjxj > threshold value

This is the simplest form of perceptron. In modern neural networks, the weighted sum

usually passes through some mathematical function called an activation function (ϕ).

There are many different activation functions, for example, sigmoid, tanh, rectified

linear unit and sinusoid. The nodes containing the mathematical functions are called

neurons (see Figure 2.1). By arranging many neurons into many layers we get a

multilayer perceptron. In summary, an MLP is a mathematical function which maps

some sets of input values to output values. This function is formed by composing

many simpler functions. Each application of a mathematical function is providing a

new representation of the input.

Typically, an MLP consists of three or more layers. The first layer is called the

input layer and the final layer is called output layer. All layers in between the input
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Figure 2.1: A single neuron. Image source [1]

and output layers are called hidden layers (Figure 2.2). In the case of deep neural net-

works, the total network consists of thousands of neurons arranged in many different

layers. The number of intermediate/hidden layers, or depth, varies from architecture

to architecture. For example, the VGG (Visual Geometry Group) proposed an archi-

tecture which is 19 layers deep [50]. This will be discussed in detail in Section 2.3.

The depth enables the overall process to learn a multistep computer program [28].

Each layer representation can be thought of as the state of the process’s memory after

executing another set of instructions. Networks with greater depth can execute more

instructions layer by layer.

One important factor in deep neural networks is the use of non-linear activation

functions in hidden layers instead of the linear ones. If linear activations are used for

all the hidden layer neurons, the total network will act as a single linear transformation

of the input. No matter how many hidden layers are used, the neural network will

compute a single linear activation of the input since the composition of many linear

functions is just a single linear function. This will make the use of hidden layers

pointless. As we already know that deep learning is used for capturing high-level

abstract feature representations, non-linearity for the hidden layers is very important.

In order to understand how deep learning models solve complicated classification

problems, we will now address the problem of classifying objects of a given image. An

image is a collection of pixel values. In digital imaging, a pixel is a smallest physical

point in a raster image. The pixels represent an entire object(s). It is difficult for

a computer to understand the meaning of raw pixel values. Mapping thousands of
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Figure 2.2: A simple multilayer perceptron

pixel value to an object is difficult with traditional computer imaging approach. Deep

learning solves this problem by breaking down the complicated inter-pixel mapping

into a series of nested simple mappings, each described by the different layer of the

model. In order to perform object classification, the image is first fed into the input

layer. The series of hidden layers extract increasingly abstract features. From the

Figure 2.3, the pixels in the first layer permit easy identification of edges. Given

the first hidden layer’s description of the edges, the second hidden layer can easily

search for corners and extended contours, which are recognizable as collections of

edges. From the second hidden layer’s description of the image in terms of corners

and contours, the third hidden layer can detect entire parts of specific objects, by

extending specific collections of contours and corners. Finally, this description of the

image in terms of the object components it contains can be used to recognize the

overall objects present in the image [28].

Training of Deep Networks

This thesis will not perform any sort of training of deep networks. Rather, we will

make use of pretrained deep network model called VGG [50]. In Section 1.3 we will
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Figure 2.3: A simple deep learning model for object recognition. Image inspired by
[28]

discuss VGG in detail. But for now, it is worth mentioning some of the basic con-

cepts of a deep CNN’s training process. In supervised learning schemes, training is

the process where the network learns to do a particular task from a predefined set

of labeled data. In artificial neural networks, training is usually done using a few

concepts. First, the aforementioned weights are initialized randomly. Then an input

from training set x̂ flows through the network to produce output y. The input x̂

provides initial information which propagates up to the hidden units at each layer

and produces output y . This process is called forward propagation [28]. The output

is then compared with the output from the training set. The difference is the scalar

cost J(θ). The next concept used is called backpropagation. It allows the information
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from the cost to flow backward through the network in order to compute the gradi-

ent of the cost. The gradient, in this case, is the gradient of the cost function with

respect to the parameters/weights ∇θJ(θ). It means that the gradient is indicating

how weight values should be changed so that the cost function is minimized. It is

worth pointing out that backpropagation is not a stand alone learning algorithm for

neural networks. Rather, it is simply a way of calculating the gradients. Finally,

the weights are adjusted in order to minimize the cost. Algorithms such as stochas-

tic gradient descend are used to perform this learning using the gradients from the

backpropagation algorithm [28].

During the training phase, all the labeled input data go through the forward and

backward propagation process until the cost is greatly minimized. This is the most

computationally expensive phase. After the training, the model is ready to be used

in an unsupervised manner.

2.2 Convolutional Neural Networks

A convolutional neural network (CNN) is a specialized kind of deep neural network

[28]. CNN’s have neurons that have learnable weights and biases. Bias is a measure

of how easy it is to get a neuron to activate. Like MLP, each neuron receives inputs,

performs some operation and based on the architecture, processes it with a non-

linear ReLU. However, CNNs slightly differ from regular deep neural networks in

some key ways. First, CNN’s input data usually has a grid-like shape [28]. A primary

example of grid-shaped data is an image. Due to this grid topology, CNN encodes

specific characteristics into the architecture. These characteristics make the forward

function more efficient and greatly reduce the number of parameters. Second, as the

name “convolutional neural networks” suggests, the network applies a mathematical

operation called convolution. Convolution is a specialized kind of linear operation.

Simply speaking, CNNs are deep networks that use convolution in at least one of their

layers instead of traditional matrix multiplication [28]. CNNs were first introduced

by Yann LeCun in his “LeNet-5” architecture [34]. Figure 2.4 shows a simple example

of that architecture. The CNN is one of the best examples of biologically inspired

artificial intelligence.
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Figure 2.4: Typical CNN architecture.

2.2.1 Architecture of CNN

Convolutional neural nets generally employ two major operations: convolution and

pooling/downsampling on top of general neural network layers. These operations

are applied to a group of neurons separately, and those neurons are divided into

convolution layers and pooling layers respectively. Usually, convolutional layers are

followed by some types of non-linearity layers. The layers stacked together to form a

complete CNN architecture (Figure 2.4).

Convolution Layer

The convolution layer is the core building block of the CNN. This layer applies the

convolution operation whose main purpose is to extract features from the input.

Before moving into the feature extraction process, we will clarify some of the concepts

of the input and output characteristics of the convolution layer. The convolution layer

has neurons arranged in 3 dimensions: width, height, depth. It is important to note

that depth here means the third dimension of a single convolutional layer, not the

the depth of the CNN which is calculated in terms of the number of layers in the

total architecture. The first convolutional layer takes an image input. If the image

is 256x256 and has 3 colour channels, then the input volume becomes 256x256x3

dimensions. The final layer is usually a classification layer. So, most of the time it is

1x1xK (1≤K≤ number of classes). For example, for digit recognition, the final class

will be 1 to 10. So, the output volume is 1x1x10.

The feature extraction process can be explained intuitively. The convolution layers

have a collection of image filters or kernels which have learnable weights. Convolution

preserves the spatial relationship between pixels by learning image features using a

small patch of input data [5]. Every filter is a small matrix of fixed width and
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(a) Single channel 5x5 input image (b) A 3x3 filter

Figure 2.5: Matrices required for performing convolution operation

height, and is applied to the full depth of the input volume. To illustrate this,

consider an image with a dimension of 32x32x3 (width, height, and the colour channels

respectively). The input image is a matrix of pixel values. Filters on the first layer

of a CNN might have a size of 3x3x3 (height and width of the filter, and 3 colour

channel). During the forward pass, we slide and convolve each filter across the width

and height of the input volume, and compute dot products between the entries of the

filter and the input at that position. Sliding the filter over the width and height of the

input volume will produce a 2D activation map that represents the response of that

filter at every position. For simplicity, let us consider a single channel image with the

dimension 5x5 and a 3x3 kernel or filter (Figure 2.5). We move the kernel (darker

matrix in Fig 5.4b) over the input image matrix (Fig 2.5a) by 1 pixel (called the

stride). Next for each position, we perform an element-wise multiplication and add

the outputs to get the final integer, which forms a single element of the output matrix

(Figure 2.6). In image processing, this 3x3 matrix is called the kernel or the feature

detector, and the matrix formed by sliding the filter over the image and computing

the dot product is called the convolved feature or activation map or feature map.

It is important to note that filters act as feature detectors from the original input

image. For example, consider an input image which contains vertical stripes. Now if

we use a vertical line detector kernel and perform the convolution then the resultant

feature map would capture the vertical stripe attribute of the input image (Figure

2.7a). On the other hand, if the use the horizontal line detector kernel and perform the

convolution with the same image, the resultant feature map is almost dark, meaning

this filter did not capture any horizontal attribute of the input image (Figure 2.7b).

Since there are no horizontal attribute in the input image. All the feature maps
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capture different information from the same image by using different filters.

Figure 2.6: The convolution operation. Image source [3]

The intuition behind this process is that the CNN will learn to adjust the filters so

that they will activate when they see some type of specific visual features, such as an

edge of some orientation or a portion of some colour on the first layer. As the depth

of convolution layers increases, the complicated features like texture patterns, facial

features or object properties will be captured by the filters on the higher layers of the

network. After this, we will have an entire set of filters in each convolution layers, and

each of them will produce a separate 2-dimensional activation map. We will stack

these activation maps along the depth dimension and produce the output volume.

Note that the 3x3 matrix sees only a part of the input image in each stride. This

concept is called local receptive field [34]. Figure 2.8 visually explains this operation.

This is very convenient when dealing with high dimensional inputs such as images,

because connecting every neuron of a layer to every neuron to the previous becomes

impractical due to the tremendous amount of information.

Feature detectors or image kernels learn to detect features during the training

phase. The kernel values can be thought of as weights just like in traditional neural

networks. The training algorithm adjusts these weights during the training. This

makes CNNs powerful because if we have rigorous training, the CNN model will

better learn how to detect necessary features. A greater number of filters extract

more image features and make the network better at recognizing patterns.

Some parameters are not trainable, such as the number of filters, filter size, archi-
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(a) Convolution with vertical line detector kernel.

(b) Convolution with horizontal line detector kernel.

Figure 2.7: Matrices required for performing convolution operation

tecture of the network. These are fixed and should be determined before the training

process. These are called hyperparameters. The following section describes some of

the hyperparameters that are needed to be defined for CNN before performing the

training process. These hyperparameters vary for different architectures.

1. Depth: This is the number of filters used in specific convolutional layers. For

example, if we use 3 filters and perform convolution the output of these 3 filters

will produce 3 distinct feature maps (called the depth). The depth depends on

the number of filters used in one particular convolutional layer (see Figure 2.9).

2. Stride: This is the number of pixels by which we slide our filter matrix over

the input matrix. When the stride is 3 then we move the filters three pixels at

a time. Having a larger stride will produce smaller feature maps.

3. Zero padding: Zero padding refers to the phenomenon where the border of

input matrix is padded with zero. The reason for doing so is that it helps us to

control the feature map size.
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Figure 2.8: The connection between the input volume and the convolution layer.
Notice how the convolution layer performs convolution on a small local region of the
input volume, not the total volume. This small local region is called the local receptive
field.

Non Linearity or ReLU Operation

An additional operation called ReLU is used after every convolution operation. ReLU

stands for Rectified Linear Unit and is a non-linear operation. It is an activation

function in neural networks. Its output is given by the equation:

Output = Max(0, Input)

ReLU is an element wise operation (applied per pixel) and replaces all negative pixel

values in the feature map by zero. The purpose of ReLU is to introduce non-linearity

in CNNs. This stage is sometimes referred as the detector stage. Although ReLU is a

widely used activation function, there are other types of activation functions as well.

For example TanH, Sinusoid, Binary, Sigmoid etc. are pretty common in the field of

neural networks.

Pooling Layer

Pooling (also known as subsampling or downsampling) reduces the dimensionality of

each feature map but retains the most important information. It is primarily used for

reducing the size of the feature maps simply to make the CNN less computationally
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Figure 2.9: Depth of convolutional layer.

expensive and less sensitive to smaller changes in the input pixels. Pooling makes the

representation approximately invariant to small translations of the input [28]. Spatial

pooling can be of different types: max, average, sum, etc. Max pooling is the most

commonly used pooling operation. With max pooling, we define a spatial neighbor-

Figure 2.10: The max-pooling operation. Each colour block represents 2x2 window
size. Largest element of each block is taken. The windows stride is 2. The operation
reduces the dimension from 4x4 to 2x2.

hood (for example, 2x2) and take the largest element from the rectified feature map

within that neighborhood. Figure 2.10 shows an example of max pooling operation

on a rectified feature map (obtained after convolution + ReLU operation) by using a
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2x2 neighborhood. There are some hyperparameters of pooling layer such as maxpool

window size and stride (just like convolution steps).

Fully Connected Layer

The fully connected layer is a traditional multi-layer perceptron where all the neurons

from the previous layer are connected to the all the neurons of the next layer. This

is mostly used for output classification.

2.3 VGG and ImageNet

CNNs have recently gained popularity in the large-scale image and video recognition

[33, 50], thanks to the ImageNet Large Scale Visual Recognition Challenge (ILSVRC),

which is held every year [7]. ImageNet is an image database made available to re-

searchers around the world for free access [18]. The database contains millions of

images organized into a hierarchy of nodes, and each node is represented by thou-

sands of images [18]. Successful training of a deep CNN using this dataset makes the

large-scale image and video recognition possible. Recently, ILSVRC has become a

benchmark for new and improved architectures for object recognition.

The CNN architecture we are using is called very deep convolutional neural net-

works [50] or VGG. Depth-wise, it has several convolutional layers in the overall

network design. Details of this architecture can be found in the original paper [50].

The reason for choosing the VGG architecture for this research will be explained

in the literature review chapter. The architecture is developed by Visual Geometry

Group at University of Oxford. We have already seen that deep CNNs are very good

at getting a high-level overview of images, and therefore good for object recognition

[20]. VGG was developed on the basis of ImageNet Challenge 2014 [50]. The VGG

architecture secured the second position in ILSVRC 2014 classification test which

confirms that this architecture is very good at large scale object recognition [50].

There are 5 configurations of the VGG architecture labelled A through E. The 19

layer “E” configuration’s accuracy is higher than any other configurations due to the

fact that this is the deepest architecture. It has a total 16 convolution layers and 3

fully connected layers. See Table 2.1 for the arrangement of the layers.
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Table 2.1: The convolutional layer parameters are denoted as “conv(receptive field
size)-(number of channels)” [50]. FC-(number of channels) stands for fully connected
layer. In system labels small “r” means ReLU layer and “p” means pooling layer.

19 weight layers
input (224 x 224 RGB)

conv3-64
conv3-64
maxpool

conv3-128
conv3-128
maxpool

conv3-256
conv3-256
conv3-256
conv3-256
maxpool

conv3-512
conv3-512
conv3-512
conv3-512
maxpool

conv3-512
conv3-512
conv3-512
conv3-512
maxpool
FC-4096
FC-4096
FC-1000
soft-max

Our System Labels
input (224 x 224 RGB)

r11
r12
p1
r21
r22
p2
r31
r32
r33
r34
p3
r41
r42
r43
r44
p4
r51
r52
r53
r54
p5
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2.3.1 Training

Details of the training process of the VGG network is beyond the scope of this thesis,

and we are not going to perform any training. We will use the downloaded pre-

trained VGG model. Nonetheless, it is worth mentioning some of the key points

regarding the training method of this popular architecture. In the VGG architecture,

training was performed by optimizing multinomial logistic regression objectives. The

architecture used mini-batch gradient descent with momentum [50]. The batch size

was 256 and moment was 0.9. The training was regularized by weight decay. Dropout

regularization was set for the first two fully connected network. The learning rate

was at first was 10−2, and then decreased by factor of 10 when the validation set

accuracy stopped improving [50]. The initial process of the weight initialization was

done in two steps to rectify the problem of bad weight initialization. They trained

the same architecture with random weight initialization which was small enough to

training without any learning problems. For the training of the deeper architecture,

they initialized the first four convolution layers and last three fully connected layers

from the small networked initialized earlier.

2.4 Genetic Programming

Genetic programming (GP) is an evolutionary computation technique that automat-

ically tries solves problems without requiring the user to know or specify the exact

form or the structure of the solution in advance [32]. At the most abstract level, GP is

a systematic, domain-independent method for solving problems automatically start-

ing from a high-level statement of what needs to be done [43]. GP works by evolving

populations of computer programs. This evolution is inspired by the Darwinian prin-

ciple. It also requires a genetic recombination (crossover) operation appropriate for

mating computer programs. After many generations, a succesfull GP run stochasti-

cally converts the population of programs/expressions into a new, fitter population of

programs. A computer program that solves (or approximately solves) a given prob-

lem may emerge from the iterative combination of Darwinian natural selection and

genetic operations [32]. Figure 2.11 is a broad overview of how GP operates.

One of the most fundamental aspects of GP is its randomness. This random-

ness helps bypass traps which tradition deterministic algorithms might fall into, as it

helps GP to explore the problem’s search space. GP is also very good at exploring the

search space of the problem where the structure of the solution is not well defined.
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Figure 2.11: Control flow of genetic programming.

GP achieves this by leveraging the random generation of populations, applying ge-

netic operators, and evaluating individuals fitness. This can help solve optimization,

regression, and approximation problems. These attributes give GP power to explore

the search space for an acceptable solution. Ideally, finding a global optimal solution

should terminate the GP search. But in real life problems, often termination occurs

when an acceptable solution has been found or after the time limit has been reached.

2.4.1 Representation and Initialization

The most common representation for GP expression is a tree, constructed from func-

tions at the internal nodes, and constants and variables at the leaves [44]. But

there are other representations as well. These expressions are treated as individual

programs. Figure 2.12 depicts a expression/program representation. The initial pop-

ulation of these individuals is randomly generated at the start of the run. After that

a series of steps are performed. Algorithm 1 shows the typical GP procedure.

2.4.2 Fitness

Fitness is the measurement of the quality of individuals with respect to solving some

given problem. Fitness can be measured in many different ways. A common fitness

measurement is the amount of error between a candidate program’s output and the

desired output. Since evolved individuals in GP are tree-based programs, fitness eval-
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Figure 2.12: GP tree representation of the expression (x− y) + sin(z)

uation normally involves executing a program on training cases for a given problem

and evaluating the result during the execution.

2.4.3 Selection

Reproduction is applied to individuals based on their fitness. This means better in-

dividuals are preferred over weaker ones (Darwinian “survival of the fittest”). One

method for selecting individuals in GP is called tournament selection [26]. In tourna-

ment selection, a number of GP individuals are chosen at random from the population.

Their fitness is measured and the best of them is chosen to be the parent. Note that

tournament selection only looks at which individual is better, and not how much it

is better.

2.4.4 Reproduction Operators: Crossover and Mutation

GP reproduction is done with the crossover and mutation operators. Crossover is

performed by selecting two individuals as parents. A random node in the tree of each

parent is chosen. This is called the crossover point. The crossover points can be any

node, for example, it can be the root, internal or terminal nodes. Crossover happens

by swapping the entire subtree rooted at the crossover point of one parent tree with

that of the other parent tree (see Figure 2.13a).

With mutation, one individual is selected. Mutation is performed by randomly

selecting a node in a tree, and replacing the subtree rooted there with a randomly
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Algorithm 1: Genetic programming

1: Randomly create an initial population of program/expression.

2: repeat

3: repeat

4: Execute each program from the population and evaluate its fitness.

5: Select programs from the population with a probability

based on the fitness to participate in genetic operations. . Selection

6: Create new individual by applying genetic operations

with appropriate probabilities. . Reproduction

7: until the new population is completely filled

8: until an acceptable solution is found or stopping criterion is met.

9: return best individual program found so far.

generated subtree (Figure 2.13b).

Usually, crossover and mutation happen after the selection process described ear-

lier. In “steady state GP”, weaker individuals of the population are replaced with new

individuals created after crossover and mutation. In the generational GP, a portion

of the population is selected and crossover and mutation are performed. Then the

resulting offspring are inserted into the population, thus replacing the old individuals.

The evolution process is repeated until the stopping criterion is met. In our case the

stopping criterion is the number of generations.

2.5 Procedural Textures

A procedural texture is an algorithmic way to represent textures or images instead of

directly storing pixel colours. Procedural techniques are algorithmic representations

of characteristics of a model, an effect or a texture rather than the actual image

bitmaps. For example, a procedural texture for marble surface defines the colour

values using an algorithm and mathematical functions [21]. One of the unique features

of procedural textures is the abstraction. Rather than directly showing and storing

entire image, the procedural texture abstracts them into formulae or algorithms and

evaluate the procedure when needed. This saves a lot of storage because, instead of

storing the actual pixels, the procedural texture will generate the pixels on the fly.

This way textures are not restricted with a fixed resolution since they can evaluate to

any resolution when needed. A procedural texture representation is not bounded by

any fixed area as well. The textures can be seamlessly repeated to an unlimited extent.
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(a) Crossover. (b) Mutation

Figure 2.13: Reproduction operators: crossover and mutation

The power of parametric control is another advantage of procedural texture. This

allows assigning parameters to a specific characteristic of a texture. For example,

in case of generating cloudy texture, we can control the amount of clouds by just

changing the cloud parameter.

There are some downsides of using procedural textures. Evaluation of procedural

textures is computationally intensive and potentially slow.

2.5.1 Noise

Noise is a complete procedural texture generation language which is stochastic in

nature. Ken Perlin first proposed Perlin noise in 1985 [42]. Due to the stochastic

nature of the Perlin noise language, it is mostly used for generating irregularities

in procedural textures. Noise is inherently “stochastic” meaning there is pseudo-

randomness involved in the process. This breaks the repeated monotonous pattern

of some procedural textures. Some of the characteristics of the noise functions are:

a repeatable pseudorandom function of its inputs, not exhibiting a regular pattern,

translation and rotation invariance and a known range. They can reproduce many

natural phenomenon e.g. clouds, minerals, etc.

Although there is randomness involved, the randomness is incorporated in a con-

trolled way [21]. Noise-based procedural textures need to be considered as aestheti-
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Figure 2.14: Simple Perlin noise

cally pleasing as well. Most of the noise languages we are interested in are lattice-based

noise with gradient, such as Perlin noise. To apply randomness in a controlled way,

it uses a lattice of a uniformly distributed pseudorandom numbers at each point of

the textured surface which are integers. Perlin noise uses interpolation based on the

gradient at the eight corners of a single lattice cell to generate smooth noise [21].

Since procedural texture generation is purely algorithmic and uses functions to

represent textures, it is quite suitable to incorporate GP to produce textures. We

know that procedural textures are parametric. Using GP to evolve these parameters

for texture generation is quite intuitive. We use a GP system with a robust language,

to evolve textures as part of our image generation process (see Section 4).

2.6 Evolutionary Art

Evolutionary art is characterized by the use of evolutionary computation to generate

artistic artifacts [44]. Typically the process can be further broken down into two

fundamental ideas: the process of image creation, and evaluating the created artifacts

to measure their “quality”. In the field of evolutionary art, evolution is used as a tool

for exploring the search space for the artistic artifacts [12]. Section 3.2 describes

evolutionary art in more detail.
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Literature Review

3.1 Deep CNN in Artistic Image Generation

The application of deep learning in the field of art is very significant and there has

been a lot of research using deep CNN in art generation [22, 23, 24, 35, 36]. The first

successful attempt to use deep learning in the field of art was by Gatys et al. [22].

Our thesis is inspired and partly based on their work. An introductory description of

their research is presented in the following section.

3.1.1 Image Style Transfer Using Convolutional Neural Net-

works

Gatys et al. made an early attempt to separate and recombine the content of an

image and the specific artistic style using deep CNN [22]. The main goal is to render

the semantic content of an image in a different style. The style is captured from

another artistic image and is blended in the content image. Previous approaches

lacked image representations that explicitly represented high level information of any

given image. Because of that, it was hard to separate the content of an image from the

style. In other words, previously there was no novel way to get the high-level content

representation from the low-level pixels of an image. Gatys et al. use the image

representations derived from the deep CNN trained for object recognition, which

made the high-level image information explicit. They used the pretrained VGG-19

network [50]. Their overall architecture has three distinct segments:

24
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1. Content Representation

Each layer in the network defines a non-linear filter bank whose complexity increases

with the position of the layer in the network. Given input image x is encoded in each

layer of the deep CNN by the filter responses to that image. A layer with Nl distinct

filters has Nl feature maps each of size Ml , where Ml is the height times the width

of the feature map. Responses in a layer l can be stored in a matrix Fl ∈ RNl×Ml ,

where F l
ij is the activation of the ith filter at position j in layer l. By performing

gradient descent on a white noise image on different layers, one can find another

image that matches the feature responses of the original image. Let −→p and−→x be

the original image and the image that is generated, and P l and F l their respective

feature representation in layer l. The squared-error loss between the two feature

representations as defined in [22] is:

Lcontent(−→p ,−→x , l) =
1

2

∑
(F l

ij − P l
ij)

2

They compute the derivative of that loss with respect to the activation in one specific

layer and the gradient with respect to the image −→x was computed using standard

error back propagation algorithm (see the right side of Figure 3.1).

2. Style Representation

To capture the style of an input image, they use a feature space designed to capture

texture information [23]. It consists of the correlations between the different filter

responses, where the expectation was taken over the spatial extent of the feature

maps. These feature correlations are given by the Gram matrix Gl ∈ RNl×Nl , where

Gl
ij is the inner product between the vectorised feature maps i and j in layer l:

Gl
ij =

∑
k

(F l
ikF

l
jk)

By including the feature correlations of multiple layers, they obtain a stationary,

multi-scale representation of the input image, which captures its texture information

but not the global arrangement (see the left side of Figure 3.1). Let −→a and −→x be the

original image and the image that is generated, and Al and Gl their respective style

representation in layer l. The contribution of layer l to the total loss is:

El =
1

4N2
l M

2
l

∑
i,j

(Gl
ij − Alij)2
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Figure 3.1: Style transfer algorithm. Left side depicts style representation and right
side depicts content representation (image source [22]).

and the total style loss is

Lstyle(−→a ,−→x ) =
L∑
l=0

wlEl

Here wl are the weighing factors of the contribution of each layer to the total loss.

3. Style Transfer:

Transferring the style of an artwork −→a onto a photograph −→p requires synthesizing

a new image that simultaneously matches the content representation of −→p and the

style representation of −→a . For that they jointly minimize the distance of the feature

representations of a white noise image from the content representation of the photo-

graph in one layer and the style representation of the painting defined on a number

of layers of the ConvNets. The loss function they minimise is:

Ltotal(−→p ,−→a ,−→x ) = αLcontent + βLstyle(−→a ,−→x )

The α and β are the weighting factors for the content and style reconstruction.
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It is evident that the content high-level content representation is accurate in rep-

resenting the content of the given target image. In our thesis, we are interested to

use the content representation part and ignore the style capture and transfer part

since we will not be performing style transfer. In fact, our architecture design (Figure

4.1) is almost identical to the content representation part of [23]. We will utilize

the high-level content representation part as an intelligent guide to our evolutionary

process. Details of the overall system design are discussed in Chapter 4.

3.2 Evolutionary Art

The first application of evolutionary algorithms to create shapes or designs was pro-

posed by Richard Dawkins, who evolved 2d shapes called biomorphs [17]. After

this, Karl Sims successfully applied evolutionary techniques and computer graphics

to create artistic images with procedural textures [51]. His expression-based image

generation approach produced complex 2D artifacts. He also demonstrated the idea

of evolving 3D geometry in some of his work [52, 51]. Many others have since explored

the technology. For example, Todd and Lantham applied the biomorph concepts to

3D models [55]. Most of the earlier evolutionary art were interactive i.e they used in-

teractive evolutionary algorithms, where a user decides the fitness of a population and

assign scores manually [29]. Some attempted making that collaborative interactive

evolution using online communities [49].

Later, automatic image generation was a focus of evolutionary art research. It is

important to mention that automatic image generation is the primary focus of our

thesis as well. Ibrahim made some of the earliest attempts in his Genshade system

[31]. The system attempted to replicate image characteristics of a target image by

performing wavelet analysis. Wiens and Ross’s Gentropy [57] used an unsupervised

approach, where a target texture image represents the desired texture features, such as

colour, shape, and smoothness (contrast). Then the system evolves textures without

any user interaction. Gircys used power spectral density of spatial frequencies based

on Fourier decomposition to guide the evolutionary texture synthesis [25]. NEvAr

system [40] by Machado et al. leveraged the parallel evolutionary computations tech-

nique where an individual user could independently evaluate certain images from

any of the parallel evolution and add them to another specific parallel evolutionary

process. It was not fully interactive evolution but it required user intervention.

Recently efforts are attempting to evolve aesthetically pleasing images. Machado

and Cardoso propose an aesthetic measurement process which is built on the relation
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between image complexity and processing complexity [39]. Ross et al. propose an-

other measurement of aesthetics based on a bell curve distribution of color gradients

[46]. The concept of using the evolution of neural networks to generate images is also

used by some systems. Stanley and Miikkulainen developed the NEAT system and

employed that system for targeted evolution by interactively evolving networks which

gradually refine a spaceship design [6]. Beluja et al. use artificial neural nets to learn

the user’s aesthetic preferences [9]. Subsequently they used this knowledge to evolve

aesthetically pleasing images similar to those evolved by the interactive sessions with

the user.
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3.3 Deep Learning and Evolutionary Art

Both deep learning and evolutionary techniques in image generation were done in

the past. Nguyen et al. [41] use an evolutionary algorithm to generate images which

were passed through to deep neural networks. Those images achieved high prediction

score from the DNN. Their primary goal is to fool the DNN employing an evolutionary

technique to produce images. Evolutionary art was not their primary goal but the high

confidence images generated by the evolutionary algorithm have somewhat abstract

characteristics of the specific target object. Which might be considered as abstract

art.

Another approach was done by Bontrager et al. that combines generative adver-

sarial networks (GANs) with interactive evolutionary computation [13]. They show a

GAN trained on a specific target domain can act as an efficient genotype-to-phenotype

mapping. A trained GAN, the vector given as input to the GAN’s generator network

can be controlled using evolutionary techniques, allowing high-quality image genera-

tion. Participants were able to evolve images that strongly resemble specific target

images. Although GANs are good at generating candidates especially images, there

are some key differences between a GAN and an evolution based system. A GAN

usually competes with a similar discriminator network and those two networks are

bound to a specific domain or data. GAN always generates candidates (generative)

and the discriminator evaluates them (discriminative). But in the case of evolution-

ary art, it is somewhat less bound to the domain/data. As long as the fitness criteria

are able the guide the evolutionary system, it can generate candidates independently.



Chapter 4

System Design

This chapter describes the design of the systems involved and provides necessary

diagrams for understanding the overall architecture. We also describe necessary tools,

languages, and frameworks used to implement the systems.

The overall architecture of the systems can be divided into two distinct subsystems

or modules:

1. A robust genetic programming based texture generation module.

2. A pre-trained deep convolutional neural network module.

Figure 4.1 depicts the system architecture. The control flow of overall architecture

is discussed in the following section.

30
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4.1 Control Flow of the Overall Architecture

Since we have illustrated the system architecture in Figure 4.1, we now define the

overall control flow of the architecture in Algorithm 2:

Algorithm 2: Control Flow of The Overall Architecture

1: select any target content image and preprocess the image.

2: pass the image through the VGG-19 network until it reaches the r51 layer

3: save the r51 layer in the memory for later calculation

4: initiate the GP with proper configuration

5: repeat

6: pass each texture image generated by the GP through the same

VGG-19 network until it reaches r51 layer

7: calculate the fitness by performing MSE between the r51 layer of the GP

generated image with the content layer saved in Step 3

8: return the fitness to the GP

9: until the maximum number of generations is reached

10: return the best image found so far as a solution

Following sections provide more detailed information about each module and ex-

plains some of the terminology mentioned in Algorithm 2.
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4.2 Genetic Programming

For the GP system, we are using a GP texture language consisting of a wide range

of math, conditional and noise functions to evolve textures/images. The GP system

is implemented in ECJ (version 23), an evolutionary computation system written

in Java [38]. It is designed to be highly flexible, with nearly all classes and their

settings dynamically determined at runtime by a user-provided parameter file. The

GP system is solely responsible for the generation and the evolution of the texture

images. We will transfer those evolved texture images through an interface to the

deep CNN system. The complete description of the GP texture language is described

in detail in [25]. We are simply leveraging the GP system of [25] as our principal GP

engine.

All the GP parameters and texture language description are discussed in Section

5.1. Except for the maximum number of generations, all the GP parameters are kept

the same throughout all experiments. The GP system, along with the entire process

of evolving texture images, is completely decoupled and independent from the trained

deep CNN module.

4.3 Deep Convolutional Neural Network

This module is inspired by the work by Gatys et al. [22]. The deep CNN model we

use is VGG-19 [50], which was trained to perform object recognition and localization.

We will use the feature space provided by a normalized version of the 16 convolutional

and 5 pooling layers of the 19-weight layers VGG network [50]. The most important

aspect of this module is that we will not be performing any sort of training. The

model is pretrained using the ILSVRC 2012 dataset, and we are simply using this pre-

trained model. The reason for choosing this pre-trained model is that it takes too long

and too much effort to train one ourselves. This pre-trained model already achieved

very good performance on the ImageNet dataset. This model was developed by the

Visual Geometry Group at the University of Oxford. They develop the architecture

for the submission of Imagenet challenge 2014. This model was significantly more

accurate ConvNet architecture compared to the other previous architectures [50] at

that time. There are several configurations of the VGG architecture introduced in

[50], labeled from A to E. We will be using the configuration E. Because this is the

deepest architecture compared to the other configurations and [22] also used this

configuration. Configuration E contains the most significant number of layers. It has
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16 weight convolution layers and 3 weight fully connected layers totaling about 19

weight layers.

The input layer of the VGG architecture takes a fixed size 224x224 three channel

(RGB) image in the original architecture. However, we will be using a 256x256 RGB

image as an input. Initially, the image goes through a preprocessing stage where we

subtract the mean RGB value calculated on the training image set from each pixel.

This pre-processed image goes through a series of 16 convolution layers. The filters

of this architecture use a very small 3x3 receptive field which is sufficient to encode

the idea of left/right/up/down [50]. The convolution stride is 1 and padding is 1.

Although the original VGG architecture used max pooling in their pooling layer, we

change it to average pooling for better results [22]. Originally the training was done

using max pooling operation. We will also change the pooling window size and stride.

Details of these changes and their motivation behind them will be discussed in Section

4.3.

Apart from that, all the hidden layers used ReLU to introduce non-linearity [33].

The width of convolutional layers starts from 64 in the first layer and increases by the

factor of 2 after each pooling layer until it reaches the width of 512. The total number

of the weights of this architecture (configuration E) is approximately 144 million.

4.3.1 Fitness

The deep CNN will be responsible for calculating the fitness of the evolved texture

images. According to [22], the high-level content information is captured at the higher

layers in the deep CNN. The layer we are interested in is the one after the fourth

pooling layer (see Figure 4.1). We will use this layer (r51) as the high-level content

image representation of the given target image. For all our experiments we will use

this layer for our fitness calculation. The motivation for selecting this layer and the

detailed fitness calculation will be discussed in detail in Chapter 5.

4.4 Software and Hardware Details

The deep learning framework we will use for the implementation of the VGG-19 is

PyTorch, which is based on Python [15]. PyTorch is an optimized tensor library

for deep learning using GPUs and CPUs [14]. For all our experiments we used the

PyTorch version 0.2.0. PyTorch is easily configurable to run on a CUDA based PC

system. We performed all our experiments on a NVIDIA TITAN Xp (Compute
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Capability 6.1) with 12 GB memory. Our CUDA version is 9.0.176. The GP system

(ECJ) runs on 2.80 GHz Intel(R) Core(TM) i7 CPU with 6GB memory. Our OS

version is Ubuntu 16.04.3. All the experiments performed with the NVIDIA TITAN

Xp are approximately 5 times faster than the CPU-based experiments.



Chapter 5

Experiment Details

This chapter discusses the fundamental approach to achieve our initial goal i.e. getting

GP to evolve images having characteristics found in a given target image using the

deep CNN as a guidance. This concept of using the trained deep CNN model’s high-

level content representation as a guide to our evolutionary process involves many

different and independent ideas. Deep CNN’s content representation and GP’s image

generation process both have their own ways of dealing with images. For example,

in almost all art applications, a deep CNN uses the gradient descent algorithm to

change individual pixels on an image to optimize the cost function. These changes

are on granular pixel level. On the other hand, GP’s procedural texture language

tends to produce a texture formula, and the resultant texture image is evaluated

against some target criteria to find its fitness. Every evolved texture formula denotes

an independent image. Rather than editing individual pixels like a deep CNN (see

Gatys et al. [22]), the formula is altered during reproduction. This is a much higher

level alteration than deep CNN’s granular pixel alteration. We will expand on this

topic later.

This fundamental difference is one of the intricacies in the overall integration of

GP and trained deep CNN. Our experiments primarily deal with examining different

approaches to rectify this problem. We will start from the very beginning from a

naive approach and will later discuss a more advanced approach that yielded more

satisfactory results.

5.1 General Setup

The primary GP setup we use is from Gircys [25] and includes the overall GP engine,

texture language, and parameters. We slightly extended the texture language by

36
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adding more noise functions to the language. Table 5.1 shows all the GP parameters

configured for our experiments. Table 5.2 shows a complete overview of our texture

language. The GP parameters will be the same throughout all our experiments. The

parameters are based on those in [25]. Note that the population size is smaller than

usual, given the higher computation time associated with image generation and CNN

analysis.

Parameter Value
Generations 35
Population Size 300
Elitism 1
Tournament Size 3
Crossover Rate 60%
Maximum Crossover Depth 17
Mutation 30%
ERC Mutation 10%
Maximum Mutation Depth 17
Prob. of Terminals in Cross/Mutation 10%
Initialization Method Ramped Half & Half
Tree Grow Max/Min [5, 5]
Grow Probability 50%
Tree Half Max/Min [2,6]

Table 5.1: GP parameters

5.2 Naive Strategy

From Chapter 4, the overall system design lays out the foundation of our architecture.

We kept the deep CNN VGG parameters the same as Gatys et al. [22]. To aid layer

retrieving, Gatys et al. conveniently labeled all the layers into proper groups (see

Table 2.1 for layer mappings). The deep CNN’s target content representation at r42

was used as a fitness to our GP system. This is different from the overall algorithm

we formulated before in Chapter 4 which uses r51. The reason we are using r42

instead of r51 is to show how naive approach performs without altering any deep

CNN parameters which were initially used in [22]. In the next section we will discuss

the justification of using r51. But for now we will use r42. Since we will deal with the

r42 content representation, it is important understand how images are represented at

this layer. The given input image goes through the network, passes all the layers until

it reaches the r42 layer. The reason for choosing this layer was inspired by Gatys et
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Figure 5.1: Red circle content image

al. This is a high enough layer to capture content information and low enough to

keep some resemblance to the content target [22]. In our naive strategy we simply

followed Gatys et al.’s approach to capture content information of given target image.

Details on why Gatys et al. selected this layer is explained in the section 3.2 from the

original paper by [22]. The r42 layer has total 512 feature maps or activations. Each

feature map matrix is a 32x32 matrix. Each element of the 32x32 matrix represents

the level of activations. The combined number of parameters are 512x32x32 giving a

total of 524,288 different values. If we pass a target input image up to this level, the

r42 layer represents the high-level abstract representation of the input target image

[22].

Our first idea was to try this final layer directly without altering anything. Ini-

tially, we launched the CNN system with the target content target in Figure 5.1. We

saved the r42 layer values (512x32x32 matrix) as our target fitness. Then the GP

module was initiated with the configuration declared in Section 5.1. Each individual

of the GP population is translated to a texture image and passed through all the

layers until it reaches the r42 layer. We then compare this layer with the previous

content target layer saved earlier. We used the well known mean square error (MSE)

between these two layers. Let P and F be the content image and the evolved gp

image feature representation at layer r42. If the number of elements in the r42 layer

is n(512x32x32), then the mean squared-error loss between the two layer will be:

Fitness =
1

n

∑
(Fn − Pn)2

In principle, if the MSE between these two layers is zero, we will get the same content

image produced by the GP. This, however, is not our goal, as we are not interested

in synthesising the target image. Rather we want to use GP’s exploratory nature to

create art while conforming to the characteristics of the target content image. We

already had an intuition that this approach might be unsuitable for getting desired
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results, because the total final layer in its entirety is too large and difficult for GP to

handle. The huge matrix of size 512x32x32, totalling about 524,288, has a wide range

of values. Depending on the target image some activations are highly activated while

others have minimum values (out of 512 feature maps). To give an example of the

diversity of the r42 layer, we calculate the mean value for each of the 32x32 feature

maps and plot them in Figure 5.2.
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Category Arity Display Description
Variables 0 X Horizontal rendering coordinate

Y Vertical rendering coordinate
Rho Polar coordinate; distance from {0, 0}
Phi Polar coordinate; angle about {0, 0} to X axis

Ephemerals 0 E[1] Ephemeral in range [0, 1]
E[10] Ephemeral in range [0, 10]
E[100] Ephemeral in range [0, 100]

Math 1 - Negation
abs Absolute value
floor Floor
ceil Ceiling
sin Trigonometric sine
cos Trigonometric cosine
tan Trigonometric tangent
sqrt Square root
exp e (Euler’s number) raised to the operand
pow2 The operand raised to the power 2
pow3 The operand raised to the power 3
log E Natural log
log 10 Log, base 10

2 + Addition
- Subtraction
* Multiplication
/ Safe division
max The greater of two operands
min The lesser of two operands
avg The mean of two operands
pow arg[0] raised to arg[1]

3 lerp Linear interpolation between two arguments
Conditionals 4 IfGT If greater than conditional
Noise 0 Simplex Simplex noise generator

Perlin Perlin noise generator
Marble Marble noise

1 FractalSum Fractal Sum/Smooth noise
Turbulence Turbulence noise

3 Cloud Cloud noise effect

Table 5.2: GP texture language overview
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After running GP for 35 generations with the configuration described in Section

5.2, we obtained a negative result as expected. Figure 5.3 illustrates some results

from the final generation. These are randomly picked from the final generation since

all the individuals from the final generation are almost identical. In order to minimize

the MSE between the activation of content target and GP texture, GP produces an

average activation of all the feature maps. The fitness quickly converged and the

result was an almost plain white image with slight greyish tone.

Figure 5.3: Some results from the final generation. All the images from the final
generation are almost white.

5.3 Dimensionality Reduction

After our initial trial with naive approach, we started investigating the final layer

matrix which was used as our target fitness. As we stated before, this final layer

matrix serves quite well when it is used with a gradient descent algorithm. The error

between the target matrix and a given input image flows all the way back to the

input layer. Starting from white noise, the algorithm can change individual pixels to

minimize MSE between input and target . This process is iteratively continued until

the MSE is greatly minimized. But in case of GP, the problem is not just the large

number of values to minimize in MSE but that GP can only change the high-level

tree (formula) and cannot edit low-level pixels like a deep CNN.

There are multiple ways to approach this problem. But before moving into those

steps we should reiterate some of the concepts of the pooling layers from deep learning

once again. In deep CNN, all the pooling layers are used to gradually reduce the

spatial size (downsampling) of the feature maps to reduce the number of parameters,

thereby reducing the computation of the network. This in turn controls overfitting

and introduced scale invariance. We are interested in the reduction of the spatial

size. Since this layer progressively down-samples the feature maps, the deeper we go

in the network, the smaller the size of the feature maps will become. This can assist

us to resolve our problem with the big matrix. By looking at Table 2.1, instead of
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using the r42 layer, we can go past the p5 (pooling layer) and use the r51 or r54. If

we select any layer after p5, the feature map size will be reduced due to the pooling

operation. But we need to be careful because reducing the layer means a loss of

content information. To balance this we settled on r51. This reduced the size of the

target layer matrix from 512x32x32 to 512x16x16. In other words, 512 feature maps

were previously 32x32 but now 16x16. The total number of values was reduced from

524,288 to 131,072.

Another key factor to reduce the feature map size is the window size of the pooling

operation. The more we increase the window size and the stride, the smaller the

feature maps will become, although with a loss of information. See Figure 2.10 and

Section 2.2.1 for details of the operation. After increasing the windows size from 2 to

3 and stride from 2 to 3, final layer matrix reduced from 512x16x16 to 512x3x3. One

important fact to remember is that during the initial trial we used max pooling as our

pooling function. According to Gatys et al. [22] instead of using max pooling, average

pooling yields better results. To illustrate this, consider Figure 5.4. We took the red

circle target image. We saved the r51 layer as our target image layer. We passed a

white image and ran the gradient descent algorithm to lower the MSE between the

white image and content image. During max pooling, a lot of information about the

content or shape of the image is lost. But if we change the pooling operation from

max pooling to average pooling, the resultant image is much better. The reason we

mentioned this process is that we wanted to make sure that after all the reduction of

the target matrix at layer r51, the matrix is still encoding enough useful information

about the content of the image. In summary, we changed the content layer from r42 to

r51, increased the window size and stride and used average pooling for better content

representation. This helped us reduce the content layer matrix from 512x32x32 to

(a) Max Pooled Image (b) Averaged Pooled

Figure 5.4: Max pooling vs average pooling applied to circle image.
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512x3x3. This dramatic reduction should not be a major issue when we integrate

it with GP, as we are interested in indirectly guiding the evolutionary process. The

reduction will actually help GP because this is less computationally expensive than

the early naive approach.

5.4 Statistical Analysis and Reducing the Number

of Feature Maps

After Section 5.3’s dimensionality reduction, next we focus on reducing the number

of feature maps. We had 512 feature maps, and each is a 32x32 matrix. We reduced

the feature maps from 32x32 to 3x3. Nevertheless, we have 512 of those feature maps

to deal with. A reduction of this number is worth undertaking.

Deep neural networks can be thought of as “black boxes”. Rigorous training of

the massive network makes the inner workings almost impossible to comprehend due

to the large number of interacting, non-linear parts. Visualizing neurons is one way

of understanding their functionality. Highly activated neurons are the key to under-

standing the network. Those highly activated neurons, respond to certain properties

of the image. Each activation is fired when a certain attribute is present in the target

content image. Colour blobs, edges, and specific shapes fire different activations in

the hidden layers. In other words, a highly activated neuron represents what that

specific filter is sensitive to in an image. If it find that property, it gets highly acti-

vated. Deep neural networks use this “strong prior” to classifying the given object.

There are a number of papers which investigate this phenomenon in detail, e.g. [58]

and [59].

This idea of highly activated neurons inspired us to filter out feature maps. Since

for certain features of an image, some neurons get highly activated and others do

not, it motivated us to remove inactive feature maps. In order to visualize this, we

selected r42 layer for visualization. We preferred this one for visualization because,

since the feature maps are of size 32x32, it is easier to scale and convert them into

an image that can be viewed (see Figure 5.5). In the r51 layer, the individual feature

map dimension is too small (3x3) to properly view the activations.

Since we wish to reduce the number of feature maps, consideration of activation

level can aid us. Our first intuition was to utilize feature maps crossing some threshold

value: if the mean activation of any feature map is below some small threshold value,

we can reject it. We are concerned with the shape or content information of the target
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Figure 5.5: Visualization of first 135 feature maps of red circle image in layer r42.
Notice how some feature maps are activated to varying levels, while others are com-
pletely turned off.

image. Sometimes an activation can have a high value if that particular neuron is

looking for color instead of other properties. For example, if we take the red circle as a

target image and if there is a highly activated neuron, it is possible that this particular

neuron is firing because it is responding to the red color. If we sort the feature maps

based on the mean in descending order and select the first K number of activation

into consideration, our experiment will work only if the target image properties fire

very specific neurons and the activation values are extremely high. For example,

vertical and horizontal stripes are straightforward images. In the pool of hundreds of

kernels, the line detector kernels will be highly activated. So using a handful of highly

activated feature maps will be enough to represent the content of that target image.

Our experiments confirmed this observation. However, in cases of circle, triangle,

and rectangular images, feature maps properties are less straightforward. Circles

have curves while triangles need vertical, positive 45 and negative 45 line detectors.

In other words, their representation is more complex than stripes, and they need

careful selection of multiple features maps if we want to represent them in an efficient

way.

In the following section, we will define a strategy which supports the reduction of

the feature maps to use.
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(a) Red Circle (b) Black Circle (c) Distorted Circle

Figure 5.6: Similar content images.

5.5 The Mean Minimum Matrix Strategy

(MMMS)

The first experiment (Section 5.2) yielded bad results due to the fact that the amount

of information was overwhelming for the GP system to produce the desired results.

Our goal here is to reduce the number of activation matrices and determine which ones

are the most relevant for a particular set of images, i.e., common high activations. The

end result is, we identify a small subset of activation matrices to use. As mentioned

earlier, we are only interested in those key activations, should they exist that are

responsible for capturing the shape of the content image. The strategy that we

are going to undertake involves reducing the number of activation matrices down to

a small number of activation matrices responsible for retaining the characteristics

of object shapes. We will refer to this strategy as the Mean Min Matrix Strategy

(MMMS). It is important to mention that MMMS is not a exact algorithm to capture

content information since we know that the inner workings of a deep network is hard to

formulate. Exactly determining the functionality of activation maps is difficult. The

MMMS is simply a heuristic, a statistical preprocessing step in order to heuristically

find useful functionality that we can exploit. This preprocessing is performed before

running any GP engine with deep CNN.

The overall MMMS steps are listed in Algorithm 3. First, we arrange the set of

images of similar objects paired into two groups. For example, for a circle, we take

three circle images into account: a red circle, black circle. and a distorted red circle

(see Figure 5.6). Those three images are then divided into pairs of images (Figure

5.7).

The intuition behind this selection is that we are trying to arrange the images so

that the only thing that is common to these images is their shapes. Next, we pass

each image from a pair (e.g. group 1) separately through the deep CNN and extract
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Algorithm 3: MMMS algorithm

1: select three images with similar content or shapes.

2: pair them into two groups

3: repeat

4: pass each image separately from the same group through the deep

CNN.

5: at layer #r51 take the minimum of two activation matrices of the two images

respectively from the same group.

6: calculate the mean of the resultant minimum matrix from the previous step.

7: store the mean of all the resultant minimum activation matrix in

descending order along with their activation #.

8: until no groups are left

9: take the top 40 activations from the sorted values from both groups stored in step

7.

10: divide them into two levels each with 20 activations along with their mean.

11: find common activation # in the same level from both groups.

12: return the list of common activations.

Figure 5.7: Content images grouped into pairs.
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the 512 activation matrices from the higher layers. For each image activation, we

have two matrices: one for the red circle and another for the black circle (group 1

images). Consider, the activation matrix #38 from both of the images:

CirRed :

43.6896 9.7997 19.1355

16.2436 47.3683 0.0000

74.1886 63.5082 38.9489

CirBlack :

61.8429 42.0349 39.6617

28.5306 63.1241 5.1725

58.1770 64.3592 29.1844


Next, we apply the MMMS operation. It compares each corresponding matrix element

from the two matrices and produces another matrix with the same dimension which

contains the minimum value of the two elements.

Rij = min(CirRedij, CirBlackij) (1 ≤ i, j ≤ 3)

For the above matrices, the resultant matrix looks like this:

Min :

43.68964767 9.79972649 19.13554955

16.24355507 47.36829376 0.

58.17697144 63.50819397 29.18441772


Next we take the mean of that minimum matrix values and store it. After that,

we gather the means of all 512 activations and sort them in descending order based

on the mean performed earlier. We do the same with group 2 (red circle and distorted

circle). Now we have two lists of activations sorted in descending order by the mean

of minimum matrix: one from group 1 and another from group 2. Our goal is to

select top activations that are common in both groups. Table 5.3 shows the final

sorted values from each group.

The top 40 activations are divided into two levels or batches. The first 20 activa-

tions out of those 40 activations are in level 1 and the remaining 20 activations are

in level 2. The intuition behind having two levels is to make sure that when we try

to match between these 2 groups and find the common activations, the position of

the common activation is as close as possible. In other words, an activation that is in

level 1 in group 1 should also be in level 1 in group 2. For example, from Table 5.3,

activation #369 is in level 1 in both group 1 and group 2. On the other hand, the

activation #8 is in level 1 in group 1 but is in level 2 in group 2. So we will not count

this as common activation. Similarly, in group 1 the activation #442 is not taken as

common activation because in group 1, activation #442 is in level 2. But in group 2

it is in level 1. So this will not be considered as common activation. From the table,
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we can see we found 12 common activations in level 1 and 7 common activations in

level 2 totaling about 19 activations. Those are the following:

18, 63, 103, 104, 151, 178, 187, 271, 295, 305, 324, 338, 355, 369, 385, 387, 410, 411, 416

So instead of using total 512 feature maps from deep CNN’s higher layer, we filtered

out most of the feature maps. We will only use this activation maps when calculating

MSE between target image and GP image.

Note that both high mean activation values and low mean activation values are

important in modelling image features. MMMS helps to find the high and low acti-

vations common in both groups (similar images paired into groups). “Uncommon”

cases mean these feature maps may not be relevant. Again this is a heuristic that we

are trying to expoit. Another important factor to remember that we are not going to

use the mean minimum activation matrix as our target fitness when running GP. We

are applying the MMMS only to find common activations. Later, when we run the

GP engine, we will pass an actual content image through the network and use only

the common activations selected earlier by MMMS.

In case of representing the shape characteristics of the circle, the reduced feature

maps might be enough. We reduced the initial 512x3x3 target matrix to a 19x3x3

matrix. The deep CNN will only calculate the MSE (mean square error) between

those selected feature maps. We can do this by filtering the r51 matrix by keeping

only the common activation maps as target. In the following section, we will see the

results of GP runs which will give some idea how GP improved after using MMMS

strategy.
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Level Red & Black (Group 1) Red & Distort (Group 2)

Activation # Mean Min Activation Activation # Mean Min Activation

493 104.137 369 70.0863

268 101.723 178 63.5016

63 95.9581 271 60.9847

385 94.1941 162 51.1977

178 92.5668 63 50.674

187 86.8222 187 49.927

369 78.5026 385 49.7277

324 75.7872 416 44.2747

18 67.4085 8 38.6199

95 64.8462 475 38.604

416 61.9521 474 38.0422

355 61.6623 283 36.1778

103 60.755 346 35.0986

271 53.4458 103 34.2125

442 48.5399 18 30.4536

295 46.1593 324 29.7953

403 45.7757 439 29.247

429 43.4773 355 29.0189

269 42.6636 74 28.4641

Level 1

418 40.2662 295 28.3961

305 40.2477 504 27.119

231 40.1401 411 26.6158

411 38.0863 104 25.9207

387 36.7168 410 25.6588

151 33.3331 442 24.52

326 32.5272 269 24.3924

262 32.4313 274 22.891

481 31.9384 493 22.8273

38 31.9007 286 22.5389

45 31.1377 418 22.4569

181 29.1376 387 22.4514

338 28.7829 305 22.2504

494 28.4344 95 22.1701

410 28.3211 445 22.0552

104 28.2425 268 21.7873

8 28.212 390 21.6306

228 27.6231 429 20.7045

303 27.4466 71 19.1928

474 26.5793 151 19.0196

Level 2

74 26.2086 338 18.9318

Table 5.3: Mean Min activation values for Group 1 and Group 2. Green boxes indicate
common activations in the same level.
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5.5.1 GP Results

We ran a total of 10 runs for each target content image with activation selected for

fitness from MMMS. Image groupings of all the content images and common activation

numbers calculated by the MMMS are listed in Table 5.4 and Table 5.5. Again we

are simply considering the activation # selected by the MMMS. We are not using the

values in the mean minimum activation matrix.

The best results along with their fitness and MSE between the target content

images are listed in Figure 5.8, Figure 5.9, and 5.10. Notice the fitness plots have

varying generation numbers. This is purely for experimental reasons. We noticed

that despite the fitnesses steadily increasing (not converging after some generations)

after 25 to 30 generations, the best individuals are producing almost identical images.

One can reason that small pixel changes are not affecting the images, but are only

slightly affecting the fitness. Nonetheless, the visual results are similar.

If we inspect the best results, we can see the stripes (Figure 5.8a) and rectangle

have much lower MSE (higher fitness). Visually, it is evident that images are capturing

characteristics of corresponding target images. In other words, the best result images

are visually similar to the target content image, and their fitness values are high. This

means that good fitness values correlate to image sharing characteristics of the target

image. In case of the triangle (Figure 5.9a) and circle (Figure 5.9b), the same can be

said. Notice in case of the circle, some of the best results are very close to the target

image. This can be explained by GP’s procedural texture language. As mentioned in

Section 4.1, our GP texture language has polar coordinates along with X, Y Cartesian

coordinates. These polar coordinates are centered in the middle. Since the texture

coordinates range in 0 ≤ X, Y ≤ 1, GP can easily draw a circle. There is a language

bias towards circular shapes like target image. Another interesting characteristic of

the circle images and stripe images is that red is quite dominant. We can speculate

that this happens because the image group we used for common activation was red

color dominant, both in the case of circles and vertical stripes.

In case of the concentric rings, although the fitness is lower than other targets,

one can clearly see curves and distorted rings in the evolved images (Figure 5.10a),

which is one of the main characteristics of concentric rings.

Of all the target images, the spiral (Figure 5.10b) has the lowest fitness. This

may happen for a number of reasons. Although our texture language consists of a

fairly large number of functions and terminals, maybe these are not enough to easily

draw a complex spiral shape. The procedural texture is good at producing repeated

texture pattern rather than a single complex object like a spiral. Another key factor
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is that deep CNN is trained on millions of images. Since the purpose of that training

was to recognize and classify daily objects, there is a chance that the deep CNN did

not see any spiral objects during training.
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Content Image Groups Selected Activation #

Circle

Group 1

Group 2
369,178,271,63,187,385,104,410
416,103,18,324,355,295,411,
387,305,151,338

Triangle

Group 1

Group 2

178,136,38,162,401,268,104,428,376
203,75,295,88,200,474,416,299

Vertical Stripe

Group 1

Group 2
314,178,484,162,274,247,283,350,206,
101,104,155 143,5,156,478,214,354,431

Table 5.4: Image groupings and selected common activations numbers
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Content Image Groups Selected Activation #

Rectangular

Group 1

Group 2

38,178,162,369,324,104,350,126,63,
509,258,299 210,403,504,416,470,472,
187,203

Concentric Rings

Group 1

Group 2
199,141,120,364,63,129,178,493,7
387,8,251,18,288,503,286,369,390,420

Spiral

Group 1

Group 2
283,493,156,178,63,403,129,390,503,116
8,18,465,328,364,369,45,355,167

Table 5.5: Image groupings and selected common activations numbers
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5.5.2 Further Discussion on MMMS

From the GP result presented in Section 5.5.1, it is evident that our GP engine is

exploiting our heuristic preprocessing MMMS. However, there are a number of ways

we may improve this. One may use more target content image pairs that would result

in more accurate determination of useful maps. Also, shuffling similar image pairs

multiple times so that each image will be paired with all other images and then find

the common activations. A more vigorous statistical analysis may also help accurately

select activations.

5.6 Target Combinations using MMMS

After the initial success with the MMMS with a simple target image, we shifted our

focus to multiple target images to achieve target combinations. We know from the

previous section that we can specify a single target image with activations calculated

by MMMS, and GP can produce a texture capturing aspects of the content of the

target image using those activations. Intuitively, we can contemplate specifying mul-

tiple images with their corresponding activations from MMMS. This section discusses

such experiments to demonstrate whether or not this idea is feasible. However, be-

cause of the restricted GP texture language, this might be difficult. GP can only

express textures with one single formula and so it might be hard for GP to express

multi-image content with a single texture formula. But nonetheless, it is interesting

to investigate the effect of multiple target images on the evolutionary process.

For simplicity, each experiment uses two target content images. We will not be

experimenting with three or more images because the MMMS process will be too

inaccurate and complex. As done earlier, we will not use large activation matrices as

a target. Using multiple images will require us to provide more common activation

matrices calculated by the MMMS. For example, the MMMS gives us 19 activations

for each single target image (see Section 4.5). If we take two target content images,

the number will be 38. This is double the size of the single target image activation

matrices. In the following section we will discuss how to resolve that problem by

properly configuring the total system.

5.6.1 Configuration of the System

The architecture is exactly the same as described in Chapter 4. All the GP parameters

and texture language are listed in Section 5.1 in Tables 5.1 and 5.2. In order to use
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two target images, we slightly modified the deep CNN system. The initialization

of the deep CNN will be done using two content images instead of one. Both of

the content images will pass through the deep CNN. The feature maps selected by

MMMS at r51 will be saved separately for each of the target content images. Here

we need to reduce the number of feature maps or activation matrices to keep the

content target dimension consistent with the previous experiments in Section 5.5. For

example, from Table 5.4 we know that for vertical stripes there are 19 activations.

Similarly, using MMMS we can calculate common 19 activations for the horizontal

stripes image. If we want to combine them for the multi-image target, then the total

common activation of the two targets will result in double the size of the r51 activation

matrix (19 + 19 = 38 total activations). To rectify this, we will use only the first

half of the activations (to be precise, 9 activations) from both of the target’s common

activations list. This way our target r51 matrix will be close to the size of the target

in Section 5.5 experiments (see Table 5.6). This may produce less impressive results

because of the reduced activations from each target content image. The GP produced

image will pass through all the layers until r51 and the MSE between this layer and

the other two layers (one for each target image) will be calculated separately. That

means GP first considers the first image and uses the activation associated with it to

calculate MSE. Then we calculate the MSE with the second target image with the

second activations. The two MSEs are combined and will be returned to the GP as

the fitness.

Total F itness = MSEcontent1 +MSEcontent2

The fitness is a simple sum of the distances of GP produced image from the two target

images.

5.6.2 Experiment Details and Analysis

We run 10 GP runs with 30 generations for each experiment. Although from the Table

5.1, the default number of generations is indicated as 35 but for different experiments,

we will vary the number slightly. In those cases, we will mention the generation

number explicitly in the beginning. Figure 5.11 shows all the best results along with

their MSE and fitness plot. The best solution images share the same characteristics

of both target content images. But some interesting factors are worth discussing. In

case of vertical and horizontal stripes (Figure 5.11a), instead of equally minimizing

MSE from both of the targets, GP results tend to lean towards a single target image.

That means they are minimizing MSE for only one target. Most of the solution
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Content Description Target Image Selected Activation

Vertical Stripes
314,178,484,162,274,247,283,350, 206
101,104,155 143,5,156,478,214,354,431

Horizontal Stripes
316,33,143,63,104,274,89,155,38,283,96
178,350,8,484,162,411,298,428

Content Description Combined Targets Combined Selected Activations

Vertical and
Horizontal Stripes

Target 1

Target 2

314,178,484,162,274,247,283,350,206
+

316,33,143,63,104,274,89,155,38

Table 5.6: Target combinations. Top table shows the activation for each separate
target image. Bottom table combines the top activations. Notice how combined
selected activations are chosen. First half comes from first content image activation.
Second half comes from second content image activations.
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images are either vertical or horizontal.

In order to visualize this better, we created a scatter plot with X-axis with MSE

from the vertical image and Y-axis with the MSE from the horizontal image (Figure

5.12). We placed the corresponding GP best results on the map. This chart conveys

an idea of how far the solutions are from each target content image. Interestingly

they are divided into two groups. Only 2 of them are somewhere in the middle.

Those two images have both vertical and horizontal stripes. In the case of the circle

and the vertical stripes (Figure 5.11b), the same can be said. Results consist of a

slight mixture of the red blob in the middle and around the edges there are small

stripes. It is reasonable to say, they are capturing vague characteristics of the contents

(stripes and circular shapes). We made another scatter plot (Figure 5.13). Solutions

that greatly minimized MSE from vertical content target showing characteristics of

vertical stripes. Solutions that greatly minimized the circular target image, showing

circular shape by having a red blob in the middle. This is not close to the circular

best results we had in single target MMMS (Section 4.5) since we removed half of the

activations. In spite of that, these solutions vaguely resemble a red circular shape.

The solutions that are in the middle of the chart, which means they are equal distance

from the target content images, show both characteristics. They have vertical stripes

in the side and red blob in the middle.

5.6.3 Future Work

Although the best solutions are promising, more intensive work on this is required for

further improvements. As previously mentioned, we used a very simple MSE formula

as fitness. Multi objective fitness [47], and more accurate activation choice might

improve the results.
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Chapter 6

Fully Connected Layer

In this chapter, we will discuss the use of the fully connected layer as a guide to our

evolutionary GP system instead of using only the convolutional layers. In all the pre-

vious experiments, we utilized the group of convolutional layers in the deep network,

which is a strong prior to the total network. We only utilized the convolutional layers

as a GP fitness earlier in Section 5.5 (MMMS) to guide our evolutionary system and

did not use the trained fully connected layers. The fully connected layer or FC layer

is a major component of any deep neural network. Here, we want to investigate the

effect of the fully connected layer as our GP fitness. This fully connected layer is a

more abstract representation of any given image than the convolution layers.

6.1 Background

The fully connected layer is a traditional deep MLP used for classification purposes.

Every neuron has full connections to all the neurons in the previous layer. This

is why it is called “fully connected”. This can be thought of as a general purpose

regular neural network. Their activations are computed with matrix multiplication

and a bias offset. The final output dimension of the FC layer depends on the specific

architecture used. In our case, we used the pre-trained VGG-19 architecture. This

architecture classifies 1000 objects so the fully connected layer’s final output contains

1000 channels (one for each class). Given an input image, the final output layer will

produce numbers that represents the probability of the image being a certain class.

The fully connected layer uses a softmax activation function in the output layer. It

spreads the 1000 score values from the final FC layer from 0 to 1 and thus provides

the probability of the each class. The sum of the output probabilities from the fully

connected layer is 1. In summary, the convolutional layers are providing a meaningful,

65
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low-dimensional, and somewhat invariant feature space and the fully-connected layer

is learning a function in that space.

6.1.1 Fully Connected Layer System Overview

As mentioned in the previous chapters, the convolutional and pooling layers represent

high-level features of the target image. The goal of the fully connected layer is to

utilize these features for image classification based on the training dataset. In our

case, we used the VGG-19 model which was trained on the ILSVRC-2012 dataset

containing images of 1000 classes [4]. The model was trained on 1.3 million images

from 1000 classes. The major difference between the architecture we used in Chapter

5 and this one is we are now including the final FC layer. It has a total of 123,638,760

additional parameters compared to the convolutional layers, including all weights and

biases. The output from the convolutional layers represents high-level features in the

data, and the fully-connected layer is a method of learning non-linear combinations

of these features.

6.1.2 Using Fully Connected Layer As a Guide to Evolution

Our goal is to utilize the FC layer to guide the GP evolutionary process so that we

might evolve images with similar visual features of the class we specify. For example,

if we specify the class which represents “peacock” in the output layer and configure

GP to score high on that class, we might get an image with similar characteristics to

a peacock. This has been done in the past in a different context [41]. The motivation

was, given that DNNs are able to classify objects with remarkable accuracy, to deter-

mine the differences between computer and human vision and how can they fool the

DNN. They used a different evolutionary technique to generate images and configure

the system to get high confidence score to each dataset class. Their intention was

to fool the DNN. For example, in [54], it was revealed that changing an image in a

way imperceptible to humans can cause a DNN to label the image as something else

entirely with almost 99.99% confidence. This even happens with complete white noise

totally unrecognizable to human eyes, where the DNN believes with absolute certainty

that the noise represents familiar objects. The work in [41] used EA (evolutionary

algorithm) to produce such images. Their system produced intriguing results which

were not visually close to the images of the given class from a human perspective, but

the confidence level of the class was high. As a result, some images had an interesting

artistic look and feel. We will perform similar experiments using our GP system.
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6.2 System Design and Initialization

The trained deep CNN architecture will be the same as in Chapter 4 i.e. VGG-19,

except for two major differences: 1) it has a fully connected part with a 1000x1 vector

in its output layer passing though softmax function to assign the probability of the

class scores; 2) instead of providing the target content image, we will provide only

the class number we are interested in. For example, in the 1000x1 output matrix,

class #84 represents a peacock. We will provide this class number so that GP fitness

maximizes a high score in #84. In other words, GP will maximize the class score

in #84 and therefore have low scores elsewhere. This way the evolved image might

have a visually similar pattern of a peacock. Our goal is to obtain such an image

generated by the GP, which scores very high in that class. The hyperparameters

we will be using are default VGG-19 hyperparameters. In Chapter 5 we modified

many hyperparameters (pooling layers, window size, strides etc.) to reduce the size

of the activation matrix in the convolution layer. However, those modifications are

not needed since we will be using the fairly compact final output vector which has

only 1000 dimensions. The block diagram of the total system is illustrated in Figure

6.1.
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6.2.1 Fitness

In the fully connected layer system, we will only specify the class number we want

GP to maximize. If the class number we are interested in is n, the fitness can be

expressed by

Fitness = 1− Class Scoren (1 ≤ n ≤ 1000)

First, GP produces a texture. The texture goes through the network including the

final output. We then select the class we are interested in (for example peacock is

class #84) and measure the score in that class. The score is between 0.0 and 1.0.

A score of 1.0 means the deep CNN is 100% certain that the image is of that class.

We measure the difference of that score from 1.0 and return the difference to GP as

fitness. If GP produces the class score of 0.33 in class # 84 then we return 1.00 -

0.33 = 0.67 as the fitness. GP continues to minimize this value which will increase

the score in that specific class.
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6.3 Experiment Details and Analysis

We begin by specifying the class we want. We will run multiple experiments with

various classes. We know that GP may not produce some of the class image, since

it will be extremely hard for GP to get a high score for some specific and complex

classes. For example, in the ILSVRC-2012 dataset out of those 1000 classes, there is

a handful of classes denoting different breeds of dogs. It will be very difficult for GP

to represent a dog with our current texture language. However, our goal is to evolve

images having visual characteristics of entities in the target class. We want patterns

of given class exhibiting in the GP produced images and score very high score on that

class.

Before moving on to our experimental results we need to clarify the concept of the

“confidence score” in the fully connected output layer. In deep CNN terminology, the

confidence score (a value between 0.0 and 1.0) means how confident the deep CNN

is about the class identity of the given image. We are going to use this score as the

GP fitness.

For experimental purposes, we selected the classes which we think GP has a chance

to produce a more significant score. We have an intuition that certain repeated texture

patterns might be easier for GP to produce. GP’s noise based texture language is

good at producing repeated textures . In Table 6.1, we list the classes used including

the class numbers in the final output layer of the ILSVRC-2012 dataset [4]. We also

include the real life images of corresponding classes and their confidence scores from

our deep CNN module. We can later compare our GP generated image scores using

this table for reference.
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Class Description Example Image Class Label Deep CNN Score

Honeycomb 599 94.96%

Orange 950 97.3%

Peacock 84 100%

Pomegranate 957 98.6%

Pinwheel 723 99.91%

Banana 954 99.6%

Tennis Ball 852 99.7%

Table 6.1: Class description and class number defined by the ILSVRC 2012 dataset.
The confidence scores from deep CNN (VGG-19) are listed for reference.
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Our GP engine uses the parameters and texture language listed in Tables 5.1 and

5.2. All the experiments run for 25 generations and we perform 8 runs per class. We

are reducing the number of runs since the fully connected layers has more parameters

than CNN layers, and therefore is more computationally expensive. The overall time

required for one run is more than double of the previous experiments.

The results produced by the GP vary and are often promising (see Figure 6.2

through Figure 6.4). For example, in all the cases, though they were not producing

the exact same images of the provided class, the confidence level we were getting is

often very high. In other words, the deep CNN classified evolved images as correct

ones. Although subjective, some results captured recognizable features of the target

classes. All of our best results did not retain any shapes of those original class objects,

but still managed to get a high confidence score from deep CNN. For example in the

case of the peacock class (Figure 6.2a) we can definitely see it is exhibiting the texture

and color of a peacock feather with a prominent dark green texture. One point to

note is that the GP language is considerably adept at producing this type of texture.

As a result, we are repeatedly evolving a peacock feather texture and the deep CNN

is highly confident that this is a peacock. Aspects of both shape (concentric rings)

and color (dark green) are present in the evolved images.

It is fascinating to see how the deep CNN classifies objects. The exact shapes of

objects may not be required for object classification. In most cases, the deep CNN

is looking for certain distinguishing patterns and colors in that image regardless of

their shape. The deep CNN is a complex network of non-linear parts and the pattern

or image characteristics it tries to find in the given image depends on the training.

The DNN will focus on specific characteristics that differentiates a class from all the

others. These characteristics can be unusual and unexpected. Color often plays a

dominant role. In all the experiments our best results are accurately developing the

color properties of those target objects. In case of peacock (Figure 6.2a), orange

(Figure 6.3b), pomegranate (Figure 6.3a) and banana (Figure 6.4b) GP is getting the

correct colors. The results of the honeycomb class are equally interesting. In Figure

6.2b notice the confidence level is quite high. The GP evolved images are getting

both shape of the and color of the honeycomb. The evolved best results are amber

grids with a circuit-like pattern. They even have dark shades around the edges of

those grids just the real life hexagonal cell of honeycomb. Notice the worst result is

completely out of place comparing to the other results due to the lack of amber color.

The best results of pomegranate class (Figure 6.3a) arguably might look very close

to pomegranate seeds even to a human observer. The first 4 results similar to a bowl
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of pomegranate fruit seeds and they have high confidence values. Notice how the last

result does not look like a pomegranate since it has green shades. As a result, the

confidence score is low. We can conclude that the evolved images are successfully

capturing both shape and colors of pomegranate seeds.

The orange experiment (Figure 6.3b) is also another good example of color dom-

inance in the trained deep CNN. In all the runs, the best results capture aspects the

orange’s outer skin texture and color. In the case of the pinwheel (Figure 6.4a), the

result may not be as obvious as in other experiments. Nonetheless, the confidence

level of those images is high, and we can notice pinwheel shape within the solution

images. This shape property differs from other examples since pinwheels are not color

specific. Pinwheels usually have multiple solid colors in their wheel blades. Evolved

images do not conform to any specific color. Rather, they focus on the pinwheel

blade-shaped features, and solid areas of color.

The Banana (Figure 6.4b) experiment is an unsuccessful experiment. GP had

trouble producing banana like images. The best results have a very low confidence

score comparing to the other experiments. Some of the results are exhibiting banana

like characteristics such as yellow shape with dark around the edges, which are present

in the real life image of banana as well.

Another rather unsatisfactory experiment is the tennis ball (Figure 6.5). All the

best results with high confidence score have green dots on the larger background

images. It is possible that all training images of tennis ball in ILSVRC dataset have

the tennis ball inside a flat tennis court rather than a centered and focused picture of

a tennis ball. Notice how a single green dot can fool the deep CNN as a tennis ball.

Also, a patch of pure lime green color gives a 12% match to a tennis ball.

Our results reflect the nature of the trained deep CNN. We can say that by looking

at our results which achieved very high confidence score. In addition, work done

by [41] also suggests similar notion. All the training examples of orange, peacock,

pomegranate, and banana have fixed object-specific colors. The peacock training

examples are always dark green, and orange and pomegranate are orange and red

respectively. But the pinwheel object is color independent and its classification is

strictly based on shapes and patterns rather than color properties.
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6.4 Target Combinations Using the FC Layer

We are now interested in experimenting with multiple classes. This will allow us to

perform target combinations. Instead of specifying one single target class, we are

going to specify two classes and observe how GP performs. We already performed

similar experiments in Section 5.6 using CNN activation matrices. Here, the GP

parameters are the same as in Tables 5.1 and 5.2. We are running the GP evolution

for 25 generations. If n1 and n2 is the class number of the first and second target

respectively, the total fitness of this system is:

Fitness = (1− Class Scoren1) + (1− Class Scoren2) (1 ≤ n ≤ 1000)

Note that we do not weight the terms. The fitness is the sum of the scores from both

of the classes.

Target combinations using the FC layer is not as impressive as in Section 5.6.

Results are completely one-sided i.e. highest confidence score is always from only

one of the two classes. However, from the fully connected layers point of view, this

is reasonable in many ways. First, the point of having a trained large complex non-

linear network is to drive the high class score in one single class so that deep CNN can

classify images accurately. Specifying two classes is “abusing” the system. Second,

all the training example images are from single class objects. The deep CNN likely

has never seen an image which is a mixture of two different classes. For example, we

experimented with peacock and banana. These are totally two different objects from

two different classes. It will be hard to get a good score in both of the classes since

such an object (or training image) does not exist. In terms of GP, it is just a pixel

level texture change, but for the deep CNN, this is totally unknown object.
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In the first experiment, we will specify the peacock and pomegranate class as

the target classes by selecting both the class #84 and the class #957 (see Table 6.1

for class reference). In Figure 6.6a we can see that GP is producing images with

dominantly peacock properties. But it is interesting to see some red blob showing in

some of the best results. This might be the contribution of the pomegranate class

in the fitness. Although the confidence score of the pomegranate class is very low.

Similar to the experiments in Section 5.6, here GP is also minimizing the error in one

specific class, in this case, peacock. A different fitness strategy might improve these

results but this is beyond the scope of the thesis. In the case of the peacock and

banana, the same bias towards the peacock can be seen (Figure 6.6b). But again we

can see some yellow blobs in the texture occasionally appear, which might come from

the banana class.
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6.5 Conclusion

Our evolved images often come with high certainty values from the deep CNN and

often share some key visual characteristics of the target classes. But results did not

evolve all the characteristics of the classes i.e. we would not mistake evolved images

as the objects from those classes. This is because the deep CNN has a different model

of the classes than what a human observer will have. However, this can be potentially

useful as a high-level artistic tool for evolutionary process.

Most of the images used to train the ILSVR 2012 are complex real-world photos

of species, animals and objects. Our evolved results are biased and limited due to the

simple texture language. If we could have a robust GP system which could produce

complex images, we might evolve more interesting images closer to the target classes.

The whole idea of using a fully connected layer is to provide GP a sophisticated fitness

strategy so that GP can conform to specific characteristics. The fully connected layer

provides a high-level guide. But still, as we have seen from the experiments, this

is successfully guiding the GP towards specific image attributes found in the target

class, which is promising. For multi-class image combinations, we might need a more

involved and complex fitness strategy to be able to balance between the two target

classes e.g multi-objective analysis. This certainly requires more work in the future.



Chapter 7

Basic CNN

7.1 Introduction

Based on the premise of how CNN learns to capture high-level information of any

given image, we propose a similar, but a vastly simplified network. This chapter uses

a basic CNN for GP fitness. This basic CNN uses selected hand-picked filters in its

layers. This network is untrained and quite shallow. The goal is to run the GP with

the basic CNN so that GP can exploit the information captured in the higher layers

of the basic CNN. We will apply this network in a manner similar to the experiments

in Chapter 5. This will give us insights such as whether or not training is really

necessary.

From the background study, we know that all popular CNN architectures are very

deep and contain millions of learnable weights. During the training phase, those

learnable weights get adjusted by backpropagation. That includes all the weight val-

ues of image kernels or filters in the convolutional layers. Filters in those layers are

responsible for detecting certain properties of the image. For example, the first layer

detects simple properties like edges, a blob of color, etc. The second layer detects

contour and corners, and so on. One important factor to mention here is that those

detector filter weights are determined during the training phase and they are not

fixed throughout the whole training process. That means during training, weights

associated with filters get adjusted and this helps the filters to capture different fea-

tures from the input image. They are initialized with random weights at first. As

the training continues they adjust their weights until they are capable of capturing

meaningful properties. Vigorous training with millions of images, thousands of clas-

sification labels and many hidden layers makes those filters extremely capable feature

detectors.

82
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Putting aside CNN for a while, from a pure image processing point of view an

image kernel or convolutional kernel refers to a small matrix of fixed dimensions, say

3x3 or 5x5, which operates in the neighborhood of the same dimensions with the input

image [27]. It can be used to make image processing effects like blurring, embossing,

line detection, edge detection by doing convolution between the kernel and any given

image. These images kernels matrices are fixed values matrices.
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Table 7.1: Image kernels and result after convolution (greyscale)

Kernel Matrix Image Result Kernel Matrix Image Result

Blur

1/9

1 1 1
1 1 1
1 1 1


Gaussian Blur

1/16

1 2 1
2 4 2
1 2 1



Left Sobel1 1 1
1 1 1
1 1 1


Top Sobel 1 2 1
0 0 0
−1 −2 −1



Right Sobel−1 0 1
−2 0 2
−1 0 1


Outline Edge−1 −1 −1
−1 8.0 −1
−1 −1 −1



Sharp 0 −1 0
−1 5 −1
0 −1 0


Embross−2 −1 0
−1 1 1
0 1 2



Positive 45 0 −1 0
−1 5 −1
0 −1 0


Negative 45−2 −1 0
−1 1 1
0 1 2



Horizontal−1 −1 −1
2 2 2
−1 −1 −1


Vertical−2 −1 0
−1 1 1
0 1 2



Random Float 0.83 2.53 −1.01
−0.10 −0.28 0.11
0.96 0.14 −1.61


Random Integer−4 3 4

0 1 −2
−4 −3 2


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Figure 7.1: Input image

Table 7.1 illustrates commonly used image kernel matrices and their result after

applying to the input image in Figure 7.1

Using the two concepts, convolution and the use of multi-layer network, we de-

signed a simple untrained network of fixed convolutional filters. We will stick to a

very basic network. We handpicked 14 convolutional filters ranging from blur filter to

specific line detector filters. Inspired by the VGG [50] used in Chapter 4, we stacked

multiple layers of convolution filters on top of each other. We also leveraged the idea

of activations and dimensionality reduction by using ReLU and pooling layer (Max-

pooling) respectively. We tried to tune our hyperparameters similar to the VGG

network. That means our image stride and kernel size is the same as those used in

the VGG network. However, a minor difference is we choose not to add zero padding

around the border of the input layer because some line detector filters are detecting

an edge on the boundary areas.



CHAPTER 7. BASIC CNN 86

F
ig

u
re

7.
2:

B
as

ic
C

N
N

ar
ch

it
ec

tu
re



CHAPTER 7. BASIC CNN 87

Our input layer takes a 256x256 input image illustrated in the Figure 7.1. Then it

goes through the first layer of convolution filters. Each of those 14 kernels applied to

the input image individually will give 14 distinct feature maps after the convolution

process. Then it passes through ReLU and Max-pooling. After that, like any other

convolution networks, the next layer of convolutional filters (same as the previous

layer) will perform convolution individually on those resultant feature maps from the

previous layer. This process is repeated several times. This altering Convolution +

ReLU + Pooling process continues until the final output layer. The architecture of

the basic CNN is illustrated in Fig 7.2

Note that unlike the VGG network or other popular architectures, the number of

feature maps in our network is of fixed size. Other networks usually have different

numbers of feature maps in different layers. In terms of the deepness of the architec-

ture, we choose to implement 7 layers. The stacking arrangement is inspired by VGG

[50]. From Figure 7.2, we can see there is no pooling layer between 3 and 4. Also,

there is no pooling layer between 5 and 6. The final output contains 14 feature maps

of the dimension 5x5.

7.2 GP Integration

We will use the same data flow architecture from the previous CNN experiments (see

Chapter 4 Figure 4.1). First, we feed a content image target to the basic CNN. It

goes through all the layers until it reaches the final output. Next, the GP generated

individual texture will go through the same network and we will calculate the MSE

between the GP individual and content target from the final output layer. The MSE

will be used as the GP fitness. All the GP parameters and texture language are listed

in Section 5.1 in Tables 5.1 and 5.2.

7.3 Experiments and Result Analysis

7.3.1 Greyscale

We start by using single channel greyscale image in the input layer. The input layer

matrix will be constructed as a 256x256x1 matrix. After passing through all the layers

the final output is a 14x5x5 matrix. Figure 7.3 illustrates what 14 convolutional filter

captures in its first layer. It is evident that different filters are capturing their specific

properties. If the input image is a vertical stripe, then top Sobel, outline and vertical
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line detector filters are actually responding to those pixels. On the other hand,

positive 45, negative 45 and horizontal line detector filters are not responding to any

pixel values from the input image.

Figure 7.3: 14 feature maps from the first layer after convolution + ReLU + Max
pooling

As we move from lower layers to higher layers, higher layer output reflects the

same characteristics from the first layer, i.e., it is encoding the properties specific to

the input image in very small dimensions of matrices. If we try to visualize this,

we can convert the 2D activation maps into greyscale images by scaling the values

between 0 to 255. Figure 7.4 is such conversion of second last layer (layer 6). The
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reason for showing the visualization of the 6th layer is that the final layer feature

maps are too small to correctly visualize as an image. Notice how Figure 7.4d, 7.4e ,

7.4c and 7.4i are almost black which indicates there is no activation.

(a) Gaussian Blur (b) Vertical (c) Negative 45 (d) Positive 45

(e) Horizontal (f) Sharp (g) Embross (h) Outline Edge

(i) Top Sobel (j) Right Sobel (k) Left Sobel (l) Blur

(m) Random Inte-
ger

(n) Random Float

Figure 7.4: Visualization of activations of 14 feature maps from 6th layer

After all the pooling and ReLU, in the final layer, the feature maps are reduced

to a very small patch of a 5x5 matrix. If we try to inspect the level of activation of

the 14 features from the Table 7.2 we can see that the left Sobel, vertical filters are

heavily activated since vertical line properties are present in the input image. On

the other hand, positive and negative 45, horizontal and top Sobel is very lightly

activated. The horizontal activation is almost zero. This proves that the final output
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encoded by our network is consistent with the input image characteristics.

Table 7.2: Mean activations of the 14 feature maps in the final layer(Layer 7).

Filter Name Mean Activation
Embross 16652246.66

Left Sobel 16117603.37
Random filter (int) 15418029.52

Vertical 14257100.00
Outline Edge 14257000.00

Random filter(float) 13683788.20
Right Sobel 13253261.43

Sharp 12112331.20
Blur 7834109.10

Gaussian Blur 7707683.70
Top Sobel 3596.65
Positive 45 1287.54
Negative 45 189.46
Horizontal 0.20

With that in mind, we can say that the network is acting as a simple feature

detector. We used this output layer as a GP fitness and let GP run for 30 generations.

Figure 7.5 illustrates best results from 10 GP runs. Note that like previous pre-trained

VGG network we did not reduce the number of feature maps in our first experiment.

From Figure 7.5, it is evident that simple characteristics of the striped image are

captured by our simple network is directing the evolutionary process in a specific way

so that those characteristics are occurring in those GP produced resultant images.

Horizontal and vertical lines are distinctly captured.
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Although simple images like horizontal and vertical stripes were successfully cap-

tured and encoded by the network, for a more involved image like a circle, results are

less convincing (Figure 7.6). It is safe to say that those 14 filters and feature maps

are unable to capture complex features like curves. Also, max pool greatly reduces

the dimensions and causes invariance to small translations in our greatly simplified

network. It is possible that the final layer output is unable to detect continues curved

nature of input image.

Figure 7.6: Best results of 10 runs. Standardized fitness plots are averaged over 10
runs.

7.3.2 RGB Image

This experiment is a slightly modified version from the greyscale one described in

Section 7.3.1. Instead of applying the convolution to a single channel greyscale image,

we simply took a 3 channel RGB image as an input and performed multi-channel

convolution from the very first layer. All the other configurations are identical to the

previous greyscale experiment. The results are shown in Figure 7.7 and 7.8. The

same observations from the previous section are still valid here. Note that the only

difference between greyscale input and RGB input is the number of input channels.

All the other configurations are the same as previous greyscale experiment in Section

7.3.1. The final target matrix dimension is 14x5x5 as before. After the first multi-

channel convolution operation with the filters and the RGB input image, the internal

hidden layer dimensions become similar to the Figure 7.3 and Figure 7.4.
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From Figure 7.7a and Figure 7.7b, it is evident that the best results (lower MSE)

from the vertical and horizontal experiment, are capturing the main characteristics

of the content image i.e. the characteristics of the stripes. This is possible due to the

presence of the line detector filters in our filter set. In the case of the circle (Figure

7.8a) content image, results are less promising. This is due to the lack of representa-

tion of a circular shape by our fixed filter set. In the case of the rectangular content

image, the first two best results have rectangular shapes in the middle (Figure 7.8b).

Since we have multiple line detector filters, capturing rectangular characteristics is

possible in a limited way.
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Chapter 8

Conclusion

8.1 Summary

A deep CNN trained on millions of images forms a very high-level abstract represen-

tation of any given target image in its higher layers [22]. Our main purpose was to

utilize this high-level information to guide the evolutionary process. In order to do

so, we implemented a system which contained a robust GP system and a pre-trained

deep CNN model. Using the high-level overview of the content image was challenging

due to the tremendous amount of information which was too overwhelming for GP

fitness. Also, the inner working of a deep CNN model is almost a “black box” and it is

difficult to know what components will be the most useful for GP to use. With a care-

ful investigation of the convolution layers and some fine-tuning of the components, we

minimized the dimension of the convolutional layer significantly without losing con-

tent information. After that, we proposed a statistical pre-processing strategy called

MMMS to select a number of relevant activation matrices to use as a fitness to the

GP. It is a simple heuristic to identify relevant activation maps for specific target ob-

jects. Using the reduced number of activation matrices gave us promising results, i.e.,

evolved images retained main characteristics like shapes and patterns of the content

image. After the initial success with MMMS, we ventured into multi-image combina-

tions. This was more difficult. We suspect that the image combinations used directly

cannot correlate with the training that was done with the deep CNN. The trained

deep CNN probably never saw any image which is a combination of two classes.

Additionally, we investigate the idea of using a more high-level and abstract con-

tent information as the fitness to the GP. For that, we used the deep CNN’s final

output layer class scores which is generally used for image classification as the GP

fitness. We performed the necessary experiments, and we had moderately good re-

96
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sults for some specific cases. The best results produced by the GP scored very high

for some specific classes objects. For example, when we specified the target class as

peacock the result produced by the GP scored 99% confidence score by the deep CNN,

and it definitely shared “peacock” features like feather colour and textured pattern

of the feather. It shows what is sufficient for deep CNN classification. The deep

CNN classifies an image by looking at the unique features. For example, to classify a

peacock, it is sufficient to look for the green feather pattern rather than a complete

peacock. In case of a tennis ball, it is sufficient to find lime colored texture without a

shape of a ball to classify it. With all that said, we can safely assume that there is a

difference between what pre-trained VGG needs for classification (images character-

istics) versus what are the user’s expectations of the evolved images. A trained deep

CNN only looks for specific colour and pattern to classify a peacock whereas a user

looks for a bird.

Finally, we implemented our own CNN without training to see if raw untrained

activation matrices are of use. Instead of using a massive pre-trained deep CNN, we

introduced our own shallow network which only contained 16 filters in each layer. We

got slightly promising results only in basic striped images. This strongly suggests

that training of network is important.

Based on all the experiment results, we can conclude that information encoded in

the deep CNN model can be used as a strategy to guide evolutionary art. This tool

has promise as a guide for image evolution.

8.2 Future Work

Our approach can be improved and further explored in many ways. First of all,

the GP language we used was inherently inflexible due to the restricted nature of

a simple texture language. The resulting images tend to produce images with a

repeated textured pattern rather than retaining complex shapes. Noise also added

some bias in the nature of resulting images. Using a more flexible and complex GP

texture language could further improve results for certain content images.

Regarding the deep CNN module, multiple strategies could be undertaken for im-

proving overall performance. The biggest problem with the trained deep CNN model

is the lack of understanding of the inner workings of the hidden layers. The trained

deep CNN model is a “black box”, and the MMMS strategy tried to heuristically

deconstruct the CNN to find the most important activations. We used variations of

different object images paired into two groups. This might be improved if we could
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use more images of similar objects and paired them into multiple groups. Then, find-

ing the common activations would be more accurate. It will be interesting to see if

we can shuffle the images in all the groups and again apply the MMMS to find the

common activations. This might narrow down the number of common activations

further.

The statistical measure we considered could be improved further. We used the

mean of the minimum matrix. More sophisticated statistical information may give

us valuable insights into the activations filtration process.

This may be an indication of the importance of training. For target combinations,

one could try more complex fitness strategies instead of using the simple sum of the

MSE of the two images. Multi-objective optimization with ranking (e.g Pareto) could

improve the results [47]. This is also applicable to the multi-class fully connected

experiments as well. We saw that in the case of the fully connected multi-class

experiments the results were poor. That was mostly due to the nature of the training

of the deep CNN and the use of our oversimplified fitness strategy. Multi-objective

fitness might help in this case. But again this can get complicated too. If it is

the inherent nature of the encoding of the images, then the network will not have

distributional statistics associated with the combination. This definitely needs more

investigation in the future. Novelty search might improve the results also.

The basic CNN we implemented was quite shallow and, in every layer, we used

the same sets of filters. Rigorous experiments with different arrangements of filters in

different layers may further improve the results. Another approach is to perform own

custom training with own intended styles of images to influence the CNN. For exam-

ple, one could train the CNN with human expectations of a particular set of objects

and train the CNN in a way that human expectation reflects the CNN classification.

This could result in dramatically improved results, and maybe the best strategy for

evolutionary art.

Finally, our main goal was to use a deep CNN model to guide the evolutionary

process. We used the VGG-19 model as our deep CNN model. Currently there are

many new DNN models published [48, 30, 53]. Using these new models might change

the results significantly.



Bibliography

[1] Artificial neuron. https://commons.wikimedia.org/wiki/File:

ArtificialNeuronModel_english.png. Accessed: 2018-06-06.

[2] Connection of input and convolution layer. https://commons.wikimedia.org/

wiki/File:Conv_layer.png. Accessed: 2018-06-06.

[3] Convolutional operation. http://deeplearning.stanford.edu/wiki/index.

php/Feature_extraction_using_convolution. Accessed: 2017-09-16.

[4] ILSVRC 2012 dataset. http://image-net.org/challenges/LSVRC/2012/

browse-synsets. Accessed: 2018-06-21.

[5] An intuitive explanation of convolutional neural networks. https://

ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/. Accessed:

2017-09-16.

[6] Kenneth Stanley. Evolution of a spaceship. http://nn.cs.utexas.edu/demos/

spaceship_evolution/rocket.html. Accessed: 2018-05-31.

[7] Large Scale Visual Recognition Challenge (ILSVRC). http://www.image-net.

org/challenges/LSVRC/. Accessed: 2018-0-16.

[8] Maxpooling operation. https://en.wikipedia.org/wiki/File:Max_pooling.

png. Accessed: 2018-06-16.

[9] Shumeet Baluja, Dean Pomerleau, and Todd Jochem. Towards automated arti-

ficial evolution for computer-generated images. Connection Science, 6(2-3):325–

354, 1994.

[10] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust

features. Computer vision–ECCV 2006, pages 404–417, 2006.

99



BIBLIOGRAPHY 100

[11] Yoshua Bengio. Deep learning of representations for unsupervised and trans-

fer learning. In Isabelle Guyon, Gideon Dror, Vincent Lemaire, Graham Tay-

lor, and Daniel Silver, editors, Proceedings of ICML Workshop on Unsupervised

and Transfer Learning, volume 27 of Proceedings of Machine Learning Research,

pages 17–36, Bellevue, Washington, USA, 2012. PMLR.

[12] Peter Bentley and David Corne. An introduction to creative evolutionary sys-

tems. In Peter Bentley and David Corne, editors, Creative Evolutionary Systems,

The Morgan Kaufmann Series in Artificial Intelligence, pages 1 – 75. Morgan

Kaufmann, San Francisco, 2002.

[13] Philip Bontrager, Wending Lin, Julian Togelius, and Sebastian Risi. Deep in-

teractive evolution. In Computational Intelligence in Music, Sound, Art and

Design: Proceedings of the 7th International Conference on EvoMUSART 2018,

pages 267–282. Springer, Cham, 2018.

[14] Soumith Chintala. Pytorch documentation. http://pytorch.org/docs/

master/. Accessed: 2017-09-16.

[15] Soumith Chintala. PyTorch: Tensors and Dynamic neural networks in Python

with strong GPU acceleration. http://pytorch.org/. Accessed: 2017-09-16.

[16] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human

detection. In 2005 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, 2005, volume 1, pages 886–893. IEEE, 2005.

[17] Richard Dawkins. The Blind Watchmaker. Norton & Company, Inc, 1986.

[18] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-

genet: A large-scale hierarchical image database. In 2009 IEEE Conference on

Computer Vision and Pattern Recognition, pages 248–255. IEEE, 2009.

[19] Li. Deng and Dong Yu. Deep Learning: Methods and Applications. Foundations

and trends in signal processing. Now Publishers, 2014.

[20] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric

Tzeng, and Trevor Darrell. Decaf: A deep convolutional activation feature for

generic visual recognition. In International Conference on Machine Learning,

pages 647–655, 2014.



BIBLIOGRAPHY 101

[21] David Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, and Steven

Worley. Texturing & Modeling, A Procedural Approach. AP Professional, USA,

July, 1998.

[22] Leon Gatys, Alexandar Ecker, and Matthias Bethge. Image style transfer us-

ing convolutional neural networks. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Jun 2016.

[23] Leon Gatys, Alexander Ecker, and Matthias Bethge. Texture synthesis using

convolutional neural networks. In Advances in Neural Information Processing

Systems 28, 2015.

[24] Leon Gatys, Alexander Ecker, Matthias Bethge, Aaron Hertzmann, and Eli

Shechtman. Controlling perceptual factors in neural style transfer. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition, Jul

2017.

[25] Michael Gircys. Image evolution using 2d power spectra. Master’s thesis, Brock

University, Dept. of Computer Science, 2018.

[26] David Goldberg. Genetic Algorithms in Search Optimization and Machine Learn-

ing. Addison Wesley, 1989.

[27] Rafael Gonzalez and Richard Woods. Digital Image Processing. Prentice Hall,

Upper Saddle River, New Jersey, USA, 2002.

[28] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT

Press, 2016.

[29] Jeanine Graf and Wolfgang Banzhaf. Interactive evolution of images. In Evolu-

tionary Programming IV: Proceedings of the Fourth Annual Conference on Evo-

lutionary Programming, pages 53–65. MIT Press, 1995.

[30] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 770–778, 2016.

[31] Alaa Eldin M Ibrahim. Genshade: An Evolutionary Approach to Automatic and

Interactive Procedural Texture Generation. PhD thesis, Texas A&M University,

1998. AAI9915243.



BIBLIOGRAPHY 102

[32] John Koza. Genetic Programming: On the Programming of Computers by Means

of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

[33] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. Imagenet classification

with deep convolutional neural networks. In Proceedings of the 25th International

Conference on Neural Information Processing Systems, volume 1, pages 1097–

1105. Curran Associates Inc., USA, 2012.
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